

## HEIDENHAIN



Brukerhåndbok Syklusprogrammering

**iTNC 530** 

NC-programvare 606420-04, SP8 606421-04, SP8 606424-04, SP8

## Om denne håndboken

Nedenfor finner du en liste over symbolene som brukes i denne håndboken



Dette symbolet angir at spesielle anvisninger må følges for den beskrevne funksjonen.



Dette symbolet angir at én eller flere av følgende farer foreligger ved bruk av den beskrevne funksjonen:

- Fare for emne
- Fare for oppspenningsutstyr
- Fare for verktøy
- Fare for maskin
- Fare for bruker



Dette symbolet viser at den beskrevne funksjonen må tilpasses av maskinprodusenten. Den beskrevne funksjonen kan derfor fungere forskjellig fra maskin til maskin.



Dette symbolet angir at du finner mer detaljerte beskrivelser av en funksjon i en annen brukerhåndbok.

## Ønsker du endringer, eller har du oppdaget en feil?

Vi arbeider stadig for å forbedre dokumentasjonene våre. Du kan bidra til dette arbeidet ved å skrive til oss med endringer du ønsker, på følgende e-postadresse: **tnc-userdoc@heidenhain.de**.

3

## TNC-type, programvare og funksjoner

Denne håndboken beskriver funksjoner som er tilgjengelige i TNC, fra og med følgende NC-programvarenummer.

| TNC-type                                                                     | NC-programvarenr. |
|------------------------------------------------------------------------------|-------------------|
| iTNC 530, HSCl og HEROS 5                                                    | 606420-04, SP8    |
| iTNC 530 E, HSCI og HEROS 5                                                  | 606421-04, SP8    |
| iTNC 530 programmeringsstasjon<br>HSCI                                       | 606424-04, SP8    |
| iTNC 530 programmeringsstasjon,<br>HEROS 5 for<br>virtualiseringsprogramvare | 606425-04, SP8    |

Eksportversjonen av TNC er merket med bokstaven E. Følgende begrensning gjelder for eksportversjonene av TNC:

Simultane rettlinjede bevegelser for inntil fire akser

**HSCI** (HEIDENHAIN Serial Controller Interface) merker den nye maskinvareplattformen til TNC-styringene.

**HEROS 5** angir det nye operativsystemet til de HSCI-baserte TNCstyringene.

Maskinprodusenten tilpasser den effektive ytelsen til TNC til hver enkelt maskin. Ytelsen tilpasses ved hjelp av maskinparametere. Derfor inneholder denne håndboken beskrivelser av funksjoner som ikke er tilgjengelige for hver TNC.

TNC-funksjoner som ikke er tilgjengelige for alle maskiner, er for eksempel:

Verktøyoppmåling med TT

Kontakt maskinprodusenten for å få informasjon om hvilke funksjoner som er tilgjengelige for din maskin.

Mange maskinprodusenter og HEIDENHAIN tilbyr kurs i programmering av TNC. Vi anbefaler deg å delta på et slikt kurs for å gjøre deg kjent med TNC-funksjonene.



#### Brukerhåndbok:

Alle TNC-funksjonene som ikke har forbindelse med syklusene, er beskrevet i brukerhåndboken for iTNC 530. Ta kontakt med HEIDENHAIN hvis du har behov for denne håndboken.

ID for klartekstdialog for brukerhåndbok: 737759-xx.

ID for brukerhåndbok DIN/ISO: 737760-xx.



#### Brukerdokumentasjon smarT.NC:

Driftsmodusen smarT.NC er beskrevet i en egen bruksanvisning. Ta kontakt med HEIDENHAIN hvis du har behov for denne bruksanvisningen. ID: 533191-xx.

5

### Programvarealternativer

iTNC 530 tilbyr forskjellige programvarealternativer som kan aktiveres av deg eller maskinprodusenten. Alternativene kan aktiveres separat. De forskjellige alternativene har følgende funksjoner:

#### Programvarealternativ 1

Sylinderoverflate-interpolasjon (syklus 27, 28, 29 og 39)

Mating i mm/min ved rundakser: M116

Dreiing av arbeidsplanet (syklus 19, **PLANE**-funksjon og funksjonstasten 3D-ROT i driftsmodusen Manuell)

Sirkel med tre akser ved dreid arbeidsplan

#### Programvarealternativ 2

5-aksers interpolasjon

Spline-interpolasjon

3D-bearbeiding:

- M114: Automatisk korrigering av maskingeometrien når du arbeider med dreieakser
- M128: Verktøyspissen blir stående i samme posisjon når dreieaksene posisjoneres (TCPM)
- FUNCTION TCPM: Verktøyspissen blir stående i samme posisjon når dreieaksene posisjoneres (TCPM). Virkemåten kan stilles inn
- **M144**: Det blir tatt hensyn til maskinkinematikken i faktiske/nominelle posisjoner ved blokkslutt
- Ekstra parametre Slettfresing/skrubbing og Toleranse for roteringsakser i syklus 32 (G62)
- LN-blokker (3D-korrigering)

| Programvarealternativ DCM Collision<br>(DCM kollisjon)                                                  | Beskrivelse                        |
|---------------------------------------------------------------------------------------------------------|------------------------------------|
| Funksjonen overvåker områder som er<br>definert av maskinprodusenten, og skal<br>forhindre kollisjoner. | Brukerhåndboken<br>Klartekstdialog |
|                                                                                                         |                                    |
| Programvarealternativ DXF-Converter                                                                     | Beskrivelse                        |
| Ekstrahere konturer og                                                                                  | Brukerhåndboken                    |

Klartekstdialog

Ekstrahere konturer og bearbeidingsposisjoner fra DXF-filer (R12format).



| Programvarealternativet Globale programinnstillinger                                                                                            | Beskrivelse                        |
|-------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|
| Funksjon for overlagring av<br>koordinattransformasjoner i driftsmodusene<br>for kjøring, manuelt overlagret kjøring i virtuell<br>akseretning. | Brukerhåndboken<br>Klartekstdialog |
| Programvarealternativet AFC                                                                                                                     | Beskrivelse                        |
| Funksjon for adaptiv matingskontroll for<br>optimering av snittbetingelsene ved<br>serieproduksjon                                              | Brukerhåndboken<br>Klartekstdialog |
| Programvarealternativet KinematicsOpt                                                                                                           | Beskrivelse                        |
| Touch-probe-sykluser for kontroll og optimering av maskinens nøyaktighet.                                                                       | Side 478                           |
| Programvarealternativ 3D-ToolComp                                                                                                               | Beskrivelse                        |
| Inngripsvinkelavhengig radiuskorrigering av<br>3D-verktøy for <b>LN</b> -blokker.                                                               | Brukerhåndboken<br>Klartekstdialog |
| Programvarealternativ for utvidet verktøybehandling                                                                                             | Beskrivelse                        |
| Verktøybehandling fra maskinprodusenten<br>som kan tilpasses via Python-skript.                                                                 | Brukerhåndboken<br>Klartekstdialog |
| Programvarealternativ CAD-Viewer                                                                                                                | Beskrivelse                        |
| Åpne 3D-modeller i styringen.                                                                                                                   | Brukerhåndboken<br>Klartekstdialog |
| Programvarealternativ<br>interpolasjonsdreiing                                                                                                  | Beskrivelse                        |
| Interpolasjonsdreie en avsats med syklus<br>290.                                                                                                | Side 323                           |
| Programvarealternativ Remote Desktop<br>Manager                                                                                                 | Beskrivelse                        |
| Fjernbetjening av eksterne<br>datamaskinenheter (f.eks. Windows-PC) via<br>brukergrensenittet til TNC                                           | Brukerhåndboken<br>Klartekstdialog |
| Programvarealternativ Cross Talk<br>Compensation CTC                                                                                            | Beskrivelse                        |
|                                                                                                                                                 |                                    |

i

| Programvarealternativ Position Adaptive<br>Control PAC | Beskrivelse   |
|--------------------------------------------------------|---------------|
| Tilpasning av reguleringsparametre                     | Maskinhåndbok |
|                                                        |               |
| Programvarealternativ Load Adaptive<br>Control LAC     | Beskrivelse   |
| Dynamisk tilpassing av<br>reguleringsparametere        | Maskinhåndbok |
|                                                        |               |
| Programvarealternativ Active Chatter<br>Control ACC    | Beskrivelse   |
| Helautomatisk antivibrasjonsfunksjon under bearbeiding | Maskinhåndbok |

## Utviklingsnivå (oppgraderingsfunksjoner)

Med oppgraderingsfunksjonene, de såkalte **F**eature **C**ontent **L**evel (utviklingsnivå), administreres programvarealternativene og andre videreutviklede versjoner av TNC-programvaren. En programvareoppdatering av TNC gir deg ikke tilgang til funksjonene som hører inn under FCL.



I nye maskiner har du gratis tilgang til alle oppgraderingsfunksjonene.

Oppgraderingsfunksjonene er merket med FCL n i håndboken. n er utviklingsnivåets fortløpende nummer.

FCL-funksjonene kan aktiveres ved hjelp av et kodetall som du kan kjøpe. Ta kontakt med maskinprodusenten eller HEIDENHAIN.

| FCL 4-funksjoner                                                                             | Beskrivelse                    |
|----------------------------------------------------------------------------------------------|--------------------------------|
| Grafisk fremstilling av beskyttelsesrom<br>ved aktiv kollisjonsovervåkning DCM               | Brukerhåndbok                  |
| Håndrattoverlagring i stanset tilstand<br>ved aktiv kollisjonsovervåkning DCM                | Brukerhåndbok                  |
| 3D-grunnrotering<br>(oppspenningskompensasjon)                                               | Maskinhåndbok                  |
|                                                                                              |                                |
| FCL 3-funksjoner                                                                             | Beskrivelse                    |
| Touch-probe-syklus for 3D-prober                                                             | Side 467                       |
| Touch-probe-sykluser for automatisk<br>fastsettelse av nullpunkt i midten av<br>noten/steget | Side 363                       |
| Matereduksjon ved<br>konturlommebearbeiding når verktøyet<br>er i fullt inngrep.             | Brukerhåndbok                  |
| PLANE-funksjon: inndata for aksevinkel                                                       | Brukerhåndbok                  |
| Brukerdokumentasjon som<br>kontekstsensitivt hjelpesystem                                    | Brukerhåndbok                  |
| smarT.NC: smarT.NC programmeres<br>parallelt med bearbeidingen                               | Brukerhåndbok                  |
| smarT.NC: konturlomme på punktmal                                                            | Bruksanvisning til<br>smarT.NC |
| smarT.NC: Forhåndsvisning av<br>konturprogrammer i filbehandleren                            | Bruksanvisning til smarT.NC    |
| smarT.NC: Posisjoneringsstrategi ved punktbearbeidinger                                      | Bruksanvisning til smarT.NC    |

| FCL 2-funksjoner                                                               | Beskrivelse                    |
|--------------------------------------------------------------------------------|--------------------------------|
| 3D-linjegrafikk                                                                | Brukerhåndbok                  |
| Virtuell verktøyakse                                                           | Brukerhåndbok                  |
| USB-støtte for blokkenheter<br>(minnepinner, harddisker, CD-ROM-<br>stasjoner) | Brukerhåndbok                  |
| Filtrere konturer som er opprettet<br>eksternt                                 | Brukerhåndbok                  |
| Mulighet til å gi delkonturene<br>forskjellige dybder i konturformelen         | Brukerhåndbok                  |
| DHCP, dynamisk administrasjon av IP-<br>adresser                               | Brukerhåndbok                  |
| Touch-probe-sykluser for global innstilling av touch-probe-parametre           | Side 472                       |
| smarT.NC: grafisk støtte av mid-<br>program-oppstart                           | Bruksanvisning til<br>smarT.NC |
| smarT.NC: Transformasjon av<br>koordinater                                     | Bruksanvisning til<br>smarT.NC |
| smarT.NC: PLANE-funksjon                                                       | Bruksanvisning til<br>smarT.NC |

### Beregnet bruksområde

TNC tilsvarer klasse A iht. EN 55022 og er hovedsakelig beregnet for industriell bruk.

# Nye syklusfunksjoner for programvare 60642x-01

- Ny syklus 275 Opprette konturnot med virvelfresing (se KONTURNOT TROKOIDAL (syklus 275, DIN/ISO: G275) på side 210)
- Nå kan du også definere en forsinkelsesdybde i syklus 241 for kanonboring (se KANONBORING (syklus 241, DIN/ISO: G241) på side 98)
- Nå kan du stille inn frem- og tilbakekjøringsatferd for syklus 39 SYLINDERMANTEL KONTUR (se Syklusforløp på side 238)
- Ny touch-probe-syklus for kalibrering av en touch-probe på en kalibreringskule (se TS KALIBRERE (syklus 460, DIN/ISO: G460) på side 474)
- KinematicsOpt: Det er innført en ekstra parameter for fastsetting av slakk i en roteringsakse (se Slakk på side 489)
- KinematicsOpt: Bedre støtte for posisjonering av akser med hirthfortanning (se Maskiner som har akser med Hirth-fortanning på side 485)

## Nye syklusfunksjoner for programvare 60642x-02

- Ny bearbeidingssyklus 225 Gravering (se GRAVERING (syklus 225, DIN/ISO: G225) på side 319)
- Ny bearbeidingssyklus 276 Konturkjede 3D (se KONTURKJEDE 3D (syklus 276, DIN/ISO: G276) på side 215)
- Ny bearbeidingssyklus 290 Interpolasjonsrotering (se INTERPOLASASJONSROTERING(programvarealternativ, syklus 290, DIN/ISO: G290) på side 323)
- For gjengefresingssykluser 26x er nå en separat mating for tangentiell fremkjøring til gjengene tilgjengelig (se den aktuelle beskrivelsen av syklusparameterne)
- for KinematicsOpt-syklusene er følgende forbedringer gjennomført:
  - Ny, raskere optimeringsalgoritme
  - Etter vinkeloptimeringen er det ikke lenger nødvendig med en separat målerekke for optimere posisjonen (se Forskjellige modier (Q406) på side 494)
  - Retur av offsetfeil (endring av maskinnullpunktet) i parameteren Q147-149 (se Syklusforløp på side 482)
  - Opp til 8 nivåmålepunkter for kulemålingen (se Syklusparametere på side 491)
  - Roteringsakser som ikke er konfigurert blir ignorert av TNC når syklusen utføres (se Legg merke til følgende under programmeringen! på side 490)

# Nye syklusfunksjoner for programvare 60642x-03

- For syklus 256 Rektangulær tapp finnes det nå også en parameter som du kan bruke til å fastlegge tilkjøringsposisjonen til tappen (se FIRKANTTAPP (syklus 256, DIN/ISO: G256) på side 162)
- For syklus 257 Sirkeltappfresing finnes det nå også en parameter som du kan bruke til å fastlegge tilkjøringsposisjonen til tappen (se SIRKELTAPP (syklus 257, DIN/ISO: G257) på side 166)

# Nye syklusfunksjoner for programvare 60642x-04

- Syklus 25: Automatisk restmaterialregistrering lagt til (se KONTURKJEDE (syklus 25, DIN/ISO: G125) på side 206)
- Syklus 200: Inndataparameter Q359 for definering av dybdeforhold er utvidet (se BORING (syklus 200) på side 75)
- Syklus 203: Inndataparameter Q359 for definering av dybdeforhold er utvidet (se UNIVERSALBORING (syklus 203, DIN/ISO: G203) på side 83)
- Syklus 205: Inndataparameter Q208 for returmating er utvidet (se UNIVERSALDYPBORING (syklus 205, DIN/ISO: G205) på side 91)
- Syklus 205: Inndataparameter Q359 for definering av dybdeforhold er utvidet (se UNIVERSALDYPBORING (syklus 205, DIN/ISO: G205) på side 91)
- Syklus 225: Omlydtegn kan angis, tekst kan også plasseres på skrått (se GRAVERING (syklus 225, DIN/ISO: G225) på side 319)
- Syklus 253: Inndataparameter Q439 for mating er utvidet (se NOTFRESING (syklus 253, DIN/ISO: G253) på side 150)
- Syklus 254: Inndataparameter Q439 for mating er utvidet (se AVRUNDET NOT (syklus 254, DIN/ISO: G254) på side 156)
- Syklus 276: Automatisk restmaterialregistrering lagt til (se KONTURKJEDE 3D (syklus 276, DIN/ISO: G276) på side 215)
- Syklus 290: Med syklus 290 kan du nå produsere et innstikk (se INTERPOLASASJONSROTERING(programvarealternativ, syklus 290, DIN/ISO: G290) på side 323)
- Syklus 404: Inndataparameter Q305 er lagt til slik at en grunnrotering kan lagres i en ønsket linje i nullpunktstabellen (se SETTE GRUNNROTERING (syklus 404, DIN/ISO: G404) på side 353)

## Nye syklusfunksjoner for programvare 60642x-04 SP8

For syklus 253 Notfresing finnes det nå også en parameter som du kan bruke til å fastlegge matingen ved bearbeiding av en not (se NOTFRESING (syklus 253, DIN/ISO: G253) på side 150)

For syklus 254 Rund not finnes det nå også en parameter som du kan bruke til å fastlegge matingen ved bearbeiding av en not (se AVRUNDET NOT (syklus 254, DIN/ISO: G254) på side 156)

1

## Endrede syklusfunksjoner for programvare 60642x-01

Fremkjøringsatferd ved sideslettfresing med syklus 24 (DIN/ISO: G124) er endret (se Legg merke til følgende under programmeringen! på side 202)

# Endrede syklusfunksjoner for programvare 60642x-02

Posisjonen for funksjonstasten til definering av syklus 270 endret

## Endrede syklusfunksjoner for programvare 60642x-04

- Syklus 206: TNC overvåker nå gjengestigningen hvis den er angitt i verktøytabellen
- Syklus 207: TNC overvåker nå gjengestigningen hvis den er angitt i verktøytabellen
- Syklus 209: TNC overvåker nå gjengestigningen hvis den er angitt i verktøytabellen
- Syklus 209: TNC kjører nå fullstendig ut av boringen ved sponbrudd hvis parameteren Q256=0 er definert (retur ved sponbrudd)
- Syklus 202: TNC kjører ikke fri verktøyet i boringsbunnen hvis parameteren Q214=0 er definert (frikjøringsretning)
- Syklus 405: TNC legger nå også inn nullpunktet i linje 0 i nullpunktstabellen hvis parameteren Q337=0 er definert
- Tilsvarende touch-probe-sykluser 4xx: Inndataområdet til parameteren Q305 (nullpunktnummer) er økt til 99999
- Sykluser 451 og 452: TNC skjuler nå ikke statusvinduet under målingen før strekning som skal kjøres til kalibreringskulen, er større enn probekuleradiusen

Endrede syklusfunksjoner for programvare 60642x-04

## Innhold

#### Grunnleggende informasjon/oversikter

- Bruke bearbeidingssykluser
- Bearbeidingssykluser: boring
- Bearbeidingssykluser: gjengeboring/ gjengefresing
- Bearbeidingssyklyser: lommefresing/ tappfresing/notfresing
- Bearbeidingssykluser: maldefinisjoner
- Bearbeidingssykluser: konturlomme, konturkjede
- Bearbeidingssykluser: sylindermantel
- Bearbeidingssykluser: konturlomme med konturformel
- Bearbeidingssykluser: planfresing
- Sykluser: koordinatomregninger
- Sykluser: spesialfunksjoner
- Arbeide med touch-probe-sykluser
- Touch-probe-sykluser: registrere emner som ligger skjevt, automatisk
- Touch-probe-sykluser: registrere nullpunkter automatisk
- Touch-probe-sykluser: kontrollere emner automatisk
- Touch-probe-sykluser: spesialfunksjoner
- Touch-probe-sykluser: måle kinematikk automatisk
- Touch-probe-sykluser: måle verktøy automatisk



### 1 Grunnleggende informasjon/oversikter ..... 43

1.1 Innføring ..... 44

1.2 Tilgjengelige syklusgrupper ..... 45

Oversikt over bearbeidingssykluser ..... 45

Oversikt over touch-probe-sykluser ..... 46

### 2 Bruke bearbeidingssykluser ..... 47

2.1 Arbeide med bearbeidingssykluser ..... 48 Generelle anvisninger: ..... 48 Maskinspesifikke sykluser ..... 49 Definere syklus ved hjelp av funksjonstaster ..... 50 Syklusdefinisjon via GOTO-funksjonen ..... 50 Kalle opp sykluser ..... 51 Arbeide med tilleggsakser U/V/W ..... 53 2.2 Programinnstillinger for sykluser ..... 54 Oversikt ..... 54 Legge inn GLOBAL DEF ..... 55 Bruke GLOBAL DEF-data ..... 55 Allmenngyldige globale data ..... 56 Globale data for borebearbeidinger ..... 56 Globale data for fresearbeider med lommesyklusene 25x ..... 57 Globale data for fresebearbeidinger med kontursykluser ..... 57 Globale data for posisjonering ..... 57 Globale data for probefunksjoner ..... 58 2.3 Maldefinisjon PATTERN DEF ..... 59 Bruk ..... 59 Legge inn PATTERN DEF ..... 60 Bruke PATTERN DEF ..... 60 Definere enkelte bearbeidingsposisjoner ..... 61 Definere en enkelt rekke ..... 62 Definere en enkelt mal ..... 63 Definere en enkelt ramme ..... 64 Definere hel sirkel ..... 65 Definere delsirkel ..... 66 2.4 Punkttabeller ..... 67 Bruk ..... 67 Opprette punkttabell ..... 67 Skjule enkeltpunkter for bearbeidingen ..... 68 Definere sikker høyde ..... 68 Velge en punkttabell i programmet ..... 69 Aktivere syklus i forbindelse med punkttabeller ..... 70

## 3 Bearbeidingssykluser: boring ..... 71

| 3.1 Grunnleggende 72                                  |
|-------------------------------------------------------|
| Oversikt 72                                           |
| 3.2 SENTRERING (syklus 240, DIN/ISO: G240) 73         |
| Syklusforløp 73                                       |
| Legg merke til følgende under programmeringen! 73     |
| Syklusparametere 74                                   |
| 3.3 BORING (syklus 200) 75                            |
| Syklusforløp 75                                       |
| Legg merke til følgende under programmeringen! 75     |
| Syklusparametere 76                                   |
| 3.4 SLIPING (syklus 201, DIN/ISO: G201) 77            |
| Syklusforløp 77                                       |
| Legg merke til følgende under programmeringen! 77     |
| Syklusparametere 78                                   |
| 3.5 UTBORING (syklus 202, DIN/ISO: G202) 79           |
| Syklusforløp 79                                       |
| Legg merke til følgende under programmeringen! 80     |
| Syklusparametere 81                                   |
| 3.6 UNIVERSALBORING (syklus 203, DIN/ISO: G203) 83    |
| Syklusforløp 83                                       |
| Legg merke til følgende under programmeringen! 84     |
| Syklusparametere 85                                   |
| 3.7 SENKING BAKOVER (syklus 204, DIN/ISO: G204) 87    |
| Syklusforløp 87                                       |
| Legg merke til følgende under programmeringen! 88     |
| Syklusparametere 89                                   |
| 3.8 UNIVERSALDYPBORING (syklus 205, DIN/ISO: G205) 91 |
| Syklusforløp 91                                       |
| Legg merke til følgende under programmeringen! 92     |
| Syklusparametere 93                                   |
| 3.9 FRESEBORING (syklus 208) 95                       |
| Syklusforløp 95                                       |
| Legg merke til følgende under programmeringen! 96     |
| Syklusparametere 97                                   |
| 3.10 KANONBORING (syklus 241, DIN/ISO: G241) 98       |
| Syklusforløp 98                                       |
| Legg merke til følgende under programmeringen! 98     |
| Syklusparametere 99                                   |
| 3.11 Programmeringseksempler 101                      |

## 4 Bearbeidingssykluser: gjengeboring/gjengefresing ..... 105

| 4.1 Grunnleggende 106                                                       |
|-----------------------------------------------------------------------------|
| Oversikt 106                                                                |
| 4.2 GJENGEBORING NY med Rigid Tapping (syklus 206, DIN/ISO: G206) 107       |
| Syklusforløp 107                                                            |
| Legg merke til følgende under programmeringen! 107                          |
| Syklusparametere 108                                                        |
| 4.3 GJENGEBORING GS NY uten Rigid Tapping (syklus 207, DIN/ISO: G207) 109   |
| Syklusforløp 109                                                            |
| Legg merke til følgende under programmeringen! 110                          |
| Syklusparametere 111                                                        |
| 4.4 GJENGEBORING SPONBRUDD (syklus 209, DIN/ISO: G209) 112                  |
| Syklusforløp 112                                                            |
| Legg merke til følgende under programmeringen! 113                          |
| Syklusparametere 114                                                        |
| 4.5 Grunnleggende om gjengefresing 115                                      |
| Forutsetninger 115                                                          |
| 4.6 GJENGEFRESING (syklus 262, DIN/ISO: G262) 117                           |
| Syklusforløp 117                                                            |
| Merk under programmeringen! 118                                             |
| Syklusparametere 119                                                        |
| 4.7 FORSENKNINGSGJENGEFRESING(syklus 263, DIN/ISO: G263) 120                |
| Syklusforløp 120                                                            |
| Legg merke til følgende under programmeringen! 121                          |
| Syklusparametere 122                                                        |
| 4.8 BOREGJENGEFRESING (syklus 264, DIN/ISO: G264) 124                       |
| Syklustorløp 124                                                            |
| Legg merke til følgende under programmeringen! 125                          |
| Syklusparametere 126                                                        |
| 4.9 HELIKS-BOREGJENGEFRESING (syklus 265, DIN/ISU: G265) 128                |
| Syklustoriøp 128                                                            |
| Legg merke til følgende under programmeringen! 129<br>Subburgeressetere 120 |
|                                                                             |
| 4. TO FRESING AV OTVENDIG GJENGE (SYKIUS 207, DIN/ISO, G207) 132            |
| Sykiusioniop 132                                                            |
|                                                                             |
| 4 11 Programmaringsakeamplar 136                                            |
|                                                                             |



## 5 Bearbeidingssyklyser: lommefresing/tappfresing/notfresing ..... 139

| 5.1 Grunnleggende 140                                 |
|-------------------------------------------------------|
| Oversikt 140                                          |
| 5.2 REKTANGULÆR LOMME (syklus 251, DIN/ISO: G251) 141 |
| Syklusforløp 141                                      |
| Legg merke til følgende under programmeringen: 142    |
| Syklusparametere 143                                  |
| 5.3 SIRKELLOMME (syklus 252, DIN/ISO: G252) 146       |
| Syklusforløp 146                                      |
| Legg merke til følgende under programmeringen! 147    |
| Syklusparametere 148                                  |
| 5.4 NOTFRESING (syklus 253, DIN/ISO: G253) 150        |
| Syklusforløp 150                                      |
| Legg merke til følgende under programmeringen! 151    |
| Syklusparametere 153                                  |
| 5.5 AVRUNDET NOT (syklus 254, DIN/ISO: G254) 156      |
| Syklusforløp 156                                      |
| Legg merke til følgende under programmeringen! 157    |
| Syklusparametere 159                                  |
| 5.6 FIRKANTTAPP (syklus 256, DIN/ISO: G256) 162       |
| Syklusforløp 162                                      |
| Legg merke til følgende under programmeringen! 163    |
| Syklusparametere 164                                  |
| 5.7 SIRKELTAPP (syklus 257, DIN/ISO: G257) 166        |
| Syklusforløp 166                                      |
| Legg merke til følgende under programmeringen! 167    |
| Syklusparametere 168                                  |
| 5.8 Programmeringseksempler 170                       |

1

### 6 Bearbeidingssykluser: maldefinisjoner ..... 173

6.1 Grunnleggende ..... 174 Oversikt ..... 174
6.2 PUNKTMAL FOR SIRKEL (syklus 220, DIN/ISO: G220) ..... 175 Syklusforløp ..... 175 Legg merke til følgende under programmeringen! ..... 175 Syklusparametere ..... 176
6.3 PUNKTMAL FOR LINJER (syklus 221, DIN/ISO: G221) ..... 178 Syklusforløp ..... 178 Legg merke til følgende under programmeringen! ..... 178 Syklusparametere ..... 179
6.4 Programmeringseksempler ..... 180

## 7 Bearbeidingssykluser: konturlomme, konturkjede ..... 183

| 7.1 SL-sykluser 184                                      |
|----------------------------------------------------------|
| Grunnleggende 184                                        |
| Oversikt 186                                             |
| 7.2 KONTUR (syklus 14, DIN/ISO: G37) 187                 |
| Legg merke til følgende under programmeringen! 187       |
| Syklusparametere 187                                     |
| 7.3 Overlagrede konturer 188                             |
| Grunnleggende 188                                        |
| Underprogrammer: overlagrede lommer 189                  |
| Summeringsflate 190                                      |
| Differanseflate 191                                      |
| Snittflate 191                                           |
| 7.4 KONTURDATA (syklus 20, DIN/ISO: G120) 192            |
| Legg merke til følgende under programmeringen! 192       |
| Syklusparametere 193                                     |
| 7.5 FORBORING (syklus 21, DIN/ISO: G121) 194             |
| Syklusforløp 194                                         |
| Legg merke til følgende under programmeringen! 194       |
| Syklusparametere 195                                     |
| 7.6 UTFRESING (syklus 22, DIN/ISO: G122) 196             |
| Syklusforløp 196                                         |
| Legg merke til følgende under programmeringen! 197       |
| Syklusparametere 198                                     |
| 7.7 SLETTFRESING DYBDE                                   |
| (syklus 23, DIN/ISO: G123) 200                           |
| Syklustorløp 200                                         |
| Legg merke til følgende under programmeringen! 200       |
|                                                          |
| /.8 SLETTERESTING STUE<br>(syklus 24. DIN/ISO: G124) 202 |
| Syklusforløn 202                                         |
| Lega merke til følgende under programmeringen 1 202      |
| Syklusnarametere 203                                     |
| 7.9 KONTURK IEDEDATA (svklus 270 DIN/ISO G270) 204       |
| l egg merke til følgende under programmeringen! 204      |
| Syklusparametere 205                                     |
| 7 10 KONTUBK IEDE (syklus 25, DIN/ISO: G125) 206         |
| Syklusforløp 206                                         |
| Merk under programmeringen! 207                          |
| Syklusparametere 208                                     |
|                                                          |

.

7.11 KONTURNOT TROKOIDAL (syklus 275, DIN/ISO: G275) ..... 210 Syklusforløp ..... 210 Merk under programmeringen! ..... 211 Syklusparametere ..... 212
7.12 KONTURKJEDE 3D (syklus 276, DIN/ISO: G276) ..... 215 Syklusforløp ..... 215 Merk under programmeringen! ..... 216 Syklusparametere ..... 217
7.13 Programmeringseksempler ..... 219

## 8 Bearbeidingssykluser: sylindermantel ..... 227

| 8.1 Grunnleggende 228                                                                          |
|------------------------------------------------------------------------------------------------|
| Oversikt over sylindermantelsykluser 228                                                       |
| 8.2 SYLINDERMANTEL                                                                             |
| (syklus 27, DIN/ISO: G127, programvareversjon 1) 229                                           |
| Syklusforløp 229                                                                               |
| Legg merke til følgende under programmeringen: 230                                             |
| Syklusparametere 231                                                                           |
| 8.3 SYLINDERMANTEL notfresing (syklus 28, DIN/ISO: G128, programvareversjon 1) 232             |
| Syklusforløp 232                                                                               |
| Legg merke til følgende under programmeringen! 233                                             |
| Syklusparametere 234                                                                           |
| 8.4 SYLINDERMANTEL stegfresing (syklus 29, DIN/ISO: G129, programvareversjon 1) 235            |
| Syklusforløp 235                                                                               |
| Legg merke til følgende under programmeringen! 236                                             |
| Syklusparametere 237                                                                           |
| 8.5 SYLINDERMANTEL, frese utvendig kontur (syklus 39, DIN/ISO: G139, programvareversjon 1) 238 |
| Syklusforløp 238                                                                               |
| Legg merke til følgende under programmeringen! 239                                             |
| Syklusparametere 240                                                                           |
| 8.6 Programmeringseksempler 241                                                                |
|                                                                                                |

### 9 Bearbeidingssykluser: konturlomme med konturformel ..... 245

9.1 SL-sykluser med kompleks konturformel ..... 246 Grunnleggende ..... 246 Velge program med konturdefinisjoner ..... 248 Definere konturbeskrivelser ..... 249 Legge inn en kompleks konturformel ..... 250 Overlagrede konturer ..... 251 Bruke konturer med SL-sykluser ..... 253
9.2 SL-sykluser med enkel konturformel ..... 257 Grunnleggende ..... 257 Legge inn en enkel konturformel ..... 259 Bruke konturer med SL-sykluser ..... 259

## 10 Bearbeidingssykluser: planfresing ..... 261

| 10.1 Grunnleggende 262                             |
|----------------------------------------------------|
| Oversikt 262                                       |
| 10.2 KJØRE 3D-DATA (syklus 30, DIN/ISO: G60) 263   |
| Syklusforløp 263                                   |
| Merk under programmeringen! 263                    |
| Syklusparametere 264                               |
| 10.3 PLANFRESING (syklus 230, DIN/ISO: G230) 265   |
| Syklusforløp 265                                   |
| Legg merke til følgende under programmeringen! 265 |
| Syklusparametere 266                               |
| 10.4 SKRÅFLATE (syklus 231, DIN/ISO: G231) 267     |
| Syklusforløp 267                                   |
| Legg merke til følgende under programmeringen! 268 |
| Syklusparametere 269                               |
| 10.5 PLANFRESING (syklus 232, DIN/ISO: G232) 271   |
| Syklusforløp 271                                   |
| Legg merke til følgende under programmeringen! 273 |
| Syklusparametere 273                               |
| 10.6 Programmeringseksempler 276                   |

## 11 Sykluser: koordinatomregninger ..... 279

| 11.1 Grunnleggende 280                                                         |
|--------------------------------------------------------------------------------|
| Oversikt 280                                                                   |
| Aktivere koordinatomregning 280                                                |
| 11.2 NULLPUNKT-forskyvning (syklus 7, DIN/ISO: G54) 281                        |
| Funksjon 281                                                                   |
| Syklusparametere 281                                                           |
| 11.3 NULLPUNKT-forskyvning med nullpunktstabeller (syklus 7, DIN/ISO: G53) 282 |
| Funksjon 282                                                                   |
| Legg merke til følgende under programmeringen: 283                             |
| Syklusparametere 284                                                           |
| Velge en nullpunktstabell i NC-programmet 284                                  |
| Redigere nullpunktstabell i driftsmodusen Lagre/rediger program 285            |
| Rediger nullpunktstabell under kjøring av program 286                          |
| Aktivere reelle verdier i nullpunktstabellen 286                               |
| Konfigurere nullpunktstabell 287                                               |
| Lukke nullpunktstabellen 287                                                   |
| 11.4 SETTE NULLPUNKT (syklus 247, DIN/ISO: G247) 288                           |
| Funksjon 288                                                                   |
| Legg merke til følgende før programmeringen! 288                               |
| Syklusparametere 288                                                           |
| 11.5 SPEILING (syklus 8, DIN/ISO: G28) 289                                     |
| FUNKSjon 289                                                                   |
| Legg merke til følgende under programmeringen! 289                             |
| Sykiusparametere 290                                                           |
| Funksion 201                                                                   |
| l oga morko til falgondo under programmeringen 1 201                           |
| Syklusnarametere 292                                                           |
| 11.7  SKALERING (syklus 11 DIN/ISO: G72) 293                                   |
| Funksion 293                                                                   |
| Syklusparametere 294                                                           |
| 11.8 SKALERING AKSE (svklus 26) 295                                            |
| Funksion 295                                                                   |
| Leag merke til følgende under programmeringen! 295                             |
| Syklusparametere 296                                                           |
|                                                                                |

11.9 ARBEIDSPLAN (syklus 19, DIN/ISO: G80, programvareversjon 1) ..... 297

Funksjon ..... 297

Legg merke til følgende under programmeringen: ..... 298

Syklusparametere ..... 299

Tilbakest. ..... 299

Posisjonere roteringsakser ..... 300

Posisjonsvisning i rotert system ..... 302

Arbeidsromovervåking ..... 302

Posisjonering i rotert system ..... 302

Kombinasjon med andre koordinatomregningssykluser ..... 303

Automatisk måling i rotert system ..... 303

Veiledning for arbeid med syklus 19 ARBEIDSPLAN ..... 304

11.10 Programmeringseksempler ..... 306

## 12 Sykluser: spesialfunksjoner ..... 309

| 12.1 Grunnleggende 310                                          |
|-----------------------------------------------------------------|
| Oversikt 310                                                    |
| 12.2 FORSINKELSE (syklus 9, DIN/ISO: G04) 311                   |
| Funksjon 311                                                    |
| Syklusparametere 311                                            |
| 12.3 PROGRAMANROP (syklus 12, DIN/ISO: G39) 312                 |
| Syklusfunksjon 312                                              |
| Legg merke til følgende under programmeringen! 312              |
| Syklusparametere 313                                            |
| 12.4 SPINDELORIENTERING                                         |
| (syklus 13, DIN/ISO: G36) 314                                   |
| Syklusfunksjon 314                                              |
| Legg merke til følgende under programmeringen! 314              |
| Syklusparametere 314                                            |
| 12.5 TOLERANSE (syklus 32, DIN/ISO: G62) 315                    |
| Syklusfunksjon 315                                              |
| Påvirkningsfaktorer ved geometridefinisjonen i CAM-systemet 316 |
| Legg merke til følgende under programmeringen! 317              |
| Syklusparametere 318                                            |
| 12.6 GRAVERING (syklus 225, DIN/ISO: G225) 319                  |
| Syklusforløp 319                                                |
| Merk under programmeringen! 319                                 |
| Syklusparametere 320                                            |
| Tillatte graveringstegn 321                                     |
| Ikke trykkbare tegn 321                                         |
| Gravere systemvariabler 322                                     |
| 12.7 INTERPOLASASJONSROTERING(programvarealternativ,            |
| syklus 290, DIN/ISO: G290) 323                                  |
| Syklusforløp 323                                                |
| Merk under programmeringen! 324                                 |
| Syklusparametere 325                                            |

### 13 Arbeide med touch-probe-sykluser ..... 329

13.1 Generelt om touch-probe-syklusene ..... 330 Funksjon ..... 330 Touch-probe-sykluser i driftsmodusene Manuell drift og El. håndratt ..... 331 Touch-probe-sykluser for automatisk drift ..... 331 13.2 Viktig før du arbeider med touch-probe-sykluser ..... 333 Maksimal avstand til probepunktet: MP6130 ..... 333 Sikkerhetsavstand til probepunktet: MP6140 ..... 333 Rette infrarød touch-probe mot programmert proberetning: MP6165 ..... 333 Ta hensyn til grunnroteringen i manuell drift: MP6166 ..... 334 Repetert måling: MP6170 ..... 334 Pålitelighetsområde for repetert måling: MP6171 ..... 334 Koblende touch-probe, probemating: MP6120 ..... 335 Koblende touch-probe, mating for posisjoneringsbevegelser: MP6150 ..... 335 Koblende touch-probe, hurtiggang for posisjoneringsbevegelser: MP6151 ..... 335 KinematicsOpt, optimere toleransegrense for modus: MP6600 ..... 335 KinematicsOpt, tillatt avvik kalibreringskuleradius: MP6601 ..... 335 Kjøre touch-probe-sykluser ..... 336

## 14 Touch-probe-sykluser: registrere emner som ligger skjevt, automatisk ..... 337

| 14.1 Grunnleggende 338                                                      |                    |
|-----------------------------------------------------------------------------|--------------------|
| Oversikt 338                                                                |                    |
| Fellestrekk for touch-probe-syklusene for registrering av skråstilte er     | nner 339           |
| 14.2 GRUNNROTERING (syklus 400, DIN/ISO: G400) 340                          |                    |
| Syklusforløp 340                                                            |                    |
| Legg merke til følgende under programmeringen! 340                          |                    |
| Syklusparametere 341                                                        |                    |
| 14.3 GRUNNROTERING via to boringer (syklus 401, DIN/ISO: G401) 343          | 3                  |
| Syklusforløp 343                                                            |                    |
| Legg merke til følgende under programmeringen! 343                          |                    |
| Syklusparametere 344                                                        |                    |
| 14.4 GRUNNROTERING via to tapper (syklus 402, DIN/ISO: G402) 346            |                    |
| Syklusforløp 346                                                            |                    |
| Legg merke til følgende under programmeringen! 346                          |                    |
| Syklusparametere 347                                                        |                    |
| 14.5 Kompensere for GRUNNROTERING via en roteringsakse (syklus 403,         | DIN/ISO: G403) 349 |
| Syklusforløp 349                                                            |                    |
| Legg merke til følgende under programmeringen! 350                          |                    |
| Syklusparametere 351                                                        |                    |
| 14.6 SETTE GRUNNROTERING (syklus 404, DIN/ISO: G404) 353                    |                    |
| Syklusforløp 353                                                            |                    |
| Syklusparametere 353                                                        |                    |
| 14.7 Justere skråstillingen for et emne via C-aksen (syklus 405, DIN/ISO: G | 405) 354           |
| Syklusforløp 354                                                            |                    |
| Legg merke til følgende under programmeringen! 355                          |                    |
| Syklusparametere 356                                                        |                    |
|                                                                             |                    |

## 15 Touch-probe-sykluser: registrere nullpunkter automatisk ..... 359

| 15.1 Grunnleggende 360                                                     |
|----------------------------------------------------------------------------|
| Oversikt 360                                                               |
| Fellestrekk ved alle touch-probe-sykluser for definisjon av nullpunkt 361  |
| 15.2 NULLPUNKT NOTSENTRUM (syklus 408, DIN/ISO: G408,                      |
| FCL 3-funksjon) 363                                                        |
| Syklusforløp 363                                                           |
| Legg merke til følgende under programmeringen! 364                         |
| Syklusparametere 364                                                       |
| 15.3 NULLPUNKT STEGSENTRUM (syklus 409, DIN/ISO: G409, FCL 3-funksjon) 367 |
| Syklusforløp 367                                                           |
| Legg merke til følgende under programmeringen! 367                         |
| Syklusparametere 368                                                       |
| 15.4 NULLPUNKT FIRKANT INNVENDIG (syklus 410, DIN/ISO: G410) 370           |
| Syklusforløp 370                                                           |
| Legg merke til følgende under programmeringen! 371                         |
| Syklusparametere 371                                                       |
| 15.5 NULLPUNKT FIRKANT UTVENDIG (syklus 411, DIN/ISO: G411) 374            |
| Syklusforløp 374                                                           |
| Legg merke til følgende under programmeringen! 375                         |
| Syklusparametere 375                                                       |
| 15.6 NULLPUNKT SIRKEL INNVENDIG (syklus 412, DIN/ISO: G412) 378            |
| Syklusforløp 378                                                           |
| Legg merke til følgende under programmeringen! 379                         |
| Syklusparametere 379                                                       |
| 15.7 NULLPUNKT SIRKEL UTVENDIG (syklus 413, DIN/ISO: G413) 382             |
| Syklusforløp 382                                                           |
| Legg merke til følgende under programmeringen! 383                         |
| Syklusparametere 383                                                       |
| 15.8 NULLPUNKT HJØRNE UTVENDIG (syklus 414, DIN/ISO: G414) 386             |
| Syklusforløp 386                                                           |
| Legg merke til følgende under programmeringen! 387                         |
| Syklusparametere 388                                                       |
| 15.9 NULLPUNKT HJØRNE INNVENDIG (syklus 415, DIN/ISO: G415) 391            |
| Syklusforløp 391                                                           |
| Legg merke til følgende under programmeringen! 392                         |
| Syklusparametere 392                                                       |
| 15.10 NULLPUNKT HULLSIRKELSENTRUM                                          |
| (syklus 416, DIN/ISO: G416) 395                                            |
| Syklustorløp 395                                                           |
| Legg merke til følgende under programmeringen! 396                         |
| Syklusparametere 396                                                       |

15.11 NULLPUNKT TOUCH-PROBE-AKSE (syklus 417, DIN/ISO: G417) ..... 399 Syklusforløp ..... 399 Legg merke til følgende under programmeringen! ..... 399 Syklusparametere ..... 400
15.12 NULLPUNKT I MIDTEN AV 4 BORINGER (syklus 418, DIN/ISO: G418) ..... 401 Syklusforløp ..... 401 Legg merke til følgende under programmeringen! ..... 402 Syklusparametere ..... 402
15.13 NULLPUNKT FOR ENKEL AKSE (syklus 419, DIN/ISO: G419) ..... 405 Syklusforløp ..... 405 Legg merke til følgende under programmeringen! ..... 405 Syklusforløp ..... 406
### 16 Touch-probe-sykluser: kontrollere emner automatisk ..... 413

| 16.1 Grunnleggende 414                                      |
|-------------------------------------------------------------|
| Oversikt 414                                                |
| Protokollføre måleresultater 415                            |
| Måleresultater i Q-parametere 417                           |
| Målestatus 417                                              |
| Toleranseovervåking 418                                     |
| Verktøyovervåking 418                                       |
| Referansesystem for måleresultater 419                      |
| 16.2 REFERANSEPLAN (syklus 0, DIN/ISO: G55) 420             |
| Syklusforløp 420                                            |
| Legg merke til følgende under programmeringen! 420          |
| Syklusparametere 420                                        |
| 16.3 REFERANSEPLAN Polar                                    |
| (syklus 1) 421                                              |
| Syklusforløp 421                                            |
| Legg merke til følgende under programmeringen! 421          |
| Syklusparametere 422                                        |
| 16.4 MÅLE VINKEL (syklus 420, DIN/ISO: G420) 423            |
| Syklusforløp 423                                            |
| Legg merke til følgende under programmeringen! 423          |
| Syklusparametere 424                                        |
| 16.5 MÅLE BORING (syklus 421, DIN/ISO: G421) 426            |
| Syklusforløp 426                                            |
| Legg merke til følgende under programmeringen! 426          |
| Syklusparametere 427                                        |
| 16.6 MÅLE SIRKEL UTVENDIG (syklus 422, DIN/ISO: G422) 430   |
| Syklusforløp 430                                            |
| Legg merke til følgende under programmeringen! 430          |
| Syklusparametere 431                                        |
| 16.7 MALE FIRKANT INNVENDIG (syklus 423, DIN/ISO: G423) 433 |
| Syklusforløp 433                                            |
| Legg merke til følgende under programmeringen! 434          |
| Syklusparametere 434                                        |
| 16.8 MALE FIRKANT UTVENDIG (syklus 424, DIN/ISO: G424) 437  |
| Syklusforløp 437                                            |
| Legg merke til følgende under programmeringen! 438          |
| Syklusparametere 438                                        |
| 16.9 MALE BREDDE INNVENDIG (syklus 425, DIN/ISO: G425) 441  |
| Syklusforløp 441                                            |
| Legg merke til følgende under programmeringen! 441          |
| Syklusparametere 442                                        |

- 16.10 MÅLE STEG UTVENDIG (syklus 426, DIN/ISO: G426) ..... 444 Syklusforløp ..... 444 Legg merke til følgende under programmeringen! ..... 444
  - Syklusparametere ..... 445
- 16.11 MÅLE KOORDINAT (syklus 427, DIN/ISO: G427) ..... 447 Syklusforløp ..... 447 Legg merke til følgende under programmeringen! ..... 447
- Syklusparametere ..... 448 16.12 MÅLE HULLSIRKEL (syklus 430, DIN/ISO: G430) ..... 450 Syklusforløp ..... 450 Legg merke til følgende under programmeringen! ..... 450
  - Syklusparametere ..... 451
- 16.13 MÅLE PLAN (syklus 431, DIN/ISO: G431) ..... 453
  Syklusforløp ..... 453
  Legg merke til følgende under programmeringen! ..... 454
  Syklusparametere ..... 455
- 16.14 Programmeringseksempler ..... 457

### 17 Touch-probe-sykluser: spesialfunksjoner ..... 461

| 17.1 Grunnleggende 462                                                |
|-----------------------------------------------------------------------|
| Oversikt 462                                                          |
| 17.2 TS KALIBRERE (syklus 2) 463                                      |
| Syklusforløp 463                                                      |
| Legg merke til følgende under programmeringen! 463                    |
| Syklusparametere 463                                                  |
| 17.3 TS KALIBRERE LENGDE (syklus 9) 464                               |
| Syklusforløp 464                                                      |
| Syklusparametere 464                                                  |
| 17.4 MÅLE (syklus 3) 465                                              |
| Syklusforløp 465                                                      |
| Legg merke til følgende under programmeringen! 465                    |
| Syklusparametere 466                                                  |
| 17.5 MÅLE 3D (syklus 4, FCL 3-funksjon) 467                           |
| Syklusforløp 467                                                      |
| Legg merke til følgende under programmeringen! 467                    |
| Syklusparametere 468                                                  |
| 17.6 MÅLE AKSEFORSKYVNING (touch-probe-syklus 440, DIN/ISO: G440) 469 |
| Syklusforløp 469                                                      |
| Legg merke til følgende under programmeringen! 470                    |
| Syklusparametere 471                                                  |
| 17.7 HURTIGPROBING (syklus 441, DIN/ISO: G441, FCL 2-funksjon) 472    |
| Syklusforløp 472                                                      |
| Legg merke til følgende under programmeringen: 472                    |
| Syklusparametere 473                                                  |
| 17.8 TS KALIBRERE (syklus 460, DIN/ISO: G460) 474                     |
| Syklusforløp 474                                                      |
| Legg merke til følgende under programmeringen: 474                    |
| Syklusparametere 475                                                  |

### 18 Touch-probe-sykluser: måle kinematikk automatisk ..... 477

| 18.1 Kinematikkoppmåling med touch-prober TS (alternativet KinematicsOpt) 478        |
|--------------------------------------------------------------------------------------|
| Grunnleggende 478                                                                    |
| Oversikt 478                                                                         |
| 18.2 Forutsetninger 479                                                              |
| Legg merke til følgende under programmeringen! 479                                   |
| 18.3 LAGRE KINEMATIKK (syklus 450, DIN/ISO: G450, alternativ) 480                    |
| Syklusforløp 480                                                                     |
| Legg merke til følgende under programmeringen! 480                                   |
| Syklusparametere 481                                                                 |
| Protokollfunksjon 481                                                                |
| 18.4 MÅLE KINEMATIKK (syklus 451, DIN/ISO: G451, alternativ) 482                     |
| Syklusforløp 482                                                                     |
| Posisjoneringsretning 484                                                            |
| Maskiner som har akser med Hirth-fortanning 485                                      |
| Valg av antall målepunkter 486                                                       |
| Valg av posisjon for kalibreringskulen på maskinbordet 486                           |
| Merknader til nøyaktighet 487                                                        |
| Merknader til forskjellige kalibreringsmetoder 488                                   |
| Slakk 489                                                                            |
| Legg merke til følgende under programmeringen! 490                                   |
| Syklusparametere 491                                                                 |
| Forskjellige modier (Q406) 494                                                       |
| Protokollfunksjon 495                                                                |
| 18.5 KOMPENSASJON AV FORHÅNDSINNSTILLING (syklus 452, DIN/ISO: G452, alternativ) 497 |
| Syklusforløp 497                                                                     |
| Legg merke til følgende under programmeringen! 499                                   |
| Syklusparametere 500                                                                 |
| Kalibrering av utskiftbare hoder 502                                                 |
| Driftskompensasjon 504                                                               |
| Protokollfunksjon 506                                                                |

### 19 Touch-probe-sykluser: måle verktøy automatisk ..... 507

| 19.1 Grunnleggende 508                                                  |
|-------------------------------------------------------------------------|
| Oversikt 508                                                            |
| Forskjeller mellom syklusene 31 til 33 og 481 til 483 509               |
| Innstille maskinparametre 509                                           |
| Inndata i verktøytabellen TOOL.T 511                                    |
| Vise måleresultater 512                                                 |
| 19.2 Kalibrere TT (syklus 30 eller 480, DIN/ISO: G480) 513              |
| Syklusforløp 513                                                        |
| Legg merke til følgende under programmeringen! 513                      |
| Syklusparametere 514                                                    |
| 19.3 Kalibrer ledningsfri TT 449 (syklus 484, DIN/ISO: G484) 515        |
| Grunnleggende 515                                                       |
| Syklusforløp 515                                                        |
| Legg merke til følgende under programmeringen! 515                      |
| Syklusparametere 515                                                    |
| 19.4 Måle opp verktøylengde (syklus 31 eller 481, DIN/ISO: G481) 516    |
| Syklusforløp 516                                                        |
| Legg merke til følgende under programmeringen! 516                      |
| Syklusparametere 517                                                    |
| 19.5 Måle opp verktøyradius (syklus 32 eller 482, DIN/ISO: G482) 518    |
| Syklusforløp 518                                                        |
| Legg merke til følgende under programmeringen! 518                      |
| Syklusparametere 519                                                    |
| 19.6 Komplett verktøyoppmåling (syklus 33 eller 483, DIN/ISO: G483) 520 |
| Syklusforløp 520                                                        |
| Legg merke til følgende under programmeringen! 520                      |
| Syklusparametere 521                                                    |
| Oversiktstabell 523                                                     |
| Bearbeidingssykluser 523                                                |
| Touch-probe-sykluser 525                                                |
|                                                                         |

41







Grunnleggende informasjon/oversikter

# 1.1 Innføring

Arbeid som utføres ofte og som omfatter flere bearbeidingstrinn, er lagret i TNC som sykluser. Også omregning av koordinater og enkelte spesialfunksjoner er tilgjengelige som sykluser.

De fleste sykluser bruker Q-parametere som

konfigurasjonsparametere. Parametere med lik funksjon og som TNC trenger i forskjellige sykluser, har alltid samme nummer, f.eks. er **Q200** alltid sikkerhetsavstand, **Q202** er alltid matedybde osv.



### Kollisjonsfare!

Mulighet for at sykluser utfører omfattende bearbeiding. Av sikkerhetsgrunner bør derfor en grafisk programtest utføres før selve arbeidet.



Hvis du bruker indirekte parametertilordning (f.eks. **Q210 = Q1**) for sykluser med nummer over 200, blir ikke endringer i den tilordnede parameteren (f.eks. Q1) aktivert etter syklusdefinisjonen. Syklusparameteren (f.eks. **Q210**) må i så fall defineres direkte.

Hvis du vil definere en mateparameter for bearbeidingssykluser med nummer over 200, kan du i stedet for en tallverdi bruke definisjonene i **TOOL CALL**blokken for mating (funksjonstast FAUTO). Avhengig av syklusen og mateparameterens funksjon står dessuten matealternativene **FMAX** (hurtiggang), **FZ** (tannmating) og **FU** (omdreiningsmating) til disposisjon.

Vær oppmerksom på at en endring av **FAUT0**-matingen etter en syklusdefinisjon ikke har noen virkning, ettersom TNC ved behandling av syklusdefinisjonen gjør en fast tilordning av matingen fra **TOOL CALL**-blokken internt.

Hvis du vil slette en syklus med flere delblokker, spør TNC om hele syklusen skal slettes.

# 1.2 Tilgjengelige syklusgrupper

### Oversikt over bearbeidingssykluser



Funksjonstastrekken viser de forskjellige syklusgruppene.

| Syklusgruppe                                                                                                                                                          | Funksjonstast               | Side     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|----------|
| Sykluser for dybdeboring, sliping, utboring og forsenkning                                                                                                            | BORING/<br>GJENGE           | Side 72  |
| Sykluser for gjengeboring, gjengeskjæring og gjengefresing                                                                                                            | BORING/<br>GJENGE           | Side 106 |
| Sykluser for fresing av lommer, tapper og noter                                                                                                                       | LOMMER/<br>TAPPER/<br>NOTER | Side 140 |
| Sykluser for fremstilling av punktmaler, f.eks. hullsirkel el. hullflate                                                                                              | PUNKT-<br>MØNSTER           | Side 174 |
| SL-sykluser (subcontur-liste) for mer effektiv bearbeiding av parallelle konturer som er satt sammen av flere overlagrede delkonturer, sylinderoverflateinterpolasjon | SL II                       | Side 186 |
| Sykluser for planfresing av jevne eller ujevne overflater                                                                                                             | PLANFRES                    | Side 262 |
| Sykluser for omregning av koordinater for forskyvning, rotering, speilvending, forstørrelse og forminskning av alle typer konturer                                    | KOORD.<br>OMREGN.           | Side 280 |
| Spesialsykluser for forsinkelse, programoppkalling, spindelorientering, toleranse. gravering, interpolasjonsdreiing (alternativ)                                      | SPESIAL-<br>SYKLUSER        | Side 310 |
|                                                                                                                                                                       |                             |          |

Koble eventuelt videre til maskinspesifikke bearbeidingssykluser. Slike bearbeidingssykluser kan integreres av maskinprodusenten.

### Oversikt over touch-probe-sykluser



1.2 Tilgjengelige syklusgrup<mark>per</mark>

Funksjonstastrekken viser de forskjellige syklusgruppene.

| Syklusgruppe                                                                     | Funksjonstast        | Side     |
|----------------------------------------------------------------------------------|----------------------|----------|
| Sykluser for automatisk registrering og kompensasjon for emner som ligger skjevt |                      | Side 338 |
| Sykluser for automatisk fastsetting av nullpunkt                                 |                      | Side 360 |
| Sykluser for automatisk emnekontroll                                             |                      | Side 414 |
| Kalibreringssykluser, spesielle sykluser                                         | SPESIAL-<br>SYKLUSER | Side 462 |
| Sykluser for automatisk kinematikkmåling                                         | KINEMATIKK           | Side 478 |
| Sykluser for automatisk verktøyoppmåling (aktiveres av maskinprodusenten)        |                      | Side 508 |

 $\triangleright$ 

Koble eventuelt videre til maskinspesifikke touchprobe-sykluser. Slike touch-probe-sykluser kan integreres av maskinprodusenten.

i





Bruke bearbeidingssykluser

### 2.1 Arbeide med bearbeidingssykluser

### Generelle anvisninger:



Hvis NC-programmene er lest inn fra gamle TNC-styringer eller opprettet eksternt, f.eks. med et CAM-system eller med en ASCII-editor, må du passe på følgende konvensjoner:

- Bearbeidings- og touch-probesykluser med nummer under 200:
  - I eldre iTNC-programversjoner og eldre TNC-styringer ble det i noen dialogspråk brukt tekststrenger som nye iTNC-editorer ikke alltid kunne konvertere på korrekt måte. Pass på at ingen syklustekster ender med et punktum.
- Bearbeidings- og touch-probesykluser med nummer over 200:
  - Bruk tilde-tegnet (~) til å markere enden på linjene. Den siste parameteren i syklusen må ikke inneholde tilde-tegn.
  - Syklusnavn og kommentarer er ikke obligatorisk. Ved innlesing i styringen legger iTNC til syklusnavn og kommentarer i henhold til det innstilte dialogspråket.



### Maskinspesifikke sykluser

I mange maskiner har maskinprodusenten implementert sykluser i tillegg til HEIDENHAIN-syklusene i TNC. Derfor er en separat syklusnummerserie tilgjengelig:

- Sykluser 300 til 399 Maskinspesifikke sykluser som kan defineres via CYCLE DEF-tasten
- Sykluser 500 til 599 Maskinspesifikke touch-probe-sykluser som kan defineres via TOUCH-PROBE-tasten



Følg den aktuelle funksjonsbeskrivelsen i maskinhåndboken.

Det kan hende at de maskinspesifikke syklusene benytter konfigurasjonsparametere som allerede finnes i standardsyklusene fra HEIDENHAIN. For å unngå at overføringsparametere som brukes flere ganger, overskriver hverandre når du kjører DEF-aktive sykluser (sykluser som TNC automatisk kjører iht. syklusdefinisjonen, se også «Kalle opp sykluser" på side 51) samtidig som du kjører CALL-aktive sykluser (sykluser du må kalle opp for å utføre arbeidet, se også «Kalle opp sykluser" på side 51), går du frem på følgende måte:

- ▶ Programmer DEF-aktive sykluser før CALL-aktive sykluser.
- Unngå programmering som medfører overlappende konfigurasjonsparametere mellom en CALL-aktiv syklus og en eventuell DEF-aktiv syklus.

CYCL DEF

262

BORING/ GJENGE

CYCL DEF

GOTO

### Definere syklus ved hjelp av funksjonstaster

- Funksjonstastrekken viser de forskjellige syklusgruppene.
- ▶ Velg en syklusgruppe, f.eks. Boresykluser.
- Velg syklus, f.eks. GJENGEFRESING. I TNC åpnes det en dialog hvor du skal taste inn verdiene. På høyre halvdel av skjermen vises det samtidig en grafikk hvor parameteren som skal legges inn, er merket med lys bakgrunn.
- Angi alle parameterverdier som TNC ber om, og bekreft hver verdi med ENT-tasten.
- Etter at du har lagt inn alle de nødvendige dataene, lukkes dialogen.

### Syklusdefinisjon via GOTO-funksjonen

- Funksjonstastlinjen viser de forskjellige syklusgruppene.
- > TNC åpner et vindu med syklusoversikten
- Velg ønsket syklus med piltastene
- Eller velg ønsket syklus med CTRL + piltastene (rull sidelengs)
- Eller tast inn et syklusnummer og bekreft med ENTtasten. TNC åpner syklusdialogen som beskrevet ovenfor

### NC-eksempelblokker

| 7 CYCL DEF 200 | BORING                |
|----------------|-----------------------|
| Q200=2         | ;SIKKERHETSAVST.      |
| Q201=3         | ; DYBDE               |
| Q206=150       | ;MATING FOR MATEDYBDE |
| Q202=5         | ;MATEDYBDE            |
| Q210=0         | ;FORSINKELSE OPPE     |
| Q203=+0        | ;KOOR. OVERFLATE      |
| Q204=50        | ;2. SIKKERHETSAVST.   |
| Q211=0.25      | ;FORSINKELSE NEDE     |





### Kalle opp sykluser



Før en syklusoppkalling må du alltid programmere:

- **BLK FORM** for grafisk visning (kreves kun for testgrafikk)
- Verktøyoppkalling
- Spindelens roteringsretning (tilleggsfunksjon M3/M4)
- Syklusdefinisjon (CYCL DEF).

Flere forutsetninger kan være angitt i syklusbeskrivelsene nedenfor.

Følgende sykluser er definert i bearbeidingsprogrammet. Disse syklusene kan og bør du ikke starte:

- Syklus 220 Punktmal for sirkel og 221 Punktmal for linjer
- SL-syklus 14 KONTUR
- SL-syklus 20 KONTURDATA
- Syklus 32 TOLERANSE
- Sykluser for koordinatomregning
- Syklus 9 FORSINKELSE
- alle touch-probe-sykluser

Alle andre sykluser kan startes med funksjonene som er beskrevet nedenfor.

### Syklusoppkalling med CYCL CALL

Funksjonen **CYCL CALL** aktiverer den siste definerte bearbeidingssyklusen én gang. Syklusens startpunkt er den sist programmerte posisjonen før CYCL CALL-blokken.



Programmere syklusoppkalling: Trykk på tasten CYCL CALL.

- Angi syklusoppkalling: Trykk på tasten CYCL CALL M.
- Angi ev. tilleggsfunksjonen M (f.eks. M3 for å koble inn spindelen), eller avslutt dialogen med tasten END.

### Syklusoppkalling med CYCL CALL PAT

Funksjonen **CYCL CALL PAT** aktiverer den sist definerte bearbeidingssyklusen for alle posisjoner du har definert i en maldefinisjon PATTERN DEF (se «Maldefinisjon PATTERN DEF" på side 59) eller i en punkttabell (se «Punkttabeller" på side 67).

### Syklusoppkalling med CYCL CALL POS

Funksjonen **CYCL CALL POS** aktiverer den siste definerte bearbeidingssyklusen én gang. Syklusens startpunkt er posisjonen som er definert i **CYCL CALL POS**-blokken.

TNC kjører til posisjonen som er angitt i **CYCL CALL POS**-blokken ved hjelp av posisjoneringslogikk:

- Hvis gjeldende verktøyposisjon på verktøyaksen ligger over overkanten av emnet (Q203), kjører TNC først til den programmerte posisjonen i arbeidsplanet og deretter til verktøyaksen
- Hvis gjeldende verktøyposisjon på verktøyaksen ligger under overkanten av emnet (Q203), fører TNC først verktøyet langs verktøyaksen til sikker høyde og deretter til den programmerte posisjonen i arbeidsplanet.



Tre koordinatakser må alltid programmeres i **CYCL CALL P0S**-blokken. Startposisjonen kan enkelt endres ved å endre koordinaten på verktøyaksen. Den fungerer som en ekstra nullpunktsforskyvning.

Matingen som er definert i **CYCL CALL POS**-blokken, gjelder bare fremkjøring til startposisjonen som er definert i blokken.

TNC kjører i prinsippet til posisjonen som er definert i **CYCL CALL POS**-blokken, uten radiuskorrigering (R0).

Hvis du aktiverer en syklus med definert startposisjon (f.eks. syklus 212) via **CYCL CALL POS**, fungerer posisjonen som er definert i syklusen som en ekstra forskyvning i forhold til posisjonen som er definert i **CYCL CALL POS**blokken. Derfor bør startposisjonen i syklusen alltid angis som 0.

### Syklusoppkalling med M99/M89

Den blokkvise funksjonen **M99** aktiverer den sist definerte bearbeidingssyklusen én gang. **M99** kan programmeres på slutten av en posisjoneringsblokk. TNC kjører da til denne posisjonen, og kaller deretter opp den sist definerte bearbeidingssyklusen.

Hvis TNC skal utføre syklusen automatisk etter hver posisjoneringsblokk, programmerer du den første syklusoppkallingen med **M89** (avhengig av maskinparameter 7440).

Hvis du vil oppheve effekten av M89, programmerer du følgende:

- Programmer M99 i posisjoneringsblokken for fremkjøring til siste startpunkt,
- en CYCL CALL POS-blokk eller
- en ny bearbeidingssyklus med CYCL DEF

### Arbeide med tilleggsakser U/V/W

TNC utfører matebevegelser langs den aksen som er definert som spindelakse i TOOL CALL-blokken. TNC beveger seg i prinsippet bare langs hovedaksene X, Y eller Z i arbeidsplanet. Unntak:

- Hvis du programmerer tilleggsakser for sidelengdene direkte i syklus 3 NOTFRESING og i syklus 4 LOMMEFRESING
- Hvis du programmerer tilleggsakser i den første blokken til konturunderprogrammet i SL-sykluser
- I syklus 5 (RUND LOMME), 251 (FIRKANTLOMME), 252 (RUND LOMME), 253 (NOT) og 254 (RUND NOT) kjører TNC syklusen langs de aksene som er programmert i den siste posisjoneringsblokken før den aktuelle syklusoppkallingen. Når verktøyakse Z er aktivert, er følgende kombinasjoner tillatt:

■ X/V

■ U/Y

■ U/V

<sup>■</sup> X/Y

### 2.2 Programinnstillinger for sykluser

### **Oversikt**

Alle sykluser fra 20 til 25 og med nummer over 200 bruker alltid identiske syklusparametere, for eksempel sikkerhetsavstanden Q200, som du må oppgi for hver syklusdefinisjon. Via funksjonen GLOBAL DEF kan du definere disse syklusparameterne sentralt ved programstart, slik at de gjelder for alle bearbeidingssyklusene som brukes i programmet. I den enkelte bearbeidingssyklusen må du så bare referere til den verdien du har definert ved programstart.

Følgende GLOBAL DEF-funksjoner er tilgjengelige:

| Bearbeidingsmal                                                                         | Funksjonstast                  | Side    |
|-----------------------------------------------------------------------------------------|--------------------------------|---------|
| GLOBAL DEF GENERELT<br>Definisjon av allmenngyldige<br>syklusparametere                 | 100<br>Global Def<br>Generelt  | Side 56 |
| GLOBAL DEF BORING<br>Definisjon av spesielle<br>boresyklusparametere                    | 105<br>GLOBAL DEF<br>BOR       | Side 56 |
| GLOBAL DEF LOMMEFRESING<br>Definisjon av spesielle<br>Iommefresingssyklusparametere     | 110<br>GLOBAL DEF<br>LOMMEFR.  | Side 57 |
| GLOBAL DEF KONTURFRESING<br>Definisjon av spesielle<br>konturfresingsparametere         | 111<br>GLOBAL DEF<br>KONTURFR. | Side 57 |
| GLOBAL DEF POSISJONERING<br>Definisjon av posisjoneringsbevegelser<br>ved CYCL CALL PAT | 125<br>GLOBAL DEF<br>Posisjon. | Side 57 |
| GLOBAL DEF TOUCH-PROBE<br>Definisjon av spesielle touch-probe-<br>syklusparametere      | 120<br>Global def<br>Søk       | Side 58 |



Ved hjelp av funksjonen LEGG TIL SMART UNIT (se brukerhåndbok Klartekstdialog, kapittel spesialfunksjoner), kan du med UNIT 700 legge til alle GLOBAL DEFfunksjoner i en blokk.

| Prog.kjøring<br>blokkrekke                       | Lag                                              | re/rec                                   | liger p                          | program                        | m                        |   |  |
|--------------------------------------------------|--------------------------------------------------|------------------------------------------|----------------------------------|--------------------------------|--------------------------|---|--|
| 0 BEC<br>1 BLN<br>2 BLN<br>3 TOC<br>4 L<br>5 ENC | 3IN PG<br>(FORM<br>(FORM<br>LCAL<br>2+100<br>PGM | M PLAN<br>0.1 Z<br>0.2<br>R0 FM<br>PLANE | E MM<br>x+0<br>x2500<br>AX<br>MM | Y+0<br>Y+106                   | Z+0<br>3 Z+4             | 0 |  |
| 100<br>GLOBAL DEF<br>GENERELT                    | 105<br>GLOBAL DEF<br>BOR                         | 110<br>GLOBAL DEF<br>LOMMEFR.            | 111<br>GLOBAL DEF<br>KONTURFR.   | 125<br>GLOBAL DEF<br>POSISJON. | 120<br>GLOBAL DEF<br>SØK |   |  |

1



### Legge inn GLOBAL DEF



- Velg driftsmodusen Lagre/rediger
- Velge spesialfunksjoner
- ▶ Velg funksjoner for programinnstillingene
- ▶ Velg GLOBAL DEF-funksjoner
- Velg ønsket GLOBAL DEF-funksjon, f.eks. GLOBAL DEF GENERELT
- Oppgi nødvendige definisjoner, og bekreft med tasten ENT for hver enkelt

### **Bruke GLOBAL DEF-data**

Hvis du har oppgitt GLOBAL DEF-funksjoner ved programstart, kan du referere til disse globalt gjeldende verdiene ved definering av en hvilken som helst bearbeidingssyklus.

Slik går du frem:



- Velg driftsmodusen Lagre/rediger
- Velg bearbeidingssykluser.
- ▶ Velg ønsket syklusgruppe, f.eks. Boresykluser.

ANGI STANDARD

- Velg ønsket syklus, f.eks. BORING.
- TNC viser funksjonstasten SETT STANDARDVERDI når det finnes en global parameter for dette.
- Trykk på funksjonstasten SETT STANDARDVERDI: TNC fører inn ordet PREDEF (engelsk: fordefinert) i syklusdefinisjonen. Dermed har du opprettet en forbindelse med den tilsvarende GLOBAL DEFparameteren som du programmerte ved programstart.



### Kollisjonsfare!

Vær oppmerksom på at endringer i programinnstillingene har konsekvenser for hele bearbeidingsprogrammet og kan medføre store endringer i bearbeidingsforløpet.

Hvis du har lagt inn en fast verdi i en bearbeidingssyklus, blir denne verdien ikke endret av **GLOBAL DEF**-funksjonene.





### Allmenngyldige globale data

- Sikkerhetsavstand: Avstanden mellom frontflaten på verktøyet og overflaten på emnet når du kjører automatisk frem til syklusens startposisjon i verktøyaksen
- 2. sikkerhetsavstand: Posisjonen hvor TNC posisjonerer verktøyet ved avslutningen av et bearbeidingstrinn. Den neste bearbeidingsposisjonen på bearbeidingsplanet starter i denne høyden.
- F posisjonering: Matingen som TNC kjører verktøyet i en syklus med
- **F** retur: Matingen som TNC setter verktøyet tilbake i posisjon med



Parameterne gjelder for alle 2xx-bearbeidingssykluser.

### Globale data for borebearbeidinger

- Retur ved sponbrudd: Verdi som angir når TNC skal trekke tilbake et verktøy ved sponbrudd
- Forsinkelse nede: Antall sekunder verktøyet blir stående i borebunnen
- Forsinkelse oppe: Antall sekunder verktøyet blir stående i sikkerhetsavstand



Parameterne gjelder for borings-, gjengeborings- og gjengefresingssyklusene 200 til 209, 240 og 262 til 267.

# Globale data for fresearbeider med lommesyklusene 25x

- Overlappingsfaktor: Sidematingen er produktet av verktøyradius x overlappingsfaktor
- > Type fresing: Medfres/motfres
- Nedsenkingsmåte: heliksformet, pendlende eller loddrett nedsenking i materialet



Parameterne gjelder for fressyklusene 251 til 257.

# Globale data for fresebearbeidinger med kontursykluser

- Sikkerhetsavstand: Avstanden mellom frontflaten på verktøyet og overflaten på emnet når du kjører automatisk frem til syklusens startposisjon i verktøyaksen
- Sikker høyde: Absolutt høyde, hvor det ikke kan skje kollisjoner med emnet (for mellomposisjoneringer og retur på slutten av syklusen)
- Overlappingsfaktor: Sidematingen er produktet av verktøyradius x overlappingsfaktor
- > Type fresing: Medfres/motfres



Parameterne gjelder for SL-syklusene 20, 22, 23, 24 og 25.

### Globale data for posisjonering

Posisjonering: Retur i verktøyaksen på slutten av et bearbeidingstrinn: Retur til 2. sikkerhetsavstand eller til enhetens startposisjon



Parameterne gjelder for alle bearbeidingssykluser så lenge du henter frem syklusen med funksjonen **CYCL CALL PAT**.

# 2.2 Programinnstillinger for sy<mark>klu</mark>ser

### Globale data for probefunksjoner

- Sikkerhetsavstand: Avstanden mellom nålen og overflaten på emnet ved automatisk fremkjøring til probeposisjonen
- Sikker høyde: Koordinat i probeaksen hvor TNC kjører touch-proben mellom målepunktene. Dette forutsetter at alternativet Flytt til sikker høyde er aktivert
- Flytt til sikker høyde: Velg om TNC skal kjøre mellom målepunktene med sikkerhetsavstand eller sikker høyde



Parameterne gjelder for alle 4xx-touch-probe-sykluser.

i

# 2.3 Maldefinisjon PATTERN DEF

### Bruk

Med funksjonen **PATTERN DEF** kan du på en enkel måte definere regelmessige bearbeidingsmaler som du så kan hente frem med funksjonen **CYCL CALL PAT**. På samme måte som ved syklusdefinisjoner finnes det hjelpebilder for maldefinisjonen som tydeliggjør de enkelte inndataparameterne.



**PATTERN DEF** må bare brukes i forbindelse med verktøyakse Z.

Følgende bearbeidingsmaler finnes:

| Bearbeidingsmal                                                        | Funksjonstast | Side    |
|------------------------------------------------------------------------|---------------|---------|
| PUNKT<br>Definisjon for inntil 9 ulike<br>bearbeidingsposisjoner       | PUNKT         | Side 61 |
| REKKE<br>Definisjon av en enkel rekke, rett eller<br>rotert            | REKKE         | Side 62 |
| MAL<br>Definisjon av en enkelt mal, rett, rotert<br>eller fordreid     | MAL           | Side 63 |
| RAMME<br>Definisjon av en enkelt ramme, rett,<br>rotert eller fordreid |               | Side 64 |
| SIRKEL<br>Definisjon av en hel sirkel                                  | SIRKEL        | Side 65 |
| DELSIRKEL<br>Definisjon av en delsirkel                                | DELSIRKEL     | Side 66 |

### Legge inn PATTERN DEF



- Velg driftsmodusen Lagre/rediger
- Velge spesialfunksjoner
- Velg funksjoner for kontur- og punktbearbeiding
- Apne PATTERN DEF-blokken
- Velg ønsket bearbeidingsmal, f.eks. enkelt rekke
- Oppgi nødvendige definisjoner, og bekreft med tasten ENT for hver enkelt

### Bruke PATTERN DEF

Når du har angitt en maldefinisjon, kan du kalle den opp via funksjonen **CYCL CALL PAT** (se «Syklusoppkalling med CYCL CALL PAT" på side 51). TNC utfører da den sist definerte bearbeidingssyklusen i den bearbeidingsmalen du har definert.



En bearbeidingsmal er aktiv helt til du definerer en ny eller velger en punkttabell med funksjonen **SEL PATTERN**.

Ved hjelp av mid-program-oppstart kan du velge et vilkårlig punkt der du kan starte eller fortsette bearbeidingen (se kapitlene Programtest og Programkjøring i brukerhåndboken).



### Definere enkelte bearbeidingsposisjoner



Du kan legge inn maksimalt 9 bearbeidingsposisjoner. Bekreft med tasten ENT etter hvert som de legges inn.

Hvis du definerer en **emneoverflate i Z** ulik 0, vil denne verdien legges til den emneoverflaten **Q203** som du har definert i bearbeidingssyklusen.

- Bearbeidingspos. X-koordinat (absolutt): Angi X-koordinat
- Bearbeidingspos. Y-koordinat (absolutt): Angi Y-koordinat
- **Koordinat for emneoverflate** (absolutt): Angi Z-koordinat der bearbeidingen skal starte.

| 10 L Z+100 | RO FMAX     |
|------------|-------------|
| 11 PATTERN | DEF         |
| POS1 (X+25 | Y+33,5 Z+0) |
| POS2 (X+50 | Y+75 Z+0)   |



### Definere en enkelt rekke



REKKE

Hvis du definerer en **emneoverflate i Z** ulik 0, vil denne verdien legges til den emneoverflaten **Q203** som du har definert i bearbeidingssyklusen.

- Startpunkt X (absolutt): Koordinat for rekkestartpunktet i X-aksen
- Startpunkt Y (absolutt): Koordinat for rekkestartpunktet i Y-aksen
- Avstand bearbeidingsposisjoner (inkremental): Avstand mellom bearbeidingsposisjonene. Du kan angi positiv eller negativ verdi
- Antall bearbeidinger: Totalt antall bearbeidingsposisjoner
- Roteringsposisjon for hele malen (absolutt): Roteringsvinkel rundt det angitte startpunktet. Referanseakse: Hovedaksen til det aktive arbeidsplanet (f.eks. X for verktøyakse Z). Du kan angi positiv eller negativ verdi
- ► Koordinat for emneoverflate (absolutt): Angi Z-koordinat der bearbeidingen skal starte

| 10 L Z+100 | RO FMAX                    |
|------------|----------------------------|
| 11 PATTERN | DEF                        |
| ROW1 (X+25 | Y+33,5 D+8 NUM5 ROT+0 Z+0) |





### Definere en enkelt mal



Hvis du definerer en **emneoverflate i Z** ulik 0, vil denne verdien legges til emneoverflaten **Q203** som du har definert i bearbeidingssyklusen.

Parameterne rot.pos. hovedakse og rot.pos. hjelpeakse virker additivt på en allerede utført roteringsposisjon for hele malen.



Startpunkt X (absolutt): Koordinat for malstartpunktet i X-aksen

- Startpunkt Y (absolutt): Koordinat for malstartpunktet i Y-aksen
- Avstand bearbeidingsposisjoner X (inkremental): Avstand mellom bearbeidingsposisjonene i X-retningen. Du kan angi positiv eller negativ verdi
- Avstand bearbeidingsposisjoner Y (inkremental): Avstand mellom bearbeidingsposisjonene i Y-retningen. Du kan angi positiv eller negativ verdi.
- > Antall kolonner: Totalt antall kolonner i malen
- > Antall linjer: Totalt antall linjer i malen
- Roteringsposisjon for hele malen (absolutt): Roteringsvinkel for hele malens rotering rundt det angitte startpunktet. Referanseakse: Hovedaksen til det aktive arbeidsplanet (f.eks. X for verktøyakse Z). Du kan angi positiv eller negativ verdi.
- Roteringsposisjon hovedakse: Roteringsvinkelen som bare hovedaksen for arbeidsplanet dreies rundt. Aksen roteres i henhold til det angitte startpunktet. Du kan angi positiv eller negativ verdi.
- Roteringsposisjon hjelpeakse: Roteringsvinkelen som bare hjelpeaksen for arbeidsplanet dreies rundt. Aksen roteres i henhold til det angitte startpunktet. Du kan angi positiv eller negativ verdi.
- **Koordinat for emneoverflate** (absolutt): Angi Z-koordinat der bearbeidingen skal starte.





# 2.3 Maldefinisjon PATTERN DEF

### Definere en enkelt ramme



Hvis du definerer en **emneoverflate i Z** ulik 0, vil denne verdien legges til emneoverflaten **Q203** som du har definert i bearbeidingssyklusen.

Parameterne rot.pos. hovedakse og rot.pos. hjelpeakse virker additivt på en allerede utført roteringsposisjon for hele malen.



Startpunkt X (absolutt): Koordinat for rammestartpunktet i X-aksen

- Startpunkt Y (absolutt): Koordinat for rammestartpunktet i Y-aksen
- Avstand bearbeidingsposisjoner X (inkremental): Avstand mellom bearbeidingsposisjonene i X-retningen. Du kan angi positiv eller negativ verdi.
- Avstand bearbeidingsposisjoner Y (inkremental): Avstand mellom bearbeidingsposisjonene i Y-retningen. Du kan angi positiv eller negativ verdi.
- Antall kolonner: Totalt antall kolonner i malen
- > Antall linjer: Totalt antall linjer i malen
- Roteringsposisjon for hele malen (absolutt): Roteringsvinkel for hele malens rotering rundt det angitte startpunktet. Referanseakse: Hovedaksen til det aktive arbeidsplanet (f.eks. X for verktøyakse Z). Du kan angi positiv eller negativ verdi.
- Roteringsposisjon hovedakse: Roteringsvinkelen som bare hovedaksen for arbeidsplanet dreies rundt. Aksen roteres i henhold til det angitte startpunktet. Du kan angi positiv eller negativ verdi.
- Roteringsposisjon hjelpeakse: Roteringsvinkelen som bare hjelpeaksen for arbeidsplanet dreies rundt. Aksen roteres i henhold til det angitte startpunktet. Du kan angi positiv eller negativ verdi.
- ▶ Koordinat for emneoverflate (absolutt): Angi Z-koordinat der bearbeidingen skal starte

**Eksempel: NC-blokker** 

10 L Z+100 RO FMAX 11 PATTERN DEF FRAME1 (X+25 Y+33,5 DX+8 DY+10 NUMX5 NUMY4 ROT+0 ROTX+0 ROTY+0 Z+0)



Bruke bearbeidingssykluser



### **Definere hel sirkel**



Hvis du definerer en **emneoverflate i Z** ulik 0, vil denne verdien legges til emneoverflaten **Q203** som du har definert i bearbeidingssyklusen.

- SIRKEL
- Hullsirkelsentrum X (absolutt): Koordinat for sirkelsentrum i X-aksen
- ► Hullsirkelsentrum Y (absolutt): Koordinat for sirkelsentrum i Y-aksen
- Hullsirkeldiameter: Diameter på hullsirkelen
- Startvinkel: Polarvinkel for den første bearbeidingsposisjonen. Referanseakse: Hovedaksen til det aktive arbeidsplanet (f.eks. X for verktøyakse Z). Du kan angi positiv eller negativ verdi
- Antall bearbeidinger: Totalt antall bearbeidingsposisjoner på sirkelen
- **Koordinat for emneoverflate** (absolutt): Angi Z-koordinat der bearbeidingen skal starte.

| 10 L Z+100 R0 FMAX                 |      |
|------------------------------------|------|
| 11 PATTERN DEF                     |      |
| CIRC1 (X+25 Y+33 D80 START+45 NUM8 | Z+0) |



### Definere delsirkel



Hvis du definerer en **emneoverflate i Z** ulik 0, vil denne verdien legges til emneoverflaten **Q203** som du har definert i bearbeidingssyklusen.

- Hullsirkelsentrum X (absolutt): Koordinat for sirkelsentrum i X-aksen
- Hullsirkelsentrum Y (absolutt): Koordinat for sirkelsentrum i Y-aksen
- Hullsirkeldiameter: Diameter på hullsirkelen
- Startvinkel: Polarvinkel for den første bearbeidingsposisjonen. Referanseakse: Hovedaksen til det aktive arbeidsplanet (f.eks. X for verktøyakse Z). Du kan angi positiv eller negativ verdi
- Vinkeltrinn/sluttvinkel: Inkremental polarvinkel mellom to bearbeidingsposisjoner. Du kan angi positiv eller negativ verdi. Alternativ sluttvinkel kan angis (veksle med funksjonstast)
- Antall bearbeidinger: Totalt antall bearbeidingsposisjoner på sirkelen
- ► Koordinat for emneoverflate (absolutt): Angi Z-koordinat der bearbeidingen skal starte.

| 10 L Z+100                            | RO FMAX                               |
|---------------------------------------|---------------------------------------|
| 11 PATTERN<br>PITCHCIRC1<br>NUM8 Z+O) | DEF<br>(X+25 Y+33 D80 START+45 STEP30 |



## 2.4 Punkttabeller

### Bruk

Hvis du vil kjøre én eller flere sykluser etter hverandre basert på en uregelmessig punktmal, må du opprette punkttabeller.

Hvis du bruker boresykluser, vil koordinatene for arbeidsplanet i punkttabellen samsvare med sentrum i boringen. Hvis det dreier seg om fressykluser, vil koordinatene for arbeidsplanet i punkttabellen samsvare med startpunktkoordinatene for den aktuelle syklusen (f.eks. koordinatene for sentrum i en sirkellomme). Spindelaksekoordinatene samsvarer med koordinaten for emneoverflaten.

### **Opprette punkttabell**

Velg driftsmodusen Lagre/rediger program:

| PGM<br>MGT        | Åpne filbehandlingen: Trykk på PGM MGT-tasten.                                                                  |
|-------------------|-----------------------------------------------------------------------------------------------------------------|
| FILNAVN?          |                                                                                                                 |
| ENT               | Angi navn og filtype for punkttabellen og bekreft med<br>ENT-tasten                                             |
| мм                | Velge måleenhet: Trykk på funksjonstasten MM eller<br>INCH. TNC åpner programvinduet med en tom<br>punkttabell. |
| SETT INN<br>LINJE | Sett inn en ny linje med funksjonstasten SETT INN<br>LINJE, og angi koordinatene for ønsket<br>bearbeidingssted |
|                   |                                                                                                                 |

Gjenta prosedyren til alle nødvendige koordinater er lagt inn

| 9 |
|---|

Bruk funksjonstastene X AV/PÅ, Y AV/PÅ og Z AV/PÅ (andre funksjonstastrad) for å angi hvilke koordinater som kan angis i punkttabellen.

### Skjule enkeltpunkter for bearbeidingen

l punkttabellen kan du i kolonnen **FADE** merke en linje for å skjule punktet som er definert på denne linjen, under bearbeidingen.



Definere sikker høyde

I kolonnen **CLEARANCE** kan du definere en sikker høyde separat for hvert punkt. TNC posisjonerer da verktøyet i verktøysaksen i henhold til denne verdien, før det kjøres til posisjonen i bearbeidingsplanet (se også «Aktivere syklus i forbindelse med punkttabeller" på side 70).

### Velge en punkttabell i programmet

Velg programmet som punkttabellen skal aktiveres for, under Lagre/rediger program:



tasten ENT: TNC registrerer fullstendig banenavn i blokken SEL PATTERN



Avslutt funksjonen med tasten END

Tabellnavnet eller det fullstendige banenavnet for tabellen som skal hentes opp, kan eventuelt angis direkte via tastaturet.

### Eksempel på NC-blokk

7 SEL PATTERN «TNC:\DIRKT5\NUST35.PNT»



### Aktivere syklus i forbindelse med punkttabeller



TNC benytter den punkttabellen som er sist definert, med CYCL CALL PAT (selv om du har definert punkttabellen i et CALL PGM-program).

Hvis TNC skal kjøre den sist definerte bearbeidingssyklusen i henhold til punktene som er definert i en punkttabell, programmerer du syklusoppkallingen med **CYCL CALL PAT**:



Programmere syklusoppkalling: Trykk på tasten CYCL CALL.

- Kalle opp punkttabell: Trykk på funksjonstasten CYCL CALL PAT
- Angi matingen som TNC skal bruke ved kjøring mellom punktene (ingen inntasting: kjøring med den sist programmerte matingen, FMAX ikke gyldig)
- Angi en ekstra M-funksjon ved behov, og bekreft med END-tasten.

Mellom startpunktene trekker TNC verktøyet tilbake til sikker høyde. Som sikker høyde bruker TNC enten spindelaksekoordinaten i syklusoppkallingen, verdien fra syklusparameteren Q204, eller verdien som er definert i kolonnen CLEARANCE, avhengig av hvilken verdi som er størst.

Bruk tilleggsfunksjonen M103 for å bruke redusert mating for spindelaksen under forposisjoneringen.

### Bruke punkttabeller med SL-sykluser og syklus 12

TNC tolker punktene som en ekstra nullpunktsforskyvning.

### Bruke punkttabeller med syklusene 200 til 208 og 262 til 267

TNC tolker punktene i arbeidsplanet som koordinater for sentrum av boringen. For å bruke koordinaten som er definert i punkttabellen, som startpunktkoordinat for spindelaksen, må du angi verdien 0 for emnets overkant (Q203).

### Bruke punkttabeller med syklusene 210 til 215

TNC tolker punktene som en ekstra nullpunktsforskyvning. For å bruke koordinatene som er definert i punkttabellen, som startpunktkoordinater må du angi verdien 0 for startpunktene og emnets overkant (Q203) i hver enkelt fressyklus.

### Bruke punkttabeller med syklusene 251 til 254

TNC tolker punktene i arbeidsplanet som koordinater for syklusstartpunktet. For å bruke koordinaten som er definert i punkttabellen, som startpunktkoordinat for spindelaksen, må du angi verdien 0 for emnets overkant (Q203).





Bearbeidingssykluser: boring

# 3.1 Grunnleggende

### Oversikt

TNC har i alt 9 sykluser for ulike borebearbeidinger:

| Syklus                                                                                                                       | Funksjonstast    | Side    |
|------------------------------------------------------------------------------------------------------------------------------|------------------|---------|
| <ul><li>240 SENTRERING</li><li>Med automatisk forposisjonering,</li><li>2. Sikkerhetsavstand, valgfri angivelse av</li></ul> | 240              | Side 73 |
| sentreringsdiameter/sentreringsdybde                                                                                         |                  |         |
| 200 BORING<br>Med automatisk forposisjonering,<br>2. Sikkerhetsavstand                                                       | 200              | Side 75 |
| 201 SLIPING<br>Med automatisk forposisjonering,<br>2. Sikkerhetsavstand                                                      | 201              | Side 77 |
| 202 UTBORING<br>Med automatisk forposisjonering,<br>2. Sikkerhetsavstand                                                     | 202              | Side 79 |
| 203 UNIVERSALBORING<br>Med automatisk forposisjonering,<br>2. Sikkerhetsavstand, sponbrudd,<br>degresjon                     | 283              | Side 83 |
| 204 SENKING BAKFRA<br>Med automatisk forposisjonering,<br>2. Sikkerhetsavstand                                               | 204<br>201       | Side 87 |
| 205 UNIVERSALDYPBORING<br>Med automatisk forposisjonering,<br>2. Sikkerhetsavstand, sponbrudd,<br>stoppavstand               | 205 +    <br>202 | Side 91 |
| 208 FRESEBORING<br>Med automatisk forposisjonering,<br>2. Sikkerhetsavstand                                                  | 208              | Side 95 |
| 241 KANONBORING<br>Med automatisk forposisjonering til<br>nedsenket startpunkt, definisjon av<br>turtall/kjølevæske          | 241              | Side 98 |

j
# 3.2 SENTRERING (syklus 240, DIN/ISO: G240)

# Syklusforløp

- 1 I hurtiggang FMAX posisjonerer TNC verktøyet i spindelaksen i sikkerhetsavstanden over emneoverflaten
- 2 Med programmert mating F sentreres verktøyet i henhold til angitt senterdiameter eller sentreringsdybde
- **3** Hvis dette er definert, gjør verktøyet et opphold i sentreringsbunnen
- **4** Til slutt føres verktøyet til sikkerhetsavstanden med **FMAX** eller til 2. sikkerhetsavstand hvis dette er programmert Sikkerhetsavstand

#### Legg merke til følgende under programmeringen!

 $\bigcirc$ 

Programmer posisjoneringsblokken med radiuskorreksjon **R0** for startpunktet (sentrum av boringen) i arbeidsplanet.

Fortegnet til syklusparameter **Q344** (diameter) eller **Q201** (dybde) bestemmer arbeidsretningen. Hvis diameter eller dybde = 0, vil ikke TNC utføre syklusen.



#### Kollisjonsfare!

Bruk maskinparameter 7441 Bit 2=1 hvis TNC skal vise en feilmelding når en positiv dybde angis, eller Bit 2=0 hvis ingen feilmelding skal vises.

Husk at TNC hopper over forposisjoneringen hvis en **positiv diameterverdi eller en positiv dybdeverdi** er angitt. Verktøyet kjører altså med hurtiggang i verkt'yaksen til sikkerhetsavstand **under** emneoverflaten!

Med maskinparameter 7441 Bit 0 kan du stille inn om TNC skal vise en feilmelding (Bit 0 = 0) eller ikke (Bit 0 = 1) hvis spindelen ikke går ved syklusoppkalling. Funksjonen må også tilpasses av maskinprodusenten.

240

- Sikkerhetsavstand Q200 (inkremental): Avstanden mellom verktøyspiss og emneoverflate. Angi en positiv verdi. Inndataområde 0 til 99999,9999 alternativ PREDEF
- ▶ Valg, diameter/dybde (1/0) Q343: Velg om sentrering skal utføres til angitt diameter eller angitt dybde. Hvis TNC skal sentreres til angitt diameter, må du angi spissvinkelen for verktøyet i kolonnen T-ANGLE i verktøytabellen TOOL.T.
  - 0: Sentrer til angitt dybde
  - 1: Sentrer til angitt diameter
- Dybde Q201 (inkremental): Avstand mellom emneoverflaten og sentreringsbunnen (sentreringskonusens spiss). Fungerer bare hvis Q343=0 er definert. Inndataområde • 99999,9999 til 99999,9999
- Diameter (fortegn) Q344: sentreringsdiameter. Fungerer bare hvis Q343=1 er definert. Inndataområde • 99999,9999 til 99999,9999
- Mating for matedybde Q206: Verktøyets bevegelseshastighet i mm/min ved sentrering. Inndataområde 0 til 99999,999, alternativ FAUTO, FU
- Forsinkelse nede Q211: Antall sekunder verktøyet blir stående i borebunnen. Inndataområde 0 til 3600,0000 alternativ PREDEF
- Koord. emneoverflate Q203 (absolutt): Koordinat for emneoverflaten. Inndataområde -99999,9999 til 99999,9999
- Sikkerhetsavstand Q204 (inkremental): Koordinat for spindelaksen der verktøy og emne (oppspenningsutstyr) ikke kan kollidere. Inndataområde 0 til 99999,9999 alternativ PREDEF





#### **Beispiel: NC-blokker**

| 10 L Z+100 R0 FMAX                     |
|----------------------------------------|
| 11 CYCL DEF 240 SENTRERING             |
| Q200=2 ;SIKKERHETSAVST.                |
| Q343=1 ;VALG DIAMETER/DYBDE            |
| Q201=+0 ;DYBDE                         |
| Q344=-9 ;DIAMETER                      |
| Q206=250 ;MATING FOR MATEDYBDE         |
| Q211=0.1 ;FORSINKELSE UNDER            |
| Q2O3=+20 ;KOOR. OVERFLATE              |
| Q204=100 ;2. SIKKERHETSAVST.           |
| 12 CYCL CALL POS X+30 Y+20 Z+0 FMAX M3 |
| 13 CYCL CALL POS X+80 Y+50 Z+0 FMAX    |



# 3.3 BORING (syklus 200)

# Syklusforløp

- 1 I hurtiggang FMAX posisjonerer TNC verktøyet i spindelaksen i sikkerhetsavstanden over emneoverflaten
- 2 Verktøyet borer med programmert mating F til første matedybde
- **3** TNC fører verktøyet tilbake til sikkerhetsavstand med **FMAX**, gjør et opphold der hvis dette er programmert, og fører deretter verktøyet med **FMAX** tilbake til sikkerhetsavstand over første matedybde
- 4 Deretter borer verktøyet til neste matedybde med angitt mating F
- 5 TNC gjentar disse trinnene (2 til 4) til angitt boredybde er nådd
- 6 Fra boringsbunnen føres verktøyet til sikkerhetsavstanden med FMAX, eller til 2. sikkerhetsavstand hvis dette er programmert Sikkerhetsavstand

#### Legg merke til følgende under programmeringen!

Programmer posisjoneringsblokken med radiuskorreksjon **R0** for startpunktet (sentrum av boringen) i arbeidsplanet.

Fortegnet til syklusparameteren for dybde slår fast arbeidsretningen. Hvis du velger Dybde = 0, vil ikke TNC utføre syklusen.



#### Kollisjonsfare!

Bruk maskinparameter 7441 Bit 2=1 hvis TNC skal vise en feilmelding når en positiv dybde angis, eller Bit 2=0 hvis ingen feilmelding skal vises.

Husk at TNC snur beregningen av forposisjoneringen hvis en **positiv dybdeverdi** angis. Verktøyet kjører altså med hurtiggang i verkt'yaksen til sikkerhetsavstand **under** emneoverflaten!

Med maskinparameter 7441 Bit 0 kan du stille inn om TNC skal vise en feilmelding (Bit 0 = 0) eller ikke (Bit 0 = 1) hvis spindelen ikke går ved syklusoppkalling. Funksjonen må også tilpasses av maskinprodusenten.

3.3 BORING (s<mark>ykl</mark>us 200)

200

- Sikkerhetsavstand Q200 (inkremental): Avstanden mellom verktøyspiss og emneoverflate. Angi en positiv verdi. Inndataområde 0 til 99999,9999 alternativ PREDEF
  - Dybde Q201 (inkremental): Avstanden mellom emneoverflaten og boringsbunnen (boringskonusens spiss). Inndataområde • 99999,9999 til 99999,9999
  - Mating for matedybde Q206: Verktøyets bevegelseshastighet i mm/min ved boring. Inndataområde 0 til 99999,999, alternativ FAUTO, FU
  - Matedybde: Q202 (inkremental): Mål for hvor langt verktøyet skal mates frem. Inndataområde 0 til 99999,9999. Dybden kan ikke være flere ganger matedybden. TNC kjører verktøyet til dybden i én arbeidsoperasjon hvis:
    - matedybden og dybden er like
    - matedybden er større enn dybden
  - Forsinkelse oppe Q210: Antall sekunder som verktøyet stanser i sikkerhetsavstand, etter at TNC er trukket ut av boringen for å fjerne spon. Inndataområde 0 til 3600,0000 alternativ PREDEF
  - Koord. emneoverflate Q203 (absolutt): Koordinat for emneoverflaten. Inndataområde -99999,9999 til 99999,9999
  - Sikkerhetsavstand Q204 (inkremental): Koordinat for spindelaksen der verktøy og emne (oppspenningsutstyr) ikke kan kollidere. Inndataområde 0 til 99999,9999 alternativ PREDEF
  - Forsinkelse nede Q211: Antall sekunder verktøyet blir stående i borebunnen. Inndataområde 0 til 3600,0000 alternativ PREDEF
  - FORHOLD DYBDE Q395: valg for om den angitte dybden skal basere seg på verktøyspissen eller på den sylindriske delen av verktøyet. Hvis TNC skal referere dybden til den sylindriske delen av verktøyet, må du angi spissvinkelen for verktøyet i kolonnen T-ANGLE i verktøytabellen TOOL.T.
    - **0** = Dybden refererer til verktøyspissen
    - **1** = Dybden referer til den sylindriske delen av verktøyet





#### **Beispiel: NC-blokker**

| 11 CYCL DEF 200 BORING         |
|--------------------------------|
| Q200=2 ;SIKKERHETSAVST.        |
| Q201=-15 ;DYBDE                |
| Q206=250 ;MATING FOR MATEDYBDE |
| Q2O2=5 ;MATEDYBDE              |
| Q210=0 ;FORSINKELSE OPPE       |
| Q203=+20 ;KOOR. OVERFLATE      |
| Q2O4=100 ;2. SIKKERHETSAVST.   |
| Q211=0.1 ;FORSINKELSE UNDER    |
| Q395=0 ;FORHOLD DYBDE          |
| 12 L X+30 Y+20 FMAX M3 M99     |
| 14 L X+80 Y+50 FMAX M99        |

# 3.4 SLIPING (syklus 201, DIN/ISO: G201)

# Syklusforløp

- 1 I hurtiggang **FMAX** posisjonerer TNC verktøyet i den angitte sikkerhetsavstanden over emneoverflaten
- 2 Verktøyet sliper materialet med den angitte matingen F ned til programmert dybde
- **3** Verktøyet gjør et opphold i boringsbunnen hvis dette er programmert
- **4** Deretter fører TNC verktøyet tilbake til sikkerhetsavstand med mating F forposisjonering, og derfra med **FMAX** til 2. sikkerhetsavstand, hvis dette er programmert. Sikkerhetsavstand

## Legg merke til følgende under programmeringen!



Programmer posisjoneringsblokken med radiuskorreksjon **R0** for startpunktet (sentrum av boringen) i arbeidsplanet.

Fortegnet til syklusparameteren for dybde slår fast arbeidsretningen. Hvis du velger Dybde = 0, vil ikke TNC utføre syklusen.



#### Kollisjonsfare!

Bruk maskinparameter 7441 Bit 2=1 hvis TNC skal vise en feilmelding når en positiv dybde angis, eller Bit 2=0 hvis ingen feilmelding skal vises.

Husk at TNC snur beregningen av forposisjoneringen hvis en **positiv dybdeverdi** angis. Verktøyet kjører altså med hurtiggang i verkt'yaksen til sikkerhetsavstand **under** emneoverflaten!

Med maskinparameter 7441 Bit 0 kan du stille inn om TNC skal vise en feilmelding (Bit 0 = 0) eller ikke (Bit 0 = 1) hvis spindelen ikke går ved syklusoppkalling. Funksjonen må også tilpasses av maskinprodusenten.



- Sikkerhetsavstand Q200 (inkremental): Avstanden mellom verktøyspissen og emneoverflaten. Inndataområde 0 til 99999,9999 alternativ PREDEF
- Dybde Q201 (inkremental): Avstanden mellom emneoverflaten og boringsbunnen. Inndataområde -99999,9999 til 99999,9999
- Mating for matedybde Q206: Verktøyets bevegelseshastighet i mm/min ved boring. Inndataområde 0 til 99999,999, alternativ FAUTO, FU
- Forsinkelse nede Q211: Antall sekunder verktøyet blir stående i borebunnen. Inndataområde 0 til 3600,0000 alternativ PREDEF
- Mating retur Q208: Verktøyets bevegelseshastighet i mm/min når det trekkes ut av boringen. Q208 = 0 gjelder mating for sliping. Inndataområde 0 til 99999,999
- ▶ Koord. emneoverflate Q203 (absolutt): Koordinat for emneoverflaten. Inndataområde 0 til 99999,9999
- Sikkerhetsavstand Q204 (inkremental): Koordinat for spindelaksen der verktøy og emne (oppspenningsutstyr) ikke kan kollidere. Inndataområde 0 til 99999,9999 alternativ PREDEF





#### **Beispiel: NC-blokker**

| 11 CYCL DEF 201 SLIPING        |
|--------------------------------|
| Q200=2 ;SIKKERHETSAVST.        |
| Q201=-15 ;DYBDE                |
| Q206=100 ;MATING FOR MATEDYBDE |
| Q211=0.5 ;FORSINKELSE NEDE     |
| Q208=250 ;MATING RETUR         |
| Q2O3=+20 ;KOOR. OVERFLATE      |
| Q204=100 ;2. SIKKERHETSAVST.   |
| 12 L X+30 Y+20 FMAX M3         |
| 13 CYCL CALL                   |
| 14 L X+80 Y+50 FMAX M9         |
| 15 L Z+100 FMAX M2             |

# 3.5 UTBORING (syklus 202, DIN/ISO: G202)

# Syklusforløp

- 1 I hurtiggang FMAX posisjonerer TNC verktøyet i spindelaksen i sikkerhetsavstanden over emneoverflaten
- 2 Verktøyet borer med boremating ned til dybden
- **3** Verktøyet gjør et opphold i bunnen av boringen mens spindelen roterer for å løsne verktøyet, hvis dette er programmert
- 4 Deretter utfører TNC en spindelorientering i henhold til posisjonen som er definert i parameter Q336
- **5** Hvis funksjonen for frikjøring er valgt, fører TNC verktøyet 0,2 mm (fast verdi) i angitt retning
- 6 Deretter fører TNC verktøyet tilbake til sikkerhetsavstand med mating forposisjonering, og derfra med FMAX til 2. sikkerhetsavstand, hvis dette er programmert. sikkerhetsavstanden. Hvis Q214=0, utføres tilbaketrekkingen langs boringsveggen

# Legg merke til følgende under programmeringen!

Maskinen og TNC må klargjøres av maskinprodusenten.

Denne syklusen kan bare brukes på maskiner med styrt spindel.



Programmer posisjoneringsblokken med radiuskorreksjon **R0** for startpunktet (sentrum av boringen) i arbeidsplanet.

Fortegnet til syklusparameteren for dybde slår fast arbeidsretningen. Hvis du velger Dybde = 0, vil ikke TNC utføre syklusen.

TNC tilbakestiller den kjølevæske- og spindeltilstanden som var aktivert før syklusoppkallingen.



Bruk maskinparameter 7441 Bit 2=1 hvis TNC skal vise en feilmelding når en positiv dybde angis, eller Bit 2=0 hvis ingen feilmelding skal vises.

Husk at TNC snur beregningen av forposisjoneringen hvis en **positiv dybdeverdi** angis. Verktøyet kjører altså med hurtiggang i verkt'yaksen til sikkerhetsavstand **under** emneoverflaten!

Velg en frikjøringsretning som gjør at verktøyet føres bort fra kanten av boringen.

Kontroller hvor verktøyspissen står når du programmerer en spindelorientering med den vinkelen som er angitt i Q336 (velg f.eks. driftsmodusen Posisjonering med manuell inntasting). Velg vinkelen slik at verktøyspissen er parallell med en koordinatakse.

Ved frikjøring tar TNC automatisk hensyn til aktiv rotering av koordinatsystemet.

Med maskinparameter 7441 Bit 0 kan du stille inn om TNC skal vise en feilmelding (Bit 0 = 0) eller ikke (Bit 0 = 1) hvis spindelen ikke går ved syklusoppkalling. Funksjonen må også tilpasses av maskinprodusenten.



- Sikkerhetsavstand Q200 (inkremental): Avstanden mellom verktøyspissen og emneoverflaten. Inndataområde 0 til 99999,9999 alternativ PREDEF
- Dybde Q201 (inkremental): Avstanden mellom emneoverflaten og boringsbunnen. Inndataområde -99999,9999 til 99999,9999
- Mating for matedybde Q206: Verktøyets bevegelseshastighet i mm/min ved utboring. Inndataområde 0 til 99999,999, alternativ FAUTO, FU
- Forsinkelse nede Q211: Antall sekunder verktøyet blir stående i boringsbunnen. Inndataområde 0 til 3600,0000 alternativ PREDEF
- Mating retur Q208: Verktøyets bevegelseshastighet i mm/min når det trekkes ut av boringen. Hvis du angir Q208=0, blir mating for matedybde benyttet. Inndataområde 0 til 99999,999, alternativ FMAX, FAUTO, PREDEF
- Koord. emneoverflate Q203 (absolutt): Koordinat for emneoverflaten. Inndataområde -99999,9999 til 99999,9999
- 2. Sikkerhetsavstand Q204 (inkremental): Koordinat for spindelaksen der verktøy og emne (oppspenningsutstyr) ikke kan kollidere. Inndataområde 0 til 99999,999 alternativ PREDEF



- ► Frikjøringsretning (0/1/2/3/4) Q214: Definer retningen som TNC skal bruke for å kjøre verktøyet fri fra boringsbunnen (etter spindelorientering)
  - 0 Ikke frikjør verktøyet
  - 1 Frikjør verktøyet i hovedaksens minusretning
  - 2 Frikjør verktøyet i hjelpeaksens minusretning
  - 3 Frikjør verktøyet i hovedaksens plussretning
  - 4 Frikjør verktøyet i plussretningen for hjelpeaksen
- Vinkel for spindelorientering Q336 (absolutt): Vinkelen som TNC stiller verktøyet i, før frikjøring. Inndataområde -360,000 til 360,000



#### **Beispiel:**

| 10 L Z+100 RO FMAX             |
|--------------------------------|
| 11 CYCL DEF 202 UTBORING       |
| Q200=2 ;SIKKERHETSAVST.        |
| Q201=-15 ;DYBDE                |
| Q206=100 ;MATING FOR MATEDYBDE |
| Q211=0.5 ;FORSINKELSE NEDE     |
| Q208=250 ;MATING RETUR         |
| Q2O3=+20 ;KOOR. OVERFLATE      |
| Q204=100 ;2. SIKKERHETSAVST.   |
| Q214=1 ;FRIKJØRINGSRETNING     |
| Q336=0 ;VINKEL SPINDEL         |
| 12 L X+30 Y+20 FMAX M3         |
| 13 CYCL CALL                   |
| 14 L X+80 Y+50 FMAX M99        |

i

# 3.6 UNIVERSALBORING (syklus 203, DIN/ISO: G203)

# Syklusforløp

- 1 I hurtiggang FMAX posisjonerer TNC verktøyet i den angitte sikkerhetsavstanden over emneoverflaten
- 2 Verktøyet borer med angitt mating F til første matedybde
- 3 Hvis sponbrudd er programmert, fører TNC verktøyet tilbake med angitt mateverdi for retur. Hvis du ikke bruker sponbrudd, fører TNC verktøyet tilbake til sikkerhetsavstanden med matingsverdien for retur, stanser der hvis det er programmert og kjører deretter tilbake med FMAX til sikkerhetsavstanden Q256 over første borede dybde
- 4 Deretter borer verktøyet med mating til neste matedybde. Matedybden reduseres med en forminskingsverdi for hver mating hvis dette er programmert.
- 5 TNC gjentar disse trinnene (2–4) til boredybden er nådd
- 6 I boringsbunnen stanser verktøyet for frikjøring hvis dette er programmert, og trekkes etter en forsinkelse tilbake til sikkerhetsavstanden med mateverdien for returen. Hvis du har angitt en 2. sikkerhetsavstand, fører TNC verktøyet dit med FMAX

## Legg merke til følgende under programmeringen!



 $\Delta$ 

Programmer posisjoneringsblokken til startpunktet (sentrum av boringen) i arbeidsplanet med radiuskorreksjon **R0**.

Fortegnet til syklusparameteren for dybde slår fast arbeidsretningen. Hvis du velger Dybde = 0, vil ikke TNC utføre syklusen.

#### Kollisjonsfare!

Bruk maskinparameter 7441 Bit 2=1 hvis TNC skal vise en feilmelding når en positiv dybde angis, eller Bit 2=0 hvis ingen feilmelding skal vises.

Husk at TNC snur beregningen av forposisjoneringen hvis en **positiv dybdeverdi** angis. Verktøyet kjører altså med hurtiggang i verkt'yaksen til sikkerhetsavstand **under** emneoverflaten!

Med maskinparameter 7441 Bit 0 kan du stille inn om TNC skal vise en feilmelding (Bit 0 = 0) eller ikke (Bit 0 = 1) hvis spindelen ikke går ved syklusoppkalling. Funksjonen må også tilpasses av maskinprodusenten.

1



- Sikkerhetsavstand Q200 (inkremental): Avstanden mellom verktøyspissen og emneoverflaten. Inndataområde 0 til 99999,9999 alternativ PREDEF
- Dybde Q201 (inkremental): Avstanden mellom emneoverflaten og boringsbunnen (boringskonusens spiss). Inndataområde • 99999,9999 til 99999,9999
- Mating for matedybde Q206: Verktøyets bevegelseshastighet i mm/min ved boring. Inndataområde 0 til 99999,999, alternativ FAUTO, FU
- Matedybde: Q202 (inkremental): Mål for hvor langt verktøyet skal mates frem. Inndataområde 0 til 99999,9999. Dybden kan ikke være flere ganger matedybden. TNC kjører verktøyet til dybden i én arbeidsoperasjon hvis:
  - matedybden og dybden er like
  - matedybden er større enn dybden og sponbrudd ikke er definert
- Forsinkelse oppe Q210: Antall sekunder som verktøyet stanser i sikkerhetsavstand, etter at TNC er trukket ut av boringen for å fjerne spon. Inndataområde 0 til 3600,0000 alternativ PREDEF
- Koord. emneoverflate Q203 (absolutt): Koordinat for emneoverflaten. Inndataområde -99999,9999 til 99999,9999
- 2. Sikkerhetsavstand Q204 (inkremental): Koordinat for spindelaksen der verktøy og emne (oppspenningsutstyr) ikke kan kollidere. Inndataområde 0 til 99999,9999 alternativ PREDEF
- ▶ Forminsking Q212 (inkremental): Verdien som TNC reduserer matedybde Q202 med, for hver mating. Inndataområde 0 til 99999,9999



- Ant. sponbrudd til retur Q213: Antall sponbrudd før TNC fører verktøyet ut av boringen for å fjerne spon. Ved sponbrudd trekker TNC alltid verktøyet tilbake med returverdi Q256. Inndataområde 0 til 99999
- Minste matedybde Q205 (inkremental): Hvis du har programmert en forminsking, begrenser TNC matingen med den verdien som er angitt med Q205. Inndataområde 0 til 99999,9999
- Forsinkelse nede Q211: Antall sekunder verktøyet blir stående i borebunnen. Inndataområde 0 til 3600,0000 alternativ PREDEF
- Mating retur Q208: Verktøyets bevegelseshastighet i mm/min når det trekkes ut av boringen. Hvis du angir Q208=0, trekker TNC ut verktøyet med mating Q206. Inndataområde 0 til 99999,999, alternativ FMAX, FAUTO, PREDEF
- Returverdi ved sponbrudd Q256 (inkremental): Verdien som angir når TNC skal trekke tilbake verktøyet ved sponbrudd. Inndataområde 0,1000 til 99999,9999 alternativ PREDEF
- FORHOLD DYBDE Q395: valg for om den angitte dybden skal basere seg på verktøyspissen eller på den sylindriske delen av verktøyet. Hvis TNC skal referere dybden til den sylindriske delen av verktøyet, må du angi spissvinkelen for verktøyet i kolonnen T-ANGLE i verktøytabellen TOOL.T.
  - **0** = Dybden refererer til verktøyspissen
  - 1 = Dybden referer til den sylindriske delen av verktøyet

#### **Beispiel: NC-blokker**

| L1 CYCL DEF 203 UNIVERSAL-BORRING |
|-----------------------------------|
| Q200=2 ;SIKKERHETSAVST.           |
| Q201=-20 ;DYBDE                   |
| Q206=150 ;MATING FOR MATEDYBDE    |
| Q2O2=5 ;MATEDYBDE                 |
| Q210=0 ;FORSINKELSE OPPE          |
| Q203=+20 ;KOOR. OVERFLATE         |
| Q204=50 ;2. SIKKERHETSAVST.       |
| Q212=0.2 ;FORMINSKING             |
| Q213=3 ;SPONBRUDD                 |
| Q205=3 ;MIN. MATEDYBDE            |
| Q211=0.25 ;FORSINKELSE NEDE       |
| Q208=500 ;MATING RETUR            |
| Q256=0.2 ;RETUR VED SPONBRUDD     |
| Q395=0 ;FORHOLD DYBDE             |

1



# 3.7 SENKING BAKOVER (syklus 204, DIN/ISO: G204)

# Syklusforløp

Med denne syklusen kan du senke verktøyet under emnet.

- 1 I hurtiggang FMAX posisjonerer TNC verktøyet i spindelaksen i sikkerhetsavstanden over emneoverflaten
- 2 Der utfører TNC en spindelorientering til 0°-posisjonen, og forskyver verktøyet med eksenterdimensjonen
- **3** Deretter senkes verktøyet ned i den forhåndsborede boringen med mating for forposisjonering, til skjæret står i sikkerhetsavstand under emnets underkant
- 4 TNC fører så verktøyet til sentrum av boringen igjen, kobler til spindelen og ev. kjølevæsken og fører deretter verktøyet til programmert senkedybde med mateverdien for forsenkning
- **5** Verktøyet stanser i forsenkningsbunnen hvis dette er programmert. Deretter føres verktøyet ut av boringen igjen. Det utføres en spindelorientering og en ny forskyvning tilsvarende eksenterdimensjonen
- 6 Deretter fører TNC verktøyet tilbake til sikkerhetsavstand med mating forposisjonering, og derfra med FMAX til 2. sikkerhetsavstand, hvis dette er programmert. sikkerhetsavstanden.



# Legg merke til følgende under programmeringen!

Maskinen og TNC må klargjøres av maskinprodusenten.

Denne syklusen kan bare brukes på maskiner med styrt spindel.

Syklusen fungerer bare med returborestenger.



Programmer posisjoneringsblokken med radiuskorreksjon **RO** for startpunktet (sentrum av boringen) i arbeidsplanet.

Fortegnet for syklusparameteren for dybde angir arbeidsretningen ved senking. OBS: Positivt fortegn innebærer senking mot den positive spindelaksen.

Angi verktøylengden i henhold til underkanten av borestanga, ikke skjæret.

TNC beregner startpunktet for senkingen ut fra borestangas skjærelengde og materialtykkelsen.

Du kan også kjøre syklus 204 med **M04** hvis du har programmert **M04** i stedet for **M03** før syklusoppkalling.



#### Kollisjonsfare!

Kontroller hvor verktøyspissen står når du programmerer en spindelorientering med den vinkelen som er angitt i **Q336** (velg f.eks. driftsmodusen Posisjonering med manuell inntasting). Velg vinkelen slik at verktøyspissen er parallell med en koordinatakse. Velg en frikjøringsretning som gjør at verktøyet føres bort fra kanten av boringen.



- Sikkerhetsavstand Q200 (inkremental): Avstanden mellom verktøyspissen og emneoverflaten. Inndataområde 0 til 99999,9999 alternativ PREDEF
- Dybde forsenkning Q249 (inkremental): Avstanden mellom emneunderkanten og forsenkningsbunnen. Positivt fortegn senker verktøyet i den positive spindelakseretningen. Inndataområde • 99999,9999 til 99999,9999
- Materialtykkelse Q250 (inkremental): Tykkelsen på emnet. Inndataområde 0,0001 til 99999,9999
- Eksenterdimensjon Q251 (inkremental): Borestangens eksenterdimensjon, angitt i verktøyspesifikasjonene. Inndataområde 0,0001 til 99999,9999
- Skjærehøyde Q252 (inkremental): Avstand mellom borestangens underkant og hovedskjæret, angitt i verktøyspesifikasjonene. Inndataområde 0,0001 til 99999,9999
- Mating forposisjonering Q253: Verktøyets bevegelseshastighet i mm/min når det senkes inn i eller trekkes ut av emnet Inndataområde 0 til 99999,999, alternativ FMAX, FAUTO, PREDEF
- Mating ved senkning Q254: Verktøyets bevegelseshastighet i mm/min ved forsenkning Inndataområde 0 til 99999,999, alternativ FAUTO, FU
- Forsinkelse Q255: Forsinkelse i sekunder på forsenkningsbunnen. Inndataområde 0 til 3600,000





- Ko er 95
  2. fo (o In
  Fr hv ek Ve
  1
  2
  - ▶ Koord. emneoverflate Q203 (absolutt): Koordinat for emneoverflaten. Inndataområde -99999,9999 til 99999,9999 alternativ PREDEF
  - 2. Sikkerhetsavstand Q204 (inkremental): Koordinat for spindelaksen der verktøy og emne (oppspenningsutstyr) ikke kan kollidere. Inndataområde 0 til 99999,9999
  - Frikjøringsretning (0/1/2/3/4) Q214: Angi i hvilken retning TNC skal forskyve verktøyet med eksenterdimensjonen (etter spindelorienteringen). Verdien 0 er ikke tillatt
    - Frikjør verktøyet i hovedaksens minusretning
    - 2 Frikjør verktøyet i hjelpeaksens minusretning
    - 3 Frikjør verktøyet i hovedaksens plussretning
    - 4 Frikjør verktøyet i plussretningen for hjelpeaksen
  - Vinkel for spindelorientering Q336 (absolutt): Vinkelen som TNC stiller verktøyet i, før det senkes inn i og trekkes ut av boringen. Inndataområde -360,0000 til 360,0000

#### **Beispiel: NC-blokker**

| 11 | CYCL DEF 20 | )4 SENKING BAKOVER  |  |
|----|-------------|---------------------|--|
|    | Q200=2      | ;SIKKERHETSAVST.    |  |
|    | Q249=+5     | ;DYBDE FORSENKNING  |  |
|    | Q250=20     | ;MATERIALTYKKELSE   |  |
|    | Q251=3.5    | ;EKSENTERDIMENSJON  |  |
|    | Q252=15     | ;SKJÆRHØYDE         |  |
|    | Q253=750    | ;MATING FORPOS.     |  |
|    | Q254=200    | ;MATING FORSENKNING |  |
|    | Q255=0      | ;FORSINKELSE        |  |
|    | Q203=+20    | ;KOOR. OVERFLATE    |  |
|    | Q204=50     | ;2. SIKKERHETSAVST. |  |
|    | Q214=1      | ;FRIKJØRINGSRETNING |  |
|    | Q336=0      | ;VINKEL SPINDEL     |  |

1

# 3.8 UNIVERSALDYPBORING (syklus 205, DIN/ISO: G205)

# Syklusforløp

- 1 I hurtiggang FMAX posisjonerer TNC verktøyet i den angitte sikkerhetsavstanden over emneoverflaten
- **2** Hvis det er angitt et nedsenket startpunkt, fører TNC verktøyet til sikkerhetsavstanden over det nedsenkede startpunktet med angitt posisjoneringsmating
- 3 Verktøyet borer med angitt mating F til første matedybde
- 4 Hvis sponbrudd er programmert, fører TNC verktøyet tilbake med angitt mateverdi for retur. Hvis du ikke bruker sponbrudd, fører TNC verktøyet tilbake til sikkerhetsavstanden med matingsverdien for retur, stanser der hvis det er programmert og kjører deretter tilbake med FMAX til sikkerhetsavstanden Q256 over første borede dybde
- **5** Deretter borer verktøyet med mating til neste matedybde. Matedybden reduseres med en forminskingsverdi for hver mating hvis dette er programmert.
- 6 TNC gjentar disse trinnene (2-4) til boredybden er nådd
- 7 I boringsbunnen stanser verktøyet for frikjøring hvis dette er programmert, og trekkes etter en forsinkelse tilbake til sikkerhetsavstanden med mateverdien for returen. Hvis du har angitt en 2. sikkerhetsavstand, fører TNC verktøyet dit med **FMAX**

# Legg merke til følgende under programmeringen!

Programmer posisjoneringsblokken med radiuskorreksjon **R0** for startpunktet (sentrum av boringen) i arbeidsplanet.

Fortegnet til syklusparameteren for dybde slår fast arbeidsretningen. Hvis du velger Dybde = 0, vil ikke TNC utføre syklusen.

Hvis stoppavstandene **Q258** ikke er lik **Q259**, endrer TNC stoppavstanden mellom første og siste mating med samme verdi.

Hvis du programmerer et nedsenket startpunkt via **Q379**, endrer TNC bare startpunktet for matebevegelsen. TNC endrer ikke returbevegelsen fordi denne avhenger av koordinaten på emneoverflaten.



#### Kollisjonsfare!

Bruk maskinparameter 7441 Bit 2=1 hvis TNC skal vise en feilmelding når en positiv dybde angis, eller Bit 2=0 hvis ingen feilmelding skal vises.

Husk at TNC snur beregningen av forposisjoneringen hvis en **positiv dybdeverdi** angis. Verktøyet kjører altså med hurtiggang i verkt'yaksen til sikkerhetsavstand **under** emneoverflaten!

Med maskinparameter 7441 Bit 0 kan du stille inn om TNC skal vise en feilmelding (Bit 0 = 0) eller ikke (Bit 0 = 1) hvis spindelen ikke går ved syklusoppkalling. Funksjonen må også tilpasses av maskinprodusenten.





- Sikkerhetsavstand Q200 (inkremental): Avstanden mellom verktøyspissen og emneoverflaten. Inndataområde 0 til 99999,9999 alternativ PREDEF
- Dybde Q201 (inkremental): Avstanden mellom emneoverflaten og boringsbunnen (boringskonusens spiss). Inndataområde • 99999,9999 til 99999,9999
- Mating for matedybde Q206: Verktøyets bevegelseshastighet i mm/min ved boring. Inndataområde 0 til 99999,999, alternativ FAUTO, FU
- Matedybde: Q202 (inkremental): Mål for hvor langt verktøyet skal mates frem. Inndataområde 0 til 99999,9999. Dybden kan ikke være flere ganger matedybden. TNC kjører verktøyet til dybden i én arbeidsoperasjon hvis:
  - matedybden og dybden er like
  - matedybden er større enn dybden
- ▶ Koord. emneoverflate Q203 (absolutt): Koordinat for emneoverflaten. Inndataområde -99999,9999 til 99999,9999
- 2. Sikkerhetsavstand Q204 (inkremental): Koordinat for spindelaksen der verktøy og emne (oppspenningsutstyr) ikke kan kollidere. Inndataområde 0 til 99999,9999 alternativ PREDEF
- Forminsking Q212 (inkremental: Verdien som TNC reduserer matedybden Q202 med. Inndataområde 0 til 99999,9999
- Minste matedybde Q205 (inkremental): Hvis du har programmert en forminsking, begrenser TNC matingen med den verdien som er angitt med Q205. Inndataområde 0 til 99999,9999
- Sikkerhetsavstand oppe Q258 (inkremental): Sikkerhetsavstand for hurtiggangsposisjonering når TNC fører verktøyet tilbake til aktuell matedybde etter tilbaketrekking. Verdien gjelder første mating. Inndataområde 0 til 99999,9999
- Sikkerhetsavstand nede Q259 (inkremental): Sikkerhetsavstand for hurtiggangsposisjonering når TNC fører verktøyet til aktuell matedybde igjen etter tilbaketrekking. Verdien gjelder siste mating. Inndataområde 0 til 99999,9999



- Boredybde til sponbrudd Q257 (inkremental): Mateverdien som TNC skal utføre et sponbrudd etter. Med verdien 0 blir det ikke utført noe sponbrudd. Inndataområde 0 til 99999,9999
- Returverdi ved sponbrudd Q256 (inkremental): Verdien som angir når TNC skal trekke tilbake verktøyet ved sponbrudd. TNC fører returen med en mating på 3000 mm/min. Inndataområde 0,1000 til 99999,9999 alternativ PREDEF
- Forsinkelse nede Q211: Antall sekunder verktøyet blir stående i borebunnen. Inndataområde 0 til 3600,0000 alternativ PREDEF
- Nedsenket startpunkt Q379 (inkrementalt i forhold til emneoverflaten): Startpunkt for selve boringen når det har blitt utført forboring til en bestemt dybde med et kortere verktøy. TNC fører verktøyet fra sikkerhetsavstanden til det nedsenkede startpunktet med Mating for forposisjonering. Inndataområde 0 til 99999,9999
- Mating forposisjonering Q253: Verktøyets bevegelseshastighet i mm/min ved flytting fra sikkerhetsavstand til et nedsenket startpunkt. Fungerer bare hvis Q379 er forskjellig fra 0. Inndataområde 0 til 99999,999, alternativ FMAX, FAUTO, PREDEF
- Mating retur Q208: verktøyets bevegelseshastighet i mm/min når det trekkes tilbake etter bearbeidingen. Hvis du angir Q208=0, trekker TNC ut verktøyet med mating Q206. Inndataområde 0 til 99999,999, alternativ FMAX, FAUTO, PREDEF
- FORHOLD DYBDE Q395: valg for om den angitte dybden skal basere seg på verktøyspissen eller på den sylindriske delen av verktøyet. Hvis TNC skal referere dybden til den sylindriske delen av verktøyet, må du angi spissvinkelen for verktøyet i kolonnen T-ANGLE i verktøytabellen TOOL.T.

**0** = Dybden refererer til verktøyspissen

1 = Dybden referer til den sylindriske delen av verktøyet

#### **Beispiel: NC-blokker**

| 11 CYCL DEF 205 UNIVERSALDYPBORING |
|------------------------------------|
| Q200=2 ;SIKKERHETSAVST.            |
| Q201=-80 ;DYBDE                    |
| Q206=150 ;MATING FOR MATEDYBDE     |
| Q2O2=15 ;MATEDYBDE                 |
| Q203=+100 ;KOOR. OVERFLATE         |
| Q204=50 ;2. SIKKERHETSAVST.        |
| Q212=0.5 ;FORMINSKNING             |
| Q205=3 ;MIN. MATEDYBDE             |
| Q258=0.5 ;STOPPAVSTAND OPPE        |
| Q259=1 ;STOPPAVST. NEDE            |
| Q257=5 ;BOREDYBDE SPONBRUDD        |
| Q256=0.2 ;RETUR VED SPONBRUDD      |
| Q211=0.25 ;FORSINKELSE NEDE        |
| Q379=7.5 ;STARTPUNKT               |
| Q253=750 ;MATING FORPOS.           |
| Q208=99999;MATING RETUR            |
| Q395=0 ;FORHOLD DYBDE              |



# 3.9 FRESEBORING (syklus 208)

# Syklusforløp

- 1 TNC fører verktøyet i spindelaksen med hurtiggang FMAX til programmert sikkerhetsavstand over emneoverflaten i en sirkelbevegelse med den definerte diameteren (hvis det er plass)
- 2 Verktøyet freser med den angitte matingen **F** i en spiralbevegelse til den programmerte boredybden
- **3** Når boredybden er nådd, fører TNC verktøyet i en ny full sirkel for å fjerne materialet som er igjen etter nedsenkingen
- 4 Deretter fører TNC verktøyet tilbake til sentrum av boringen
- **5** Til slutt fører TNC verktøyet til sikkerhetsavstand med **FMAX**. Hvis du har angitt en 2. sikkerhetsavstand, fører TNC verktøyet dit med **FMAX**

# Legg merke til følgende under programmeringen!

Programmer posisjoneringsblokken med radiuskorreksjon **RO** for startpunktet (sentrum av boringen) i arbeidsplanet.

Fortegnet til syklusparameteren for dybde slår fast arbeidsretningen. Hvis du velger Dybde = 0, vil ikke TNC utføre syklusen.

Hvis du har angitt en boringsdiameter som er lik verktøydiameteren, borer TNC direkte til programmert dybde uten skruelinje-interpolasjon.

En aktiv speiling påvirker **ikke** den type fresing som er definert i syklusen.

Husk at både verktøyet og emnet kan bli skadet hvis du angir for høy mateverdi.

For å unngå å programmere for høy mateverdi bør du legge inn maksimal nedsenkingsvinkel for verktøyet i **ANGLE** kolonnen i verktøytabellen TOOL.T. TNC vil da automatisk beregne maksimal tillatt mating, og reduserer eventuelt den angitte verdien.

#### Kollisjonsfare!

Bruk maskinparameter 7441 Bit 2=1 hvis TNC skal vise en feilmelding når en positiv dybde angis, eller Bit 2=0 hvis ingen feilmelding skal vises.

Husk at TNC snur beregningen av forposisjoneringen hvis en **positiv dybdeverdi** angis. Verktøyet kjører altså med hurtiggang i verkt'yaksen til sikkerhetsavstand **under** emneoverflaten!

Med maskinparameter 7441 Bit 0 kan du stille inn om TNC skal vise en feilmelding (Bit 0 = 0) eller ikke (Bit 0 = 1) hvis spindelen ikke går ved syklusoppkalling. Funksjonen må også tilpasses av maskinprodusenten.





- Sikkerhetsavstand Q200 (inkremental): Avstanden mellom verktøyets underkant og emneoverflaten. Inndataområde 0 til 99999,9999 alternativ PREDEF
- Dybde Q201 (inkremental): Avstanden mellom emneoverflaten og boringsbunnen. Inndataområde -99999,9999 til 99999,9999
- Mating for matedybde Q206: Verktøyets bevegelseshastighet i mm/min ved boring på skruelinjen Inndataområde 0 til 99999,999, alternativ FAUTO, FU, FZ
- Mating per omdreining Q334 (inkremental): Mål som angir matingen for verktøyet på en skruelinje (=360°). Inndataområde 0 til 99999,9999
- ▶ Koord. emneoverflate Q203 (absolutt): Koordinat for emneoverflaten. Inndataområde -99999,9999 til 99999,9999
- 2. Sikkerhetsavstand Q204 (inkremental): Koordinat for spindelaksen der verktøy og emne (oppspenningsutstyr) ikke kan kollidere. Inndataområde 0 til 99999,9999 alternativ PREDEF
- Nom. diameter Q335 (absolutt): Boringsdiameter. Hvis du angir en nominell diameter som er lik verktøydiameteren, vil TNC bore direkte til angitt dybde uten skruelinjeinterpolasjon. Inndataområde 0 til 99999,9999
- Forboret diameter Q342 (absolutt): Hvis du angir en verdi i Q342 som er større enn 0, kontrollerer ikke TNC lenger forholdet mellom den nominelle diameteren og verktøydiameteren. På den måten kan du frese ut boringer med dobbelt så stor diameter som verktøydiameteren. Inndataområde 0 til 99999,9999
- Type fresing Q351: Fresebearbeidingstype ved M3 +1 = medfres
  - -1 = motfres
  - **PREDEF** = Bruk standardverdi fra **GLOBAL DEF**





#### **Beispiel: NC-blokker**

| 12 CYCL DEF 208 | FRESEBORING          |
|-----------------|----------------------|
| Q200=2          | ;SIKKERHETSAVST.     |
| Q201=-80 ;      | ; DYBDE              |
| Q206=150        | MATING FOR MATEDYBDE |
| Q334=1.5        | ;MATEDYBDE           |
| Q203=+100 ;     | ;KOOR. OVERFLATE     |
| Q204=50         | 2. SIKKERHETSAVST.   |
| Q335=25 ;       | NOMINELL DIAMETER    |
| Q342=0          | FORBOR. DIAMETER     |
| Q351=+1         | TYPE FRESING         |

# 3.10 KANONBORING (syklus 241, DIN/ISO: G241)

## Syklusforløp

- 1 I hurtiggang FMAX posisjonerer TNC verktøyet i den angitte sikkerhetsavstanden over emneoverflaten
- 2 Deretter fører TNC verktøyet til sikkerhetsavstanden over det nedsenkede startpunktet med den definerte posisjoneringsmatingen, og der kobler den inn boreturtallet med M3 og kjølevæsken. Innkjøringsbevegelsen utføres iht. rotasjonsretningen som er definert i syklusen, med dreieretning (høyre/venstre) eller stående spindel
- **3** Verktøyet borer med angitt mating **F** frem til angitt boredybde eller angitt forsinkelsesdybde.
- **4** Verktøyet gjør et opphold i boringsbunnen hvis dette er programmert. TNC slår deretter av kjølevæsken og setter turtallet tilbake til den definerte verdien for utkjøring
- 5 I boringsbunnen skjer tilbaketrekking etter en forsinkelse tilbake til sikkerhetsavstanden med mateverdien for returen. Hvis du har angitt en 2. sikkerhetsavstand, fører TNC verktøyet dit med FMAX

#### Legg merke til følgende under programmeringen!

 $\Lambda$ 

98

Programmer posisjoneringsblokken med radiuskorreksjon **RO** for startpunktet (sentrum av boringen) i arbeidsplanet.

Fortegnet til syklusparameteren for dybde slår fast arbeidsretningen. Hvis du velger Dybde = 0, vil ikke TNC utføre syklusen.

#### Kollisjonsfare!

Bruk maskinparameter 7441 Bit 2=1 hvis TNC skal vise en feilmelding når en positiv dybde angis, eller Bit 2=0 hvis ingen feilmelding skal vises.

Husk at TNC snur beregningen av forposisjoneringen hvis en **positiv dybdeverdi** angis. Verktøyet kjører altså med hurtiggang i verkt'yaksen til sikkerhetsavstand **under** emneoverflaten!

Bearbeidingssykluser: boring





- Sikkerhetsavstand Q200 (inkremental): Avstanden mellom verktøyspissen og emneoverflaten. Inndataområde 0 til 99999,9999 alternativ PREDEF
- Dybde Q201 (inkremental): Avstanden mellom emneoverflaten og boringsbunnen. Inndataområde -99999,9999 til 99999,9999
- Mating for matedybde Q206: Verktøyets bevegelseshastighet i mm/min ved boring. Inndataområde 0 til 99999,999, alternativ FAUTO, FU
- Forsinkelse nede Q211: Antall sekunder verktøyet blir stående i borebunnen. Inndataområde 0 til 3600,0000 alternativ PREDEF
- Koord. emneoverflate Ω203 (absolutt): Koordinat for emneoverflaten. Inndataområde -99999,9999 til 99999,9999
- 2. Sikkerhetsavstand Q204 (inkremental): Koordinat for spindelaksen der verktøy og emne (oppspenningsutstyr) ikke kan kollidere. Inndataområde 0 til 99999,9999 alternativ PREDEF
- Nedsenket startpunkt Q379 (inkrementalt i forhold til emneoverflaten): Startpunkt for selve boringen. TNC fører verktøyet fra sikkerhetsavstanden til det nedsenkede startpunktet med Mating for forposisjonering. Inndataområde 0 til 99999,9999
- Mating forposisjonering Q253: Verktøyets bevegelseshastighet i mm/min ved flytting fra sikkerhetsavstand til det nedsenkede startpunktet. Fungerer bare hvis Q379 er forskjellig fra 0. Inndataområde 0 til 99999,999, alternativ FMAX, FAUTO, PREDEF
- Mating retur Q208: Verktøyets bevegelseshastighet i mm/min når det trekkes ut av boringen. Hvis du angir Q208=0, trekker TNC ut verktøyet med boremating Q206. Inndataområde 0 til 99999,999, alternativ FMAX, FAUTO, PREDEF



- Turtall inn-/utkjøring (3/4/5) Q426: Retningen verktøyet skal rotere i når det føres inn i og ut av borehullet. Inndataområde:
  - **3**: Drei spindelen med M3
  - 4: Drei spindelen med M4
  - 5: Kjør med stillestående spindel
- Spindelturtall inn-/utkjøring Q427: Turtallet verktøyet skal rotere med når det føres inn i og ut av borehullet. Inndataområde 0 til 99999
- Turtall boring Q428: Turtallet verktøyet skal bore med. Inndataområde 0 til 99999
- M-funksj. Kjølevæske PÅ Q429: Tilleggsfunksjon M for innkobling av kjølevæsken. TNC kobler inn kjølevæsken når verktøyet står på det nedsenkede startpunktet i borehullet. Inndataområde 0 til 999
- M-funksj. Kjølevæske AV Q430: Tilleggsfunksjon M for utkobling av kjølevæsken. TNC kobler ut kjølevæsken når verktøyet står på boredybden. Inndataområde 0 til 999
- Forsinkel sesdybde Q435 (inkremental): Koordinat på spindelaksen der verktøyet skal bli stående. Funksjonen er ikke aktiv ved inntasting av 0 (standardinnstilling). Bruk: Ved produksjon av gjennomgangsboringer krever enkelte verktøy en kort stillstandstid før de forlater borebunnen for å transportere sponene oppover. Definer en verdi som er mindre enn boredybden Q201, inndataområde 0 til 99999,9999

#### **Beispiel: NC-blokker**

| 11 CYCL DEF 24 | 1 DYPBORING           |
|----------------|-----------------------|
| Q200=2         | ;SIKKERHETSAVST.      |
| Q201=-80       | ;DYBDE                |
| Q206=150       | ;MATING FOR MATEDYBDE |
| Q211=0.25      | ;FORSINKELSE NEDE     |
| Q203=+100      | ;KOOR. OVERFLATE      |
| Q204=50        | ;2. SIKKERHETSAVST.   |
| Q379=7.5       | ;STARTPUNKT           |
| Q253=750       | ;MATING FORPOS.       |
| Q208=1000      | ;MATING RETUR         |
| Q426=3         | ;SPROTASJONSRETNING   |
| Q427=25        | ;TURTALL INN-/UTKJ.   |
| Q428=500       | ;TURTALL BORING       |
| Q429=8         | ;KJØLING PÅ           |
| Q430=9         | ;KJØLING AV           |
| Q435=0         | ;FORSINKELSESDYBDE    |



# 3.11 Programmeringseksempler

# Eksempel: boresykluser



| O BEGIN PGM C200 MM            |                                     |
|--------------------------------|-------------------------------------|
| 1 BLK FORM 0.1 Z X+0 Y+0 Z-20  | Råemnedefinisjon                    |
| 2 BLK FORM 0.2 X+100 Y+100 Z+0 |                                     |
| 3 TOOL CALL 1 Z S4500          | Verktøyoppkalling (verktøyradius 3) |
| 4 L Z+250 RO FMAX              | Frikjør verktøy                     |
| 5 CYCL DEF 200 BORING          | Syklusdefinisjon                    |
| Q200=2 ;SIKKERHETSAVST.        |                                     |
| Q201=-15 ;DYBDE                |                                     |
| Q206=250 ;F MATEDYBDE          |                                     |
| Q202=5 ;MATEDYBDE              |                                     |
| Q210=0 ;FORSINKELSE OPPE       |                                     |
| Q203=-10 ;KOOR. OVERFL.        |                                     |
| Q204=20 ;2. S.AVSTAND          |                                     |
| Q211=0.2 ;FORSINKELSE NEDE     |                                     |
| Q395=0 ;FORHOLD DYBDE          |                                     |

1

| 6 L X+10 Y+10 R0 FMAX M3 | Kjør til boring 1, og start spindelen |
|--------------------------|---------------------------------------|
| 7 CYCL CALL              | Syklusvalg                            |
| 8 L Y+90 RO FMAX M99     | Kjør til boring 2, syklusoppkalling   |
| 9 L X+90 RO FMAX M99     | Kjør til boring 3, syklusoppkalling   |
| 10 L Y+10 RO FMAX M99    | Flytt til boring 4, syklusoppkalling  |
| 11 L Z+250 RO FMAX M2    | Frikjør verktøy, avslutt program      |
| 12 END PGM C200 MM       |                                       |

i

# 3.11 Programmerings<mark>eks</mark>empler

## **Eksempel: Bruke boresykluser i forbindelse med PATTERN DEF**

Boringskoordinatene er lagret i maldefinisjonen PATTERN DEF POS, og de aktiveres av TNC med CYCL CALL PAT.

Verktøyradiene er valgt slik at alle arbeidstrinn vises i testgrafikken.

#### Programforløp

- Sentrering (verktøyradius 4)
- Boring (verktøyradius 2,4)
- Gjengeboring (verktøyradius 3)



| O BEGIN PGM 1 MM               |                                                                                                                        |
|--------------------------------|------------------------------------------------------------------------------------------------------------------------|
| 1 BLK FORM 0.1 Z X+0 Y+0 Z-20  | Råemnedefinisjon                                                                                                       |
| 2 BLK FORM 0.2 X+100 Y+100 Y+0 |                                                                                                                        |
| 3 TOOL CALL 1 Z S5000          | Verktøyoppkalling sentreringsenhet (radius 4)                                                                          |
| 4 L Z+10 R0 F5000              | Kjør verktøyet til sikker høyde (programmer F med verdi), TNC posisjonerer verktøyet i sikker høyde etter hver syklus. |
| 5 PATTERN DEF                  | Definere alle borposisjoner i punktmalen                                                                               |
| POS1( X+10 Y+10 Z+0 )          |                                                                                                                        |
| POS2( X+40 Y+30 Z+0 )          |                                                                                                                        |
| POS3( X+20 Y+55 Z+0 )          |                                                                                                                        |
| POS4( X+10 Y+90 Z+0 )          |                                                                                                                        |
| POS5( X+90 Y+90 Z+0 )          |                                                                                                                        |
| POS6( X+80 Y+65 Z+0 )          |                                                                                                                        |
| POS7( X+80 Y+30 Z+0 )          |                                                                                                                        |
| POS8( X+90 Y+10 Z+0 )          |                                                                                                                        |

(

1

| 6 CYCL DEF 240 SENTRERING       | Syklusdefinisjon sentrering                         |
|---------------------------------|-----------------------------------------------------|
| Q200=2 ;SIKKERHETSAVST.         |                                                     |
| Q343=0 ;VALG DIAMETER/DYBDE     |                                                     |
| Q201=-2 ;DYBDE                  |                                                     |
| Q344=-10 ;DIAMETER              |                                                     |
| Q206=150 ;F MATEDYBDE           |                                                     |
| Q211=0 ;FORSINKELSE NEDE        |                                                     |
| Q2O3=+O ;KOOR. OVERFL.          |                                                     |
| Q204=50 ;2. SIKKERHETSAVST.     |                                                     |
| 7 CYCL CALL PAT F5000 M13       | Syklusoppkalling i forbindelse med punktmal         |
| 8 L Z+100 RO FMAX               | Frikjør verktøy, verktøybytte                       |
| 9 TOOL CALL 2 Z S5000           | Verktøyoppkalling bor (radius 2,4)                  |
| 10 L Z+10 R0 F5000              | Kjør verktøy til sikker høyde (angi en verdi for F) |
| 11 CYCL DEF 200 BORING          | Syklusdefinisjon boring                             |
| Q200=2 ;SIKKERHETSAVST.         |                                                     |
| Q201=-25 ;DYBDE                 |                                                     |
| Q206=150 ;MATING FOR MATEDYB.   |                                                     |
| Q2O2=5 ;MATEDYBDE               |                                                     |
| Q210=0 ;FORSINKELSE OPPE        |                                                     |
| Q203=+0 ;KOOR. OVERFL.          |                                                     |
| Q204=50 ;2. SIKKERHETSAVST.     |                                                     |
| Q211=0.2 ;FORSINKELSE NEDE      |                                                     |
| Q395=0 ;FORHOLD DYBDE           |                                                     |
| 12 CYCL CALL PAT F5000 M13      | Syklusoppkalling i forbindelse med punktmal         |
| 13 L Z+100 RO FMAX              | Frikjør verktøy                                     |
| 14 TOOL CALL 3 Z S200           | Verktøyoppkalling gjengebor (radius 3)              |
| 15 L Z+50 RO FMAX               | Kjør verktøy til sikker høyde                       |
| 16 CYCL DEF 206 GJENGEBORING NY | Syklusdefinisjon, gjengeboring                      |
| Q200=2 ;SIKKERHETSAVST.         |                                                     |
| Q201=-25 ;GJENGEDYBDE           |                                                     |
| Q206=150 ;MATING FOR MATEDYB.   |                                                     |
| Q211=0 ; FORSINKELSE NEDE       |                                                     |
| Q203=+0 ;KOOR. OVERFLATE        |                                                     |
| Q204=50 ;2. SIKKERHETSAVST.     |                                                     |
| 17 CYCL CALL PAT F5000 M13      | Syklusoppkalling i torbindelse med punktmal         |
| 18 L Z+100 R0 FMAX M2           | Frikjør verktøy, avslutt program                    |
| 19 END PGM 1 MM                 |                                                     |

i





Bearbeidingssykluser: gjengeboring/ gjengefresing

# 4.1 Grunnleggende

# Oversikt

TNC har i alt 8 sykluser for ulike gjengebearbeidinger:

| Syklus                                                                                                                                 | Funksjonstast | Side     |
|----------------------------------------------------------------------------------------------------------------------------------------|---------------|----------|
| 206 GJENGEBORING NY<br>Med Rigid tapping, med automatisk<br>forposisjonering, 2. Sikkerhetsavstand                                     | 205           | Side 107 |
| 207 GJENGEBORING GS NY<br>Uten Rigid Tapping, med automatisk<br>forposisjonering, 2. sikkerhetsavstand                                 | 207 RT        | Side 109 |
| 209 GJENGEBORING SPONBRUDD<br>Uten Rigid Tapping, med automatisk<br>forposisjonering, 2. sikkerhetsavstand,<br>sponbrudd               | 299 RT        | Side 112 |
| 262 GJENGEFRESING<br>Syklus for fresing av gjenger i<br>forhåndsboret materiale                                                        | 262           | Side 117 |
| 263<br>FORSENKNINGSGJENGEFRESING<br>Syklus for fresing av gjenger i<br>forhåndsboret materiale med<br>fremstilling av forsenkningsfase | 263           | Side 120 |
| 264 BOREGJENGEFRESING<br>Syklus for boring i ubehandlet<br>materiale og deretter fresing av<br>gjenger med et verktøy                  | 264           | Side 124 |
| 265 HELIKS-BOREGJENGEFRESING<br>Syklus for fresing av gjenger i<br>ubehandlet materiale                                                | 265           | Side 128 |
| 267 FRESING AV UTVENDIG GJENGE<br>Syklus for fresing av utvendig gjenge<br>med fremstilling av forsenkningsfase                        | 267           | Side 128 |

i

# 4.2 GJENGEBORING NY med Rigid Tapping (syklus 206, DIN/ISO: G206)

#### Syklusforløp

- 1 I hurtiggang FMAX posisjonerer TNC verktøyet i den angitte sikkerhetsavstanden over emneoverflaten
- 2 Verktøyet beveger seg til boredybden i én arbeidsoperasjon
- **3** Deretter blir spindelens roteringsretning snudd, og verktøyet trekkes tilbake til sikkerhetsavstand etter en forsinkelse. Hvis du har angitt en 2. sikkerhetsavstand, fører TNC verktøyet dit med **FMAX**
- 4 Spindelroteringsretningen blir snudd på nytt i sikkerhetsavstand

#### Legg merke til følgende under programmeringen!

Programmer posisjoneringsblokken med radiuskorreksjon **R0** for startpunktet (sentrum av boringen) i arbeidsplanet.

Fortegnet til syklusparameteren for dybde slår fast arbeidsretningen. Hvis du velger Dybde = 0, vil ikke TNC utføre syklusen.

Verktøyet må spennes opp i Rigid Tapping. Rigid Tapping utligner for mate- og turtallsavvik under bearbeidingen.

Dreiebryteren for turtallsoverstyring fungerer ikke mens syklusen utføres. Dreiebryteren for mateoverstyring har begrenset funksjon (definert av maskinprodusenten, se maskinhåndboken).

Aktiver spindelen med M3-filter for høyregjenge, og med M4-filter for venstregjenge.

Hvis du angir gjengestigningen til gjengeboret i kolonnen **PITCH** i verktøytabellen, sammenligner TNC gjengestigningen fra verktøytabellen med gjengestigningen som er definert i syklusen. TNC viser en feilmelding hvis verdiene ikke stemmer overens. I syklus 206 beregner TNC gjengestigningen ved hjelp av det programmerte turtallet og matingen som er definert i syklusen.



#### Kollisjonsfare!

 $\Lambda$ 

Bruk maskinparameter 7441 Bit 2=1 hvis TNC skal vise en feilmelding når en positiv dybde angis, eller Bit 2=0 hvis ingen feilmelding skal vises.

Husk at TNC snur beregningen av forposisjoneringen hvis en **positiv dybdeverdi** angis. Verktøyet kjører altså med hurtiggang i verkt'yaksen til sikkerhetsavstand **under** emneoverflaten!

Med maskinparameter 7441 Bit 0 kan du stille inn om TNC skal vise en feilmelding (Bit 0 = 0) eller ikke (Bit 0 = 1) hvis spindelen ikke går ved syklusoppkalling. Funksjonen må også tilpasses av maskinprodusenten.

#### Syklusparametere

- Sikkerhetsavstand Q200 (inkremental): Avstanden mellom verktøyspissen (startposisjon) og emneoverflaten. Anbefalt verdi: 4 x gjengestigningen. Inndataområde 0 til 99999,9999 alternativ PREDEF
  - Boredybde Q201 (gjengelengde, inkremental): Avstanden mellom emneoverflaten og gjengeenden. Inndataområde • 99999,9999 til 99999,9999
  - Mating F Q206: Verktøyets bevegelseshastighet ved gjengeboring. Inndataområde 0 til 99999,999, alternativ FAUTO
  - Forsinkelse nede Q211: Angi en verdi mellom 0 og 0,5 sekunder for å unngå at verktøyet kiler seg fast når det trekkes tilbake. Inndataområde 0 til 3600,0000 alternativ PREDEF
  - Koord. emneoverflate Q203 (absolutt): Koordinat for emneoverflaten. Inndataområde -99999,9999 til 99999,9999
  - Sikkerhetsavstand Q204 (inkremental): Koordinat for spindelaksen der verktøy og emne (oppspenningsutstyr) ikke kan kollidere. Inndataområde 0 til 99999,9999 alternativ PREDEF

#### Måle mating: F = S x p

- F: Mating (mm/min)
- S: Spindelturtall (o/min)
- p: Gjengestigning (mm)

#### Frikjøre verktøyet ved avbrutt program

Hvis du trykker på den eksterne stoppknappen under gjengeboring, viser TNC en funksjonstast som kan benyttes for å frikjøre verktøyet.



#### **Beispiel: NC-blokker**

| 25 CYCL DEF 20 | 6 GJENGEBORING NY     |
|----------------|-----------------------|
| Q200=2         | ;SIKKERHETSAVST.      |
| Q201=-20       | ; DYBDE               |
| Q206=150       | ;MATING FOR MATEDYBDE |
| Q211=0.25      | ;FORSINKELSE NEDE     |
| Q203=+25       | ;KOOR. OVERFLATE      |
| Q204=50        | ;2. SIKKERHETSAVST.   |

206

ø
# 4.3 GJENGEBORING GS NY uten Rigid Tapping (syklus 207, DIN/ISO: G207)

#### Syklusforløp

TNC skjærer gjenger uten Rigid Tapping i en eller flere operasjoner.

- 1 I hurtiggang FMAX posisjonerer TNC verktøyet i den angitte sikkerhetsavstanden over emneoverflaten
- 2 Verktøyet beveger seg til boredybden i én arbeidsoperasjon
- **3** Deretter blir spindelens roteringsretning snudd, og verktøyet trekkes tilbake til sikkerhetsavstand etter en forsinkelse. Hvis du har angitt en 2. sikkerhetsavstand, fører TNC verktøyet dit med **FMAX**
- 4 TNC stanser spindelen i sikkerhetsavstand



#### Legg merke til følgende under programmeringen!

Maskinen og TNC må klargjøres av maskinprodusenten.

Denne syklusen kan bare brukes på maskiner med styrt spindel.

 $\Delta$ 

Programmer posisjoneringsblokken med radiuskorreksjon R0 for startpunktet (sentrum av boringen) i arbeidsplanet.

Fortegnet for syklusparameteren for boredybde definerer arbeidsretningen.

TNC beregner matingen på grunnlag av turtallet. TNC tilpasser matingen automatisk hvis du bruker turtallsoverstyringsknappen under gjengeboringen.

Mateoverstyringsknappen er ikke aktivert.

Spindelen stanser når syklusen er fullført. Start spindelen igjen med M3 (eller M4) før neste bearbeiding.

Hvis du angir gjengestigningen til gjengeboret i kolonnen **PITCH** i verktøytabellen, sammenligner TNC gjengestigningen fra verktøytabellen med gjengestigningen som er definert i syklusen. TNC viser en feilmelding hvis verdiene ikke stemmer overens.

#### Kollisjonsfare!

Bruk maskinparameter 7441 Bit 2=1 hvis TNC skal vise en feilmelding når en positiv dybde angis, eller Bit 2=0 hvis ingen feilmelding skal vises.

Husk at TNC snur beregningen av forposisjoneringen hvis en **positiv dybdeverdi** angis. Verktøyet kjører altså med hurtiggang i verkt'yaksen til sikkerhetsavstand **under** emneoverflaten!

Med maskinparameter 7441 Bit 0 kan du stille inn om TNC skal vise en feilmelding (Bit 0 = 0) eller ikke (Bit 0 = 1) hvis spindelen ikke går ved syklusoppkalling. Funksjonen må også tilpasses av maskinprodusenten.





- Sikkerhetsavstand Q200 (inkremental): Avstanden mellom verktøyspissen (startposisjon) og emneoverflaten. Inndataområde 0 til 99999,9999 alternativ PREDEF
- Boredybde Q201 (inkremental): Avstanden mellom emneoverflaten og gjengeenden. Inndataområde -99999,9999 til 99999,9999
- Gjengestigning Q239
   Gjengestigningen. Fortegnet angir om det er en høyre- eller venstregjenge:
   += høyregjenge
  - -= venstregjenge

Inndataområde -99,9999 til 99,9999

- ▶ Koord. emneoverflate Q203 (absolutt): Koordinat for emneoverflaten. Inndataområde -99999,9999 til 99999,9999
- 2. Sikkerhetsavstand Q204 (inkremental): Koordinat for spindelaksen der verktøy og emne (oppspenningsutstyr) ikke kan kollidere. Inndataområde 0 til 99999,9999 alternativ PREDEF

#### Frikjøre verktøyet ved avbrutt program

Hvis du trykker på den eksterne stoppknappen under gjengeskjæringen, vises funksjonstasten MANUELL FRIKJØRING. Trykk på MANUELL FRIKJØRING for å frikjøre verktøyet på en kontrollert måte. Trykk i tillegg på tasten for positiv akseretning for den aktive spindelaksen.



#### **Beispiel: NC-blokker**

| 26 | CYCL DEF 20 | )7 GJENGEBORING GS NY |
|----|-------------|-----------------------|
|    | Q200=2      | ;SIKKERHETSAVST.      |
|    | Q201=-20    | ;DYBDE                |
|    | Q239=+1     | ;GJENGESTIGNING       |
|    | Q203=+25    | ;KOOR. OVERFLATE      |
|    | Q204=50     | ;2. SIKKERHETSAVST.   |

# 4.4 GJENGEBORING SPONBRUDD (syklus 209, DIN/ISO: G209)

## Syklusforløp

TNC skjærer gjengen til programmert dybde i flere matetrinn. Ved hjelp av en parameter kan du angi om verktøyet skal trekkes helt ut av boringen ved sponbrudd.

- 1 TNC fører verktøyet i spindelaksen med hurtiggang FMAX til den programmerte sikkerhetsavstanden over emneoverflaten. Her utfører den en spindelorientering
- 2 Verktøyet føres til den angitte matedybden, og spindelretningen snus. Verktøyet trekkes litt tilbake eller helt ut av boringen for å fjerne spon, avhengig av hva som er definert. Hvis du har definert en faktor for turtallsøkning, kjører TNC ut av boringen med tilsvarende økt spindelturtall.
- **3** Deretter snus spindelretningen på nytt før verktøyet føres til neste matedybde
- 4 TNC gjentar disse trinnene (2 til 3) til angitt gjengedybde er nådd
- 5 Deretter trekkes verktøyet tilbake til sikkerhetsavstanden. Hvis du har angitt en 2. sikkerhetsavstand, fører TNC verktøyet dit med FMAX
- 6 TNC stanser spindelen i sikkerhetsavstand



#### Legg merke til følgende under programmeringen!



Maskinen og TNC må klargjøres av maskinprodusenten.

Denne syklusen kan bare brukes på maskiner med styrt spindel.



Programmer posisjoneringsblokken med radiuskorreksjon **R0** for startpunktet (sentrum av boringen) i arbeidsplanet.

Fortegnet for syklusparameteren for gjengedybde definerer arbeidsretningen.

TNC beregner matingen på grunnlag av turtallet. TNC tilpasser matingen automatisk hvis du bruker turtallsoverstyringsknappen under gjengeboringen.

Mateoverstyringsknappen er ikke aktivert.

Hvis du har definert en turtallfaktor for raskere retur med syklusparameteren **Q403**, begrenser TNC turtallet til maksimumsturtallet for det aktive giret.

Spindelen stanser når syklusen er fullført. Start spindelen igjen med M3 (eller M4) før neste bearbeiding.

Hvis du angir gjengestigningen til gjengeboret i kolonnen **PITCH** i verktøytabellen, sammenligner TNC gjengestigningen fra verktøytabellen med gjengestigningen som er definert i syklusen. TNC viser en feilmelding hvis verdiene ikke stemmer overens.



#### Kollisjonsfare!

Bruk maskinparameter 7441 Bit 2=1 hvis TNC skal vise en feilmelding når en positiv dybde angis, eller Bit 2=0 hvis ingen feilmelding skal vises.

Husk at TNC snur beregningen av forposisjoneringen hvis en **positiv dybdeverdi** angis. Verktøyet kjører altså med hurtiggang i verkt'yaksen til sikkerhetsavstand **under** emneoverflaten!

Med maskinparameter 7441 Bit 0 kan du stille inn om TNC skal vise en feilmelding (Bit 0 = 0) eller ikke (Bit 0 = 1) hvis spindelen ikke går ved syklusoppkalling. Funksjonen må også tilpasses av maskinprodusenten.

- 209 RT
- Sikkerhetsavstand Q200 (inkremental): Avstanden mellom verktøyspissen (startposisjon) og emneoverflaten. Inndataområde 0 til 99999,9999 alternativ PREDEF
- Gjengedybde Q201 (inkremental): Avstanden mellom emneoverflaten og gjengeenden. Inndataområde
   99999,9999 til 99999,9999
- ► Gjengestigning Q239

Gjengestigningen. Fortegnet angir om det er en høyre- eller venstregjenge:

- += høyregjenge
- -= venstregjenge

Inndataområde -99,9999 til 99,9999

- Koord. emneoverflate Q203 (absolutt): Koordinat for emneoverflaten. Inndataområde -99999,9999 til 99999,9999
- 2. Sikkerhetsavstand Q204 (inkremental): Koordinat for spindelaksen der verktøy og emne (oppspenningsutstyr) ikke kan kollidere. Inndataområde 0 til 99999,9999 alternativ PREDEF
- Boredybde til sponbrudd Q257 (inkremental): Mateverdien som TNC skal utføre et sponbrudd etter. Inndataområde 0 til 99999,9999
- Returverdi ved sponbrudd Q256: Ved sponbrudd multipliserer TNC stigningsverdien Q239 med den angitte verdien og fører verktøyet tilbake i henhold til den beregnede verdien. Hvis Q256 = 0, trekker TNC verktøyet helt ut av boringen for å fjerne spon (til sikkerhetsavstand). Inndataområde 0 til 99999,9999
- Vinkel for spindelorientering Q336 (absolutt): Vinkelen som TNC stiller verktøyet i før gjengeskjæring. Dermed kan du eventuelt etterskjære gjengen. Inndataområde -360,0000 til 360,0000
- Faktor turtallsendring retur Q403: Faktoren som spindelturtallet økes med når verktøyet trekkes ut av boringen. Faktoren gjelder også returmatingen. Inndataområde 0,0001 til 10, økning maksimalt til maksimumsturtallet for det aktive giret

#### Frikjøre verktøyet ved avbrutt program

Hvis du trykker på den eksterne stoppknappen under gjengeskjæringen, vises funksjonstasten MANUELL FRIKJØRING. Trykk på MANUELL FRIKJØRING for å frikjøre verktøyet på en kontrollert måte. Trykk i tillegg på tasten for positiv akseretning for den aktive spindelaksen.



#### **Beispiel: NC-blokker**

| 2 | 6 CYCL DEF 20 | 9 GJENGEBORING SPONBR. |
|---|---------------|------------------------|
|   | Q200=2        | ;SIKKERHETSAVST.       |
|   | Q201=-20      | ; DYBDE                |
|   | Q239=+1       | ;GJENGESTIGNING        |
|   | Q203=+25      | ;KOOR. OVERFLATE       |
|   | Q204=50       | ;2. SIKKERHETSAVST.    |
|   | Q257=5        | ;BOREDYBDE SPONBRUDD   |
|   | Q256=+1       | ;RETUR VED SPONBRUDD   |
|   | Q336=50       | ;VINKEL SPINDEL        |
|   | Q403=1.5      | ;FAKTOR TURTALL        |
|   |               |                        |

# 4.5 Grunnleggende om gjengefresing

#### Forutsetninger

- Maskinen må være utstyrt med innvendig spindelkjøling (kjølesmørevæske min. 30 bar, trykkluft min 6 bar)
- Fordi det som regel oppstår uregelmessigheter på gjengeprofilen ved gjengefresing, kreves det vanligvis verktøyspesifikke korreksjoner. Les om dette i verktøykatalogen, eller kontakt verktøyprodusenten. Korreksjonen utføres med TOOL CALL via deltaradius DR
- Syklusene 262, 263, 264 og 267 kan bare benyttes med verktøy som roterer mot høyre. For syklus 265 kan både høyre- og venstreroterende verktøy benyttes.
- Arbeidsretningen defineres av følgende parametere: fortegn for gjengestigning Q239 (+ = høyregjenge /- = venstregjenge) og type fresing Q351 (+1 = medfres /-1 = motfres). Tabellen nedenfor viser forholdet mellom parametere for høyreroterende verktøy.

| Innvendig<br>gjenge | Stigning | Type<br>fresing | Arbeidsretning |
|---------------------|----------|-----------------|----------------|
| Høyregjenge         | +        | +1(RL)          | Z+             |
| Venstregjenge       | _        | –1(RR)          | Z+             |
| Høyregjenge         | +        | –1(RR)          | Z–             |
| Venstregjenge       | -        | +1(RL)          | Z–             |

| Utvendig<br>gjenge | Stigning | Type<br>fresing | Arbeidsretning |
|--------------------|----------|-----------------|----------------|
| Høyregjenge        | +        | +1(RL)          | Z–             |
| Venstregjenge      | _        | –1(RR)          | Z–             |
| Høyregjenge        | +        | –1(RR)          | Z+             |
| Venstregjenge      | _        | +1(RL)          | Z+             |



TNC beregner den programmerte matingen ved gjengefresing ut fra verktøyskjæret. Men TNC viser mateverdien i forhold til midtpunktsbanen, og verdien som vises, samsvarer derfor ikke med den programmerte verdien.

Gjengeretningen endrer seg hvis du kjører en gjengefresingssyklus for bare én akse i kombinasjon med syklus 8 REFLEKTER.

#### Kollisjonsfare!

 $(\Lambda)$ 

Bruk alltid samme fortegn for dybdeinnstillinger fordi syklusene består av flere uavhengige arbeidsoperasjoner. I den aktuelle syklusen finner du arbeidsretningene i prioritert rekkefølge. Hvis du f.eks. vil gjenta en syklus som bare omfatter senking, angir du gjengedybde 0 for syklusen. Nedsenkingsdybden vil da bestemme arbeidsretningen.

#### Slik går du frem ved verktøybrudd:

Hvis det oppstår et verktøybrudd under gjengeskjæring, stopper du programmet. Bytt deretter til driftsmodusen Posisjonering med manuell inntasting, og flytt verktøyet mot sentrum av boringen i en lineær bevegelse. Deretter kan du frikjøre verktøyet i mateaksen og bytte verktøy.

i

# 4.6 GJENGEFRESING (syklus 262, DIN/ISO: G262)

## Syklusforløp

- 1 I hurtiggang FMAX posisjonerer TNC verktøyet i den angitte sikkerhetsavstanden over emneoverflaten
- 2 I henhold til programmert mating for forposisjonering, føres verktøyet til startnivået som er beregnet ut fra fortegnet for gjengestigningen, type fresing og antall gjenger per skritt
- **3** Deretter beveger verktøyet seg tangentielt i en heliksbevegelse mot gjengediameteren. Før heliksbevegelsen blir ytterligere en synkroniseringsbevegelse utført i verktøyaksen, slik at gjengebanen blir påbegynt på det programmerte startnivået
- **4** Avhengig av parameteren Gjenger per skritt, freser verktøyet i ett trinn, i flere trinn eller i en kontinuerlig spiralbevegelse
- 5 Så føres verktøyet tangentielt fra konturen tilbake til startpunktet i arbeidsplanet
- 6 På slutten av syklusen fører TNC verktøyet med ilgang til sikkerhetsavstanden eller, hvis angitt, til den 2. sikkerhetsavstanden.



#### Merk under programmeringen!



Programmer posisjoneringsblokken med radiuskorreksjon **R0** for startpunktet (sentrum av boringen) i arbeidsplanet.

Fortegnet for syklusparameteren for gjengedybde definerer arbeidsretningen. Hvis du velger gjengedybde = 0, vil ikke TNC utføre syklusen.

Bevegelsen mot gjengediameteren utføres i en halvsirkel fra midten. Hvis verktøydiameteren rundt 4x-stigningen er mindre enn gjengediameteren, utføres en sideveis forposisjonering.

Husk at TNC utfører en synkroniseringsbevegelse i verktøyaksen før turbevegelsen. Størrelsen på synkroniseringsbevegelsen er maksimalt halve gjengestigningen. Kontroller at det er nok plass i boringen.

Når du forandrer på gjengedybden, endrer TNC automatisk startpunktet for heliksbevegelsen.

#### Kollisjonsfare!

Bruk maskinparameter 7441 Bit 2=1 hvis TNC skal vise en feilmelding når en positiv dybde angis, eller Bit 2=0 hvis ingen feilmelding skal vises.

Husk at TNC snur beregningen av forposisjoneringen hvis en **positiv dybdeverdi** angis. Verktøyet kjører altså med hurtiggang i verkt'yaksen til sikkerhetsavstand **under** emneoverflaten!

Vær oppmerksom på at TNC ved en endring av dybden tilpasser starvinkelen slik at verktøyet når den definerte dybden på spindelens 0°-posisjon. I slike tilfeller kan en etterskjæring av gjengene føre til en gjenge nummer to.

Med maskinparameter 7441 Bit 0 kan du stille inn om TNC skal vise en feilmelding (Bit 0 = 0) eller ikke (Bit 0 = 1) hvis spindelen ikke går ved syklusoppkalling. Funksjonen må også tilpasses av maskinprodusenten.

 $\mathbf{\Lambda}$ 



- Nom. diameter Q335: gjengediameter. Inndataområde 0 til 99999,9999
- Gjengestigning Q239: hellingen på gjengene. Fortegnet angir om det er en høyre- eller venstregjenge:
  - + = høyregjenge
    = venstregjenge

Inndataområde -99,9999 til 99,9999

- Gjengedybde Q201 (inkremental): Avstanden mellom emneoverflaten og gjengebunnen. Inndataområde
   99999,9999 til 99999,9999
- Gjenger per skritt Q355: Antall gjengetråder som verktøyet blir forskjøvet i forhold til:
   0 = en 360° skruelinje på gjengedybden
   1 = kontinuerlig skruelinje langs hele gjengelengden
   >1 = flere heliksbaner med frem- og tilbakebevegelse. Mellom disse forskyver TNC verktøyet med Q355 ganger stigningen. Inndataområde 0 til 99999
- Mating forposisjonering Q253: Verktøyets bevegelseshastighet i mm/min når det senkes inn i eller trekkes ut av emnet Inndataområde 0 til 99999,999, alternativ FMAX, FAUTO, PREDEF
- Type fresing Q351: Fresebearbeidingstype ved M3
   +1 = medfres
   -1 = motfres
   alternativ PREDEF
- Sikkerhetsavstand Q200 (inkremental): Avstanden mellom verktøyspissen og emneoverflaten. Inndataområde 0 til 99999,9999 alternativ PREDEF
- Koord. emneoverflate Q203 (absolutt): Koordinat for emneoverflaten. Inndataområde -99999,9999 til 99999,9999
- Sikkerhetsavstand Q204 (inkremental): Koordinat for spindelaksen der verktøy og emne (oppspenningsutstyr) ikke kan kollidere. Inndataområde 0 til 99999,9999 alternativ PREDEF
- Mating fresing Q207: verktøyets bevegelseshastighet i mm/min ved fresing. Inndataområde 0 til 99999,999, alternativ FAUTO
- Start mating Q512: verktøyets bevegelseshastighet i mm/min ved fresing. Inndataområde 0 til 99999,999, alternativ FAUTO





#### **Beispiel: NC-blokker**

| 25 CYCL DEF 26 | 52 GJENGEFRESING      |
|----------------|-----------------------|
| Q335=10        | ;NOMINELL DIAMETER    |
| Q239=+1.5      | ;STIGNING             |
| Q201=-20       | ;GJENGEDYBDE          |
| Q355=0         | ;GJENGER PER SKRITT   |
| Q253=750       | ;MATING FORPOS.       |
| Q351=+1        | ;TYPE FRESING         |
| Q200=2         | ;SIKKERHETSAVST.      |
| Q203=+30       | ;KOOR. OVERFLATE      |
| Q204=50        | ;2. SIKKERHETSAVST.   |
| Q207=500       | ;MATING FRESING       |
| Q512=50        | ;KJØR FREM FREMMATING |



# 4.7 FORSENKNINGSGJENGEFRESING (syklus 263, DIN/ISO: G263)

#### Syklusforløp

1 I hurtiggang FMAX posisjonerer TNC verktøyet i den angitte sikkerhetsavstanden over emneoverflaten

#### Senking

- **2** Under mating med forposisjonering føres verktøyet til forsenkningsdybden minus sikkerhetsavstand, og deretter til forsenkningsdybden med mating for forsenkning
- **3** Hvis en sidesikkerhetsavstand er programmert, føres verktøyet straks til forsenkningsdybden med mating for forposisjonering
- 4 Avhengig av plassen fører deretter TNC verktøyet ut av sentrum, eller forsiktig mot kjernediameteren med sideveis forposisjonering, og utfører en sirkelbevegelse

#### Frontsenking

- **5** Verktøyet føres til forsenkningsdybden i fronten med mating for forposisjonering
- **6** TNC forskyver verktøyet ukorrigert ut av sentrum mot frontsiden i en halvsirkelbevegelse, og utfører en sirkelbevegelse med mating for forsenkning
- 7 Deretter fører TNC verktøyet til sentrum av boringen i en ny halvsirkelbevegelse

#### Gjengefresing

- 8 TNC fører verktøyet med programmert mating for forposisjonering til startnivået for gjengen som er beregnet ut fra fortegnet for gjengestigningen og typen fresing
- **9** Så føres verktøyet tangentielt mot gjengediameteren i en heliksbevegelse, og freser gjengen i en 360° spiralbevegelse
- **10** Så føres verktøyet tangentielt fra konturen tilbake til startpunktet i arbeidsplanet
- 11 På slutten av syklusen fører TNC verktøyet med ilgang til sikkerhetsavstanden eller, hvis angitt, til den 2. Sikkerhetsavstand

#### Legg merke til følgende under programmeringen!



#### Vær oppmerksom på følgende før du programmerer

Programmer posisjoneringsblokken med radiuskorreksjon **R0** for startpunktet (sentrum av boringen) i arbeidsplanet.

Fortegnene til syklusparametrene for gjengedybde, forsenkningsdybde eller dybde front definerer arbeidsretningen. Arbeidsretningen bestemmes i denne rekkefølgen:

- 1. Gjengedybde
- 2. Nedsenk.dybde
- 3. Dybde frontside

Hvis du velger verdien 0 for en av dybdeparametrene, vil ikke TNC utføre dette arbeidstrinnet.

Hvis du vil bruke senking front, må du angi verdien 0 for dybdeparameteren.

Angi en gjengedybde som er minst en tredjedels gjengestigning mindre enn nedsenkingsdybden.

#### Kollisjonsfare!

Bruk maskinparameter 7441 Bit 2=1 hvis TNC skal vise en feilmelding når en positiv dybde angis, eller Bit 2=0 hvis ingen feilmelding skal vises.

Husk at TNC snur beregningen av forposisjoneringen hvis en **positiv dybdeverdi** angis. Verktøyet kjører altså med hurtiggang i verkt'yaksen til sikkerhetsavstand **under** emneoverflaten!

Med maskinparameter 7441 Bit 0 kan du stille inn om TNC skal vise en feilmelding (Bit 0 = 0) eller ikke (Bit 0 = 1) hvis spindelen ikke går ved syklusoppkalling. Funksjonen må også tilpasses av maskinprodusenten.

263

- Nom. diameter Q335: gjengediameter. Inndataområde 0 til 99999,9999
- Gjengestigning Q239: hellingen på gjengene. Fortegnet angir om det er en høyre- eller venstregjenge:
  - + = høyregjenge

– = venstregjenge
 Inndataområde -99,9999 til 99,9999

- Gjengedybde Q201 (inkremental): Avstanden mellom emneoverflaten og gjengebunnen. Inndataområde
   99999,9999 til 99999,9999
- Forsenkningsdybde Q356 (inkremental): Avstanden mellom emneoverflaten og verktøyspissen. Inndataområde • 99999,9999 til 99999,9999
- Mating forposisjonering Q253: Verktøyets bevegelseshastighet i mm/min når det senkes inn i eller trekkes ut av emnet Inndataområde 0 til 99999,999, alternativ FMAX, FAUTO, PREDEF
- Type fresing Q351: Fresebearbeidingstype ved M3 +1 = medfres -1 = motfres

alternativ PREDEF

- Sikkerhetsavstand Q200 (inkremental): Avstanden mellom verktøyspissen og emneoverflaten. Inndataområde 0 til 99999,9999 alternativ PREDEF
- Sikkerhetsavstand side Q357 (inkremental): Avstanden mellom verktøyskjæret og boreveggen. Inndataområde 0 til 99999,9999
- Dybde front Q358 (inkremental): Avstanden mellom emneoverflaten og verktøyspissen ved forsenkning i front. Inndataområde • 99999,9999 til 99999,9999
- Forskyvning forsenkning front Q359 (inkremental): Avstanden som angir forskyvningen av midtpunktet på verktøyet fra midten av boringen. Inndataområde 0 til 99999,9999







- Koord. emneoverflate Q203 (absolutt): Koordinat for emneoverflaten. Inndataområde -99999,9999 til 99999,9999
- 2. Sikkerhetsavstand Q204 (inkremental): Koordinat for spindelaksen der verktøy og emne (oppspenningsutstyr) ikke kan kollidere. Inndataområde 0 til 99999,9999 alternativ PREDEF
- Mating ved senkning Q254: Verktøyets bevegelseshastighet i mm/min ved forsenkning Inndataområde 0 til 99999,999, alternativ FAUTO, FU
- Mating fresing Q207: verktøyets bevegelseshastighet i mm/min ved fresing. Inndataområde 0 til 99999,9999, alternativ FAUTO
- Start mating Q512: verktøyets bevegelseshastighet i mm/min ved fresing. Inndataområde 0 til 99999,999, alternativ FAUTO

#### **Beispiel: NC-blokker**

| 25 CYCL DEF 26 | 53 FORSENKNINGSGJENGEFRESING |
|----------------|------------------------------|
| Q335=10        | ;NOMINELL DIAMETER           |
| Q239=+1.5      | ;STIGNING                    |
| Q201=-16       | ;GJENGEDYBDE                 |
| Q356=-20       | ;FORSENKNINGSDYBDE           |
| Q253=750       | ;MATING FORPOS.              |
| Q351=+1        | ;TYPE FRESING                |
| Q200=2         | ;SIKKERHETSAVST.             |
| Q357=0.2       | ;SIKK.AVST. SIDE             |
| Q358=+O        | ;DYBDE FRONT                 |
| Q359=+0        | ;FORSKYVNING FRONT           |
| Q203=+30       | ;KOOR. OVERFLATE             |
| Q204=50        | ;2. SIKKERHETSAVST.          |
| Q254=150       | ;MATING FORSENKNING          |
| Q207=500       | ;MATING FRESING              |
| Q512=50        | ;KJØR FREM FREMMATING        |

# 4.8 BOREGJENGEFRESING (syklus 264, DIN/ISO: G264)

#### Syklusforløp

1 I hurtiggang FMAX posisjonerer TNC verktøyet i den angitte sikkerhetsavstanden over emneoverflaten

#### Boring

- 2 Verktøyet borer med programmert dybdemating til den første matedybden
- 3 Hvis sponbrudd er programmert, fører TNC verktøyet tilbake med angitt mateverdi for retur. Hvis du ikke bruker sponbrudd, fører TNC verktøyet i hurtiggang tilbake til sikkerhetsavstanden, og deretter med FMAX til programmert stoppavstand over første matedybde
- 4 Deretter borer verktøyet med mating til neste matedybde.
- 5 TNC gjentar disse trinnene (2–4) til boredybden er nådd

#### Frontsenking

- 6 Verktøyet føres til forsenkningsdybden i fronten med mating for forposisjonering
- 7 TNC forskyver verktøyet ukorrigert ut av sentrum mot frontsiden i en halvsirkelbevegelse, og utfører en sirkelbevegelse med mating for forsenkning
- 8 Deretter fører TNC verktøyet til sentrum av boringen i en ny halvsirkelbevegelse

#### Gjengefresing

- **9** TNC fører verktøyet med programmert mating for forposisjonering til startnivået for gjengen som er beregnet ut fra fortegnet for gjengestigningen og typen fresing
- **10** Deretter føres verktøyet tangentielt mot gjengediameteren i en heliksbevegelse, og freser gjengen i en 360° spiralbevegelse
- **11** Så føres verktøyet tangentielt fra konturen tilbake til startpunktet i arbeidsplanet
- **12** På slutten av syklusen fører TNC verktøyet med ilgang til sikkerhetsavstanden eller, hvis angitt, til den 2. Sikkerhetsavstand



#### Legg merke til følgende under programmeringen!



Programmer posisjoneringsblokken med radiuskorreksjon **R0** for startpunktet (sentrum av boringen) i arbeidsplanet.

Fortegnene til syklusparametrene for gjengedybde, forsenkningsdybde eller dybde front definerer arbeidsretningen. Arbeidsretningen bestemmes i denne rekkefølgen:

- 1. Gjengedybde
- 2. Boredybde
- 3. Dybde frontside

Hvis du velger verdien 0 for en av dybdeparametrene, vil ikke TNC utføre dette arbeidstrinnet.

Angi en gjengedybde som er minst en tredjedels gjengestigning mindre enn boredybden.



#### Kollisjonsfare!

Bruk maskinparameter 7441 Bit 2=1 hvis TNC skal vise en feilmelding når en positiv dybde angis, eller Bit 2=0 hvis ingen feilmelding skal vises.

Husk at TNC snur beregningen av forposisjoneringen hvis en **positiv dybdeverdi** angis. Verktøyet kjører altså med hurtiggang i verkt'yaksen til sikkerhetsavstand **under** emneoverflaten!

Med maskinparameter 7441 Bit 0 kan du stille inn om TNC skal vise en feilmelding (Bit 0 = 0) eller ikke (Bit 0 = 1) hvis spindelen ikke går ved syklusoppkalling. Funksjonen må også tilpasses av maskinprodusenten.

264

- Nom. diameter Q335: gjengediameter. Inndataområde 0 til 99999,9999
- Gjengestigning Q239: hellingen på gjengene. Fortegnet angir om det er en høyre- eller venstregjenge:
  - + = høyregjenge
    = venstregjenge

Inndataområde -99,9999 til 99,9999

- Gjengedybde Q201 (inkremental): Avstanden mellom emneoverflaten og gjengebunnen. Inndataområde
   99999,9999 til 99999,9999
- Boredybde Q356 (inkremental): Avstanden mellom emneoverflaten og boringsbunnen. Inndataområde
   99999,9999 til 99999,9999
- Mating forposisjonering Q253: Verktøyets bevegelseshastighet i mm/min når det senkes inn i eller trekkes ut av emnet Inndataområde 0 til 99999,999, alternativ FMAX FAUTO, PREDEF
- Type fresing Q351: Fresebearbeidingstype ved M3 +1 = medfres -1 = motfres
  - alternativ **PREDEF**
- Matedybde: Q202 (inkremental): Mål for hvor langt verktøyet skal mates frem. Dybden kan ikke være flere ganger matedybden. Inndataområde 0 til 99999,9999. TNC kjører verktøyet til dybden i én arbeidsoperasjon hvis:
  - matedybden og dybden er like
  - matedybden er større enn dybden
- Sikkerhetsavstand oppe Q258 (inkremental): Sikkerhetsavstand for hurtiggangsposisjonering når TNC fører verktøyet tilbake til aktuell matedybde etter retur fra boringen. Inndataområde 0 til 99999,9999
- Boredybde til sponbrudd Q257 (inkremental): Mateverdien som TNC skal utføre et sponbrudd etter. Med verdien 0 blir det ikke utført noe sponbrudd. Inndataområde 0 til 99999,9999 alternativ PREDEF
- Returverdi ved sponbrudd Q256 (inkremental): Verdien som angir når TNC skal trekke tilbake verktøyet ved sponbrudd. Inndataområde 0,1000 til 99999,9999





- Dybde front Q358 (inkremental): Avstanden mellom emneoverflaten og verktøyspissen ved forsenkning i front. Inndataområde • 99999,9999 til 99999,9999
- Forskyvning forsenkning front Q359 (inkremental): Avstanden som angir forskyvningen av midtpunktet på verktøyet fra midten av boringen. Inndataområde 0 til 99999,9999
- Sikkerhetsavstand Q200 (inkremental): Avstanden mellom verktøyspissen og emneoverflaten. Inndataområde 0 til 99999,9999 alternativ PREDEF
- Koord. emneoverflate Q203 (absolutt): Koordinat for emneoverflaten. Inndataområde -99999,9999 til 99999,9999
- 2. Sikkerhetsavstand Q204 (inkremental): Koordinat for spindelaksen der verktøy og emne (oppspenningsutstyr) ikke kan kollidere. Inndataområde 0 til 99999,9999 alternativ PREDEF
- Mating for matedybde Q206: Verktøyets bevegelseshastighet i mm/min ved boring. Inndataområde 0 til 99999,999, alternativ FAUTO, FU
- Mating fresing Q207: verktøyets bevegelseshastighet i mm/min ved fresing. Inndataområde 0 til 99999,9999, alternativ FAUTO
- Start mating Q512: verktøyets bevegelseshastighet i mm/min ved fresing. Inndataområde 0 til 99999,999, alternativ FAUTO



#### **Beispiel: NC-blokker**

| 25 CYCL DEF 26 | 54 BOREGJENGEFRESING  |
|----------------|-----------------------|
| Q335=10        | ;NOMINELL DIAMETER    |
| Q239=+1.5      | ;STIGNING             |
| Q201=-16       | ;GJENGEDYBDE          |
| Q356=-20       | ;BOREDYBDE            |
| Q253=750       | ;MATING FORPOS.       |
| Q351=+1        | ;TYPE FRESING         |
| Q202=5         | ;MATEDYBDE            |
| Q258=0.2       | ;STOPPAVSTAND         |
| Q257=5         | ;BOREDYBDE SPONBRUDD  |
| Q256=0.2       | ;RETUR VED SPONBRUDD  |
| Q358=+0        | ;DYBDE FRONT          |
| Q359=+0        | ;FORSKYVNING FRONT    |
| Q200=2         | ;SIKKERHETSAVST.      |
| Q203=+30       | ;KOOR. OVERFLATE      |
| Q204=50        | ;2. SIKKERHETSAVST.   |
| Q206=150       | ;MATING FOR MATEDYBDE |
| Q207=500       | ;MATING FRESING       |
| Q512=50        | ;KJØR FREM FREMMATING |

27

# 4.9 HELIKS-BOREGJENGEFRESING (syklus 265, DIN/ISO: G265)

#### Syklusforløp

1 I hurtiggang FMAX posisjonerer TNC verktøyet i den angitte sikkerhetsavstanden over emneoverflaten

#### Frontsenking

- 2 Under forsenkningen før gjengebearbeidingen føres verktøyet til forsenkningsdybden i front med mating for forsenkning. Under senkeforløpet og etter gjengebearbeidingen fører TNC verktøyet til nedsenkingsdybde med forposisjoneringsmating.
- **3** TNC forskyver verktøyet ukorrigert ut av sentrum mot frontsiden i en halvsirkelbevegelse, og utfører en sirkelbevegelse med mating for forsenkning
- 4 Deretter fører TNC verktøyet til sentrum av boringen i en ny halvsirkelbevegelse

#### Gjengefresing

- **5** TNC fører verktøyet til startnivået for gjengen med den programmerte matingen for forposisjonering
- 6 Deretter beveger verktøyet seg tangentielt i en heliksbevegelse mot gjengediameteren
- 7 TNC flytter verktøyet nedover i en kontinuerlig spiralbevegelse til gjengedybden er nådd
- 8 Så føres verktøyet tangentielt fra konturen tilbake til startpunktet i arbeidsplanet
- **9** På slutten av syklusen fører TNC verktøyet med ilgang til sikkerhetsavstanden eller, hvis angitt, til den 2. sikkerhetsavstanden.

#### Legg merke til følgende under programmeringen!



Programmer posisjoneringsblokken med radiuskorreksjon **R0** for startpunktet (sentrum av boringen) i arbeidsplanet.

Fortegnet for syklusparametrene for gjengedybde eller dybde front definerer arbeidsretningen. Arbeidsretningen bestemmes i denne rekkefølgen:

- 1. Gjengedybde
- 2. Dybde frontside

Hvis du velger verdien 0 for en av dybdeparametrene, vil ikke TNC utføre dette arbeidstrinnet.

Når du forandrer på gjengedybden, endrer TNC automatisk startpunktet for heliksbevegelsen.

Typen fresing (mot-/medbevegelse) defineres av verktøyets gjenge- (høyre-/venstregjenge) og roteringsretning. Det er bare arbeidsretningen fra emneoverflaten inn i komponenten som kan velges.



#### Kollisjonsfare!

Bruk maskinparameter 7441 Bit 2=1 hvis TNC skal vise en feilmelding når en positiv dybde angis, eller Bit 2=0 hvis ingen feilmelding skal vises.

Husk at TNC snur beregningen av forposisjoneringen hvis en **positiv dybdeverdi** angis. Verktøyet kjører altså med hurtiggang i verkt'yaksen til sikkerhetsavstand **under** emneoverflaten!

Med maskinparameter 7441 Bit 0 kan du stille inn om TNC skal vise en feilmelding (Bit 0 = 0) eller ikke (Bit 0 = 1) hvis spindelen ikke går ved syklusoppkalling. Funksjonen må også tilpasses av maskinprodusenten.

265

- Nom. diameter Q335: gjengediameter. Inndataområde 0 til 99999,9999
- Gjengestigning Q239: hellingen på gjengene. Fortegnet angir om det er en høyre- eller venstregjenge:
  - + = høyregjenge

– = venstregjenge
 Inndataområde -99,9999 til 99,9999

- Gjengedybde Q201 (inkremental): Avstanden mellom emneoverflaten og gjengebunnen. Inndataområde
   99999,9999 til 99999,9999
- Mating forposisjonering Q253: Verktøyets bevegelseshastighet i mm/min når det senkes inn i eller trekkes ut av emnet Inndataområde 0 til 99999,999, alternativ FMAX, FAUTO, PREDEF
- Dybde front Q358 (inkremental): Avstanden mellom emneoverflaten og verktøyspissen ved forsenkning i front. Inndataområde • 99999,9999 til 99999,9999
- Forskyvning forsenkning front Q359 (inkremental): Avstanden som angir forskyvningen av midtpunktet på verktøyet fra midten av boringen. Inndataområde 0 til 99999,9999
- Forsenkning Q360: Utføring av fasen
  - **0** = før gjengebearbeiding
  - **1** = etter gjengebearbeiding
- Sikkerhetsavstand Q200 (inkremental): Avstanden mellom verktøyspissen og emneoverflaten. Inndataområde 0 til 99999,9999 alternativ PREDEF







- Sikkerhetsavstand Q204 (inkremental): Koordinat for spindelaksen der verktøy og emne (oppspenningsutstyr) ikke kan kollidere. Inndataområde 0 til 99999,9999 alternativ PREDEF
- Mating ved senkning Q254: Verktøyets bevegelseshastighet i mm/min ved forsenkning Inndataområde 0 til 99999,999, alternativ FAUTO, FU
- Mating fresing Q207: verktøyets bevegelseshastighet i mm/min ved fresing. Inndataområde 0 til 99999,999, alternativ FAUTO

**Beispiel: NC-blokker** 

| 25 CYCL DEF 26 | 5 HELIKS-BOREGJENGEFR. |
|----------------|------------------------|
| Q335=10        | ;NOMINELL DIAMETER     |
| Q239=+1.5      | ;STIGNING              |
| Q201=-16       | ;GJENGEDYBDE           |
| Q253=750       | ;MATING FORPOS.        |
| Q358=+0        | ;DYBDE FRONT           |
| Q359=+0        | ;FORSKYVNING FRONT     |
| Q360=0         | ;FORSENKNING           |
| Q200=2         | ;SIKKERHETSAVST.       |
| Q203=+30       | ;KOOR. OVERFLATE       |
| Q204=50        | ;2. SIKKERHETSAVST.    |
| Q254=150       | ;MATING FORSENKNING    |
| Q207=500       | ;MATING FRESING        |



# 4.10 FRESING AV UTVENDIG GJENGE (syklus 267, DIN/ISO: G267)

#### Syklusforløp

1 I hurtiggang FMAX posisjonerer TNC verktøyet i den angitte sikkerhetsavstanden over emneoverflaten

#### Frontsenking

- 2 TNC fører verktøyet fra startpunktet for forsenkning i front fra sentrum av tappen til arbeidsplanets hovedakse. Startpunktet beregnes ut fra gjengeradius, verktøyradius og stigning.
- **3** Verktøyet føres til forsenkningsdybden i fronten med mating for forposisjonering
- **4** TNC forskyver verktøyet ukorrigert ut av sentrum mot frontsiden i en halvsirkelbevegelse, og utfører en sirkelbevegelse med mating for forsenkning
- **5** Deretter fører TNC verktøyet tilbake til startpunktet i en halvsirkelbevegelse

#### Gjengefresing

- **6** TNC fører verktøyet til startpunktet, hvis forsenkning i front ikke allerede er utført. Startpunkt for gjengefresing = startpunkt for frontsenking.
- 7 I henhold til programmert mating for forposisjonering, føres verktøyet til startnivået som er beregnet ut fra fortegnet for gjengestigningen, type fresing og antall gjenger per skritt
- 8 Deretter beveger verktøyet seg tangentielt i en heliksbevegelse mot gjengediameteren
- **9** Avhengig av parameteren Gjenger per skritt, freser verktøyet i ett trinn, i flere trinn eller i en kontinuerlig spiralbevegelse
- **10** Så føres verktøyet tangentielt fra konturen tilbake til startpunktet i arbeidsplanet
- **11** På slutten av syklusen fører TNC verktøyet med ilgang til sikkerhetsavstanden eller, hvis angitt, til den 2. sikkerhetsavstanden.

#### Legg merke til følgende under programmeringen!



Programmer posisjoneringsblokken med radiuskorreksjon **R0** for startpunktet (sentrum av tappen) i arbeidsplanet.

Nødvendig forskyvning for frontsenking skal være målt på forhånd. Du må angi avstanden fra sentrum av tappen til sentrum av verktøyet (ukorrigert verdi).

Fortegnene for syklusparametrene Gjengedybde eller Dybde frontside definerer arbeidsretningen Arbeidsretningen bestemmes i denne rekkefølgen: 1. Gjengedybde

2. Dybde frontside

Hvis du velger verdien 0 for en av dybdeparametrene, vil ikke TNC utføre dette arbeidstrinnet.

Fortegnet for syklusparameteren for gjengedybde definerer arbeidsretningen.

#### Kollisjonsfare!

Bruk maskinparameter 7441 Bit 2=1 hvis TNC skal vise en feilmelding når en positiv dybde angis, eller Bit 2=0 hvis ingen feilmelding skal vises.

Husk at TNC snur beregningen av forposisjoneringen hvis en **positiv dybdeverdi** angis. Verktøyet kjører altså med hurtiggang i verkt'yaksen til sikkerhetsavstand **under** emneoverflaten!

Vær oppmerksom på at TNC ved en endring av dybden tilpasser starvinkelen slik at verktøyet når den definerte dybden på spindelens 0°-posisjon. I slike tilfeller kan en etterskjæring av gjengene føre til en gjenge nummer to.

Med maskinparameter 7441 Bit 0 kan du stille inn om TNC skal vise en feilmelding (Bit 0 = 0) eller ikke (Bit 0 = 1) hvis spindelen ikke går ved syklusoppkalling. Funksjonen må også tilpasses av maskinprodusenten.

267

- Nom. diameter Q335: gjengediameter. Inndataområde 0 til 99999,9999
- Gjengestigning Q239: hellingen på gjengene. Fortegnet angir om det er en høyre- eller venstregjenge:
   += høyregjenge
  - = venstregjenge
  - Inndataområde -99,9999 til 99,9999
- Gjengedybde Q201 (inkremental): Avstanden mellom emneoverflaten og gjengebunnen
- ► Gjenger per skritt Q355: Antall gjengetråder som verktøyet blir forskjøvet i forhold til:
  - **0** = en skruelinje på gjengedybden
  - 1 = kontinuerlig skruelinje langs hele gjengelengden
     1 = flere heliksbaner med frem- og tilbakebevegelse. Mellom disse forskyver TNC verktøvet med Q355 ganger stigningen.
  - Inndataområde 0 til 99999
- Mating forposisjonering Q253: Verktøyets bevegelseshastighet i mm/min når det senkes inn i eller trekkes ut av emnet Inndataområde 0 til 99999,999, alternativ FMAX, FAUTO, PREDEF
- Type fresing Q351: Fresebearbeidingstype ved M3 +1 = medfres
  - **-1** = motfres
  - alternativ PREDEF







- Sikkerhetsavstand Q200 (inkremental): Avstanden mellom verktøyspissen og emneoverflaten. Inndataområde 0 til 99999,9999 alternativ PREDEF
- Dybde front Q358 (inkremental): Avstanden mellom emneoverflaten og verktøyspissen ved forsenkning i front. Inndataområde • 99999,9999 til 99999,9999
- Forskyvning forsenkning front Q359 (inkremental): Avstanden som angir forskyvningen av midtpunktet på verktøyet fra midten av tappen. Inndataområde 0 til 99999,9999
- Koord. emneoverflate Ω203 (absolutt): Koordinat for emneoverflaten. Inndataområde -99999,9999 til 99999,9999
- 2. Sikkerhetsavstand Q204 (inkremental): Koordinat for spindelaksen der verktøy og emne (oppspenningsutstyr) ikke kan kollidere. Inndataområde 0 til 99999,9999 alternativ PREDEF
- Mating ved senkning Q254: Verktøyets bevegelseshastighet i mm/min ved forsenkning Inndataområde 0 til 99999,999, alternativ FAUTO, FU
- Mating fresing Q207: verktøyets bevegelseshastighet i mm/min ved fresing. Inndataområde 0 til 99999,999, alternativ FAUTO
- Start mating Q512: verktøyets bevegelseshastighet i mm/min ved fresing. Inndataområde 0 til 99999,999, alternativ FAUTO

#### **Beispiel: NC-blokker**

| 7 BORING              |
|-----------------------|
| ;NOMINELL DIAMETER    |
| ;STIGNING             |
| ;GJENGEDYBDE          |
| ;GJENGER PER SKRITT   |
| ;MATING FORPOS.       |
| ;TYPE FRESING         |
| ;SIKKERHETSAVST.      |
| ;DYBDE FRONT          |
| ;FORSKYVNING FRONT    |
| ;KOOR. OVERFLATE      |
| ;2. SIKKERHETSAVST.   |
| ;MATING FORSENKNING   |
| ;MATING FRESING       |
| ;KJØR FREM FREMMATING |
|                       |

# 4.11 Programmeringseksempler

#### **Eksempel: gjengeboring**

Boringskoordinatene er lagret i punktstabellen TAB1.PNT, og TNC aktiverer tabellen med kommandoen **CYCL CALL PAT**.

Verktøyradiene er valgt slik at alle arbeidstrinn vises i testgrafikken.

#### Programforløp

- Sentrering
- Boring
- Gjengeboring



| O BEGIN PGM 1 MM               |                                                                                                                        |
|--------------------------------|------------------------------------------------------------------------------------------------------------------------|
| 1 BLK FORM 0.1 Z X+0 Y+0 Z-20  | Råemnedefinisjon                                                                                                       |
| 2 BLK FORM 0.2 X+100 Y+100 Y+0 |                                                                                                                        |
| 3 TOOL DEF 1 L+0 R+4           | Verktøydefinisjon, sentreringsenhet                                                                                    |
| 4 TOOL DEF 2 L+0 2.4           | Verktøydefinisjon bor                                                                                                  |
| 5 TOOL DEF 3 L+0 R+3           | Verktøydefinisjon, gjengebor                                                                                           |
| 6 TOOL CALL 1 Z S5000          | Verktøyoppkalling, sentreringsenhet                                                                                    |
| 7 L Z+10 R0 F5000              | Kjør verktøyet til sikker høyde (programmer F med verdi), TNC posisjonerer verktøyet i sikker høyde etter hver syklus. |
| 8 SEL PATTERN "TAB1"           | Angi punktstabell                                                                                                      |
| 9 CYCL DEF 200 BORING          | Syklusdefinisjon sentrering                                                                                            |
| Q200=2 ;SIKKERHETSAVST.        |                                                                                                                        |
| Q201=-2 ;DYBDE                 |                                                                                                                        |
| Q206=150 ;F MATEDYBDE          |                                                                                                                        |
| Q2O2=2 ;MATEDYBDE              |                                                                                                                        |
| Q210=0 ;FORSINKELSE OPPE       |                                                                                                                        |
| Q2O3=+O ;KOOR. OVERFL.         | Angi alltid 0, verdien hentes fra punktstabell                                                                         |

i

| <u> </u> |
|----------|
| Ð        |
| <u> </u> |
| 0        |
|          |
|          |
| Ð        |
| õ        |
|          |
| <u> </u> |
| <b>W</b> |
| S        |
| 5        |
|          |
| .=       |
| <u> </u> |
| Ð        |
|          |
|          |
|          |
|          |
| g        |
| <u> </u> |
| δ        |
| Õ        |
| Ľ        |
|          |
|          |
| <b>—</b> |
| <b>—</b> |
|          |
| 4        |

| Q204=0 ;2. S.AVSTAND            | Angi alltid 0, verdien hentes fra punktstabell                                                |
|---------------------------------|-----------------------------------------------------------------------------------------------|
| Q211=0.2 ;FORSINKELSE NEDE      |                                                                                               |
| Q395=0 ;FORHOLD DYBDE           |                                                                                               |
| 10 CYCL CALL PAT F5000 M3       | Syklusoppkalling i kombinasjon med punktstabell TAB1.PNT, mating mellom punktene: 5000 mm/min |
| 11 L Z+100 RO FMAX M6           | Frikjør verktøy, verktøybytte                                                                 |
| 12 TOOL CALL 2 Z S5000          | Verktøyoppkalling bor                                                                         |
| 13 L Z+10 RO F5000              | Kjør verktøy til sikker høyde (angi en verdi for F)                                           |
| 14 CYCL DEF 200 BORING          | Syklusdefinisjon boring                                                                       |
| Q200=2 ;SIKKERHETSAVST.         |                                                                                               |
| Q201=-25 ;DYBDE                 |                                                                                               |
| Q206=150 ;MATING FOR MATEDYB.   |                                                                                               |
| Q2O2=5 ;MATEDYBDE               |                                                                                               |
| Q210=0 ;FORSINKELSE OPPE        |                                                                                               |
| Q2O3=+O ;KOOR. OVERFL.          | Angi alltid 0, verdien hentes fra punktstabell                                                |
| Q2O4=O ;2. SIKKERHETSAVSTAND    | Angi alltid 0, verdien hentes fra punktstabell                                                |
| Q211=0.2 ;FORSINKELSE NEDE      |                                                                                               |
| Q395=0 ;FORHOLD DYBDE           |                                                                                               |
| 15 CYCL CALL PAT F5000 M3       | Syklusoppkalling i kombinasjon med punktstabell TAB1.PNT                                      |
| 16 L Z+100 RO FMAX M6           | Frikjør verktøy, verktøybytte                                                                 |
| 17 TOOL CALL 3 Z S200           | Verktøyoppkalling, gjengebor                                                                  |
| 18 L Z+50 RO FMAX               | Kjør verktøy til sikker høyde                                                                 |
| 19 CYCL DEF 206 GJENGEBORING NY | Syklusdefinisjon, gjengeboring                                                                |
| Q200=2 ;SIKKERHETSAVST.         |                                                                                               |
| Q201=-25 ;GJENGEDYBDE           |                                                                                               |
| Q206=150 ;MATING FOR MATEDYB.   |                                                                                               |
| Q211=0 ;FORSINKELSE NEDE        |                                                                                               |
| Q2O3=+O ;KOOR. OVERFLATE        | Angi alltid 0, verdien hentes fra punktstabell                                                |
| Q2O4=0 ;2. SIKKERHETSAVSTAND    | Angi alltid 0, verdien hentes fra punktstabell                                                |
| 20 CYCL CALL PAT F5000 M3       | Syklusoppkalling i kombinasjon med punktstabell TAB1.PNT                                      |
| 21 L Z+100 RO FMAX M2           | Frikjør verktøy, avslutt program                                                              |
| 22 END PGM 1 MM                 |                                                                                               |

#### Punkttabell TAB1.PNT

| TAB1.PNTMM |  |
|------------|--|
| NRXYZ      |  |
| 0+10+10+0  |  |
| 1+40+30+0  |  |
| 2+90+10+0  |  |
| 3+80+30+0  |  |
| 4+80+65+0  |  |
| 5+90+90+0  |  |
| 6+10+90+0  |  |
| 7+20+55+0  |  |
| [END]      |  |

i





Bearbeidingssyklyser: lommefresing/tappfresi ng/notfresing

# 5.1 Grunnleggende

## Oversikt

TNC har i alt 6 sykluser for lomme-, tapp- og notbearbeidinger:

| Syklus                                                                                                             | Funksjon<br>stast | Side     |
|--------------------------------------------------------------------------------------------------------------------|-------------------|----------|
| 251 FIRKANTLOMME<br>Skrubb-/glattdreiingssyklus med<br>definisjon av maskinoperasjon og<br>heliksnedsenking        | 251               | Side 141 |
| 252 SIRKELLOMME<br>Skrubb-/glattdreiingssyklus med<br>definisjon av maskinoperasjon og<br>heliksnedsenking         | 252               | Side 146 |
| 253 NOTFRESING<br>Skrubb-/slettfresingssyklus med valg av<br>maskinoperasjon og pendelnedsenking                   | 253               | Side 150 |
| 254 RUND NOT<br>Skrubb-/slettfresingssyklus med valg av<br>maskinoperasjon og pendelnedsenking                     | 254               | Side 156 |
| 256 FIRKANTTAPP<br>Skrubb-/slettfresingssyklus med<br>fremmating fra siden, hvis flere<br>omdreininger er påkrevet | 256               | Side 162 |
| 257 SIRKELTAPP<br>Skrubb-/slettfresingssyklus med<br>fremmating fra siden, hvis flere<br>omdreininger er påkrevet  | 257               | Side 166 |

i

# 5.2 REKTANGULÆR LOMME (syklus 251, DIN/ISO: G251)

## Syklusforløp

Med firkantlommesyklus 251 kan du gjøre en firkantlomme helt ferdig. Avhengig av syklusparameterne er følgende bearbeidingsalternativer tilgjengelige:

- Full bearbeiding: skrubbing, finkutt dybde, finkutt side
- Kun skrubbing
- Bare finkutt dybde og finkutt side
- Bare finkutt dybde
- Bare slettfresing side

#### Skrubbing

- 1 Verktøyet føres inn i emnet på midten av lommen og føres til første matedybde. Nedsenkingsstrategien defineres av parameter Q366.
- 2 TNC freser ut lommen innenfra og utover på grunnlag av overlappingsfaktoren (parameter Q370) og sluttoleransen (parameter Q368 og Q369)
- **3** Når utfresingen er fullført, fører TNC verktøyet tangentielt bort fra lommeveggen i sikkerhetsavstand over den aktuelle matedybden, og derfra i hurtiggang tilbake til lommens sentrum
- 4 Denne prosedyren gjentas til den programmerte lommedybden er nådd

#### Slettfresing

- 5 Hvis sluttoleransene er definert, finfreser TNC først lommeveggene, eventuelt med flere matinger hvis dette er definert. Verktøyet beveger seg tangentielt mot lommeveggen.
- 6 Deretter slettfreser TNC bunnen av lommen innenfra og utover. Verktøyet beveger seg tangentielt over bunnen av lommen.

# Legg merke til følgende under programmeringen:

Hvis ikke verktøytabellen er aktivert, må du alltid senke verktøyet loddrett ned (Q366=0) fordi det ikke er mulig å definere nedsenkingsvinkelen.

Forhåndsposisjoner verktøyet på startposisjon i arbeidsplanet med radiuskorreksjon **R0**. Ta hensyn til parameter Q367 (lommeposisjon).

TNC utfører syklusen langs aksene (i arbeidsplanet) i forhold til programmerte startposisjoner, F.eks. i X og Y, hvis CYCL CALL POS X... Y... og i U og V, hvis CYCL CALL POS U... V... er blirr programmert.

TNC forposisjonerer automatisk verktøyet på verktøyaksen. Pass på parameter Ω204 (2. sikkerhetsavstand).

Fortegnet til syklusparameteren for dybde slår fast arbeidsretningen. Hvis du velger Dybde = 0, vil ikke TNC utføre syklusen.

TNC fører verktøyet tilbake til startposisjon når syklusen er fullført.

TNC fører verktøyet tilbake til sentrum av lomma i hurtiggang når utfresingen er fullført. Verktøyet stilles samtidig i sikkerhetsavstand over den aktuelle matedybden. Angi sikkerhetsavstanden slik at verktøyet ikke kan kile seg fast på grunn av utfreste spon.

Hvis du speilvender syklus 251 i en akse, speilvender TNC også roteringsretningen som er definert i syklusen.

#### Kollisjonsfare!

Bruk maskinparameter 7441 Bit 2=1 hvis TNC skal vise en feilmelding når en positiv dybde angis, eller Bit 2=0 hvis ingen feilmelding skal vises.

Husk at TNC snur beregningen av forposisjoneringen hvis en **positiv dybdeverdi** angis. Verktøyet kjører altså med hurtiggang i verkt'yaksen til sikkerhetsavstand **under** emneoverflaten!

Med maskinparameter 7441 Bit 0 kan du stille inn om TNC skal vise en feilmelding (Bit 0 = 0) eller ikke (Bit 0 = 1) hvis spindelen ikke går ved syklusoppkalling. Funksjonen må også tilpasses av maskinprodusenten.

Når du henter frem syklusen med maskinoperasjon 2 (bare slettfresing), posisjonerer TNC verktøyet på den første matedybden i midten av lomma i hurtiggang!

 $\Lambda$ 

# 5.2 REKTANGULÆR LOMME (syklus 251<mark>, D</mark>IN/ISO: G251)

## Syklusparametere



Maskinoperasjon (0/1/2) Q215: Bestemme maskinoperasjon:

- 0: skrubbing og slettfresing
- 1: Bare skrubbing
- 2: bare slettfresing

Side- og dybdeslettfresing utføres bare hvis den aktuelle sluttoleransen (Q368, Q369) er definert.

- 1. Sidelengde Q218 (inkremental): Lommens lengde, parallelt med arbeidsplanets hovedakse. Inndataområde 0 til 99999,9999
- Sidelengde Q219 (inkremental): Lommens lengde, parallelt med arbeidsplanets hjelpeakse. Inndataområde 0 til 99999,9999
- Hjørneradius Q220: radius for lommehjørnet. Når 0 eller mindre er angitt som aktiv verktøysradius, stiller TNC inn hjørneradiusen til lik verktøyradiusen. TNC viser ingen feilmelding i disse tilfellene. Inndataområde 0 til 99999,9999
- Sluttoleranse for side Q368 (inkremental): sluttoleranse i arbeidsplanet. Inndataområde 0 til 99999,9999
- Roteringsplassering: Q224 (absolutt): Vinkelen som angir hvor mye hele lommen skal dreies. Roteringssentrum er verktøyposisjonen når syklusoppkallingen utføres. Inndataområde -360,0000 til 360,0000
- Lommeposisjon Q367: Lommens plassering i forhold til verktøyets posisjon når syklusoppkallingen utføres: O: verktørposisjon – contrum ov hammen
  - 0: verktøyposisjon = sentrum av lommen
  - 1: verktøyposisjon = nedre venstre hjørne 2: verktøyposisjon = nedre høyre hjørne
  - 2: verktøyposisjon = nedre nøyre njørne
     3: verktøyposisjon = øvre høvre hjørne
  - 4: verktøyposisjon = øvre venstre hjørne
- Mating fresing Q207: verktøyets bevegelseshastighet i mm/min ved fresing. Inndataområde 0 til 99999,999, alternativ FAUTO, FU, FZ
- **Type fresing** Q351: Fresebearbeidingstype ved M3:
  - +1 = medfres
  - -1 = motfres

+0 = medfres, ved aktiv speilvending beholder TNC likevel fresetypen Medfres alternativ **PREDEF** 







143

- Dybde Q201 (inkremental): Avstanden mellom emneoverflaten og lommebunnen. Inndataområde -99999,9999 til 99999,9999
- Matedybde Q202 (inkremental): Mål for hvor langt verktøyet skal mates frem. Angi en verdi som er større enn 0 . Inndataområde 0 til 99999,9999
- Sluttoleranse dybde Q369 (inkremental): Sluttoleranse for dybden. Inndataområde 0 til 99999,9999
- Mating for matedybde Q206: Verktøyets bevegelseshastighet i mm/min ved kjøring til dybde. Inndataområde 0 til 99999,999, alternativ FAUTO, FU, FZ
- Mating for slettfresing Q338 (inkremental): Mål for hvor langt verktøyet i spindelaksen skal mates frem ved slettfresing. Q338=0: slettfresing med én mating. Inndataområde 0 til 99999,9999
- Sikkerhetsavstand Q200 (inkremental): Avstanden mellom verktøyets forside og emneoverflaten. Inndataområde 0 til 99999,9999 alternativ PREDEF
- Koordinat emneoverflate Q203 (absolutt): Absolutt koordinat for emneoverflaten. Inndataområde
   99999,9999 til 99999,9999
- Sikkerhetsavstand Q204 (inkremental): Koordinat for spindelaksen der verktøy og emne (oppspenningsutstyr) ikke kan kollidere. Inndataområde 0 til 99999,9999 alternativ PREDEF




- Baneover1appingsfaktor Q370: Q370 x verktøyradius gir sidematingen k. Inndataområde 0,1 til 1,414, alternativ PREDEF
- Nedsenkstrategi Q366: Type nedsenkstrategi:
  - 0 = loddrett nedsenking. TNC senker verktøyet loddrett ned uavhengig av innstikksvinkelen ANGLE som er definert i verktøytabellen
  - 1 = nedsenking med heliksbevegelse. Nedsenkingsvinkelen for det aktive verktøyet må settes til en annen verdi enn ANGLE i ANGLEkolonnen i verktøytabellen. Hvis ikke, vil TNC vise en feilmelding.
  - 2 = pendelnedsenking. Nedsenkingsvinkelen for det aktive verktøyet må settes til en annen verdi enn ANGLE i ANGLE-kolonnen i verktøytabellen. Hvis ikke, vil TNC vise en feilmelding. Pendellengden avhenger av nedsenkingsvinkelen, og TNC bruker 2 ganger verktøydiameteren som minimumsverdi.
  - Alternativ **PREDEF**
- Mating slettfresing Q385: verktøyets bevegelseshastighet i mm/min side- og dybdeslettfresing Inndataområde 0 til 99999,9999, alternativ FAUTO, FU, FZ

### **Beispiel: NC-blokker**

| 8 CYCL DEF 251  | REKTANGULÆR LOMME     |
|-----------------|-----------------------|
| Q215=0 ;        | MASKINOPERASJON       |
| Q218=80 ;       | 1. SIDELENGDE         |
| Q219=60 ;       | 2. SIDELENGDE         |
| Q220=5 ;        | HJØRNERADIUS          |
| Q368=0.2 ;      | TOLERANSE FOR SIDE    |
| Q224=+0 ;       | ROTERINGSPOSISJON     |
| Q367=0 ;        | LOMMEPOSISJON         |
| Q207=500 ;      | MATING FRESING        |
| Q351=+1 ;       | TYPE FRESING          |
| Q201=-20 ;      | DYBDE                 |
| Q202=5 ;        | MATEDYBDE             |
| Q369=0.1 ;      | TOLERANSE FOR DYBDE   |
| Q206=150 ;      | MATING FOR MATEDYB.   |
| Q338=5 ;        | MATING SLETTFRESING   |
| Q200=2 ;        | SIKKERHETSAVST.       |
| Q203=+0 ;       | KOOR. OVERFLATE       |
| Q204=50 ;       | 2. SIKKERHETSAVST.    |
| Q370=1 ;        | BANEOVERLAPPING       |
| Q366=1 ;        | NEDSENKING            |
| Q385=500 ;      | MATING SLETTFRESING   |
| 9 CYCL CALL POS | X+50 Y+50 Z+0 FMAX M3 |

## 5.3 SIRKELLOMME (syklus 252, DIN/ISO: G252)

### Syklusforløp

Med sirkellommesyklus 252 kan du gjøre en sirkellomme helt ferdig. Avhengig av syklusparameterne er følgende bearbeidingsalternativer tilgjengelige:

- Full bearbeiding: skrubbing, finkutt dybde, finkutt side
- Kun skrubbing (grovfresing)
- Bare finkutt dybde og finkutt side
- Bare finkutt dybde
- Kun finkutt side

### Skrubbing

- 1 Verktøyet føres inn i emnet på midten av lommen og føres til første matedybde. Nedsenkingsstrategien defineres av parameter Q366
- 2 TNC freser ut lommen innenfra og utover på grunnlag av overlappingsfaktoren (parameter Q370) og sluttoleransen (parameter Q368 og Q369)
- **3** Når utfresingen er fullført, fører TNC verktøyet tangentielt bort fra lommeveggen i sikkerhetsavstand over den aktuelle matedybden, og derfra i hurtiggang tilbake til lommens sentrum
- 4 Denne prosedyren gjentas til den programmerte lommedybden er nådd

### Slettfresing

- 5 Hvis sluttoleransene er definert, finfreser TNC først lommeveggene, eventuelt med flere matinger hvis dette er definert. Verktøyet beveger seg tangentielt mot lommeveggen.
- 6 Deretter slettfreser TNC bunnen av lommen innenfra og utover. Verktøyet beveger seg tangentialt over bunnen av lommen



### Legg merke til følgende under programmeringen!



Hvis ikke verktøytabellen er aktivert, må du alltid senke verktøyet loddrett ned (Ω366=0) fordi det ikke er mulig å definere nedsenkingsvinkelen.

Flytt verktøyet til startposisjon (sentrum i sirkelen) i arbeidsplanet med radiuskorreksjon **R0**.

TNC utfører syklusen langs aksene (i arbeidsplanet) i forhold til programmerte startposisjoner, F.eks. i X og Y, hvis CYCL CALL POS X... Y... og i U og V, hvis CYCL CALL POS U... V... er blirr programmert.

TNC forposisjonerer automatisk verktøyet på verktøyaksen. Pass på parameter Q204 (2. sikkerhetsavstand).

Fortegnet til syklusparameteren for dybde slår fast arbeidsretningen. Hvis du velger Dybde = 0, vil ikke TNC utføre syklusen.

TNC fører verktøyet tilbake til startposisjon når syklusen er fullført.

TNC fører verktøyet tilbake til sentrum av lomma i hurtiggang når utfresingen er fullført. Verktøyet stilles samtidig i sikkerhetsavstand over den aktuelle matedybden. Angi sikkerhetsavstanden slik at verktøyet ikke kan kile seg fast på grunn av utfreste spon.

Når du speilvender syklus 252, beholder TNC roteringsretningen som er definert i syklusen. TNC speilvender altså ikke denne.



### Kollisjonsfare!

Bruk maskinparameter 7441 Bit 2=1 hvis TNC skal vise en feilmelding når en positiv dybde angis, eller Bit 2=0 hvis ingen feilmelding skal vises.

Husk at TNC snur beregningen av forposisjoneringen hvis en **positiv dybdeverdi** angis. Verktøyet kjører altså med hurtiggang i verkt'yaksen til sikkerhetsavstand **under** emneoverflaten!

Med maskinparameter 7441 Bit 0 kan du stille inn om TNC skal vise en feilmelding (Bit 0 = 0) eller ikke (Bit 0 = 1) hvis spindelen ikke går ved syklusoppkalling. Funksjonen må også tilpasses av maskinprodusenten.

Når du henter frem syklusen med maskinoperasjon 2 (bare slettfresing), posisjonerer TNC verktøyet på den første matedybden i midten av lomma i hurtiggang!

### **Syklusparametere**



- Maskinoperasjon (0/1/2)Q215: Bestemme maskinoperasjon:
  - **0**: skrubbing og slettfresing
  - 1: Bare skrubbing
  - 2: bare slettfresing

Side- og dybdeslettfresing utføres bare hvis den aktuelle sluttoleransen (Q368, Q369) er definert.

- Sirkeldiameter Q223: Diameter på ferdig bearbeidet lomme. Inndataområde 0 til 99999,9999
- Sluttoleranse for side Q368 (inkremental): sluttoleranse i arbeidsplanet. Inndataområde 0 til 99999,9999
- Mating fresing Q207: verktøyets bevegelseshastighet i mm/min ved fresing. Inndataområde 0 til 99999,999, alternativ FAUTO, FU, FZ
- ▶ Type fresing Q351: Fresebearbeidingstype ved M3:
  - +1 = medfres
  - -1 = motfres

+0 = medfres, ved aktiv speilvending beholder TNC likevel fresetypen Medfres alternativ **PREDEF** 

- Dybde Q201 (inkremental): Avstanden mellom emneoverflaten og lommebunnen. Inndataområde -99999,9999 til 99999,9999
- Matedybde Q202 (inkremental): Mål for hvor langt verktøyet skal mates frem. Angi en verdi som er større enn 0. Inndataområde 0 til 99999,9999
- Sluttoleranse dybde Q369 (inkremental): Sluttoleranse for dybden. Inndataområde 0 til 99999,9999
- Mating for matedybde Q206: Verktøyets bevegelseshastighet i mm/min ved kjøring til dybde. Inndataområde 0 til 99999,999, alternativ FAUTO, FU, FZ
- Mating for slettfresing Q338 (inkremental): Mål for hvor langt verktøyet i spindelaksen skal mates frem ved slettfresing. Q338=0: slettfresing med én mating. Inndataområde 0 til 99999,9999





- Sikkerhetsavstand Q200 (inkremental): Avstanden mellom verktøyets forside og emneoverflaten. Inndataområde 0 til 99999,9999 alternativ PREDEF
- Koordinat emneoverflate Q203 (absolutt): Absolutt koordinat for emneoverflaten. Inndataområde
   99999,9999 til 99999,9999
- Sikkerhetsavstand Q204 (inkremental): Koordinat for spindelaksen der verktøy og emne (oppspenningsutstyr) ikke kan kollidere. Inndataområde 0 til 99999,9999 alternativ PREDEF
- Baneover1appingsfaktor Q370: Q370 x verktøyradius gir sidematingen k. Inndataområde 0,1 til 1,414, alternativ PREDEF
- Nedsenkstrategi Q366: Type nedsenkstrategi:
  - 0 = loddrett nedsenking. TNC senker verktøyet loddrett ned uavhengig av innstikksvinkelen ANGLE som er definert i verktøytabellen
  - 1 = nedsenking med heliksbevegelse. Nedsenkingsvinkelen for det aktive verktøyet må settes til en annen verdi enn ANGLE i ANGLEkolonnen i verktøytabellen. Hvis ikke, vil TNC vise en feilmelding.
  - Alternativ **PREDEF**
- Mating slettfresing Q385: verktøyets bevegelseshastighet i mm/min side- og dybdeslettfresing Inndataområde 0 til 99999,999, alternativ FAUTO, FU, FZ



### **Beispiel: NC-blokker**

| 8 | CYCL DEF 252 | SIRKELLOMME             |
|---|--------------|-------------------------|
|   | Q215=0       | ;MASKINOPERASJON        |
|   | Q223=60      | ;SIRKELDIAMETER         |
|   | Q368=0.2     | ;TOLERANSE FOR SIDE     |
|   | Q207=500     | ;MATING FRESING         |
|   | Q351=+1      | ;TYPE FRESING           |
|   | Q201=-20     | ;DYBDE                  |
|   | Q2O2=5       | ;MATEDYBDE              |
|   | Q369=0.1     | ;TOLERANSE FOR DYBDE    |
|   | Q206=150     | ;MATING FOR MATEDYB.    |
|   | Q338=5       | ;MATING SLETTFRESING    |
|   | Q200=2       | ;SIKKERHETSAVST.        |
|   | Q2O3=+0      | ;KOOR. OVERFLATE        |
|   | Q204=50      | ;2. SIKKERHETSAVST.     |
|   | Q370=1       | ;BANEOVERLAPPING        |
|   | Q366=1       | ;NEDSENKING             |
|   | Q385=500     | ;MATING SLETTFRESING    |
| 9 | CYCL CALL PO | S X+50 Y+50 Z+0 FMAX M3 |

) (

## 5.4 NOTFRESING (syklus 253, DIN/ISO: G253)

### Syklusforløp

Med syklus 253 kan du gjøre en not helt ferdig. Avhengig av syklusparameterne er følgende bearbeidingsalternativer tilgjengelige:

- Full bearbeiding: skrubbing, finkutt dybde, finkutt side
- Kun skrubbing (grovfresing)
- Bare finkutt dybde og finkutt side
- Bare finkutt dybde
- Kun finkutt side

### Skrubbing

- 1 Verktøyet pendler fra sentrum i venstre notsirkel mot første matedybde med innstikksvinkelen som er definert i verktøytabellen. Nedsenkingsstrategien defineres av parameter Q366
- 2 TNC freser ut noten innenfra og utover i henhold til sluttoleransene (parameter Q368 og Q369)
- 3 Denne prosedyren gjentas til den programmerte notdybden er nådd

### Slettfresing

- 4 Hvis sluttoleransene er definert, slettfreser TNC først notveggene, eventuelt med flere matinger hvis dette er definert. Verktøyet beveger seg tangentielt mot notveggen i høyre notsirkel.
- Deretter slettfreser TNC bunnen av noten innenfra og utover. Notbunnen bearbeides tangentielt

### Legg merke til følgende under programmeringen!



Hvis ikke verktøytabellen er aktivert, må du alltid senke verktøyet loddrett ned (Q366=0) fordi det ikke er mulig å definere nedsenkingsvinkelen.

Forhåndsposisjoner verktøyet på startposisjon i arbeidsplanet med radiuskorreksjon **R0**. Ta hensyn til parameter Q367 (notposisjon).

TNC utfører syklusen langs aksene (i arbeidsplanet) i forhold til programmerte startposisjoner, F.eks. i X og Y, hvis CYCL CALL POS X... Y... og i U og V, hvis CYCL CALL POS U... V... er blirr programmert.

TNC forposisjonerer automatisk verktøyet på verktøyaksen. Pass på parameter Q204 (2. sikkerhetsavstand).

Ved enden av syklusen posisjonerer TNC verktøyet tilbake til notsentrum på arbeidsplanet, og i den andre aksen på arbeidsplanet utfører ikke TNC noen posisjonering. Hvis du definerer en notposisjon som er ulik 0, posisjonerer TNC verktøyet bare på verktøyaksen på 2. sikkerhetsavstanden. Kjør verktøyet til startposisjonen før ny syklusoppkalling, programmer ev. alltid absolutte kjørebevegelser etter syklusoppkallingen.

Fortegnet til syklusparameteren for dybde slår fast arbeidsretningen. Hvis du velger Dybde = 0, vil ikke TNC utføre syklusen.

Hvis notbredden er større enn to ganger verktøydiameteren, freser TNC ut noten innenfra og utover i henhold til dette. Ulike typer spor kan freses ut med små verktøy.

Når du speilvender syklus 253, beholder TNC roteringsretningen som er definert i syklusen. TNC speilvender altså ikke denne.

### Kollisjonsfare!

 $(\Lambda)$ 

Bruk maskinparameter 7441 Bit 2=1 hvis TNC skal vise en feilmelding når en positiv dybde angis, eller Bit 2=0 hvis ingen feilmelding skal vises.

Husk at TNC snur beregningen av forposisjoneringen hvis en **positiv dybdeverdi** angis. Verktøyet kjører altså med hurtiggang i verkt'yaksen til sikkerhetsavstand **under** emneoverflaten!

Med maskinparameter 7441 Bit 0 kan du stille inn om TNC skal vise en feilmelding (Bit 0 = 0) eller ikke (Bit 0 = 1) hvis spindelen ikke går ved syklusoppkalling. Funksjonen må også tilpasses av maskinprodusenten.

Når du henter frem syklusen med maskinoperasjon 2 (bare slettfresing), posisjonerer TNC verktøyet på den første matedybden i hurtiggang.



## 5.4 NOTFRESING (syklus 253, DIN/ISO: G253)

### Syklusparametere



Maskinoperasjon (0/1/2)Q215: Bestemme maskinoperasion:

- **0**: skrubbing og slettfresing
- 1: Bare skrubbing
- 2: bare slettfresing

Side- og dybdeslettfresing utføres bare hvis den aktuelle sluttoleransen (Q368, Q369) er definert.

- Notlengde Q218 (målt parallelt med arbeidsplanets hovedakse): Angi den lengste siden av noten. Inndataområde 0 til 99999,9999
- Notbredde Q219 (målt parallelt med arbeidsplanets hjelpeakse): Angi notens bredde. Hvis notbredden er lik verktøydiameteren, vil TNC bare utføre skrubbing (frese spor). Maksimal notbredde ved skrubbing: to ganger verktøydiameteren. Inndataområde 0 til 99999,9999
- Sluttoleranse for sideQ368 (inkremental): sluttoleranse i arbeidsplanet.
- Roteringsplassering Q374 (absolutt): Vinkelen som angir hvor mye hele noten skal dreies. Roteringssentrum er verktøyposisjonen når syklusoppkallingen utføres. Inndataområde -360,000 til 360,000
- Notposisjon (0/1/2/3/4)Q367: notens plassering i forhold til verktøyets posisjon når syklusoppkallingen utføres:
  - **0**: verktøyposisjon = sentrum av not
  - 1: verktøyposisjon = venstre notende
  - 2: verktøyposisjon = sentrum i venstre notsirkel
  - **3**: verktøyposisjon = sentrum i høyre notsirkel
  - 4: verktøyposisjon = høyre notende

 Mating fresing Q207: verktøyets bevegelseshastighet i mm/min ved fresing. Inndataområde 0 til 99999,999, alternativ FAUTO, FU, FZ

- **Type fresing** Q351: Fresebearbeidingstype ved M3:
  - +1 = medfres
  - -1 = motfres

+0 = medfres, ved aktiv speilvending beholder TNC likevel fresetypen Medfres alternativ **PREDEF** 





5.4 NOTFRESING (syklus 253, DIN/ISO: G253)

- Dybde Q201 (inkremental): Avstanden mellom emneoverflaten og notbunnen. Inndataområde
   99999,9999 til 99999,9999
- Matedybde Q202 (inkremental): Mål for hvor langt verktøyet skal mates frem. Angi en verdi som er større enn 0. Inndataområde 0 til 99999,9999
- Sluttoleranse dybde Q369 (inkremental): Sluttoleranse for dybden. Inndataområde 0 til 99999,9999
- Mating for matedybde Q206: Verktøyets bevegelseshastighet i mm/min ved kjøring til dybde. Inndataområde 0 til 99999,999, alternativ FAUTO, FU, FZ
- Mating for slettfresing Q338 (inkremental): Mål for hvor langt verktøyet i spindelaksen skal mates frem ved slettfresing. Q338=0: slettfresing med én mating. Inndataområde 0 til 99999,9999



1

- Sikkerhetsavstand Q200 (inkremental): Avstanden mellom verktøyets forside og emneoverflaten. Inndataområde 0 til 99999,9999 alternativ PREDEF
- Koordinat emneoverflate Q203 (absolutt): Absolutt koordinat for emneoverflaten. Inndataområde
   99999,9999 til 99999,9999
- Sikkerhetsavstand Q204 (inkremental): Koordinat for spindelaksen der verktøy og emne (oppspenningsutstyr) ikke kan kollidere. Inndataområde 0 til 99999,9999 alternativ PREDEF
- Nedsenkstrategi Q366: Type nedsenkstrategi:
  - 0 = loddrett nedsenking. TNC senker verktøyet loddrett ned uavhengig av innstikksvinkelen ANGLE som er definert i verktøytabellen
  - 1 = nedsenking med heliksbevegelse. Nedsenkingsvinkelen for det aktive verktøyet må settes til en annen verdi enn ANGLE i ANGLEkolonnen i verktøytabellen. Hvis ikke, vil TNC vise en feilmelding. Nedsenking med heliksbevegelse krever at det er nok plass.
  - 2 = pendelnedsenking. Nedsenkingsvinkelen for det aktive verktøyet må settes til en annen verdi enn ANGLE i ANGLE-kolonnen i verktøytabellen. Hvis ikke, vil TNC vise en feilmelding.
  - Alternativ PREDEF
- Mating slettfresing Q385: verktøyets bevegelseshastighet i mm/min side- og dybdeslettfresing Inndataområde 0 til 99999,9999, alternativ FAUTO, FU, FZ
- Forhold mating (0 til 3) Q439: Utvalg som den programmerte matingen tar hensyn til:
  - 0 = Matingen refererer til midtpunktbanen til verktøyet
  - 1 = Matingen refererer bare ved slettfresing side til verktøyskjæret, ellers til midtpunktbanen
  - 2 = Matingen refererer til verktøyskjæret ved slettfresing side og slettfresing side, ellers til midtpunktbanen
  - 3 = Matingen forholder seg hovedsakelig alltid til verktøyskjæret



### **Beispiel: NC-blokker**

| 8 | CYCL DEF 253 | NOTFRESING              |
|---|--------------|-------------------------|
|   | Q215=0       | ;MASKINOPERASJON        |
|   | Q218=80      | ;NOTLENGDE              |
|   | Q219=12      | ;NOTBREDDE              |
|   | Q368=0.2     | ;TOLERANSE FOR SIDE     |
|   | Q374=+O      | ;ROTERINGSPOSISJON      |
|   | Q367=0       | ;NOTPOSISJON            |
|   | Q207=500     | ;MATING FRESING         |
|   | Q351=+1      | ;TYPE FRESING           |
|   | Q201=-20     | ;DYBDE                  |
|   | Q202=5       | ;MATEDYBDE              |
|   | Q369=0.1     | ;TOLERANSE FOR DYBDE    |
|   | Q206=150     | ;MATING FOR MATEDYB.    |
|   | Q338=5       | ;MATING SLETTFRESING    |
|   | Q200=2       | ;SIKKERHETSAVST.        |
|   | Q2O3=+0      | ;KOOR. OVERFLATE        |
|   | Q204=50      | ;2. SIKKERHETSAVST.     |
|   | Q366=1       | ;NEDSENKING             |
|   | Q385=500     | ;MATING SLETTFRESING    |
|   | Q439=0       | ;FORHOLD MATING         |
| 9 | CYCL CALL PO | S X+50 Y+50 Z+0 FMAX M3 |
|   |              |                         |

## 5.5 AVRUNDET NOT (syklus 254, DIN/ISO: G254)

### Syklusforløp

Med syklus 254 kan du gjøre en rund not helt ferdig. Avhengig av syklusparameterne er følgende bearbeidingsalternativer tilgjengelige:

- Full bearbeiding: skrubbing, finkutt dybde, finkutt side
- Kun skrubbing (grovfresing)
- Bare finkutt dybde og finkutt side
- Bare finkutt dybde
- Kun finkutt side

### Skrubbing

- Verktøyet pendler til første matedybde i sentrum av noten med innstikksvinkelen som er definert i verktøytabellen. Nedsenkingsstrategien defineres av parameter Q366
- 2 TNC freser ut noten innenfra og utover i henhold til sluttoleransene (parameter Q368 og Q369)
- 3 Denne prosedyren gjentas til den programmerte notdybden er nådd

### Slettfresing

- 4 Hvis sluttoleransene er definert, slettfreser TNC først notveggene, eventuelt med flere matinger hvis dette er definert. Bevegelsen mot notveggen er tangential
- **5** Deretter slettfreser TNC bunnen av noten innenfra og utover. Notbunnen bearbeides tangentielt

### Legg merke til følgende under programmeringen!



Hvis ikke verktøytabellen er aktivert, må du alltid senke verktøyet loddrett ned (Q366=0) fordi det ikke er mulig å definere nedsenkingsvinkelen.

Forhåndsposisjoner verktøyet i arbeidsplanet med radiuskorreksjon **R0**. Definer parameter Q367 (**referanse for notposisjon**) tilsvarende.

TNC utfører syklusen langs aksene (i arbeidsplanet) i forhold til programmerte startposisjoner, F.eks. i X og Y, hvis CYCL CALL POS X... Y... og i U og V, hvis CYCL CALL POS U... V... er blirr programmert.

TNC forposisjonerer automatisk verktøyet på verktøyaksen. Pass på parameter Q204 (2. sikkerhetsavstand).

Ved enden av syklusen posisjonerer TNC verktøyet tilbake til delsirkelsentrum på arbeidsplanet, og i den andre aksen på arbeidsplanet utfører ikke TNC noen posisjonering. Hvis du definerer en notposisjon som er ulik 0, posisjonerer TNC verktøyet bare på verktøyaksen på 2. sikkerhetsavstanden. Kjør verktøyet til startposisjonen før ny syklusoppkalling, programmer ev. alltid absolutte kjørebevegelser etter syklusoppkallingen.

Ved syklusens slutt posisjonerer TNC verktøyet på arbeidsplanet tilbake til startpunktet (sentrum av delsirkel). Unntak: Hvis du definerer en notposisjon som ikke er 0, vil TNC kun posisjonere verktøyet i verktøyaksen på 2. sikkerhetsavstand. sikkerhetsavstanden. I slike tilfeller må du alltid programmere absolutte kjørebevegelser etter syklusoppkallingen.

Fortegnet til syklusparameteren for dybde slår fast arbeidsretningen. Hvis du velger Dybde = 0, vil ikke TNC utføre syklusen.

Hvis notbredden er større enn to ganger verktøydiameteren, freser TNC ut noten innenfra og utover i henhold til dette. Ulike typer spor kan freses ut med små verktøy.

Hvis du bruker syklus 254 Rund not i kombinasjon med syklus 221, er det ikke mulig med notplassering 0.

Når du speilvender syklus 254, beholder TNC roteringsretningen som er definert i syklusen. TNC speilvender altså ikke denne.

### Kollisjonsfare!

 $(\Lambda)$ 

Bruk maskinparameter 7441 Bit 2=1 hvis TNC skal vise en feilmelding når en positiv dybde angis, eller Bit 2=0 hvis ingen feilmelding skal vises.

Husk at TNC snur beregningen av forposisjoneringen hvis en **positiv dybdeverdi** angis. Verktøyet kjører altså med hurtiggang i verkt'yaksen til sikkerhetsavstand **under** emneoverflaten!

Med maskinparameter 7441 Bit 0 kan du stille inn om TNC skal vise en feilmelding (Bit 0 = 0) eller ikke (Bit 0 = 1) hvis spindelen ikke går ved syklusoppkalling. Funksjonen må også tilpasses av maskinprodusenten.

Når du henter frem syklusen med maskinoperasjon 2 (bare slettfresing), posisjonerer TNC verktøyet på den første matedybden i hurtiggang.



## 5.5 AVRUNDET NOT (syklus 254, DIN/ISO: G254)

### Syklusparametere



Maskinoperasjon (0/1/2)Q215: Bestemme maskinoperasjon:

- **0**: skrubbing og slettfresing
- 1: Bare skrubbing
- 2: bare slettfresing

Side- og dybdeslettfresing utføres bare hvis den aktuelle sluttoleransen (Q368, Q369) er definert.

- Notbredde Q219 (målt parallelt med arbeidsplanets hjelpeakse): Angi notens bredde. Hvis notbredden er lik verktøydiameteren, vil TNC bare utføre skrubbing (frese spor). Maksimal notbredde ved skrubbing: to ganger verktøydiameteren. Inndataområde 0 til 99999,9999
- Sluttoleranse for side Q368 (inkremental): sluttoleranse i arbeidsplanet. Inndataområde 0 til 99999,9999
- ▶ **Delsirkeldiameter** Q375: Angi delsirkelens diameter. Inndataområde 0 til 99999,9999
- Referanse notposisjon (0/1/2/3) Q367: Notens plassering i forhold til verktøyets posisjon når syklusoppkallingen utføres:

**0**: Det blir ikke tatt hensyn til verktøyposisjonen. Notplasseringen beregnes ut fra sentrum i delsirkelen og startvinkelen

 verktøyposisjon = sentrum i venstre notsirkel. Startvinkel Q376 avhenger av denne posisjonen. Det blir ikke tatt hensyn til angitt delsirkelsentrum.
 verktøyposisjon = sentrum midtakse. Startvinkel Q376 avhenger av denne posisjonen. Det blir ikke tatt

hensyn til angitt delsirkelsentrum. **3**: verktøyposisjon = sentrum i høyre notsirkel. Startvinkel Q376 avhenger av denne posisjonen. Det blir ikke tatt hensyn til angitt delsirkelsentrum.

Sentrum 1. akse Q216 (absolutt): Sentrum i delsirkelen på arbeidsplanets hovedakse. Fungerer kun hvis Q367 = 0. Inndataområde -99999,9999 til 99999,9999





- Sentrum 2. akse Q217 (absolutt): Sentrum i delsirkelen på arbeidsplanets hjelpeakse. Fungerer kun hvis Q367 = 0. Inndataområde -99999,9999 til 99999,9999
- Startvinkel Q376 (absolutt): Angi polarvinkelen for startpunket. Inndataområde -360,000 til 360,000
- Notens åpningsvinkel Q248 (inkremental): Angi notens åpningsvinkel. Inndataområde 0 til 360,000
- Vinkeltrinn Q378 (inkremental): vinkel som angir hvor mye hele noten skal dreies. Roteringssentrum er sentrum i delsirkelen. Inndataområde -360,000 til 360,000
- Antall bearbeidinger Q377: Antall bearbeidinger på delsirkelen. Inndataområde 1 til 99999
- Mating fresing Q207: verktøyets bevegelseshastighet i mm/min ved fresing. Inndataområde 0 til 99999,999, alternativ FAUTO, FU, FZ
- Type fresing Q351: Fresebearbeidingstype ved M3: +1 = medfres
  - -1 = motores
  - +0 = medfres, ved aktiv speilvending beholder TNC likevel fresetypen Medfres alternativ **PREDEF**
- Dybde Q201 (inkremental): Avstanden mellom emneoverflaten og notbunnen. Inndataområde
   99999,9999 til 99999,9999
- Matedybde Q202 (inkremental): Mål for hvor langt verktøyet skal mates frem. Angi en verdi som er større enn 0. Inndataområde 0 til 99999,9999
- Sluttoleranse dybde Q369 (inkremental): Sluttoleranse for dybden. Inndataområde 0 til 99999,9999
- Mating for matedybde Q206: Verktøyets bevegelseshastighet i mm/min ved kjøring til dybde. Inndataområde 0 til 99999,999, alternativ FAUTO, FU, FZ
- Mating for slettfresing Q338 (inkremental): Mål for hvor langt verktøyet i spindelaksen skal mates frem ved slettfresing. Q338=0: slettfresing med én mating. Inndataområde 0 til 99999,9999







- Sikkerhetsavstand Q200 (inkremental): Avstanden mellom verktøyets forside og emneoverflaten. Inndataområde 0 til 99999,9999 alternativ PREDEF
- Koordinat emneoverflate Q203 (absolutt): Absolutt koordinat for emneoverflaten. Inndataområde
   99999,9999 til 99999,9999
- 2. Sikkerhetsavstand Q204 (inkremental): Koordinat for spindelaksen der verktøy og emne (oppspenningsutstyr) ikke kan kollidere. Inndataområde 0 til 99999,9999 alternativ PREDEF
- Nedsenkstrategi Q366: Type nedsenkstrategi:
  - 0 = loddrett nedsenking. TNC senker verktøyet loddrett ned uavhengig av innstikksvinkelen ANGLE som er definert i verktøytabellen
  - 1 = nedsenking med heliksbevegelse. Nedsenkingsvinkelen for det aktive verktøyet må settes til en annen verdi enn ANGLE i ANGLEkolonnen i verktøytabellen. Hvis ikke, vil TNC vise en feilmelding. Nedsenking med heliksbevegelse krever at det er nok plass.
  - 2 = pendelnedsenking. Nedsenkingsvinkelen for det aktive verktøyet må settes til en annen verdi enn ANGLE i ANGLE-kolonnen i verktøytabellen. Hvis ikke, vil TNC vise en feilmelding. TNC kan først nedsenkes med pendelbevegelse hvis kjøringslengden på delsirkelen er minst tre ganger så lang som verktøydiameteren.
  - Alternativ PREDEF
- Mating slettfresing Q385: verktøyets bevegelseshastighet i mm/min side- og dybdeslettfresing Inndataområde 0 til 99999,999, alternativ FAUTO, FU, FZ
- ▶ Forhold mating (0 til 3) Q439: Utvalg som den programmerte matingen tar hensyn til:
  - 0 = Matingen refererer til midtpunktbanen til verktøyet
  - 1 = Matingen refererer bare ved slettfresing side til verktøyskjæret, ellers til midtpunktbanen
  - 2 = Matingen refererer til verktøyskjæret ved slettfresing side og slettfresing side, ellers til midtpunktbanen
  - 3 = Matingen forholder seg hovedsakelig alltid til verktøyskjæret

### **Beispiel: NC-blokker**

| 8 | CYCL DEF 254 | RUND NOT                |
|---|--------------|-------------------------|
|   | Q215=0       | ;MASKINOPERASJON        |
|   | Q219=12      | ;NOTBREDDE              |
|   | Q368=0.2     | ;TOLERANSE FOR SIDE     |
|   | Q375=80      | ;DELSIRKELDIAM.         |
|   | Q367=0       | ;REFERANSE NOTPOSISJON  |
|   | Q216=+50     | ;SENTRUM 1. AKSE        |
|   | Q217=+50     | ;SENTRUM 2. AKSE        |
|   | Q376=+45     | ;STARTVINKEL            |
|   | Q248=90      | ;ÅPNINGSVINKEL          |
|   | Q378=0       | ;VINKELTRINN            |
|   | Q377=1       | ;ANTALL BEARBEIDINGER   |
|   | Q207=500     | ;MATING FRESING         |
|   | Q351=+1      | ;TYPE FRESING           |
|   | Q201=-20     | ;DYBDE                  |
|   | Q202=5       | ;MATEDYBDE              |
|   | Q369=0.1     | ;TOLERANSE FOR DYBDE    |
|   | Q206=150     | ;MATING FOR MATEDYB.    |
|   | Q338=5       | ;MATING SLETTFRESING    |
|   | Q200=2       | ;SIKKERHETSAVST.        |
|   | Q203=+0      | ;KOOR. OVERFLATE        |
|   | Q204=50      | ;2. SIKKERHETSAVST.     |
|   | Q366=1       | ;NEDSENKING             |
|   | Q385=500     | ;MATING SLETTFRESING    |
|   | Q439=0       | ;FORHOLD MATING         |
| Q |              | S X+50 V+50 7+0 FMAX M3 |



## 5.6 FIRKANTTAPP (syklus 256, DIN/ISO: G256)

### Syklusforløp

Med firkanttappsyklus 256 kan du bearbeide en firkanttapp. Hvis dimensjonen på et emne er større enn den sidematingen som maksimalt er mulig, utfører TNC flere sidematinger til den ferdige dimensjonen er oppnådd.

- 1 Verktøyet kjører fra syklusstartposisjonen (sentrum av tappen) til startposisjonen for tappbearbeidingen. Startposisjonen defineres av parameter Q437. Standardinnstillingen (**Q437=0**) ligger 2 mm til høyre for tappemnet.
- 2 Hvis verktøyet står i 2. sikkerhetsavstand, kjører TNC verktøyet i hurtiggang FMAX til sikkerhetsavstanden og derfra til den første matedybden med mating for dybdemating
- **3** Verktøyet kjører også tangentialt til tappkonturen og freser deretter en medbevegelse.
- 4 Hvis den ferdige dimensjonen ikke kan oppnås på én omdreining, setter TNC verktøyet på den aktuelle sidematedybden og freser så en omdreining til. TNC tar i denne sammenhengen hensyn til dimensjonen på emnet, den ferdige dimensjonen og den tillatte sidematingen. Denne prosedyren blir gjentatt til den definerte ferdige dimensjonen er oppnådd. Hvis du har lagt startpunktet til det hjørne (Q437 ulik 0), freser TNC spiralformet ut fra startpunktet og innover til den ferdige dimensjonen er oppnådd
- **5** Hvis det kreves flere matinger, kjører vertøyet tangentialt vekk fra konturen, tilbake til startpunktet for tappbearbeidingen
- 6 Deretter kjører TNC verktøyet til neste matedybde og bearbeider tappen på denne dybden
- 7 Denne prosedyren gjentas til den programmerte tappdybden er nådd
- 8 Ved syklusens slutt posisjonerer TNC verktøyet bare i verktøyaksen, på sikker høyde som er definert i syklusen. Sluttposisjonen stemmer ikke overens med startposisjonen



### Legg merke til følgende under programmeringen!



Forhåndsposisjoner verktøyet på startposisjon i arbeidsplanet med radiuskorreksjon **R0**. Ta hensyn til parameter Q367 (tapp-posisjon).

TNC forposisjonerer automatisk verktøyet på verktøyaksen. Pass på parameter Q204 (2. sikkerhetsavstand).

Fortegnet til syklusparameteren for dybde slår fast arbeidsretningen. Hvis du velger Dybde = 0, vil ikke TNC utføre syklusen.



### Kollisjonsfare!

Bruk maskinparameter 7441 Bit 2=1 hvis TNC skal vise en feilmelding når en positiv dybde angis, eller Bit 2=0 hvis ingen feilmelding skal vises.

Husk at TNC snur beregningen av forposisjoneringen hvis en **positiv dybdeverdi** angis. Verktøyet kjører altså med hurtiggang i verkt'yaksen til sikkerhetsavstand **under** emneoverflaten!

Sørg for at det er tilstrekkelig plass til høyre for tappen for fremkjøringsbevegelsene. Minimum: Verktøydiameter + 2 mm, hvis du arbeider med standard fremkjøringsradius og -vinkel.

Til slutt posisjonerer TNC verktøyet tilbake på sikkerhetsavstanden, eller til 2. sikkerhetsavstand hvis denne er programmert. Sluttposisjonen for verktøyet etter syklusen stemmer altså ikke overens med startposisjonen.

Med maskinparameter 7441 Bit 0 kan du stille inn om TNC skal vise en feilmelding (Bit 0 = 0) eller ikke (Bit 0 = 1) hvis spindelen ikke går ved syklusoppkalling. Funksjonen må også tilpasses av maskinprodusenten.

### **Syklusparametere**

256

- ▶ 1. 1. sidelengde Q218: Tappens lengde, parallelt med arbeidsplanets hovedakse. Inndataområde 0 til 99999,9999
- Emnedimensjon sidelengde 1 Q424: Lengde på tappemnet, parallelt med arbeidsplanets hovedakse. Emnedimensjon sidelengde 1 må angis større enn 1. Angi Sidelengde. TNC utfører flere sidematinger hvis differansen mellom emnedimensjon 1 og den ferdige dimensjonen 1 er større enn den tillatte sidematingen (verktøyradius ganger baneoverlapping Q370). TNC beregner alltid en konstant sidemating. Inndataområde 0 til 99999,9999
- 2. 1. sidelengde Q219: Tappens lengde, parallelt med arbeidsplanets hjelpeakse. Emnedimensjon sidelengde 2 må angis større enn 2. Angi Sidelengde. TNC utfører flere sidematinger hvis differansen mellom emnedimensjon 2 og den ferdige dimensjonen 2 er større enn den tillatte sidematingen (verktøyradius ganger baneoverlapping Q370). TNC beregner alltid en konstant sidemating. Inndataområde 0 til 99999,9999
- Emnedimensjon sidelengde 2 Q425: Lengde på tappemnet, parallelt med arbeidsplanets hjelpeakse. Inndataområde 0 til 99999,9999
- Hjørneradius Q220: Radius for tapphjørnet. Inndataområde 0 til 99999,9999
- Sluttoleranse for side Q368 (inkremental): Sluttoleranse på arbeidsplanet som TNC lar stå ved bearbeidingen. Inndataområde 0 til 99999,9999
- Roteringsposisjon Q224 (absolutt): Vinkel som angir hvor mye hele tappen skal dreies. Roteringssentrum er verktøyposisjonen når syklusoppkallingen utføres. Inndataområde -360,000 til 360,000
- Tapp-posisjon Q367: Tappens plassering i forhold til verktøyets posisjon når syklusoppkallingen utføres:
   verktøvposisjon = sentrum på tapp
  - 1: verktøyposisjon = nedre venstre hjørne
  - 2: verktøyposisjon = nedre høyre hjørne
  - **3**: verktøyposisjon = øvre høyre hjørne
  - 4: verktøyposisjon = øvre venstre hjørne







- Mating fresing Q207: verktøyets bevegelseshastighet i mm/min ved fresing. Inndataområde 0 til 99999,999, alternativ FAUTO, FU, FZ
- Type fresing Q351: Fresebearbeidingstype ved M3:
   +1 = medfres
   -1 = motfres

alternativ PREDEF

- Dybde Q201 (inkremental): Avstanden mellom emneoverflaten og tappens underkant. Inndataområde -99999,9999 til 99999,9999
- Matedybde Q202 (inkremental): Mål for hvor langt verktøyet skal mates frem. Angi en verdi som er større enn 0. Inndataområde 0 til 99999,9999
- Mating for matedybde Q206: Verktøyets bevegelseshastighet i mm/min ved kjøring til dybde. Inndataområde 0 til 99999,999, alternativ FMAX, FAUTO, FU, FZ
- Sikkerhetsavstand Q200 (inkremental): Avstanden mellom verktøyets forside og emneoverflaten. Inndataområde 0 til 99999,9999 alternativ PREDEF
- Koordinat emneoverflate Q203 (absolutt): Absolutt koordinat for emneoverflaten. Inndataområde
   99999,9999 til 99999,9999
- 2. Sikkerhetsavstand Q204 (inkremental): Koordinat for spindelaksen der verktøy og emne (oppspenningsutstyr) ikke kan kollidere. Inndataområde 0 til 99999,9999 alternativ PREDEF
- Baneover1appingsfaktor Q370: Q370 x verktøyradius gir sidematingen k. Inndataområde 0,1 til 1,414, alternativ PREDEF
- Tilkjøringsposisjon (0...4) Q437 Definer tilkjøringsstrategi for verktøyet:
  - 0: Til høyre for tappen (grunninnstilling)
  - 1: Nedre venstre hjørne
  - 2: Nedre høyre hjørne
  - 3: Øvre høyre hjørne
  - 4: Øvre venstre hjørne

Hvis det oppstår tilkjøringsmerker på tappoverflaten ved tilkjøring med innstillingen Q437=0, velger du en annen tilkjøringsposisjon



### **Beispiel: NC-blokker**

| 8 | CYCL DEF 256 | REKTANGULÆRE TAPPER     |
|---|--------------|-------------------------|
|   | Q218=60      | ;1. SIDELENGDE          |
|   | Q424=74      | ;EMNEDIMENSJON 1        |
|   | Q219=40      | ;2. SIDELENGDE          |
|   | Q425=60      | ;EMNEDIMENSJON 2        |
|   | Q220=5       | ;HJØRNERADIUS           |
|   | Q368=0.2     | ;TOLERANSE FOR SIDE     |
|   | Q224=+0      | ;ROTERINGSPOSISJON      |
|   | Q367=0       | ;TAPP-POSISJON          |
|   | Q207=500     | ;MATING FRESING         |
|   | Q351=+1      | ;TYPE FRESING           |
|   | Q201=-20     | ;DYBDE                  |
|   | Q202=5       | ;MATEDYBDE              |
|   | Q206=150     | ;MATING FOR MATEDYB.    |
|   | Q200=2       | ;SIKKERHETSAVST.        |
|   | Q2O3=+0      | ;KOOR. OVERFLATE        |
|   | Q204=50      | ;2. SIKKERHETSAVST.     |
|   | Q370=1       | ;BANEOVERLAPPING        |
|   | Q437=0       | ;TILKJØRINGSPOSISJON    |
| 9 | CYCL CALL PO | S X+50 Y+50 Z+0 FMAX M3 |

## 5.7 SIRKELTAPP (syklus 257, DIN/ISO: G257)

### Syklusforløp

Med sirkeltappsyklus 257 kan du bearbeide en sirkeltapp. Hvis diameteren på et emne er større enn den sidematingen som maksimalt er mulig, utfører TNC en spiralformet mating til diameteren på ferdigproduktet er oppnådd.

- 1 Verktøyet kjører fra syklusstartposisjonen (sentrum av tappen) til startposisjonen for tappbearbeidingen. Startposisjonen defineres med parameteren Q376 via polarvinkelen i forhold til sentrum av tappen
- 2 Hvis verktøyet står i 2. sikkerhetsavstand, kjører TNC verktøyet i hurtiggang FMAX til sikkerhetsavstanden og derfra til den første matedybden med mating for dybdemating
- **3** Deretter kjøres verktøyet i en spiralformet bevegelse til tappkonturen og freser deretter en omdreining.
- **4** Hvis diameteren for den ferdig delen ikke kan nås i ett omløp, mater TNC frem spiralformet til diameteren for den ferdig delen er nådd. TNC tar hensyn til råemnets diameter, diameteren til det ferdige emnet og den tillatte sidematingen
- **5** TNC kjører verktøyet vekk fra konturen i en spiralformet bane
- 6 Hvis det er nødvendig med flere dybdeinnstillinger, utføres en ny dybdeinnstillingen på det neste punktet i bortkjøringsbevegelsen
- 7 Denne prosedyren gjentas til den programmerte tappdybden er nådd
- 8 Ved syklusens slutt posisjonerer TNC verktøyet bare i verktøyaksen, på sikker høyde som er definert i syklusen. Sluttposisjonen stemmer ikke overens med startposisjonen



### Legg merke til følgende under programmeringen!



Forhåndsposisjoner verktøyet på startposisjon i arbeidsplanet (sentrum på tappen) med radiuskorreksjon **R0**.

TNC forposisjonerer automatisk verktøyet på verktøyaksen. Pass på parameter Q204 (2. sikkerhetsavstand).

Fortegnet til syklusparameteren for dybde slår fast arbeidsretningen. Hvis du velger Dybde = 0, vil ikke TNC utføre syklusen.

TNC posisjonerer verktøyet tilbake i startposisjonen i verktøyaksen ved syklusslutt, men ikke i arbeidsplanet.



### Kollisjonsfare!

Bruk maskinparameter 7441 Bit 2=1 hvis TNC skal vise en feilmelding når en positiv dybde angis, eller Bit 2=0 hvis ingen feilmelding skal vises.

Husk at TNC snur beregningen av forposisjoneringen hvis en **positiv dybdeverdi** angis. Verktøyet kjører altså med hurtiggang i verkt'yaksen til sikkerhetsavstand **under** emneoverflaten!

Sørg for at det er tilstrekkelig plass til høyre for tappen for fremkjøringsbevegelsene. Minimum: Verktøydiameter + 2 mm, hvis du arbeider med standard fremkjøringsradius og -vinkel.

Til slutt posisjonerer TNC verktøyet tilbake på sikkerhetsavstanden, eller til 2. sikkerhetsavstand hvis denne er programmert. Sluttposisjonen for verktøyet etter syklusen stemmer altså ikke overens med startposisjonen.

Med maskinparameter 7441 Bit 0 kan du stille inn om TNC skal vise en feilmelding (Bit 0 = 0) eller ikke (Bit 0 = 1) hvis spindelen ikke går ved syklusoppkalling. Funksjonen må også tilpasses av maskinprodusenten.



### **Syklusparametere**

- Diameter på ferdigprodukt Q223: Diameter på den ferdig bearbeidede tappen. Inndataområde 0 til 99999,9999
- Emnediameter Q222: Emnets diameter. Oppgi en emnediameter som er større enn diameteren på ferdigproduktet. TNC utfører flere sidematinger hvis differansen mellom emnediameteren og diameteren på fertigproduktet er større enn den tillatte sidematingen (verktøyradius ganger baneoverlapping Q370). TNC beregner alltid en konstant sidemating. Inndataområde 0 til 99999,9999
- Sluttoleranse for side Q368 (inkremental): sluttoleranse i arbeidsplanet. Inndataområde 0 til 99999,9999
- Mating fresing Q207: verktøyets bevegelseshastighet i mm/min ved fresing. Inndataområde 0 til 99999,999, alternativ FAUTO, FU, FZ
- **Type fresing** Q351: Fresebearbeidingstype ved M3:
  - +1 = medfres
    -1 = motfres
    alternativ PREDEF





i

- Dybde Q201 (inkremental): Avstanden mellom emneoverflaten og tappens underkant. Inndataområde -99999,9999 til 99999,9999
- Matedybde Q202 (inkremental): Mål for hvor langt verktøyet skal mates frem. Angi en verdi som er større enn 0. Inndataområde 0 til 99999,9999
- Mating for matedybde Q206: Verktøyets bevegelseshastighet i mm/min ved kjøring til dybde. Inndataområde 0 til 99999,999, alternativ FMAX, FAUTO, FU, FZ
- Sikkerhetsavstand Q200 (inkremental): Avstanden mellom verktøyets forside og emneoverflaten. Inndataområde 0 til 99999,9999 alternativ PREDEF
- Koordinat emneoverflate Q203 (absolutt): Absolutt koordinat for emneoverflaten. Inndataområde
   99999,9999 til 99999,9999
- 2. Sikkerhetsavstand Q204 (inkremental): Koordinat for spindelaksen der verktøy og emne (oppspenningsutstyr) ikke kan kollidere. Inndataområde 0 til 99999,9999 alternativ PREDEF
- Baneover1appingsfaktor Q370: Q370 x verktøyradius gir sidematingen k. Inndataområde 0,1 til 1,414, alternativ PREDEF
- Startvinkel Q376: Polarvinkel i forhold til sentrum av tappen som verkøyet kjører ut fra og til tappen. Inndataområde: -1 til 359°. Verdien -1 definerer at startvinkelen kan variere ved hver dybde ved gjentatte dybdeinnstillinger, for å kunne realisere kortest mulige baner. En verdi mellom 0 og 359 definerer eksplisitt en startvinkel som følges ved hver dybdeinnstilling



### **Beispiel: NC-blokker**

| 8 CYCL DEF 257 | SIRKELTAPPER            |
|----------------|-------------------------|
| Q223=60        | ;DIAM. FERDIGPRODUKT    |
| Q222=60        | ;EMNEDIAM.              |
| Q368=0.2       | ;TOLERANSE FOR SIDE     |
| Q207=500       | ;MATING FRESING         |
| Q351=+1        | ;TYPE FRESING           |
| Q201=-20       | ;DYBDE                  |
| Q202=5         | ;MATEDYBDE              |
| Q206=150       | ;MATING FOR MATEDYB.    |
| Q200=2         | ;SIKKERHETSAVST.        |
| Q203=+0        | ;KOOR. OVERFLATE        |
| Q204=50        | ;2. SIKKERHETSAVST.     |
| Q370=1         | ;BANEOVERLAPPING        |
| Q376=0         | ;STARTVINKEL            |
| 9 CYCL CALL PO | S X+50 Y+50 Z+0 FMAX M3 |

### 5.8 Programmeringseksempler

### Eksempel: frese lomme, tapp og not



| O BEGIN PGM C210 MM                |                                           |
|------------------------------------|-------------------------------------------|
| 1 BLK FORM 0.1 Z X+0 Y+0 Z-40      | Råemnedefinisjon                          |
| 2 BLK FORM 0.2 X+100 Y+100 Z+0     |                                           |
| 3 TOOL DEF 1 L+0 R+6               | Verktøydefinisjon, skrubbing/slettfresing |
| 4 TOOL DEF 2 L+0 R+3               | Verktøydefinisjon, notfres                |
| 5 TOOL CALL 1 Z S3500              | Verktøyoppkalling, skrubbing/slettfresing |
| 6 L Z+250 R0 FMAX                  | Frikjør verktøy                           |
| 7 CYCL DEF 256 REKTANGULÆRE TAPPER | Syklusdefinisjon, utvendig bearbeiding    |
| Q218=90 ;1. SIDELENGDE             |                                           |
| Q424=100 ;EMNEDIMENSJON 1          |                                           |
| Q219=80 ;2. SIDELENGDE             |                                           |
| Q425=100 ;EMNEDIMENSJON 2          |                                           |
| Q220=0 ;HJØRNERADIUS               |                                           |
| Q368=0 ;TOLERANSE FOR SIDE         |                                           |
| Q224=0 ;ROTERINGSPOSISJON          |                                           |
| Q367=0 ;TAPP-POSISJON              |                                           |
| Q207=250 ;MATING FRESING           |                                           |
| Q351=+1 ;TYPE FRESING              |                                           |

i

| Q201=-30 ;DYBDE                     |                                          |
|-------------------------------------|------------------------------------------|
| Q2O2=5 ;MATEDYBDE                   |                                          |
| Q206=250 ;MATING FOR MATEDYBDE      |                                          |
| Q200=2 ;SIKKERHETSAVST.             |                                          |
| Q2O3=+O ;KOOR. OVERFL.              |                                          |
| Q204=20 ;2. S.AVSTAND               |                                          |
| Q370=1 ;BANEOVERLAPPING             |                                          |
| Q437=1 ;TILKJØRINGSPOSISJON         |                                          |
| 8 CYCL CALL POS X+50 Y+50 Z+0 M3    | Syklusoppkalling, utvendig bearbeiding   |
| 9 CYCL DEF 252 SIRKELLOMME          | Syklusdefinisjon, sirkellomme            |
| Q215=0 ;MASKINOPERASJON             |                                          |
| Q223=50 ;SIRKELDIAMETER             |                                          |
| Q368=0.2 ;TOLERANSE FOR SIDE        |                                          |
| Q207=500 ;MATING FRESING            |                                          |
| Q351=+1 ;TYPE FRESING               |                                          |
| Q201=-30 ;DYBDE                     |                                          |
| Q2O2=5 ;MATEDYBDE                   |                                          |
| Q369=0.1 ;TOLERANSE FOR DYBDE       |                                          |
| Q206=150 ;MATING FOR MATEDYB.       |                                          |
| Q338=5 ;MATING SLETTFRESING         |                                          |
| Q200=2 ;SIKKERHETSAVST.             |                                          |
| Q2O3=+O ;KOOR. OVERFLATE            |                                          |
| Q204=50 ;2. SIKKERHETSAVST.         |                                          |
| Q370=1 ;BANEOVERLAPPING             |                                          |
| Q366=1 ;NEDSENKING                  |                                          |
| Q385=750 ;MATING SLETTFRES          |                                          |
| 10 CYCL CALL POS X+50 Y+50 Z+0 FMAX | Syklusoppkalling, sirkellomme            |
| 11 L Z+250 RO FMAX M6               | Verktøybytte                             |
| 12 TOLL CALL 2 Z S5000              | Verktøyoppkalling, notfres               |
| 13 CYCL DEF 254 RUND NOT            | Syklusdefinisjon, not                    |
| Q215=0 ;MASKINOPERASJON             |                                          |
| Q219=8 ;NOTBREDDE                   |                                          |
| Q368=0.2 ;TOLERANSE FOR SIDE        |                                          |
| Q375=70 ;DELSIRKELDIAM.             |                                          |
| Q367=0 ;REFERANSE NOTPOSISJON       | Ingen forposisjonering nødvendig for X/Y |
| Q216=+50 ;SENTRUM 1. AKSE           |                                          |
| Q217=+50 ;SENTRUM 2. AKSE           |                                          |
| Q376=+45 ;STARTVINKEL               |                                          |



| Q248=90       | ;ÅPNINGSVINKEL        |                                  |
|---------------|-----------------------|----------------------------------|
| Q378=180      | ;VINKELTRINN          | Startpunkt 2. Not                |
| Q377=2        | ;ANTALL BEARBEIDINGER |                                  |
| Q207=500      | ;MATING FRESING       |                                  |
| Q351=+1       | ;TYPE FRESING         |                                  |
| Q201=-20      | ; DYBDE               |                                  |
| Q202=5        | ;MATEDYBDE            |                                  |
| Q369=0.1      | ;TOLERANSE FOR DYBDE  |                                  |
| Q206=150      | ;MATING FOR MATEDYB.  |                                  |
| Q338=5        | ;MATING SLETTFRESING  |                                  |
| Q200=2        | ;SIKKERHETSAVST.      |                                  |
| Q203=+0       | ;KOOR. OVERFLATE      |                                  |
| Q204=50       | ;2. SIKKERHETSAVST.   |                                  |
| Q366=1        | ;NEDSENKING           |                                  |
| Q439=0        | ;FORHOLD MATING       |                                  |
| 14 CYCL CALL  | FMAX M3               | Syklusoppkalling, not            |
| 15 L Z+250 R0 | FMAX M2               | Frikjør verktøy, avslutt program |
| 16 END PGM C2 | 10 MM                 |                                  |







Bearbeidingssykluser: maldefinisjoner

### 6.1 Grunnleggende

### Oversikt

TNC har 2 sykluser for direkte fremstilling av punktmaler:

| Syklus                  | Funksjonstast | Side     |
|-------------------------|---------------|----------|
| 220 PUNKTMAL FOR SIRKEL | 220           | Side 175 |
| 221 PUNKTMAL FOR LINJER | 221           | Side 178 |

Følgende bearbeidingssykluser kan kombineres med syklusene 220 og 221:



Hvis du må lage uregelmessige punktmaler, kan du bruke punkttabeller med **CYCL CALL PAT** (se «Punkttabeller" på side 67).

Med funksjonen **PATTERN DEF** står ytterligere regelmessige punktmaler til disposisjon (se «Maldefinisjon PATTERN DEF" på side 59).

| Syklus 200 | BORING                                        |
|------------|-----------------------------------------------|
| Syklus 201 | SLIPING                                       |
| Syklus 202 | UTBORING                                      |
| Syklus 203 | UNIVERSALBORING                               |
| Syklus 204 | SENKING BAKOVER                               |
| Syklus 205 | UNIVERSALDYPBORING                            |
| Syklus 206 | GJENGEBORING NY med Rigid Tapping             |
| Syklus 207 | GJENGEBORING GS NY uten Rigid Tapping         |
| Syklus 208 | FRESEBORING                                   |
| Syklus 209 | GJENGEBORING SPONBRUDD                        |
| Syklus 240 | SENTRERING                                    |
| Syklus 251 | FIRKANTLOMME                                  |
| Syklus 252 | SIRKELLOMME                                   |
| Syklus 253 | NOTFRESING                                    |
| Syklus 254 | RUND NOT (kan bare kombineres med syklus 221) |
| Syklus 256 | FIRKANTTAPP                                   |
| Syklus 257 | SIRKELTAPP                                    |
| Syklus 262 | GJENGEFRESING                                 |
| Syklus 263 | FORSENKNINGSGJENGEFRESING                     |
| Syklus 264 | BOREGJENGEFRESING                             |
| Syklus 265 | HELIKS-BOREGJENGEFRESING                      |
| Syklus 267 | FRESING UTVENDIG GJENGE                       |
|            |                                               |

### 6.2 PUNKTMAL FOR SIRKEL (syklus 220, DIN/ISO: G220)

### Syklusforløp

**1** TNC fører verktøyet i hurtiggang fra gjeldende plassering til startpunktet for første bearbeiding.

Rekkefølge:

- 2. Kjør til sikkerhetsavstanden (spindelakse)
- Kjør til startpunktet i arbeidsplanet
- Kjør til sikkerhetsavstanden over emneoverflaten (spindelakse)
- 2 Fra denne posisjonen utfører TNC den sist definerte bearbeidingssyklusen
- **3** Deretter fører TNC verktøyet i en rett linje eller i en sirkel til startpunktet for neste bearbeiding. Verktøyet befinner seg da i sikkerhetsavstand (eller 2. sikkerhetsavstand)
- 4 Denne prosedyren (1 til 3) gjentas til alle bearbeidinger er utført

### Legg merke til følgende under programmeringen!

Syklus 220 er DEF-aktiv, dvs. at syklus 220 automatisk starter den sist definerte bearbeidingssyklusen.

Hvis du kombinerer én av bearbeidingssyklusene 200 til 209 og 251 til 267 med syklus 220, blir sikkerhetsavstand, emneoverflate og 2. sikkerhetsavstand definert av syklus 220.

### **Syklusparametere**



- Sentrum 1. akse Q216 (absolutt): Sentrum i delsirkelen på arbeidsplanets hovedakse. Inndataområde -99999,9999 til 99999,9999
- Sentrum 2. akse Q217 (absolutt): Sentrum i delsirkelen på arbeidsplanets hjelpeakse. Inndataområde -99999,9999 til 99999,9999
- Delsirkeldiameter Q244: Delsirkelens diameter. Inndataområde 0 til 99999,9999
- Startvinkel Q245 (absolutt): Vinkelen mellom arbeidsplanets hovedakse og startpunktet for første bearbeiding i delsirkelen. Inndataområde -360,000 til 360,000
- Sluttvinkel Q246 (absolutt): Vinkelen mellom arbeidsplanets hovedakse og startpunktet for siste bearbeiding i delsirkelen (gjelder ikke for hele sirkler). Angi en sluttvinkel som er forskjellig fra startvinkelen. Bruk en sluttvinkel som er større enn startvinkelen for å arbeide mot urviseren, og en sluttvinkel som er mindre enn startvinkelen for å arbeide med urviseren. Inndataområde -360,000 til 360,000
- Vinkeltrinn Q247 (inkremental): Vinkelen mellom to bearbeidinger i delsirkelen. Hvis vinkelskrittverdien er lik null, beregner TNC vinkelskrittet ut fra startvinkel, sluttvinkel og antall bearbeidinger. Hvis du angir en vinkelskrittverdi, tar ikke TNC hensyn til sluttvinkelen. Fortegnet på vinkelskrittverdien bestemmer bearbeidingsretningen (– = med urviseren). Inndataområde -360,000 til 360,000
- Antall bearbeidinger Q241: Antall bearbeidinger på delsirkelen. Inndataområde 1 til 99999



- Sikkerhetsavstand Q200 (inkremental): Avstanden mellom verktøyspissen og emneoverflaten. Inndataområde 0 til 99999,9999 alternativ PREDEF
- Koord. emneoverflate Q203 (absolutt): Koordinat for emneoverflaten. Inndataområde -99999,9999 til 99999,9999
- 2. sikkerhetsavstand Q204 (inkremental): Koordinat for spindelaksen der verktøy og emne (oppspenningsutstyr) ikke kan kollidere. Inndataområde 0 til 99999,9999 alternativ PREDEF
- Kjør til sikker høyde Q301: Angi hvordan verktøyet skal bevege seg mellom bearbeidinger:
   0: kjøre til sikkerhetsavstand mellom bearbeidinger
   1: kjøre til 2. sikkerhetsavstand mellom bearbeidinger alternativ PREDEF
- Kjøremåte? Linje=0/sirke1=1 Q365: Definer hvilken bane verktøyet skal bevege seg i mellom bearbeidinger:

0: kjøre i en rettlinjet bane mellom bearbeidinger 1: kjøre i en sirkulær bane mot delsirkeldiameteren mellom bearbeidinger



### **Eksempel: NC-blokker**

| 53 CYCL DEF 22 | O MAL SIRKEL          |
|----------------|-----------------------|
| Q216=+50       | ;SENTRUM 1. AKSE      |
| Q217=+50       | ;SENTRUM 2. AKSE      |
| Q244=80        | ;DELSIRKELDIAM.       |
| Q245=+0        | ;STARTVINKEL          |
| Q246=+360      | ;SLUTTVINKEL          |
| Q247=+0        | ;VINKELTRINN          |
| Q241=8         | ;ANTALL BEARBEIDINGER |
| Q200=2         | ;SIKKERHETSAVST.      |
| Q203=+30       | ;KOOR. OVERFLATE      |
| Q204=50        | ;2. SIKKERHETSAVST.   |
| Q301=1         | ;FLYTT TIL S. HØYDE   |
| Q365=0         | ;KJØREMÅTE            |

### 6.3 PUNKTMAL FOR LINJER (syklus 221, DIN/ISO: G221)

### Syklusforløp

**1** TNC fører verktøyet automatisk fra aktuell posisjon til startpunktet for første bearbeiding

Rekkefølge:

- 2. Kjør til sikkerhetsavstanden (spindelakse)
- Kjør til startpunktet i arbeidsplanet
- Kjør til sikkerhetsavstanden over emneoverflaten (spindelakse)
- 2 Fra denne posisjonen utfører TNC den sist definerte bearbeidingssyklusen
- **3** Deretter fører TNC verktøyet i hovedaksens positive retning til startpunktet for neste bearbeiding. Verktøyet befinner seg da i sikkerhetsavstand (eller 2. sikkerhetsavstand).
- 4 Denne prosedyren (1 til 3) gjentas til alle bearbeidinger i den første linjen er utført. Verktøyet befinner seg ved det siste punktet på den første linjen.
- 5 Deretter fører TNC verktøyet til det siste punktet på den andre linjen og utfører bearbeidingen der
- 6 Derfra fører TNC verktøyet i hovedaksens negative retning til startpunktet for neste bearbeiding
- 7 Denne prosedyren (6) gjentas til alle bearbeidingene på den andre linjen er utført
- 8 Deretter fører TNC verktøyet til startpunktet for neste linje
- 9 Alle øvrige linjer bearbeides med en pendelbevegelse

### Legg merke til følgende under programmeringen!

Syklus 221 er DEF-aktiv, dvs. at syklus 221 automatisk starter den sist definerte bearbeidingssyklusen.

Hvis du kombinerer én av bearbeidingssyklusene 200 til 209 og 251 til 267 med syklus 221, blir sikkerhetsavstand, emneoverflate, 2. sikkerhetsavstand og roteringsposisjon definert av syklus 221.

Hvis du bruker syklus 254 Rund not i kombinasjon med syklus 221, er det ikke mulig med notplassering 0.



# 6.3 PUNKTMAL FOR LINJER (syklus 221, DIN/ISO: G221)

### Syklusparametere



- Startpunkt 1. akse Q225 (absolutt): koordinat for startpunktet på arbeidsplanets hovedakse.
- Sentrum 2. akse Q226 (absolutt): Koordinaten for startpunktet på arbeidsplanets hjelpeakse
- Avstand 1. akse Q237 (inkremental): Avstanden mellom punktene på linjen
- ▶ Avstand 2. akse Q238 (inkremental): Avstanden mellom linjene
- Antall kolonner Q242: Antall bearbeidinger på linjen
- Antall kolonner Q243: Antall linjer
- Roteringsposisjon Q224 (absolutt): svingvinkelen for hele oppsettet. Roteringssentrum ligger i startpunktet.
- SikkerhetsavstandQ200 (inkremental): Avstanden mellom verktøyspissen og emneoverflaten, alternativ PREDEF
- ▶ Koord. emneoverflate Q203 (absolutt): Koordinat for emneoverflaten
- 2. sikkerhetsavstand Q204 (inkremental): Koordinat for spindelaksen der verktøy og emne (oppspenningsutstyr) ikke kan kollidere, alternativ
   PREDEF
- Kjør til sikker høyde Q301: Angi hvordan verktøyet skal bevege seg mellom bearbeidinger:
   0: kjøre til sikkerhetsavstand mellom bearbeidinger
   1: kjøre til 2. sikkerhetsavstand mellom bearbeidinger alternativ PREDEF





### **Eksempel: NC-blokker**

| 54 CYCL DEF 22 | 21 MAL LINJER       |
|----------------|---------------------|
| Q225=+15       | ;STARTPUNKT 1. AKSE |
| Q226=+15       | ;STARTPUNKT 2. AKSE |
| Q237=+10       | ;AVSTAND 1. AKSE    |
| Q238=+8        | ;AVSTAND 2. AKSE    |
| Q242=6         | ;ANTALL KOLONNER    |
| Q243=4         | ;ANTALL LINJER      |
| Q224=+15       | ;ROTERINGSPOSISJON  |
| Q200=2         | ;SIKKERHETSAVST.    |
| Q203=+30       | ;KOOR. OVERFLATE    |
| Q204=50        | ;2. SIKKERHETSAVST. |
| Q301=1         | ;FLYTT TIL S. HØYDE |

### 6.4 Programmeringseksempler

### **Eksempel: hullsirkler**



| O BEGIN PGM BOREB MM           |                         |
|--------------------------------|-------------------------|
| 1 BLK FORM 0.1 Z X+0 Y+0 Z-40  | Råemnedefinisjon        |
| 2 BLK FORM 0.2 Y+100 Y+100 Z+0 |                         |
| 3 TOOL DEF 1 L+0 R+3           | Verktøydefinisjon       |
| 4 TOOL CALL 1 Z S3500          | Verktøyoppkalling       |
| 5 L Z+250 RO FMAX M3           | Frikjør verktøy         |
| 6 CYCL DEF 200 BORING          | Syklusdefinisjon boring |
| Q200=2 ;SIKKERHETSAVST.        |                         |
| Q201=-15 ;DYBDE                |                         |
| Q206=250 ;F MATEDYBDE          |                         |
| Q202=4 ;MATEDYBDE              |                         |
| Q210=0 ;FORSINKELSE            |                         |
| Q203=+0 ;KOOR. OVERFL.         |                         |
| Q204=0 ;2. S.AVSTAND           |                         |
| Q211=0.25 ;FORSINKELSE NEDE    |                         |
| Q395=0.25 ;FORHOLD DYBDE       |                         |

i
| 7 CYCL DEF 220 MAL SIRKEL  | Syklusdefinisjon hullsirkel 1, CYCL 200 hentes frem automatisk,<br>Q200, Q203 og Q204 virker på syklus 220 |
|----------------------------|------------------------------------------------------------------------------------------------------------|
| Q216=+30 ;SENTRUM 1. AKSE  |                                                                                                            |
| Q217=+70 ;SENTRUM 2. AKSE  |                                                                                                            |
| Q244=50 ;DELSIRKELDIAM.    |                                                                                                            |
| Q245=+0 ;STARTVINKEL       |                                                                                                            |
| Q246=+360 ;SLUTTVINKEL     |                                                                                                            |
| Q247=+0 ;VINKELTRINN       |                                                                                                            |
| Q241=10 ;ANTALL            |                                                                                                            |
| Q200=2 ;SIKKERHETSAVST.    |                                                                                                            |
| Q2O3=+O ;KOOR. OVERFL.     |                                                                                                            |
| Q204=100 ;2. S.AVSTAND     |                                                                                                            |
| Q301=1 ;FLYTT TIL S. HØYDE |                                                                                                            |
| Q365=0 ;KJØREMÅTE          |                                                                                                            |
| 8 CYCL DEF 220 MAL SIRKEL  | Syklusdefinisjon hullsirkel 2, CYCL 200 hentes frem automatisk,<br>Q200, Q203 og Q204 virker på syklus 220 |
| Q216=+90 ;SENTRUM 1. AKSE  |                                                                                                            |
| Q217=+25 ;SENTRUM 2. AKSE  |                                                                                                            |
| Q244=70 ;DELSIRKELDIAM.    |                                                                                                            |
| Q245=+90 ;STARTVINKEL      |                                                                                                            |
| Q246=+360 ;SLUTTVINKEL     |                                                                                                            |
| Q247=30 ;VINKELTRINN       |                                                                                                            |
| Q241=5 ;ANTALL             |                                                                                                            |
| Q200=2 ;SIKKERHETSAVST.    |                                                                                                            |
| Q2O3=+O ;KOOR. OVERFL.     |                                                                                                            |
| Q204=100 ;2. S.AVSTAND     |                                                                                                            |
| Q301=1 ;FLYTT TIL S. HØYDE |                                                                                                            |
| Q365=0 ;KJØREMÅTE          |                                                                                                            |
| 9 L Z+250 R0 FMAX M2       | Frikjør verktøy, avslutt program                                                                           |
| 10 END PGM BOREB MM        |                                                                                                            |



6.4 Programmeringseksempler

i





Bearbeidingssykluser: konturlomme, konturkjede

# 7.1 SL-sykluser

# Grunnleggende

Med SL-sykluser kan du sette sammen kompliserte konturer med inntil 12 delkonturer (lommer eller øyer). De enkelte delkonturene legges inn som underprogrammer. TNC beregner den samlede konturen ut fra listen over delkonturer (underprogramnummer) som er angitt i syklus 14 KONTUR.



Hver SL-syklus (alle konturunderprogrammer) har begrenset lagringsplass. Antallet mulige konturelementer avhenger av konturtypen (innvendig/utvendig kontur) antall delkonturer, og maksimalt 8192 konturelementer kan benyttes.

SL-syklusene utfører omfattende og kompliserte interne beregninger og utfører bearbeidinger basert på disse. Av sikkerhetsgrunner bør en grafisk programtest alltid kjøres før selve arbeidet. På den måten kan du enkelt kontrollere om den TNC-beregnede bearbeidingen vil bli riktig utført.

#### Underprogrammenes egenskaper

- Omregning av koordinater er tillatt. Koordinater som er programmert for delkonturer, vil også bli benyttet i etterfølgende underprogrammer hvis de ikke tilbakestilles når syklusen starter.
- TNC ignorerer F-mateverdier og M-tilleggsfunksjoner.
- TNC registrerer en lomme ved å søke rundt en innvendig kontur, f.eks. ved å beskrive konturen med klokka og radiuskorrigering (RR).
- TNC registrerer en øy ved å søke rundt en utvendig kontur, f.eks. ved å beskrive konturen med klokka og radiuskorrigering (RL).
- Underprogrammer kan ikke inneholde koordinater for spindelaksen.
- Du definerer arbeidsplanet i første koordinatsett i underprogrammet. Det er mulig å kombinere tilleggsaksene U, V og W. Første blokk skal i prinsippet inneholde de to aksene for arbeidsplanet.
- Hvis du benytter Q-parametere, skal beregninger og tilordninger alltid utføres i de aktuelle konturunderprogrammene.
- Hvis en ikke lukket kontur er definert i et underprogram, lukker TNC konturen automatisk med en rett linje fra slutt- til startpunktet

Beispiel: Skjema: arbeide med SL-sykluser

| O BEGIN PGM SL2 MM          |
|-----------------------------|
|                             |
| 12 CYCL DEF 14 KONTUR       |
| 13 CYCL DEF 20 KONTURDATA   |
|                             |
| 16 CYCL DEF 21 FORBORING    |
| 17 CYCL CALL                |
|                             |
| 18 CYCL DEF 22 UTFRESING    |
| 19 CYCL CALL                |
|                             |
| 22 CYCL DEF 23 FINKUTT DYP  |
| 23 CYCL CALL                |
|                             |
| 26 CYCL DEF 24 FINKUTT SIDE |
| 27 CYCL CALL                |
|                             |
| 50 L Z+250 RO FMAX M2       |
| 51 LBL 1                    |
|                             |
| 55 LBL 0                    |
| 56 LBL 2                    |
|                             |
| 60 LBL 0                    |
|                             |
| 99 END PGM SL2 MM           |

#### Bearbeidingssyklusenes egenskaper

- TNC fører automatisk verktøyet til sikkerhetsavstand før hver syklus.
- Hvert dybdenivå blir bearbeidet uten at verktøyet løftes opp, og verktøyet føres rundt sidene av øyene.
- For å unngå frikjøringsmerker har TNC en globalt definerbar avrundingsradiusfunksjon for ikke-tangentiale innvendige hjørner. I syklusen 20 kan du programmere en avrundingsradius som påvirker banens sentrum. Avrundingsradiusen gjør at avrundingen som er definert av verktøyradiusen, kan forstørres (gjelder for utfresing og slettfresing av sider).
- Ved sideslettfresing følger TNC konturen i en tangential sirkelbane.
- Ved dybdeslettfresing fører TNC også verktøyet i en tangential sirkelbane mot emnet (f.eks.: spindelakse Z: sirkelbane i plan Z/X).
- TNC bearbeider alltid konturen i en med- eller motbevegelse.



Med Bit 4 for MP7420 definerer du hvor TNC skal plassere verktøyet etter at syklusene 21 til 24 er fullført.

#### Bit 4 = 0:

TNC posisjonerer verktøyet først på verktøyaksen ved syklusens slutt, i den sikre høyden som er definert i syklusen (**Q7**), og deretter på arbeidsplanet, på posisjonen der verktøyet stod ved syklusoppkalling.

#### Bit4 = 1:

Når syklusen er fullført, posisjonerer TNC verktøyet i verktøyaksen utelukkende på den høyden som er definert som sikker i syklusen (**Q7**). Pass på at det ikke oppstår kollisjoner under de etterfølgende posisjoneringene!

Målene for bearbeidingen, som fresedybder, sluttoleranser og sikkerhetsavstand, angir du sentralt i syklus 20 som KONTURDATA.



# Oversikt

| Syklus                            | Funksjonstast         | Side     |
|-----------------------------------|-----------------------|----------|
| 14 KONTUR (obligatorisk)          | 14<br>LBL 1N          | Side 187 |
| 20 KONTURDATA (obligatorisk)      | 20<br>KONTUR-<br>DATA | Side 192 |
| 21 FORBORING (valgfritt)          | 21                    | Side 194 |
| 22 UTFRESING (obligatorisk)       | 22                    | Side 196 |
| 23 SLETTFRESING DYBDE (valgfritt) | 23                    | Side 200 |
| 24 SLETTFRESING SIDE (valgfritt)  | 24                    | Side 202 |

## Utvidede sykluser:

| Syklus                   | Funksjonstast | Side     |
|--------------------------|---------------|----------|
| 270 KONTURSYKLUSDATA     | 278           | Side 204 |
| 25 KONTURKJEDE           | 25            | Side 206 |
| 275 KONTURNOT, TROKOIDAL | 275           | Side 210 |
| 276 KONTURKJEDE 3D       | 276           | Side 215 |

i

7.2 KONTUR (syklus 14, DIN/ISO: G37)

## Legg merke til følgende under programmeringen!

I syklus 14 KONTUR angir du alle underprogrammer som skal overlagres for en samlet kontur.



### Vær oppmerksom på følgende før du programmerer

Syklus 14 er DEF-aktiv, dvs. at den aktiveres i programmet når den er definert.

l syklus 14 kan du angi maksimalt 12 underprogrammer (delkonturer).



## Syklusparametere

- 14 LBL 1...N
- Labelnumre for konturen: Angi alle labelnumre for de underprogrammene som skal overlagres for en kontur. Bekreft hvert nummer med ENT-tasten, og avslutt inntastingen med END-tasten. Inntasting av opptil 12 underprogramnumre fra 1 til 254

# 7.3 Overlagrede konturer

# Grunnleggende

Du kan overlagre lommer og øyer for å lage en ny kontur. På den måten kan du forstørre en lomme med en overlagret lomme eller forminske en øy.



**Beispiel: NC-blokker** 

| 12 | CYCL | DEF | 14.0 | KONTUR      |         |
|----|------|-----|------|-------------|---------|
| 13 | CYCL | DEF | 14.1 | KONTURLABEL | 1/2/3/4 |

i

# Underprogrammer: overlagrede lommer



Programmeringseksemplene nedenfor er konturunderprogrammer som vil bli startet i et hovedprogram i syklus 14 KONTUR.

Lommene A og B er overlagret.

TNC beregner skjæringspunktene  $\mathrm{S}_1$  og  $\mathrm{S}_2.$  Det er ikke nødvendig å programmere disse.

Lommene er programmert som fulle sirkler.

#### Underprogram 1: lomme A

| 51 | LBL 1           |
|----|-----------------|
| 52 | L X+10 Y+50 RR  |
| 53 | CC X+35 Y+50    |
| 54 | C X+10 Y+50 DR- |
| 55 | LBL 0           |
|    |                 |

#### Underprogram 2: lomme B

| 56 LBL 2           |
|--------------------|
| 57 L X+90 Y+50 RR  |
| 58 CC X+65 Y+50    |
| 59 C X+90 Y+50 DR- |
| 60 LBL 0           |



# Summeringsflate

De to delflatene A og B, inklusive den felles overdekte flaten, skal bearbeides:

- Flatene A og B må være lommer.
- Den første lomma (i syklus 14) må begynne utenfor den andre.

## Flate A:

| 51 LBL 1           |
|--------------------|
| 52 L X+10 Y+50 RR  |
| 53 CC X+35 Y+50    |
| 54 C X+10 Y+50 DR- |
| 55 LBL 0           |

## Flate B:

| 6 LBL 2            |   |
|--------------------|---|
| 57 L X+90 Y+50 RR  |   |
| 58 CC X+65 Y+50    |   |
| 59 C X+90 Y+50 DR- |   |
| 50 LBL 0           | ĺ |



i

# Differanseflate

Flate A skal bearbeides bortsett fra den delen som er dekket av B:

Flate A må være en lomme, og B må være en øy.

- A må begynne utenfor B.
- B må begynne innenfor A.

## Flate A:

| 51 LBL 1           |
|--------------------|
| 52 L X+10 Y+50 RR  |
| 53 CC X+35 Y+50    |
| 54 C X+10 Y+50 DR- |
| 55 LBL 0           |

#### Flate B:

| 56 LBL 2           |
|--------------------|
| 57 L X+40 Y+50 RL  |
| 58 CC X+65 Y+50    |
| 59 C X+40 Y+50 DR- |
| 60 LBL 0           |

# Snittflate

Flaten som er dekket av A og B, skal bearbeides. (Flater som er enkeltoverdekket, skal ikke bearbeides.)

A og B må være lommer.

A må begynne innenfor B.

## Flate A:

| 51 LBL 1           |
|--------------------|
| 52 L X+60 Y+50 RR  |
| 53 CC X+35 Y+50    |
| 54 C X+60 Y+50 DR- |
| 55 LBL 0           |

#### Flate B:

| 56 LBL 2           |
|--------------------|
| 57 L X+90 Y+50 RR  |
| 58 CC X+65 Y+50    |
| 59 C X+90 Y+50 DR- |
| 60 LBL 0           |





# 7.4 KONTURDATA (syklus 20, DIN/ISO: G120)

# Legg merke til følgende under programmeringen!

I syklus 20 angir du bearbeidingsinformasjon for underprogrammene med delkonturer.



Syklus 20 er DEF-aktiv, dvs. at syklus 20 aktiveres i bearbeidingsprogrammet når den er definert.

Fortegnet til syklusparameteren for dybde slår fast arbeidsretningen. Hvis du bruker verdien 'dybde = 0', vil TNC utføre den aktuelle syklusen med dybdeverdien 0.

Bearbeidingsinformasjonen i syklus 20 gjelder for syklusene 21 til 24.

Hvis du bruker SL-sykluser i Q-parameterprogrammer, kan du ikke bruke parameter Q1 til Q20 som programparametere.

1



- Fresedybde Q1 (inkremental): Avstanden mellom emneoverflaten og lommebunnen. Inndataområde
   99999,9999 til 99999,9999
- Baneoverlapping Faktor Q2: Q2 x verktøyradius gir sidematingen k. Inndataområde -0,0001 til 1,9999
- Sluttoleranse for side Q3 (inkremental): sluttoleranse i arbeidsplanet. Inndataområde -99999,9999 til 99999,9999
- Sluttoleranse dybde Q4 (inkremental): Sluttoleranse for dybden. Inndataområde • 99999,9999 til 99999,9999
- Koordinat emneoverflate Q5 (absolutt): Absolutt koordinat for emneoverflaten. Inndataområde
   99999,9999 til 99999,9999
- Sikkerhetsavstand Q6 (inkremental): Avstanden mellom verktøyets forside og emneoverflaten. Inndataområde 0 til 99999,9999 alternativ PREDEF
- Sikker høyde Q7 (absolutt): Absolutt høyde, hvor det ikke kan skje kollisjoner med emnet (for mellomposisjoneringer og retur på slutten av syklusen). Inndataområde -99999,9999 til 99999,9999 alternativ PREDEF
- Innvendig avrundingsradius Q8: Avrundingsradius for innvendige hjørner. Den angitte verdien refererer til verktøyets sentrumsbane og brukes for å beregne forsiktige bevegelser mellom konturelementene. Q8 er ikke en radius som TNC legger til som separat konturelement mellom programmerte elementer. Inndataområde 0 til 99999,9999
- ▶ Rotasjonsretning? Q9: Bearbeidingsretning for lommer
  - $\blacksquare$  Q9 = -1 motbevegelse for lomme og øy
  - $\square$  Q9 = +1 medbevegelse for lomme og øy
  - Alternativ PREDEF

Du kan kontrollere og eventuelt overskrive bearbeidingsparameterne under et programavbrudd.





#### **Beispiel: NC-blokker**

Q10

Ζ

05

| 57 CYCL DEF 20 | KONTURDATA           |
|----------------|----------------------|
| Q1=-20         | ;FRESEDYBDE          |
| Q2=1           | ;BANEOVERLAPPING     |
| Q3=+0.2        | ;TOLERANSE FOR SIDE  |
| Q4=0.1         | ;TOLERANSE FOR DYBDE |
| Q5=+30         | ;KOOR. OVERFLATE     |
| Q6=2           | ;SIKKERHETSAVST.     |
| Q7=+80         | ;SIKKER HØYDE        |
| Q8=0.5         | ;AVRUNDINGSRADIUS    |
| Q9=+1          | ;ROTASJONSRETNING    |

# Syklusforløp

- 1 Verktøyet borer med programmert mating **F** fra gjeldende posisjon til første matedybde
- 2 Deretter fører TNC verktøyet tilbake med hurtiggang FMAX og til første matedybde, redusert med stoppavstanden t.
- **3** Systemet beregner stoppavstanden automatisk:
  - Boredybde til 30 mm: t = 0,6 mm
  - Boredybde over 30 mm: t = boredybde/50
  - maksimal stoppavstand: 7 mm
- 4 Deretter borer verktøyet til neste matedybde med angitt mating F
- 5 TNC gjentar disse trinnene (1 til 4) til angitt boredybde er nådd
- 6 Etter en forsinkelse for frikjøring trekkes verktøyet tilbake fra boringsbunnen til startposisjonen med FMAX

### Bruk

Syklus 21 FORBORING beregner innstikkspunktene ut fra sluttoleransene for side og dybde, samt utfresingsverktøyets radius. Innstikkspunktene er samtidig startpunkter for utboring.

# Legg merke til følgende under programmeringen!

Vær oppmerksom på følgende før du programmerer

I en **TOOL CALL**-blokk tar ikke TNC hensyn til en programmert deltaverdi **DR** ved beregning av innstikkspunktene.

På trange steder kan det være at TNC ikke kna utføre forboring med et verktøy som er større enn skrubbeverktøyet.



### Kollisjonsfare!

Med maskinparameter 7441 Bit 0 kan du stille inn om TNC skal vise en feilmelding (Bit 0 = 0) eller ikke (Bit 0 = 1) hvis spindelen ikke går ved syklusoppkalling. Funksjonen må også tilpasses av maskinprodusenten.



- Matedybde Q10 (inkremental): Mål for hvor langt verktøyet skal mates frem (minusfortegn for negativ arbeidsretning –). Inndataområde -99999,9999 til 99999,9999
- Mating for matedybde Q11: Boremating i mm/min. Inndataområde 0 til 99999,9999, alternativ FAUTO, FU, FZ
- Nummer/navn på utfresingsverktøy Q13 hhv. QS13: Nummer eller navn på utfresingsverktøyet. Inndataområde 0 til 32767,9 når nummer angis, og maksimalt 32 tegn når navn angis



#### **Beispiel: NC-blokker**

| 58 CYCL DEF 21 | FORBORING             |
|----------------|-----------------------|
| Q10=+5         | ;MATEDYBDE            |
| Q11=100        | ;MATING FOR MATEDYBDE |
| Q13=1          | ;UTFRESINGSVERKTØY    |



# 7.6 UTFRESING (syklus 22, DIN/ISO: G122)

# Syklusforløp

- 1 TNC plasserer verktøyet over innstikkspunktet. Det blir tatt hensyn til sluttoleransen for side
- 2 Ved første matedybde freser verktøyet konturen innenfra og utover med fresemating Q12
- **3** Samtidig blir øykonturene (her: C/D) frest ut i retning lommekonturen (her: A/B)
- 4 I neste trinn fører TNC verktøyet til neste matedybde, og gjentar utfresingsprosedyren til programmert dybde er nådd
- 5 Til slutt kjører TNC touch-verktøyet til sikker høyde og i bearbeidingsplanet ev. tilbake til posisjonen ved syklusoppkallingen (avhengig av MP7420, bit 4)



1

# Legg merke til følgende under programmeringen!



Bruk ev. en fres med en endetann som har over middels freseeffekt (DIN 844), eller utfør forboring med syklus 21.

Definer nedsenkingen i syklus 22 med parameter Q19 og kolonnene **ANGLE** og **LCUTS** i verktøytabellen:

- Hvis Q19=0 senker TNC verktøyet loddrett ned selv om en senkevinkel (ANGLE) er definert for det aktive verktøyet
- Hvis du angir ANGLE=90° senker TNC verktøyet loddrett ned. Pendelmating Q19 blir da benyttet som innstikksmating.
- Hvis pendelmating Q19 er definert i syklus 22 og ANGLE er definert i verktøytabellen mellom 0,1 og 89,999, fører TNC inn verktøyet i en heliksbevegelse med definert ANGLE
- Hvis pendelmating er definert i syklus 22 uten at ANGLE er definert i verktøytabellen, viser TNC en feilmelding
- Hvis geometriforholdene hindrer at en heliksbevegelse kan brukes (notgeometri), forsøker TNC å bruke en pendelbevegelse. Pendellengden beregnes da ut fra LCUTS og ANGLE (pendellengde = LCUTS / tan ANGLE)

Ved lommekonturer med spisse innvendige hjørner, kan det bli stående igjen restmaterial etter utfresingen hvis du bruker en overlappingsfaktor som er større enn 1. Kontroller spesielt den innerste banen ved hjelp av testgrafikken, og finjuster eventuelt på overlappingsfaktoren. Dermed får du en annen snittinndeling, noe som ofte vil gi ønsket resultat.

Ved etterbearbeiding tar ikke TNC hensyn til en definert slitasjeverdi **DR** på grovbearbeidingsverktøyet.

Matereduksjonen med parameter **Q401** er en FCL3funksjon og er ikke automatisk tilgjengelig etter en programvareoppdatering (se Utviklingsnivå (oppgraderingsfunksjoner) på side 9).



#### Kollisjonsfare!

Med maskinparameter 7441 Bit 0 kan du stille inn om TNC skal vise en feilmelding (Bit 0 = 0) eller ikke (Bit 0 = 1) hvis spindelen ikke går ved syklusoppkalling. Funksjonen må også tilpasses av maskinprodusenten.

Etter at **MP7420 Bit 4=1** er fastsatt, må du programmere den første bevegelsen på arbeidsplanet etter at SLsyklusen er utført med begge koordinatangivelsene, f.eks. L X+80 Y+0 R0 FMAX. Ikke plasser verktøyet **inkrementalt** i nivået etter slutten av syklusen, men alltid på en absolutt posisjon.





- Matedybde: Q10 (inkremental): Mål for hvor langt verktøyet skal mates frem. Inndataområde -99999,9999 til 99999,9999
- Mating for matedybde Q11: innstikkmating i mm/min. Inndataområde 0 til 99999,9999, alternativ FAUTO, FU, FZ
- Mating utfresing Q12: Fresemating i mm/min. Inndataområde 0 til 99999,9999, alternativ FAUTO, FU, FZ
- Grovbearbeidingsverktøy Q18 eller QS18: nummeret på verktøvet som TNC allerede har benyttet til grovbearbeiding. Still inn på inntasting av navn: Trykk på funksjonstasten VERKTØYNAVN. TNC fører automatisk inn anførselstegn oppe når du forlater inndatafeltet. Angi 0 hvis det ikke er utført noen grovbearbeidinger. Hvis du angir et nummer eller et navn her, freser TNC bare ut den delen som grovbearbeidingsverktøvet ikke har kunnet bearbeide. Hvis etterbearbeidingsområdet ikke kan nås fra siden, benytter TNC pendelinnstikk. I så fall må du angi skjærelengde LCUTS og maksimal innstikksvinkel ANGLE for verktøyet i verktøytabellen TOOL.T. TNC vil eventuelt vise en feilmelding. Inndataområde 0 til 32767,9 når nummer angis, og maksimalt 32 tegn når navn angis
- Mating pendling Q19: Pendelmating i mm/min. Inndataområde 0 til 99999,9999, alternativ FAUTO, FU, FZ
- Mating retur Q208: verktøyets bevegelseshastighet i mm/min når det trekkes tilbake etter bearbeidingen. Hvis Q208=0 er programmert, trekker TNC ut verktøyet med mating Q12. Inndataområde 0 til 99999,9999, alternativ FMAX FAUTO, PREDEF

#### **Beispiel: NC-blokker**

| 59 | CYCL DEF 22 | UTFRESING                  |
|----|-------------|----------------------------|
|    | Q10=+5      | ;MATEDYBDE                 |
|    | Q11=100     | ;MATING FOR MATEDYBDE      |
|    | Q12=750     | ;MATING UTFRESING          |
|    | Q18=1       | ;GROVBEARBEIDINGSVERKTØY   |
|    | Q19=150     | ;MATING PENDLING           |
|    | Q208=99999  | ;MATING RETUR              |
|    | Q401=80     | ;MATEREDUKSJON             |
|    | Q404=0      | ;ETTERBEARBEIDINGSSTRATEGI |

- Matefaktor i % Q401: Prosentvis faktor som bearbeidingsmatingen (Q12) reduseres med, når verktøyet kjøres for fullt inn i materialet under utfresingen. Ved bruk av matereduksjonen kan du definere matingen ved utfresing så høyt at du oppnår optimale snittvilkår for baneoverlappingen (Q2) som er definert i syklus 20. Du kan definere redusert mating på overganger eller på trange steder slik du har definert det. Dermed blir den samlede bearbeidingstiden mindre. Inndataområde 0,0001 til 100,0000
- Etterbearbeidingsstrategi Q404: Definer hvordan etterbearbeidingen kan utføres hvis radiusen til etterbearbeidingsverktøyet er større enn halve grovbearbeidingsverktøyet:
  - Q404 = 0

Kjør verktøyet mellom områdene som skal etterbearbeides, til aktuell dybde langs konturen

■ Q404 = 1

Hev verktøyet mellom områdene som skal etterbearbeides, til sikkerhetsavstanden, og kjør til neste freseområde

# 7.7 SLETTFRESING DYBDE (syklus 23, DIN/ISO: G123)

# Syklusforløp

TNC fører verktøyet forsiktig (vertikal tangentiell sirkel) mot flaten som skal bearbeides, hvis det er tilstrekkelig plass. På trange steder senker TNC verktøyet loddrett ned til riktig dybde. Sluttoleransen som gjenstår, freses deretter bort etter utfresingen.

# Legg merke til følgende under programmeringen!



TNC beregner automatisk startpunktet for slettfresing. Startpunktet avhenger av plassforholdene i lomma.

Innkjøringsradiusen for posisjonering i sluttdybden er fast definert internt og er uavhengig av verktøyets innstikksvinkel.



#### Kollisjonsfare!

Med maskinparameter 7441 Bit 0 kan du stille inn om TNC skal vise en feilmelding (Bit 0 = 0) eller ikke (Bit 0 = 1) hvis spindelen ikke går ved syklusoppkalling. Funksjonen må også tilpasses av maskinprodusenten.



- Mating for matedybde Q11: Verktøyets bevegelseshastighet ved innstikk. Inndataområde 0 til 99999,9999, alternativ FAUTO, FU, FZ
- Mating for utfresing Q12: Fresemating. Inndataområde 0 til 99999,9999, alternativ FAUTO, FU, FZ
- Mating retur Q208: verktøyets bevegelseshastighet i mm/min når det trekkes tilbake etter bearbeidingen. Hvis Q208=0 er programmert, trekker TNC ut verktøyet med mating Q12. Inndataområde 0 til 99999,9999, alternativ FMAX, FAUTO, PREDEF



#### **Beispiel: NC-blokker**

| 60 CYCL DEF 23 | FINKUTT | DYP           |
|----------------|---------|---------------|
| Q11=100        | ;MATING | FOR MATEDYBDE |
| Q12=350        | ;MATING | UTFRESING     |
| Q208=99999     | ;MATING | RETUR         |



# 7.8 SLETTFRESING SIDE (syklus 24, DIN/ISO: G124)

# Syklusforløp

TNC kjører verktøyet i en sirkelbane, tangentialt på de enkelte delkonturene. TNC slettfreser hver delkontur separat.

# Legg merke til følgende under programmeringen!



Summen av parameteren for sluttoleranse for side (Q14) og slettfresverktøyets radius må være mindre enn summen av parameteren for sluttoleranse for side (Q3, syklus 20) og utfresingsverktøyets radius.

Selv om syklus 24 kjøres uten utfresing med syklus 22 først, gjelder likevel regnestykket ovenfor. Utfresingsverktøvets radius skal da settes til 0.

Syklus 24 kan også brukes til konturfresing. I så fall må du:

- definere konturen som skal freses, som en separat øy (uten lommebegrensning)
- Angi en større sluttoleranse (Q3) i syklus 20, enn summen av sluttoleranse Q14 og verktøyradiusen som benyttes

TNC beregner automatisk startpunktet for slettfresing. Startpunktet avhenger av plassforholdene i lomma og programmert toleranse i syklus 20. Slik utfører TNC posisjoneringslogikken til startpunktet for bearbeidingen av slettfresingen: Kjør til startpunktet på arbeidsplanet, og kjør deretter til dybden i verktøyets akseretning.

TNC beregner startpunktet også i forhold til rekkefølgen på kjøringen. Hvis du velger slettfresingssyklusen med tasten GOTO og så starter programmet, kan startpunktet ligge på et annet sted enn hvis du kjører programmet i den definerte rekkefølgen.



#### Kollisjonsfare!

Med maskinparameter 7441 Bit 0 kan du stille inn om TNC skal vise en feilmelding (Bit 0 = 0) eller ikke (Bit 0 = 1) hvis spindelen ikke går ved syklusoppkalling. Funksjonen må også tilpasses av maskinprodusenten.



 Rotasjonsretning? Med klokken = -1 Q9: Bearbeidingsretning: +1:Rotering mot urviseren -1:rotering med urviseren Alternativ PREDEF

- Matedybde: Q10 (inkremental): Mål for hvor langt verktøyet skal mates frem. Inndataområde -99999,9999 til 99999,9999
- Mating for matedybde Q11: Innstikksmating. Inndataområde 0 til 99999,9999, alternativ FAUTO, FU, FZ
- Mating for utfresing Q12: Fresemating. Inndataområde 0 til 99999,9999, alternativ FAUTO, FU, FZ
- Sluttoleranse for side Q14 (inkremental): sluttoleranse for gjentatt slettfresing. Det siste sjiktet blir frest bort hvis du angir Q14 = 0. Inndataområde
   99999,9999 til 99999,9999
- Utfresingsverktøy Q438 eller QS438: nummeret på verktøyet som TNC allerede har benyttet til utfresing av konturlomma. Still inn på inntasting av navn: Trykk på funksjonstasten VERKTØYNAVN. TNC fører automatisk inn anførselstegn oppe når du forlater inndatafeltet.

Startpunktet for fremkjøringssirkelen for slettfresingsbanen ligger på den ytterste bearbeidingsbanen for syklus 22, som TNC beregner ut i fra summen av utfresingsradiusen og sidetoleransen Q3 for syklus 20. Inndataområde -1 til +30000,9 ved inntasting av nummer, maksimalt 32 tegn ved inntasting av navn.

**Q438=-1**: Verktøyet som ble brukt sist blir godkjent som utfresingsverktøy (standardforhold)

**Q438=0**: Utfresingsverktøyet blir godkjent med radius 0. Dermed kan du ved hjelp av sluttoleransen Q3 i syklus 20 fastslå avstanden fra startpunktet til konturen.



#### **Beispiel: NC-blokker**

| 61 CYCL DEF 24 | FINKUTT SIDE          |
|----------------|-----------------------|
| Q9=+1          | ;ROTASJONSRETNING     |
| Q10=+5         | ;MATEDYBDE            |
| Q11=100        | ;MATING FOR MATEDYBDE |
| Q12=350        | ;MATING UTFRESING     |
| Q14=+0         | ;TOLERANSE FOR SIDE   |
| Q438=+0        | ;UTFRESINGSVERKTØY    |



# 7.9 KONTURKJEDEDATA (syklus 270, DIN/ISO: G270)

# Legg merke til følgende under programmeringen!

Med denne syklusen kan du - hvis du ønsker - definere ulike egenskaper til syklus 25 KONTURKJEDE og 276 KONTURKJEDE 3D.



#### Vær oppmerksom på følgende før du programmerer

Syklus 270 er DEF-aktiv, dvs. at syklus 270 aktiveres i bearbeidingsprogrammet når den er definert.

TNC nullstiller syklus 270 når du definerer en annen SLsyklus (unntak: syklus 25 og syklus 276).

lkke definer noen radiuskorrektur ved bruk av syklus 270 i kontur-underprogrammet.

Frem- og tilbakekjøringsegenskaper gjennomføres alltid identisk (symmetrisk) av TNC.

Definer syklus 270 før syklus 25 & syklus 276.

1

270 \* ► Framkjøringsmåte/tilbakekjøringsmåte Q390:

- Definisjon av framkjøringsmåte/tilbakekjøringsmåte:
- Q390 = 1: Kjøre fram til konturen tangentialt i en sirkelbue
- Q390 = 2: Kjøre fram til konturen tangentialt på en linje
- Q390 = 3: Kjør loddrett fram til konturen
- Radiuskorr. (0=R0/1=RL/2=RR) Q391: Definisjon av radiuskorrektur:
  - Q391 = 0: Bearbeide definert kontur uten radiuskorrektur
  - Q391 = 1: Bearbeide definert kontur venstrekorrigert
  - Q391 = 2: Bearbeide definert kontur høyrekorrigert
- Fremkjør.radius/tilbakekjør.radius Q392: Gjelder bare når du har valgt tangential fremkjøring i en sirkelbue. Radiusen til innkjøringssirkelen/tilbakekjøringssirkelen. Inndataområde 0 til 99999,9999
- Sentervinkel Q393: Gjelder bare når du har valgt tangential fremkjøring på en sirkelbue. Åpningsvinkel på innkjøringssirkelen. Inndataområde 0 til 99999,9999
- Avstand tilleggspunkt Q394: Gjelder bare når du har valgt tangential fremkjøring til en linje eller loddrett fremkjøring. Avstand fra tilleggspunktet som TNC skal kjøre frem til konturen fra. Inndataområde 0 til 99999,9999

#### **Beispiel: NC-blokker**

| 62 CYCL | DEF 270 | KONTURKJEDEDATA   |
|---------|---------|-------------------|
| Q39     | 90=1    | ;FREMKJØRINGSMÅTE |
| Q39     | 91=1    | ;RADIUSKORREKTUR  |
| Q39     | 92=3    | ;RADIUS           |
| Q3      | 93=+45  | ;SENTERVINKEL     |
| Q3      | 94=+2   | ;AVSTAND          |

# 7.10 KONTURKJEDE (syklus 25, DIN/ISO: G125)

# Syklusforløp

Du kan bearbeide åpne og lukkede konturer med denne syklusen, sammen med syklus 14 **KONTUR**.

Syklus 25 **KONTURKJEDE** gir betydelige fordeler når det gjelder bearbeiding av en kontur med posisjoneringsblokker:

- TNC overvåker bearbeidingen mht. undersnitt og skader på konturen. Konturen bør kontrolleres ved hjelp av en testgrafikk.
- Hvis verktøyradiusen er for stor, kan du etterbearbeide konturen ved de innvendige hjørnene med den automatiske restmaterialeregistreringen
- Bearbeidingen kan alltid utføres med med- eller motbevegelser Typen fresing opprettholdes selv om du speiler konturer i en akse
- Ved flere tilfeller kan TNC kan kjøre verktøyet fram og tilbake langsmed konturen (pendelbearbeiding). Det kan redusere bearbeidingstiden.
- Du kan definere sluttoleranser for skrubbing og slettfresing i flere arbeidsoperasjoner.
- Du kan enkelt stille inn adferden til syklus 25 via syklus 270 KONTURKJEDEDATA



# Merk under programmeringen!



Fortegnet til syklusparameteren for dybde slår fast arbeidsretningen. Hvis du velger Dybde = 0, vil ikke TNC utføre syklusen.

Ved bruk av syklus 25 **KONTURKJEDE** kan du bare definere ett konturunderprogram i syklus 14 **KONTUR**.

Lagringsplassen i en SL-syklus er begrenset. Du kan programmere maksimalt 4090 konturelementer i en SLsyklus.

TNC trenger ikke syklus 20 **KONTURDATA** i forbindelse med syklus 25.

Ikke bruk noen tilkjørings-/frakjøringsblokker i konturunderprogrammet **APPR/DEP**.

Du må ikke gjennomføre noen Q-parameterberegninger i konturunderprogrammet.

Bruk syklusen **KONTURKJEDEDATA** til å stille inn atferden til syklus 25 ved kjøring (se KONTURKJEDEDATA (syklus 270, DIN/ISO: G270) på side 204)



#### Kollisjonsfare!

Slik unngår du kollisjoner:

- Kjededimensjoner bør ikke programmeres direkte etter syklus 25, fordi kjededimensjonene avhenger av verktøyets posisjon ved syklusens slutt
- Kjør frem til en definert (absolutt) posisjon på alle hovedakser, fordi verktøyposisjonen ved syklusens slutt ikke samsvarer med posisjonen når syklusen starter.
- Hvis du bruker APPR- eller DEP-blokker til å kjøre frem til eller tilbake fra konturen, overvåker TNC om disse blokkene kan skade konturen.

Med maskinparameter 7441 Bit 0 kan du stille inn om TNC skal vise en feilmelding (Bit 0 = 0) eller ikke (Bit 0 = 1) hvis spindelen ikke går ved syklusoppkalling. Funksjonen må også tilpasses av maskinprodusenten.





- Fresedybde Q1 (inkremental): Avstanden mellom emneoverflaten og konturbunnen. Inndataområde
   99999,9999 til 99999,9999
- Sluttoleranse for side Q3 (inkremental): Sluttoleranse i arbeidsplanet. Inndataområde
   99999,9999 til 99999,9999
- ▶ Koord. emneoverflate Q5 (absolutt): Absolutt koordinat på emneoverflaten i forhold til emnenullpunktet. Inndataområde -99999,9999 til 99999,9999
- Sikker høyde: Q7 (absolutt): Absolutt høyde hvor verktøy og emne ikke kan kollidere, og verktøyets returposisjon er ved syklusens slutt. Inndataområde -99999,9999 til 99999,9999 alternativ PREDEF
- Matedybde: Q10 (inkremental): Mål for hvor langt verktøyet skal mates frem. Inndataområde -99999,9999 til 99999,9999
- Mating for matedybde Q11: mating ved bevegelser i spindelaksen. Inndataområde 0 til 99999,9999, alternativ FAUTO, FU, FZ
- Mating for fresing Q12: Mating ved bevegelser i arbeidsplanet. Inndataområde 0 til 99999,9999, alternativ FAUTO, FU, FZ
- ► Type? Motfresing = -1 Q15:

Frese i medfres: Tast inn = +1Frese i motfres: Tast inn = -1Frese vekselvis med- og motfres med flere matinger: Tast inn = 0

#### **Beispiel: NC-blokker**

| 62 CYCL DEF 25 | KONTURKJEDE              |
|----------------|--------------------------|
| Q1=-20         | ;FRESEDYBDE              |
| Q3=+0          | ;TOLERANSE FOR SIDE      |
| Q5=+0          | ;KOOR. OVERFLATE         |
| Q7=+50         | ;SIKKER HØYDE            |
| Q10=+5         | ;MATEDYBDE               |
| Q11=100        | ;MATING FOR MATEDYBDE    |
| Q12=350        | ;MATING FRESING          |
| Q15=-1         | ;TYPE FRESING            |
| Q18=0          | ;GROVBEARBEIDINGSVERKTØY |
| Q446=0.01      | ;RESTMATERIALE           |
| Q447=10        | ;FORBINDELSESAVSTAND     |
| Q448=2         | ;BANEFORLENGELSE         |

- Grovbearbeidingsverktøy Q18 eller QS18: nummeret på verktøyet som TNC allerede har benyttet til grovbearbeiding av konturen. Still inn på inntasting av navn: Trykk på funksjonstasten VERKTØYNAVN. TNC fører automatisk inn anførselstegn oppe når du forlater inndatafeltet. Hvis grovbearbeiding ikke ble utført, angir du 0, og så bearbeider TNC konturen så mye som det er maksimalt mulig med det aktive verktøyet. Hvis du angir et navn eller et nummer her, bearbeider TNC bare den konturdelen som ikke kunne bearbeides med grovbearbeidingsverktøyet. Inndataområde 0 til 32767,9 når nummer angis, og maksimalt 32 tegn når navn angis
- Godkjent restmateriale Q446: Fra denne restmaterialtykkelsen skal TNC ikke lenger bearbeide konturen. Standardverdi 0,00 mm. Inndataområde 0 til +9,999
- Største forbindelsesavstand Q447: Maksimal avstand mellom to områder som skal etterbearbeides og som verktøyet, uten å løftes, skal kjøre mellom langs konturen i bearbeidingsdybde. Inndataområde 0 til 999
- Baneforlengelse Q448: Verdi for forlengelsen av verktøybanen ved konturstart og konturslutt. TNC forlenger verktøybanen alltid parallelt med konturen. Fastsett frem- og tilbakekjøringsatferden ved etterbearbeiding via syklus 270. Inndataområde 0 til 99,999

# 7.11 KONTURNOT TROKOIDAL (syklus 275, DIN/ISO: G275)

# Syklusforløp

Du kan bearbeide **åpne** og lukkede konturer med denne syklusen, sammen med syklus 14 **KONTUR**.

Ved virvelfresing kan du bruke større skjæredybde og høyere skjærehastighet, da de ensartede skjærebetingelsene gjør at verktøyet ikke utsettes for slitasjeøkende påvirkning. Ved bruk av skjæreplater kan du utnytte hele skjærelengden og dermed øke sponvolumet per tann. I tillegg skåner virvelfresing maskinmekanikken. Hvis denne fresemetoden i tillegg kombineres med den integrerte adaptive fremskyvningsreguleringen **AFC** (programvarealternativ, se brukerhåndboken Klartekstdialog) kan man oppnå enorme tidsbesparelser.

Avhengig av syklusparametrene er følgende bearbeidingsalternativer tilgjengelige:

- Full bearbeiding: skrubbing, slettfresing side
- Kun skrubbing (grovfresing)
- Kun finkutt side

#### Skrubbing

Konturbeskrivelsen for en åpen not må alltid begynne med en Approach-blokk (**APPR**-blokk).

- 1 Verktøuyet kjører med posisjoneringslogikk til startpunktet for bearbeidingen, som fremgår av parametrene definert i **APPR**blokken og posisjonerer der loddrett på den første fremmatingsdybden
- 2 TNC brotsjer noten i sirkelformede bevegelser til kontgursluttpunktet. Under den sirkelformede bevegelser forskyver TNC verktøyet i bearbeidingsretningen med en brukerdefinert fremmating (Q436). Medfres/motfres for de sirkelformede bevegelsene fastlegges med parameteren Q351
- **3** Ved kontursluttpunktet kjører TNC verktøyet til sikker høyde og posisjonerer tilbake til startpunktet for konturbeskrivelsen
- 4 Denne prosedyren gjentas til den programmerte notdybden er nådd

### Slettfresing

5 Hvis toleransene er definert, slettfreser TNC notveggene, hvis angitt i flere fremmatinger. TNC kjører notveggen ut fra startpunktet definert i APPR-blokken. TNC tar hensyn til medfres/motfres

#### Beispiel: Skjema KONTURNOT, TROKOIDAL

| O BEGIN PGM CYC275 MM              |
|------------------------------------|
| ····                               |
| 12 CYCL DEF 14.0 KONTUR            |
| 13 CYCL DEF 14.1 KONTURLABEL 10    |
| 14 CYCL DEF 275 KONTURNOT VIRVELFR |
| 15 CYCL CALL M3                    |
|                                    |
| 50 L Z+250 RO FMAX M2              |
| 51 LBL 10                          |
| ····                               |
| 55 LBL 0                           |
|                                    |
| 99 FND PGM CYC275 MM               |

# Merk under programmeringen!



Fortegnet til syklusparameteren for dybde slår fast arbeidsretningen. Hvis du velger Dybde = 0, vil ikke TNC utføre syklusen.

Ved bruk av syklus 275 **KONTURNOT VIRVELFRESING** kan du bare definere ett konturunderprogram i syklus 14 **KONTUR**.

I konturunderprogrammet definerer du senterlinjen for noten med alle tilgjengelige banefunksjoner.

Lagringsplassen i en SL-syklus er begrenset. Du kan programmere maksimalt 4090 konturelementer i en SLsyklus.

TNC trenger ikke syklus 20 **KONTURDATA** i forbindelse med syklus 275.

Det er ikke mulig å bearbeide en lukket kontur med syklus 275.



#### Kollisjonsfare!

Slik unngår du kollisjoner:

- Kjededimensjoner bør ikke programmeres direkte etter syklus 275 fordi kjededimensjonene avhenger av verktøyets posisjon ved syklusens slutt
- Kjør frem til en definert (absolutt) posisjon på alle hovedakser, fordi verktøyposisjonen ved syklusens slutt ikke samsvarer med posisjonen når syklusen starter.

Med maskinparameter 7441 Bit 0 kan du stille inn om TNC skal vise en feilmelding (Bit 0 = 0) eller ikke (Bit 0 = 1) hvis spindelen ikke går ved syklusoppkalling. Funksjonen må også tilpasses av maskinprodusenten.

275

- Maskinoperasjon (0/1/2)Q215: Bestemme maskinoperasjon:
  - **0**: skrubbing og slettfresing
  - 1: Bare skrubbing
  - 2: bare slettfresing

TNC utfører også sideslettfresing, hvis sluttoleransen (Q368) er definert med 0

- Notbredde Q219: Angi notbredden hvis du har angitt at notbredden er lik verktøydiameteren. Da kjører TNC verktøyet bare langs den definerte konturen. Inndataområde 0 til 99999,9999
- Sluttoleranse for sideQ368 (inkremental): sluttoleranse i arbeidsplanet.
- Mating per omløp Q436 (absolutt): Verdi som TNC forskyver verktøyet i bearbeidingsretningen med per omløp. Inndataområde: 0 til 99999,9999
- Mating fresing Q207: verktøyets bevegelseshastighet i mm/min ved fresing. Inndataområde 0 til 99999,999, alternativ FAUTO, FU, FZ
- ▶ Type fresing Q351: Fresebearbeidingstype ved M3:
  - +1 = medfres
    -1 = motfres
    alternativ PREDEF



1

- Dybde Q201 (inkremental): Avstanden mellom emneoverflaten og notbunnen. Inndataområde
   99999,9999 til 99999,9999
- Matedybde Q202 (inkremental): Mål for hvor langt verktøyet skal mates frem. Angi en verdi som er større enn 0. Inndataområde 0 til 99999,9999
- Mating for matedybde Q206: Verktøyets bevegelseshastighet i mm/min ved kjøring til dybde. Inndataområde 0 til 99999,999, alternativ FAUTO, FU, FZ
- Mating for slettfresing Q338 (inkremental): Mål for hvor langt verktøyet i spindelaksen skal mates frem ved slettfresing. Q338=0: slettfresing med én mating. Inndataområde 0 til 99999,9999
- Mating for skjæringer Q385: Verktøyets bevegelseshastighet i mm/min ved sideskjæringer. Inndataområde 0 til 99999,9999, alternativ FAUTO, FU, FZ



- Sikkerhetsavstand Q200 (inkremental): Avstanden mellom verktøyets forside og emneoverflaten. Inndataområde 0 til 99999,9999 alternativ PREDEF
- Koordinat emneoverflate Q203 (absolutt): Absolutt koordinat for emneoverflaten. Inndataområde
   99999,9999 til 99999,9999
- 2. Sikkerhetsavstand Q204 (inkremental): Koordinat for spindelaksen der verktøy og emne (oppspenningsutstyr) ikke kan kollidere. Inndataområde 0 til 99999,9999 alternativ PREDEF
- Nedsenkstrategi Q366: Type nedsenkstrategi:
  - 0 = loddrett nedsenking. TNC senker verktøyet loddrett ned uavhengig av innstikksvinkelen ANGLE som er definert i verktøytabellen
  - 1: Uten funksjon
  - 2 = pendelnedsenking. Nedsenkingsvinkelen for det aktive verktøyet må settes til en annen verdi enn ANGLE i ANGLE-kolonnen i verktøytabellen. Hvis ikke, vil TNC vise en feilmelding.
  - Alternativ PREDEF



#### **Beispiel: NC-blokker**

| 8 CYCL DEF 275 | 5 KONTURNOT VIRVELFR. |
|----------------|-----------------------|
| Q215=0         | ;MASKINOPERASJON      |
| Q219=12        | ;NOTBREDDE            |
| Q368=0.2       | ;TOLERANSE FOR SIDE   |
| Q436=2         | ;MATING PER OMLØP     |
| Q207=500       | ;MATING FRESING       |
| Q351=+1        | ;TYPE FRESING         |
| Q201=-20       | ;DYBDE                |
| Q202=5         | ;MATEDYBDE            |
| Q206=150       | ;MATING FOR MATEDYB.  |
| Q338=5         | ;MATING SLETTFRESING  |
| Q385=500       | ;MATING SLETTFRESING  |
| Q200=2         | ;SIKKERHETSAVST.      |
| Q203=+0        | ;KOOR. OVERFLATE      |
| Q204=50        | ;2. SIKKERHETSAVST.   |
| Q366=2         | ;NEDSENKING           |
| 9 CYCL CALL FM | IAX M3                |

1

# 7.12 KONTURKJEDE 3D (syklus 276, DIN/ISO: G276)

# Syklusforløp

Du kan bearbeide åpne og lukkede konturer med denne syklusen, sammen med syklus 14 **KONTUR**. Du kan også etterbearbeide de innvendige hjørnene på konturen med den automatiske restmaterialregistreringen ved behov.

Syklus 276 **KONTURKJEDE 3D** fortolker i sammenligning med syklus **25 KONTUR-KJEDE** også koordinater i verktøyaksen (Z-aksen), som er definert i konturunderprogrammet. På denne måten kan konturer opprettet i CAM-systemet enkelt bearbeides.

#### Bearbeiding av en kontur uten fremmating: fresedybde Q1=0

- 1 Verktøyet kjører med posisjoneringslogikk til startpunktet for bearbeidingen, som fremkommer av det første konturpunktet for den valgte bearbeidingsretningen og den valgte fremkjøringsfunksjonen
- 2 TNC kjører tangentielt til kontur og bearbeider denne til konturslutten
- **3** I enden av konturen føres verktøyet tangentielt bort fra konturen. TNC utfører bortkjøringsfunksjonen på samme måte som fremkjøringsfunksjonen
- 4 Til posisjonerer TNC verktøyet i sikker høyde

#### Bearbeiding av en kontur med fremkjøring: fresedybde Q1 forskjellig fra 0 og fremkjøringsdybde Q10 definert

- 1 Verktøyet kjører med posisjoneringslogikk til startpunktet for bearbeidingen, som fremkommer av det første konturpunktet for den valgte bearbeidingsretningen og den valgte fremkjøringsfunksjonen
- 2 TNC kjører tangentielt til kontur og bearbeider denne til konturslutten
- **3** I enden av konturen føres verktøyet tangentielt bort fra konturen. TNC utfører bortkjøringsfunksjonen på samme måte som fremkjøringsfunksjonen
- **4** Hvis pendlende bearbeiding er valgt (**Q15=0**), kjører TNC til neste fremkjøringsdybde og bearbeider konturen tilbake til det opprinnelige startpunktet. Ellers kjører TNC verktøyet i sikker høyde tilbake til startpunktet for bearbeidingen og her til den neste fremkjøringsdybden. TNC utfører bortkjøringsfunksjonen på samme måte som fremkjøringsfunksjonen
- 5 Denne prosedyren gjentas til den programmerte dybden er nådd
- 6 Til posisjonerer TNC verktøyet i sikker høyde



# Merk under programmeringen!

Den første blokken i konturunderprogrammet må inneholde verdier i alle de tre aksene X, Y og Z.

Fortegnet til syklusparameteren for dybde slår fast arbeidsretningen. Hvis du programmerer dybden = 0 kjører TNC syklusen til koordinatene definert for verktøyaksen i konturunderprogrammet.

Ved bruk av syklus 25 KONTURKJEDE kan du bare definere ett konturunderprogram i syklus 14 KONTUR.

Lagringsplassen i en SL-syklus er begrenset. Du kan programmere maksimalt 4090 konturelementer i en SLsyklus.

TNC trenger ikke syklus 20 KONTURDATA i forbindelse med syklus 276.

Pass på at verktøyet ved syklusoppkall står over emnet, ellers viser TNC en feilmelding.

Bruk syklusen KONTURKJEDEDATA til å stille inn atferden til syklus 276 ved kjøring (se KONTURKJEDEDATA (syklus 270, DIN/ISO: G270) på side 204)

#### Kollisjonsfare!

Slik unngår du kollisjoner:

- Før syklusoppkall, posisjoner verktøyet slik at TNC kan kjøre til konturstartpunktet uten å kollidere. Hvis den faktiske posisjonen til verktøyet ved syklusoppkall er under den sikre høyden, viser TNC en feilmelding.
- Hvis du bruker APPR- eller DEP-blokker til å kjøre frem til eller tilbake fra konturen, overvåker TNC om disse blokkene kan skade konturen.
- Kjededimensjoner bør ikke programmeres direkte etter syklus 276 fordi kjededimensjonene avhenger av verktøvets posisjon ved syklusens slutt
- Kjør frem til en definert (absolutt) posisjon på alle hovedakser, fordi verktøyposisjonen ved syklusens slutt ikke samsvarer med posisjonen når syklusen starter.

Med maskinparameter 7441 Bit 0 kan du stille inn om TNC skal vise en feilmelding (Bit 0 = 0) eller ikke (Bit 0 = 1) hvis spindelen ikke går ved syklusoppkalling. Funksjonen må også tilpasses av maskinprodusenten.





<u>/!\</u>
### Syklusparametere



Fresedybde Q1 (inkremental): Avstanden mellom emneoverflaten og konturbunnen. Hvis fresedybde Q1 = 0 og fremkjøringsdybde Q10 = 0 er definert, bearbeider TNC konturen i henhold til Z-verdiene definert i konturunderprogrammet. Inndataområde • 99999,9999 til 99999,9999

- Sluttoleranse for side Q3 (inkremental): Sluttoleranse i arbeidsplanet. Inndataområde
  99999,9999 til 99999,9999
- Sikker høyde: Q7 (absolutt): Absolutt høyde hvor verktøy og emne ikke kan kollidere, og verktøyets returposisjon er ved syklusens slutt. Inndataområde -99999,9999 til 99999,9999 alternativ PREDEF
- Matedybde: Q10 (inkremental): Mål for hvor langt verktøyet skal mates frem. Fungerer bare hvis fresedybden er definert som forskjellig fra 0. Inndataområde -99999,9999 til 99999,9999
- Mating for matedybde Q11: mating ved bevegelser i spindelaksen. Inndataområde 0 til 99999,9999, alternativ FAUTO, FU, FZ
- Mating for fresing Q12: Mating ved bevegelser i arbeidsplanet. Inndataområde 0 til 99999,9999, alternativ FAUTO, FU, FZ
- ► Type? Motfresing = -1 Q15: Frese i medfres: Tast inn = +1 Frese i motfres: Tast inn = -1 Frese vekselvis med- og motfres med flere matinger: Tast inn = 0

### **Beispiel: NC-blokker**

| 62 CYCL DEF 276 | 5 KONTURKJEDE 3D         |
|-----------------|--------------------------|
| Q1=-20          | ;FRESEDYBDE              |
| Q3=+0           | ;TOLERANSE FOR SIDE      |
| Q7=+50          | ;SIKKER HØYDE            |
| Q10=+5          | ;MATEDYBDE               |
| Q11=100         | ;MATING FOR MATEDYBDE    |
| Q12=350         | ;MATING FRESING          |
| Q15=-1          | ;TYPE FRESING            |
| Q18=0           | ;GROVBEARBEIDINGSVERKTØY |
| Q446=0.01       | ;RESTMATERIALE           |
| Q447=10         | ;FORBINDELSESAVSTAND     |
| Q448=2          | ;BANEFORLENGELSE         |

- Grovbearbeidingsverktøy Q18 eller QS18: nummeret på verktøyet som TNC allerede har benyttet til grovbearbeiding av konturen. Still inn på inntasting av navn: Trykk på funksjonstasten VERKTØYNAVN. TNC fører automatisk inn anførselstegn oppe når du forlater inndatafeltet. Hvis grovbearbeiding ikke ble utført, angir du 0, og så bearbeider TNC konturen så mye som det er maksimalt mulig med det aktive verktøyet. Hvis du angir et navn eller et nummer her, bearbeider TNC bare den konturdelen som ikke kunne bearbeides med grovbearbeidingsverktøyet. Inndataområde 0 til 32767,9 når nummer angis, og maksimalt 32 tegn når navn angis
- Godkjent restmateriale Q446: Fra denne restmaterialtykkelsen skal TNC ikke lenger bearbeide konturen. Standardverdi 0,00 mm. Inndataområde 0 til +9,999
- Største forbindelsesavstand Q447: Maksimal avstand mellom to områder som skal etterbearbeides og som verktøyet, uten å løftes, skal kjøre mellom langs konturen i bearbeidingsdybde. Inndataområde 0 til 999
- Baneforlengelse Q448: Verdi for forlengelsen av verktøybanen ved konturstart og konturslutt. TNC forlenger verktøybanen alltid parallelt med konturen. Inndataområde 0 til 99,999

1

# 7.13 Programmeringseksempler

# 7.13 Programmeringseksempler

# Eksempel: Frese ut og etterbearbeide lomme



| O BEGIN PGM C20 MM               |                                                        |
|----------------------------------|--------------------------------------------------------|
| 1 BLK FORM -10.1 Z X-10 Y+0 Z-40 |                                                        |
| 2 BLK FORM 0.2 X+100 Y+100 Z+0   | Råemnedefinisjon                                       |
| 3 TOOL CALL 1 Z S2500            | Verktøyoppkalling grovbearbeidingsverktøy, diameter 30 |
| 4 L Z+250 RO FMAX                | Frikjør verktøy                                        |
| 5 CYCL DEF 14.0 KONTUR           | Definer konturunderprogram                             |
| 6 CYCL DEF 14.1 KONTURLABEL 1    |                                                        |
| 7 CYCL DEF 20 KONTURDATA         | Definer generelle bearbeidingsparametere               |
| Q1=-20 ;FRESEDYBDE               |                                                        |
| Q2=1 ;BANEOVERLAPPING            |                                                        |
| Q3=+0 ;TOLERANSE FOR SIDE        |                                                        |
| Q4=+0 ;TOLERANSE FOR DYBDE       |                                                        |
| Q5=+0 ;KOOR. OVERFLATE           |                                                        |
| Q6=2 ;SIKKERHETSAVST.            |                                                        |
| Q7=+100 ;SIKKER HØYDE            |                                                        |
| Q8=0.1 ;AVRUNDINGSRADIUS         |                                                        |
| Q9=-1 ;ROTASJONSRETNING          |                                                        |

| 8 CYCL DEF 22 UTFRESING           | Syklusdefinisjon, grovbearbeiding                       |
|-----------------------------------|---------------------------------------------------------|
| Q10=5 ;MATEDYBDE                  |                                                         |
| Q11=100 ;MATING FOR MATEDYBDE     |                                                         |
| Q12=350 ;MATING UTFRESING         |                                                         |
| Q18=0 ;GROVBEARBEIDINGSVERKTØY    |                                                         |
| Q19=150 ;MATING PENDLING          |                                                         |
| Q208=30000 ;MATING RETUR          |                                                         |
| Q401=100 ;MATEFAKTOR              |                                                         |
| Q404=0 ;ETTERBEARBEIDINGSSTRATEGI |                                                         |
| 9 CYCL CALL M3                    | Syklusoppkalling, grovbearbeiding                       |
| 10 L Z+250 RO FMAX M6             | Verktøybytte                                            |
| 11 TOOL CALL 2 Z S3000            | Verktøyoppkalling etterbearbeidingsverktøy, diameter 15 |
| 12 CYCL DEF 22 UTFRESING          | Syklusdefinisjon, etterbearbeiding                      |
| Q10=5 ;MATEDYBDE                  |                                                         |
| Q11=100 ;MATING FOR MATEDYBDE     |                                                         |
| Q12=350 ;MATING UTFRESING         |                                                         |
| Q18=1 ;GROVBEARBEIDINGSVERKTØY    |                                                         |
| Q19=150 ;MATING PENDLING          |                                                         |
| Q208=30000 ;MATING RETUR          |                                                         |
| Q401=100 ;MATEFAKTOR              |                                                         |
| Q404=0 ;ETTERBEARBEIDINGSSTRATEGI |                                                         |
| 13 CYCL CALL M3                   | Syklusoppkalling, etterbearbeiding                      |
| 14 L Z+250 RO FMAX M2             | Frikjør verktøy, avslutt program                        |
|                                   |                                                         |
| 15 LBL 1                          | Konturunderprogram                                      |
| 16 L X+0 Y+30 RR                  |                                                         |
| 17 FC DR- R30 CCX+30 CCY+30       |                                                         |
| 18 FL AN+60 PDX+30 PDY+30 D10     |                                                         |
| 19 FSELECT 3                      |                                                         |
| 20 FPOL X+30 Y+30                 |                                                         |
| 21 FC DR- R20 CCPR+55 CCPA+60     |                                                         |
| 22 FSELECT 2                      |                                                         |
| 23 FL AN-120 PDX+30 PDY+30 D10    |                                                         |
| 24 FSELECT 3                      |                                                         |
| 25 FC X+0 DR- R30 CCX+30 CCY+30   |                                                         |
| 26 FSELECT 2                      |                                                         |
| 27 LBL 0                          |                                                         |
| 28 END PGM C20 MM                 |                                                         |

# 7.13 Programmeringseksempler

# Eksempel: forboring, skrubbing og slettfresing med overlagrede konturer



| O BEGIN PGM C21 MM                  |                                          |
|-------------------------------------|------------------------------------------|
| 1 BLK FORM 0.1 Z X+0 Y+0 Z-40       | Råemnedefinisjon                         |
| 2 BLK FORM 0.2 X+100 Y+100 Z+0      |                                          |
| 3 TOOL CALL 1 Z S2500               | Verktøyoppkalling bor, diameter 12       |
| 4 L Z+250 RO FMAX                   | Frikjør verktøy                          |
| 5 CYCL DEF 14.0 KONTUR              | Definere konturunderprogrammer           |
| 6 CYCL DEF 14.1 KONTURLABEL 1/2/3/4 |                                          |
| 7 CYCL DEF 20 KONTURDATA            | Definer generelle bearbeidingsparametere |
| Q1=-20 ;FRESEDYBDE                  |                                          |
| Q2=1 ;BANEOVERLAPPING               |                                          |
| Q3=+0.5 ;TOLERANSE FOR SIDE         |                                          |
| Q4=+0.5 ;TOLERANSE FOR DYBDE        |                                          |
| Q5=+0 ;KOOR. OVERFLATE              |                                          |
| Q6=2 ;SIKKERHETSAVST.               |                                          |
| Q7=+100 ;SIKKER HØYDE               |                                          |
| Q8=0.1 ;AVRUNDINGSRADIUS            |                                          |
| Q9=-1 ;ROTASJONSRETNING             |                                          |



| 8 CYCL DEF 21 FORBORING           | Syklusdefinisjon, forboring                           |
|-----------------------------------|-------------------------------------------------------|
| Q10=5 ;MATEDYBDE                  |                                                       |
| Q11=250 ;MATING FOR MATEDYBDE     |                                                       |
| Q13=2 ;UTFRESINGSVERKTØY          |                                                       |
| 9 CYCL CALL M3                    | Syklusoppkalling, forboring                           |
| 10 L +250 RO FMAX M6              | Verktøybytte                                          |
| 11 TOOL CALL 2 Z \$3000           | Verktøyoppkalling skrubbing/slettfresing, diameter 12 |
| 12 CYCL DEF 22 UTFRESING          | Syklusdefinisjon, utboring                            |
| Q10=5 ;MATEDYBDE                  |                                                       |
| Q11=100 ;MATING FOR MATEDYBDE     |                                                       |
| Q12=350 ;MATING UTFRESING         |                                                       |
| Q18=0 ;GROVBEARBEIDINGSVERKTØY    |                                                       |
| Q19=150 ;MATING PENDLING          |                                                       |
| Q208=30000 ;MATING RETUR          |                                                       |
| Q401=100 ;MATEFAKTOR              |                                                       |
| Q404=0 ;ETTERBEARBEIDINGSSTRATEGI |                                                       |
| 13 CYCL CALL M3                   | Syklusoppkalling, utboring                            |
| 14 CYCL DEF 23 FINKUTT DYP        | Syklusdefinisjon, slettfresing dybde                  |
| Q11=100 ;MATING FOR MATEDYBDE     |                                                       |
| Q12=200 ;MATING UTFRESING         |                                                       |
| Q208=30000 ;MATING RETUR          |                                                       |
| 15 CYCL CALL                      | Syklusoppkalling, slettfresing dybde                  |
| 16 CYCL DEF 24 FINKUTT SIDE       | Syklusdefinisjon, slettfresing side                   |
| Q9=+1 ;ROTASJONSRETNING           |                                                       |
| Q10=5 ;MATEDYBDE                  |                                                       |
| Q11=100 ;MATING FOR MATEDYBDE     |                                                       |
| Q12=400 ;MATING UTFRESING         |                                                       |
| Q14=+0 ;TOLERANSE FOR SIDE        |                                                       |
| 17 CYCL CALL                      | Syklusoppkalling, slettfresing side                   |
| 18 L Z+250 RO FMAX M2             | Frikjør verktøy, avslutt program                      |

| <u> </u> |
|----------|
| Q        |
| F        |
|          |
| W.       |
| <u> </u> |
| Ð        |
| õ        |
| 5        |
|          |
| Ξ.       |
| Ð        |
| F        |
|          |
| 2        |
| J        |
| F        |
| 0        |
| 5        |
| Ē        |
|          |
| 9        |
| 5        |
|          |

| 19 LBL 1          | Konturunderprogram 1: venstre lomme     |
|-------------------|-----------------------------------------|
| 20 CC X+35 Y+50   |                                         |
| 21 L X+10 Y+50 RR |                                         |
| 22 C X+10 DR-     |                                         |
| 23 LBL 0          |                                         |
| 24 LBL 2          | Konturunderprogram 2: høyre lomme       |
| 25 CC X+65 Y+50   |                                         |
| 26 L X+90 Y+50 RR |                                         |
| 27 C X+90 DR-     |                                         |
| 28 LBL 0          |                                         |
| 29 LBL 3          | Konturunderprogram 3: firkantøy venstre |
| 30 L X+27 Y+50 RL |                                         |
| 31 L Y+58         |                                         |
| 32 L X+43         |                                         |
| 33 L Y+42         |                                         |
| 34 L X+27         |                                         |
| 35 LBL 0          |                                         |
| 36 LBL 4          | Konturunderprogram 4: trekantøy høyre   |
| 39 L X+65 Y+42 RL |                                         |
| 37 L X+57         |                                         |
| 38 L X+65 Y+58    |                                         |
| 39 L X+73 Y+42    |                                         |
| 40 LBL 0          |                                         |
| 41 END PGM C21 MM |                                         |
|                   |                                         |

# Eksempel: konturkjede



| O BEGIN PGM C25 MM             |                                  |
|--------------------------------|----------------------------------|
| 1 BLK FORM 0.1 Z X+0 Y+0 Z-40  | Råemnedefinisjon                 |
| 2 BLK FORM 0.2 X+100 Y+100 Z+0 |                                  |
| 3 TOOL CALL 1 Z S2000          | Verktøyoppkalling, diameter 20   |
| 4 L Z+250 RO FMAX              | Frikjør verktøy                  |
| 5 CYCL DEF 14.0 KONTUR         | Definer konturunderprogram       |
| 6 CYCL DEF 14.1 KONTURLABEL 1  |                                  |
| 7 CYCL DEF 25 KONTURKJEDE      | Definer bearbeidingsparametere   |
| Q1=-20 ;FRESEDYBDE             |                                  |
| Q3=+0 ;TOLERANSE FOR SIDE      |                                  |
| Q5=+0 ;KOOR. OVERFLATE         |                                  |
| Q7=+250 ;SIKKER HØYDE          |                                  |
| Q10=5 ;MATEDYBDE               |                                  |
| Q11=100 ;MATING FOR MATEDYBDE  |                                  |
| Q12=200 ;MATING FRESING        |                                  |
| Q15=+1 ;TYPE FRESING           |                                  |
| 8 CYCL CALL M3                 | Syklusvalg                       |
| 9 L Z+250 R0 FMAX M2           | Frikjør verktøy, avslutt program |

| 10 LBL 1          | Konturunderprogram |
|-------------------|--------------------|
| 11 L X+0 Y+15 RL  |                    |
| 12 L X+5 Y+20     |                    |
| 13 CT X+5 Y+75    |                    |
| 14 L Y+95         |                    |
| 15 RND R7.5       |                    |
| 16 L X+50         |                    |
| 17 RND R7.5       |                    |
| 18 L X+100 Y+80   |                    |
| 19 LBL 0          |                    |
| 20 END PGM C25 MM |                    |



7.13 Pro<mark>gra</mark>mmeringseksempler





Bearbeidingssykluser: sylindermantel

# 8.1 Grunnleggende

# Oversikt over sylindermantelsykluser

| Syklus                                        | Funksjonstast | Side     |
|-----------------------------------------------|---------------|----------|
| 27 SYLINDERMANTEL                             | 27            | Side 229 |
| 28 SYLINDERMANTEL, notfresing                 | 28            | Side 232 |
| 29 SYLINDERMANTEL, stegfresing                | 29            | Side 235 |
| 39 SYLINDERMANTEL, fresing av utvendig kontur | ec            | Side 238 |

# 8.2 SYLINDERMANTEL (syklus 27, DIN/ISO: G127, programvareversjon 1)

# Syklusforløp

Med denne syklusen kan du overføre en definert kontur til en konus på en sylindermantel. Bruk syklus 28 for å frese inn styrespor i sylinderen.

Definer konturen i et underprogram, og legg den inn i syklus 14 (KONTUR).

Underprogrammet inneholder koordinater for en vinkelakse (f.eks. C-akse) og aksen som løper parallelt med denne (f.eks. spindelaksen). Tilgjengelige banefunksjoner er L, CHF, CR, RND, APPR (ikke APPR LCT) og DEP.

Du kan velge om du vil definere vinkelaksen i grader eller i mm (tommer) under syklusdefinisjonen.

- 1 TNC plasserer verktøyet over innstikkspunktet. Det blir tatt hensyn til sluttoleransen for side
- 2 Ved første matedybde freser verktøyet langs den programmerte konturen med fresemating Q12
- **3** Fra enden av konturen fører TNC verktøyet til sikkerhetsavstanden og tilbake til innstikkspunktet
- 4 Trinnene 1 til 3 blir gjentatt til programmert fresedybde Q1er nådd
- **5** Til slutt føres verktøyet tilbake til sikker høyde på verktøyaksen, eller til den sist programmerte posisjonen før syklusen (avhengig av maskinparameter 7420)





# Legg merke til følgende under programmeringen:



Maskinen og TNC må være forberedt for sylinderoverflateinterpolasjon fra maskinprodusentens side. Les alltid informasjonen i maskinhåndboken.



Programmer alltid begge sylindermantelkoordinatene i den første NC-blokken i et konturunderprogram.

Lagringsplassen i en SL-syklus er begrenset. Du kan programmere maksimalt 8192 konturelementer i en SLsyklus.

Fortegnet til syklusparameteren for dybde slår fast arbeidsretningen. Hvis du velger Dybde = 0, vil ikke TNC utføre syklusen.

Bruk en fres med en endetann som har over middels skjæreeffekt (DIN 844).

Sylinderen må spennes opp midt på rundbordet.

Spindelaksen må stå loddrett mot rundbordaksen. Hvis ikke, vil TNC vise en feilmelding.

Du kan også utføre denne syklusen med dreid arbeidsplan.

1

### Syklusparametere



- Fresedybde Q1 (inkremental): Avstanden mellom sylindermantelen og konturbunnen. Inndataområde -99999,9999 til 99999,9999
- Sluttoleranse for side Q3 (inkremental): Sluttoleranse i mantelkonusplanet. Sluttoleransen gjelder i retning mot radiuskorrigeringen. Inndataområde • 99999,9999 til 99999,9999
- Sikkerhetsavstand Q6 (inkremental): Avstanden mellom verktøyets forside og sylindermanteloverflaten. Inndataområde 0 til 99999,9999 alternativ PREDEF
- Matedybde: Q10 (inkremental): Mål for hvor langt verktøyet skal mates frem. Inndataområde -99999,9999 til 99999,9999
- Mating for matedybde Q11: mating ved bevegelser i spindelaksen. Inndataområde 0 til 99999,9999, alternativ FAUT0, FU, FZ
- Mating for fresing Q12: Mating ved bevegelser i arbeidsplanet. Inndataområde 0 til 99999,9999, alternativ FAUTO, FU, FZ
- Sylinderradius Q16: Sylinderradiusen som konturen skal bearbeides på. Inndataområde 0 til 99999.9999
- Type dimension? Grad =0 MM/INCH=1 Q17: Definer koordinater for roteringsaksen i underprogrammet, angitt i grader eller mm (tommer)

### **Beispiel: NC-blokker**

| 63 CYCL DEF 2 | 7 SYLINDERMANTEL      |
|---------------|-----------------------|
| Q1=-8         | ;FRESEDYBDE           |
| Q3=+0         | ;TOLERANSE FOR SIDE   |
| Q6=+0         | ;SIKKERHETSAVST.      |
| Q10=+3        | ;MATEDYBDE            |
| Q11=100       | ;MATING FOR MATEDYBDE |
| Q12=350       | ;MATING FRESING       |
| Q16=25        | ;RADIUS               |
| Q17=0         | ;DIMENSJONSTYPE       |

# 8.3 SYLINDERMANTEL notfresing (syklus 28, DIN/ISO: G128, programvareversjon 1)

# Syklusforløp

Med denne syklusen kan du overføre et styrespor som er definert på konusen til en sylindermantel. I motsetning til i syklus 27 stilles verktøyet i denne syklusen inn slik at veggene løper nesten parallelt når radiuskorreksjon er aktivert. Du får helt parallelle vegger ved å benytte et verktøy som er nøyaktig like stort som notbredden.

Jo mindre verktøyet er i forhold til sporbredden, desto større forvrengninger kan oppstå i forbindelse med sirkelbaner og skrå linjer. For å minimere risikoen for denne typen forvrengninger kan du definere en toleranse med parameter Q21, slik at TNC kan lage sporet med et verktøy notbredden passer så godt som mulig til.

Programmer konturens sentrumsbane og en verdi for verktøyradiuskorreksjon. Ved hjelp av radiuskorreksjonen definerer du om TNC skal lage noten med med- eller motbevegelse.

- 1 TNC plasserer verktøyet over innstikkspunktet
- **2** Ved første matedybde freser verktøyet langs notveggen med fresemating Q12. Parameteren Sluttoleranse for side blir brukt som referanse
- **3** Ved enden av konturen flytter TNC verktøyet mot motsatt notvegg, og kjører tilbake til innstikkspunktet
- 4 Trinnene 2 og 3 blir gjentatt tilprogrammert fresedybde Q1er nådd
- 5 Hvis du har definert toleranse Q21, utfører TNC etterbearbeidingen for å oppnå så parallelle notvegger som mulig.
- 6 Til slutt føres verktøyet tilbake til sikker høyde på verktøyaksen, eller til den sist programmerte posisjonen før syklusen (avhengig av maskinparameter 7420)





## Legg merke til følgende under programmeringen!



Maskinen og TNC må være forberedt for sylinderoverflateinterpolasjon fra maskinprodusentens side. Les alltid informasjonen i maskinhåndboken.



Programmer alltid begge sylindermantelkoordinatene i den første NC-blokken i et konturunderprogram.

Lagringsplassen i en SL-syklus er begrenset. Du kan programmere maksimalt 8192 konturelementer i en SL-syklus.

Fortegnet til syklusparameteren for dybde slår fast arbeidsretningen. Hvis du velger Dybde = 0, vil ikke TNC utføre syklusen.

Bruk en fres med en endetann som har over middels skjæreeffekt (DIN 844).

Sylinderen må spennes opp midt på rundbordet.

Spindelaksen må stå loddrett mot rundbordaksen. Hvis ikke, vil TNC vise en feilmelding.

Du kan også utføre denne syklusen med dreid arbeidsplan.



### Kollisjonsfare!

Med maskinparameter 7441 Bit 0 kan du stille inn om TNC skal vise en feilmelding (Bit 0 = 0) eller ikke (Bit 0 = 1) hvis spindelen ikke går ved syklusoppkalling. Funksjonen må også tilpasses av maskinprodusenten.

### **Syklusparametere**

28

- Fresedybde Q1 (inkremental): Avstanden mellom sylindermantelen og konturbunnen. Inndataområde -99999,9999 til 99999,9999
  - Sluttoleranse for side Q3 (inkremental): Sluttoleranse på notveggen. Sluttoleransen reduserer notbredden med det dobbelte av angitt verdi. Inndataområde • 99999,9999 til 99999,9999
  - Sikkerhetsavstand Q6 (inkremental): Avstanden mellom verktøyets forside og sylindermanteloverflaten. Inndataområde 0 til 99999,9999 alternativ PREDEF
  - Matedybde: Q10 (inkremental): Mål for hvor langt verktøyet skal mates frem. Inndataområde -99999,9999 til 99999,9999
  - Mating for matedybde Q11: mating ved bevegelser i spindelaksen. Inndataområde 0 til 99999,9999, alternativ FAUTO, FU, FZ
  - Mating for fresing Q12: Mating ved bevegelser i arbeidsplanet. Inndataområde 0 til 99999,9999, alternativ FAUTO, FU, FZ
  - Sylinderradius Q16: sylinderradiusen som konturen skal bearbeides på. Inndataområde 0 til 99999,9999
  - Type dimension? Grad =0 MM/INCH=1 Q17: Definer koordinater for roteringsaksen i underprogrammet, angitt i grader eller mm (tommer)
  - ▶ Notbredde Q20: Bredden på noten som skal freses. Inndataområde ● 99999,9999 til 99999,9999
  - ▶ Toleranse? Q21: Hvis du bruker et verktøy som er mindre enn den programmerte notbredden Q20, kan det under kjøringen oppstå uregelmessigheter på notveggen ved sirkler og skrålinjer. Hvis du definerer toleranse Q21, justerer TNC noten under en etterfresingsprosedyre som om noten skulle ha vært bearbeidet med et verktøy som har nøyaktig samme bredde som noten. Med Q21 definerer du et tillatt avvik fra denne perfekte noten. Antallet etterbearbeidingstrinn avhenger av sylinderradiusen, verktøyet som brukes, og notens dybde. Jo mindre toleranse som er definert, desto mer nøyaktig blir noten, men etterfresingen vil også ta lenger tid. Anbefaling: Bruk en toleranse på 0,02 mm. Funksion inaktiv: Anai 0 (arunninnstillina). Inndataområde 0 til 9,9999

### **Beispiel: NC-blokker**

| 63 CYCL DEF 2 | 8 SYLINDERMANTEL      |
|---------------|-----------------------|
| Q1=-8         | ;FRESEDYBDE           |
| Q3=+0         | ;TOLERANSE FOR SIDE   |
| Q6=+0         | ;SIKKERHETSAVST.      |
| Q10=+3        | ;MATEDYBDE            |
| Q11=100       | ;MATING FOR MATEDYBDE |
| Q12=350       | ;MATING FRESING       |
| Q16=25        | ;RADIUS               |
| Q17=0         | ;DIMENSJONSTYPE       |
| Q20=12        | ;NOTBREDDE            |
| Q21=0         | ;TOLERANSE            |

# 8.4 SYLINDERMANTEL stegfresing (syklus 29, DIN/ISO: G129, programvareversjon 1)

## Syklusforløp

Med denne syklusen kan du overføre et steg som er definert på konusen til en sylindermantel. I denne syklusen stiller TNC inn verktøyet slik at veggene alltid løper parallelt når radiuskorreksjon er aktivert. Programmer stegets sentrumsbane og en verdi for verktøyradiuskorrigering. Ved hjelp av radiuskorreksjonen definerer du om TNC skal lage steget med med- eller motbevegelse.

Ved enden av steget legger TNC alltid inn en halvsirkel med en radius på halvparten av stegbredden.

- 1 TNC plasserer verktøyet over startpunktet for bearbeidingen. TNC beregner startpunktet ut fra stegbredden og verktøydiameteren. Startpunktet er forskjøvet en halv stegbredde pluss verktøydiameteren i forhold til det første punktet som er definert i konturunderprogrammet. Radiuskorreksjonen bestemmer om startpunktet skal være til venstre (1, RL=medbevegelse) eller til høyre for steget (2, RR=motbevegelse)
- 2 Etter at TNC har stilt inn den første matedybden, kjører verktøyet tangentialt i en bue mot stegveggen med fresemating Q12. Sluttoleranse for side blir eventuelt tatt hensyn til
- **3** Ved første matedybde freser verktøyet langs stegveggen med fresemating Q12 til tappen er helt ferdig
- **4** Deretter føres verktøyet tangentielt fra stegveggen og tilbake til startpunktet for bearbeidingen
- 5 Trinnene 2 til 4 blir gjentatt til programmert fresedybde Q1er nådd
- 6 Til slutt føres verktøyet tilbake til sikker høyde på verktøyaksen, eller til den sist programmerte posisjonen før syklusen (avhengig av maskinparameter 7420)





# Legg merke til følgende under programmeringen!



Maskinen og TNC må være forberedt for sylinderoverflateinterpolasjon fra maskinprodusentens side. Les alltid informasjonen i maskinhåndboken.



Programmer alltid begge sylindermantelkoordinatene i den første NC-blokken i et konturunderprogram.

Kontroller at verktøyet har nok plass på sidene for innstikk og tilbaketrekking.

Lagringsplassen i en SL-syklus er begrenset. Du kan programmere maksimalt 8192 konturelementer i en SL-syklus.

Fortegnet til syklusparameteren for dybde slår fast arbeidsretningen. Hvis du velger Dybde = 0, vil ikke TNC utføre syklusen.

Sylinderen må spennes opp midt på rundbordet.

Spindelaksen må stå loddrett mot rundbordaksen. Hvis ikke, vil TNC vise en feilmelding.

Du kan også utføre denne syklusen med dreid arbeidsplan.



### Kollisjonsfare!

Med maskinparameter 7441 Bit 0 kan du stille inn om TNC skal vise en feilmelding (Bit 0 = 0) eller ikke (Bit 0 = 1) hvis spindelen ikke går ved syklusoppkalling. Funksjonen må også tilpasses av maskinprodusenten.

### Syklusparametere



- Fresedybde Q1 (inkremental): Avstanden mellom sylindermantelen og konturbunnen. Inndataområde -99999,9999 til 99999,9999
- Sluttoleranse for sideQ3 (inkremental): Sluttoleranse på stegveggen. Sluttoleransen øker stegbredden med det dobbelte av angitt verdi. Inndataområde -99999,9999 til 99999,9999
- Sikkerhetsavstand Q6 (inkremental): Avstanden mellom verktøyets forside og sylindermanteloverflaten. Inndataområde 0 til 99999,9999 alternativ PREDEF
- Matedybde: Q10 (inkremental): Mål for hvor langt verktøyet skal mates frem. Inndataområde -99999,9999 til 99999,9999
- Mating for matedybde Q11: mating ved bevegelser i spindelaksen. Inndataområde 0 til 99999,9999, alternativ FAUT0, FU, FZ
- Mating for fresing Q12: Mating ved bevegelser i arbeidsplanet. Inndataområde 0 til 99999,9999, alternativ FAUTO, FU, FZ
- Sylinderradius Q16: sylinderradiusen som konturen skal bearbeides på. Inndataområde 0 til 99999,9999
- Type dimension? Grad =0 MM/INCH=1 Q17: Definer koordinater for roteringsaksen i underprogrammet, angitt i grader eller mm (tommer)
- Stegbredde Q20: Bredden på steget som skal lages. Inndataområde • 99999,9999 til 99999,9999

### **Beispiel: NC-blokker**

| 63 CYCL DEF 29 | SYLINDERMANTEL STEG   |
|----------------|-----------------------|
| Q1=-8          | ;FRESEDYBDE           |
| Q3=+0          | ;TOLERANSE FOR SIDE   |
| Q6=+0          | ;SIKKERHETSAVST.      |
| Q10=+3         | ;MATEDYBDE            |
| Q11=100        | ;MATING FOR MATEDYBDE |
| Q12=350        | ;MATING FRESING       |
| Q16=25         | ;RADIUS               |
| Q17=0          | ;DIMENSJONSTYPE       |
| Q20=12         | ;STEGBREDDE           |

# 8.5 SYLINDERMANTEL, frese utvendig kontur (syklus 39, DIN/ISO: G139, programvareversjon 1)

# Syklusforløp

Med denne syklusen kan du overføre en definert åpen kontur til en sylindermantel. I denne syklusen stiller TNC inn verktøyet slik at veggen på den freste konturen løper parallelt med sylinderaksen når radiuskorreksjon er aktivert.

l motsetning til i syklusene 28 og 29 definerer du konturen som skal fremstilles, i konturunderprogrammet.

- 1 TNC plasserer verktøyet over startpunktet for bearbeidingen. TNC legger startpunktet forskjøvet rundt verktøydiameteren ved siden av første punkt som er definert i konturunderprogrammet (standardatferd)
- 2 Etter at TNC har stilt inn den første matedybden, kjører verktøyet tangentialt i en bue mot konturen med fresemating Q12. Sluttoleranse for side blir eventuelt tatt hensyn til
- **3** Ved første matedybde freser verktøyet langs stegveggen med fresemating Q12 til konturkjeden er helt ferdig
- 4 Deretter føres verktøyet tangentielt fra stegveggen og tilbake til startpunktet for bearbeidingen
- 5 Trinnene 2 til 4 blir gjentatt til programmert fresedybde Q1er nådd
- 6 Til slutt føres verktøyet tilbake til sikker høyde på verktøyaksen, eller til den sist programmerte posisjonen før syklusen (avhengig av maskinparameter 7420)

Du kan definere fremkjøringsatferden til syklus 39 via maskinparameteren 7680, Bit 16:

Bit 16 = 0:

Utfør tangential frem- og tilbakekjøring.

Bit 16 = 1:

På konturstartpunktet kjører du loddrett til dybden uten å kjøre ut verktøyet tangentialt. Trekk deretter oppover fra kontursluttpunktet, uten at du kjører tilbake tangentialt.



## Legg merke til følgende under programmeringen!



Maskinen og TNC må være forberedt for sylinderoverflateinterpolasjon fra maskinprodusentens side. Les alltid informasjonen i maskinhåndboken.



Programmer alltid begge sylindermantelkoordinatene i den første NC-blokken i et konturunderprogram.

Kontroller at verktøyet har nok plass på sidene for innstikk og tilbaketrekking.

Lagringsplassen i en SL-syklus er begrenset. Du kan programmere maksimalt 8192 konturelementer i en SL-syklus.

Fortegnet til syklusparameteren for dybde slår fast arbeidsretningen. Hvis du velger Dybde = 0, vil ikke TNC utføre syklusen.

Sylinderen må spennes opp midt på rundbordet.

Spindelaksen må stå loddrett mot rundbordaksen. Hvis ikke, vil TNC vise en feilmelding.

Du kan også utføre denne syklusen med dreid arbeidsplan.



### Kollisjonsfare!

Med maskinparameter 7441 Bit 0 kan du stille inn om TNC skal vise en feilmelding (Bit 0 = 0) eller ikke (Bit 0 = 1) hvis spindelen ikke går ved syklusoppkalling. Funksjonen må også tilpasses av maskinprodusenten.

### **Syklusparametere**

- Fresedybde Q1 (inkremental): Avstanden mellom sylindermantelen og konturbunnen. Inndataområde -99999,9999 til 99999,9999
- Sluttoleranse for sideQ3 (inkremental): Sluttoleranse på konturveggen. Inndataområde -99999,9999 til 99999,9999
- Sikkerhetsavstand Q6 (inkremental): Avstanden mellom verktøyets forside og sylindermanteloverflaten. Inndataområde 0 til 99999,9999 alternativ PREDEF
- Matedybde: Q10 (inkremental): Mål for hvor langt verktøyet skal mates frem. Inndataområde -99999,9999 til 99999,9999
- Mating for matedybde Q11: mating ved bevegelser i spindelaksen. Inndataområde 0 til 99999,9999, alternativ FAUTO, FU, FZ
- Mating for fresing Q12: Mating ved bevegelser i arbeidsplanet. Inndataområde 0 til 99999,9999, alternativ FAUTO, FU, FZ
- Sylinderradius Q16: sylinderradiusen som konturen skal bearbeides på. Inndataområde 0 til 99999,9999
- Type dimensjon? Grad =0 MM/INCH=1 Q17: Definer koordinater for roteringsaksen i underprogrammet, angitt i grader eller mm (tommer)

### **Beispiel: NC-blokker**

| 63 CYCL DEF 3 | 9 SYLINDERMAN. KONTUR |
|---------------|-----------------------|
| Q1=-8         | ;FRESEDYBDE           |
| Q3=+0         | ;TOLERANSE FOR SIDE   |
| Q6=+0         | ;SIKKERHETSAVST.      |
| Q10=+3        | ;MATEDYBDE            |
| Q11=100       | ;MATING FOR MATEDYBDE |
| Q12=350       | ;MATING FRESING       |
| Q16=25        | ;RADIUS               |
| Q17=0         | ;DIMENSJONSTYPE       |

# 8.6 Programmeringseksempler

# **Eksempel: Sylindermantel med syklus 27**

### Merk:

- Maskin med B-hode og C-bord
- Spenn opp sylinder midt på rundbord.
- Nullpunkt midt på rundbord



| O BEGIN PGM C27 MM                                    |                                        |
|-------------------------------------------------------|----------------------------------------|
| 1 TOOL CALL 1 Z S2000                                 | Verktøyoppkalling, diameter 7          |
| 2 L Z+250 RO FMAX                                     | Frikjør verktøy                        |
| 3 L X+50 YO RO FMAX                                   | Forposisjoner verktøy midt på rundbord |
| 4 PLANE SPATIAL SPA+0 SPB+90 SPC+0<br>TURN MBMAX FMAX | Dreie                                  |
| 5 CYCL DEF 14.0 KONTUR                                | Definer konturunderprogram             |
| 6 CYCL DEF 14.1 KONTURLABEL 1                         |                                        |
| 7 CYCL DEF 27 SYLINDERMANTEL                          | Definer bearbeidingsparametere         |
| Q1=-7 ;FRESEDYBDE                                     |                                        |
| Q3=+0 ;TOLERANSE FOR SIDE                             |                                        |
| Q6=2 ;SIKKERHETSAVST.                                 |                                        |
| Q10=4 ;MATEDYBDE                                      |                                        |
| Q11=100 ;MATING FOR MATEDYBDE                         |                                        |
| Q12=250 ;MATING FRESING                               |                                        |
| Q16=25 ;RADIUS                                        |                                        |
| Q17=1 ;DIMENSJONSTYPE                                 |                                        |

| 8 L C+0 R0 FMAX M13 M99  | Forposisjoner rundbord, spindel på, kall opp syklus                                          |
|--------------------------|----------------------------------------------------------------------------------------------|
| 9 L Z+250 RO FMAX        | Frikjør verktøy                                                                              |
| 10 PLANE RESET TURN FMAX | Drei tilbake, opphev PLANE-funksjon                                                          |
| 11 M2                    | Programslutt                                                                                 |
| 12 LBL 1                 | Konturunderprogram                                                                           |
| 13 L C+40 X+20 RL        | Innføringer i roteringsaksen i mm (Q17=1), kjøring i X-aksen på grunn<br>av 90° innsvingning |
| 14 L C+50                |                                                                                              |
| 15 RND R7.5              |                                                                                              |
| 16 L X+60                |                                                                                              |
| 17 RND R7.5              |                                                                                              |
| 18 L IC-20               |                                                                                              |
| 19 RND R7.5              |                                                                                              |
| 20 L X+20                |                                                                                              |
| 21 RND R7.5              |                                                                                              |
| 22 L C+40                |                                                                                              |
| 23 LBL 0                 |                                                                                              |
| 24 END PGM C27 MM        |                                                                                              |

# **Eksempel: Sylindermantel med syklus 28**

### Tips:

- Spenn opp sylinder midt på rundbord.
- Maskin med B-hode og C-bord
- Nullpunkt midt på rundbord
- Beskrivelse av sentrumsbane i konturunderprogram



| O BEGIN PGM C28 MM                              |                                              |
|-------------------------------------------------|----------------------------------------------|
| 1 TOOL CALL 1 Z S2000                           | Verktøyoppkalling, verktøyakse Z, diameter 7 |
| 2 L Z+250 RO FMAX                               | Frikjør verktøy                              |
| 3 L X+50 Y+0 R0 FMAX                            | Posisjoner verktøy midt på rundbord          |
| 4 PLANE SPATIAL SPA+O SPB+90 SPC+O<br>TURN FMAX | Dreie                                        |
| 5 CYCL DEF 14.0 KONTUR                          | Definer konturunderprogram                   |
| 6 CYCL DEF 14.1 KONTURLABEL 1                   |                                              |
| 7 CYCL DEF 28 SYLINDERMANTEL                    | Definer bearbeidingsparametere               |
| Q1=-7 ;FRESEDYBDE                               |                                              |
| Q3=+0 ;TOLERANSE FOR SIDE                       |                                              |
| Q6=2 ;SIKKERHETSAVST.                           |                                              |
| Q10=-4 ;MATEDYBDE                               |                                              |
| Q11=100 ;MATING FOR MATEDYBDE                   |                                              |
| Q12=250 ;MATING FRESING                         |                                              |
| Q16=25 ;RADIUS                                  |                                              |
| Q17=1 ;DIMENSJONSTYPE                           |                                              |
| Q20=10 ;NOTBREDDE                               |                                              |
| Q21=0.02 ;TOLERANSE                             | Etterbearbeiding aktivert                    |

| 8 L C+0 R0 FMAX M3 M99   | Forposisjoner rundbord, spindel på, kall opp syklus                                          |
|--------------------------|----------------------------------------------------------------------------------------------|
| 9 L Z+250 RO FMAX        | Frikjør verktøy                                                                              |
| 10 PLANE RESET TURN FMAX | Drei tilbake, opphev PLANE-funksjon                                                          |
| 11 M2                    | Programslutt                                                                                 |
| 12 LBL 1                 | Beskrivelse av sentrumsbane i konturunderprogram                                             |
| 13 L C+40 X+0 RL         | Innføringer i roteringsaksen i mm (Q17=1), kjøring i X-aksen på grunn<br>av 90° innsvingning |
| 14 L X+35                |                                                                                              |
| 15 L C+60 X+52.5         |                                                                                              |
| 16 L X+70                |                                                                                              |
| 17 LBL 0                 |                                                                                              |
| 18 END PGM C28 MM        |                                                                                              |





Bearbeidingssykluser: konturlomme med konturformel

# 9.1 SL-sykluser med kompleks konturformel

# Grunnleggende

Med SL-sykluser og den komplekse konturformelen kan du sette sammen komplekse konturer av delkonturer (lommer eller øyer). De enkelte delkonturene (geometridata) definerer du som separate programmer. På den måten kan alle delkonturer brukes igjen. TNC beregner en samlet kontur ut fra utvalgte delkonturer som du knytter sammen ved hjelp av en konturformel.



Lagringsplassen i en SL-syklus (alle

konturbeskrivelsesprogram) er begrenset til maksimalt **128 konturer**. Maksimalt antall konturelementer avhenger av konturtypen (innvendig/utvendig kontur) og antall konturdefinisjoner. Maksimalt antall konturelementer er **8192**.

SL-sykluser med konturformel forutsetter en strukturert programkonfigurasjon og gir mulighet til å gjenbruke de samme konturene i ulike programmer. Med konturformlene kan du knytte sammen delkonturer til en samlet kontur og definere om det dreier seg om en lomme eller en øy.

Funksjonen med SL-sykluser og konturformler er fordelt på flere TNC-betjeningsenheter og danner grunnlaget for omfattende videreutvikling. Eksempel: Skjema: Arbeide med SL-sykluser og komplekse konturformler

| O BEGIN PGM KONTUR MM             |
|-----------------------------------|
| ····                              |
| 5 SEL CONTOUR «MODEL»             |
| 6 CYCL DEF 20 KONTURDATA          |
| 8 CYCL DEF 22 UTFRESING           |
| 9 CYCL CALL                       |
|                                   |
| 12 CYCL DEF 23 SLETTFRESING DYBDE |
| 13 CYCL CALL                      |
|                                   |
| 16 CYCL DEF 24 SLETTFRESING SIDE  |
| 17 CYCL CALL                      |
| 63 L Z+250 RO FMAX M2             |
| 64 END PGM KONTUR MM              |

1

### Delkonturenes egenskaper

- TNC registrerer i utgangspunktet alle konturer som lommer. Ikke programmer radiuskorrigering. I konturformelen kan du konvertere en lomme til en øy ved å bruke negativt fortegn.
- TNC ignorerer F-mateverdier og M-tilleggsfunksjoner.
- Omregning av koordinater er tillatt. Koordinater som er programmert for delkonturer, vil også bli benyttet i etterfølgende underprogrammer hvis de ikke tilbakestilles når syklusen starter.
- Underprogrammene kan også inneholde koordinater for spindelaksen, men disse blir ignorert.
- Du definerer arbeidsplanet i første koordinatsett i underprogrammet. Tilleggsaksene U, V og W er tillatt.

### Bearbeidingssyklusenes egenskaper

- TNC fører automatisk verktøyet til sikkerhetsavstand før hver syklus.
- Hvert dybdenivå blir bearbeidet uten at verktøyet løftes opp, og verktøyet føres rundt sidene av øyene.
- Radius for innvendige hjørner kan angis. Dermed kiles ikke verktøyet fast. Frikjøringsmerker unngås (gjelder for ytterste bane ved utfresing og sideslettfresing).
- Ved sideslettfresing kjører TNC frem konturen i en tangential sirkelbane
- Ved dybdeslettfresing fører TNC også verktøyet i en tangential sirkelbane mot emnet (f.eks.: spindelakse Z: sirkelbane i plan Z/X).
- TNC bearbeider alltid konturen i en med- eller motbevegelse.



Med maskinparameter 7420 definerer du hvor TNC skal plassere verktøyet etter at syklusene 21 til 24 er fullført.

Målene for bearbeidingen, som fresedybder, sluttoleranser og sikkerhetsavstand, angir du sentralt i syklus 20 som KONTURDATA.

# Eksempel: Skjema: beregning av delkonturer med konturformel

| 0 | BEGIN PGM MODEL MM                 |
|---|------------------------------------|
| 1 | DECLARE CONTOUR QC1 = «SIRKEL1»    |
| 2 | DECLARE CONTOUR QC2 = «SIRKEL31XY» |
| 3 | DECLARE CONTOUR QC3 = «TREKANT»    |
| 4 | DECLARE CONTOUR QC4 = «KVADRAT»    |
| 5 | QC10 = ( QC1   QC3   QC4 ) \ QC2   |
| 6 | END PGM MODEL MM                   |
|   |                                    |
| 0 | BEGIN PGM KREIS1 MM                |
| 1 | CC X+75 Y+50                       |
| 2 | 1 P PR+45 PA+0                     |

3 CP IPA+360 DR+

4 END PGM SIRKEL1 MM

O BEGIN PGM SIRKEL31XY MM

•••



# Velge program med konturdefinisjoner

Med funksjonen **SEL CONTOUR** (velg kontur) velger du et program med konturdefinisjoner som TNC kan bruke:



▶ Vis funksjonstastrekken med spesialfunksjoner.

KONTUR/-PUNKT BEHANDL.

> KOMPLEKS KONTUR-FORMEL

SEL CONTOUR

> UTV.-VINDU

- Velg menyen for funksjoner for kontur- og punktbearbeiding
  Velg menyen for kompleks konturformel
- Trykk på funksjonstasten SEL CONTOUR
- Trykk på funksjonstasten VINDUSVALG: TNC viser et vindu der du kan velge programmet med konturdefinisjoner
- Bekreft ønsket program med piltaster eller museklikk, og bekreft med tasten ENT: TNC registrerer fullstendig banenavn i blokken SEL CONTOUR
- Avslutt funksjonen med tasten END
- Angi hele programnavnet for programmet med konturdefinisjonene, og bekreft med END-tasten.

Programnavnet eller det fullstendige banenavnet til programmet med konturdefinisjonene kan eventuelt angis direkte via tastaturet.



Programmer **SEL CONTOUR**-blokken før SL-syklusene. Syklusen **14 KONTUR** er ikke lenger nødvendig hvis **SEL CONTUR** brukes.



## Definere konturbeskrivelser

Bruk funksjonen **DECLARE CONTOUR** (angi kontur) for å angi filbanen til programmet som TNC skal hente konturbeskrivelser fra. Du kan også velge en separat dybde for disse konturbeskrivelsene (FCL 2-funksjonen):



- ▶ Vis funksjonstastlinjen med spesialfunksjoner
- KONTUR/ PUNKT BEHANDL
- Velg menyen for funksjoner for kontur- og punktbearbeiding
- KOMPLEKS KONTUR-FORMEL DECLARE CONTOUR

UTV.-VINDU

- Velg menyen for kompleks konturformel
- Trykk på funksjonstasten DECLARE CONTOUR
- Angi nummeret for konturbetegnelsen QC, og bekreft med ENT-tasten
- Trykk på funksjonstasten VINDUSVALG: TNC viser et vindu der du kan velge programmet som skal kalles opp
  - Velg ønsket program med konturbeskrivelsen ved hjelp av piltaster eller museklikk, og bekreft med tasten ENT: TNC registrerer fullstendig banenavn i blokken DECLARE CONTOUR
  - Definer separat dybde for den valgte konturen
  - Avslutt funksjonen med tasten END

Programnavnet til programmet med konturbeskrivelsen eller det fullstendige banenavnet til programmet kan også angis direkte via tastaturet.



Med de valgte **QC**-konturbetegnelsene kan du koble sammen ulike konturer ved hjelp av konturformelen.

Hvis du bruker konturer med separat dybde, må du tilordne en dybde til alle delkonturer (ev. tilordne dybde 0)



# Legge inn en kompleks konturformel

Med funksjonstastene kan du knytte ulike konturer til hverandre ved hjelp av en matematisk formel:



KONTUR/-PUNKT BEHANDL.

FORMEL

▶ Vis funksjonstastlinjen med spesialfunksjoner

Velg menyen for funksjoner for kontur- og punktbearbeiding



- Velg menyen for kompleks konturformel
- Trykk på funksjonstasten KONTUR FORMEL: TNC viser følgende funksjonstaster:

| Sammenkoblingsfunksjon                                    | Funksjonstast |
|-----------------------------------------------------------|---------------|
| skåret med<br>f.eks. QC10 = QC1 & QC5                     |               |
| forbundet med<br>f.eks. QC25 = QC7   QC18                 |               |
| forbundet med, men uten snitt<br>f.eks. QC12 = QC5 ^ QC25 |               |
| skåret med komplement fra<br>f.eks. QC25 = QC1 \ QC2      |               |
| Konturområdets komplement<br>f.eks. QC12 = #QC11          | H O           |
| Parentes åpen<br>f.eks. QC12 = QC1 * (QC2 + QC3)          | ¢             |
| Parentes lukket<br>f.eks. QC12 = QC1 * (QC2 + QC3)        | >             |
| Definer enkeltkontur                                      |               |

f.eks. QC12 = QC1



# **Overlagrede konturer**

TNC registrerer i utgangspunktet en programmert kontur som en lomme. Med konturformelfunksjonene er det mulig å konvertere en kontur til en øy

Du kan overlagre lommer og øyer for å lage en ny kontur. På den måten kan du forstørre en lomme med en overlagret lomme eller forminske en øy.

### Underprogrammer: overlagrede lommer



Programmeringseksemplene nedenfor er konturbeskrivelsesprogrammer som er definert i et konturdefinisjonsprogram. Konturdefinisjonsprogrammet åpnes via funksjonen **SEL CONTOUR** i det egentlige hovedprogrammet.

Lommene A og B er overlagret.

TNC beregner skjæringspunktene S1 og S2. Det er ikke nødvendig å programmere disse.

Lommene er programmert som fulle sirkler.





### Konturbeskrivelsesprogram 1: lomme A

| O BEGIN PGM LOMME_A MM |
|------------------------|
| 1 L X+10 Y+50 R0       |
| 2 CC X+35 Y+50         |
| 3 C X+10 Y+50 DR-      |
| 4 END PGM LOMME_A MM   |

### Konturbeskrivelsesprogram 2: Iomme B

| O BEGIN PGM LOMME_B MM |
|------------------------|
| 1 L X+90 Y+50 R0       |
| 2 CC X+65 Y+50         |
| 3 C X+90 Y+50 DR-      |
| 4 END PGM LOMME_B MM   |

### Summeringsflate

De to delflatene A og B, inklusive den felles overdekte flaten, skal bearbeides:

- Flatene A og B må programmeres i separate programmer uten radiuskorrigering.
- I konturformelen summeres flatene A og B med funksjonen Forbundet med.

Konturdefinisjonsprogram:

| 50                                   |
|--------------------------------------|
| 51                                   |
| 52 DECLARE CONTOUR QC1 = «LOMME_A.H» |
| 53 DECLARE CONTOUR QC2 = «LOMME_B.H» |
| 54 QC10 = QC1   QC2                  |
| 55                                   |
| 56                                   |


# 9.1 SL-syklus<mark>er m</mark>ed kompleks konturformel

# Differanseflate

Flate A skal bearbeides bortsett fra den delen som er dekket av B:

- Flatene A og B må programmeres i separate programmer uten radiuskorreksjon.
- I konturformelen trekkes flate B fra flate A med funksjonen Skåret med komplement fra.

Konturdefinisjonsprogram:

| 50 |                                   |
|----|-----------------------------------|
| 51 |                                   |
| 52 | DECLARE CONTOUR QC1 = «LOMME_A.H» |
| 53 | DECLARE CONTOUR QC2 = «LOMME_B.H» |
| 54 | QC10 = QC1 \ QC2                  |
| 55 |                                   |
| 56 |                                   |

### Snittflate

Flaten som er dekket av A og B, skal bearbeides. (Flater som er enkeltoverdekket, skal ikke bearbeides.)

- Flatene A og B må programmeres i separate programmer uten radiuskorreksjon.
- I konturformelen summeres flatene A og B med funksjonen Skåret med.

Konturdefinisjonsprogram:

| 50                                   |
|--------------------------------------|
| 51                                   |
| 52 DECLARE CONTOUR QC1 = «LOMME_A.H» |
| 53 DECLARE CONTOUR QC2 = «LOMME_B.H» |
| 54 QC10 = QC1 & QC2                  |
| 55                                   |
| 56                                   |

# Bruke konturer med SL-sykluser



Bearbeiding av den definerte samlekonturen utføres med SL-syklusene 20-24 (se «Oversikt" på side 186).





# Eksempel: overlagrede konturer med konturformel skrubbing og slettfresing



| O BEGIN PGM KONTUR MM          |                                          |
|--------------------------------|------------------------------------------|
| 1 BLK FORM 0.1 Z X+0 Y+0 Z-40  | Råemnedefinisjon                         |
| 2 BLK FORM 0.2 X+100 Y+100 Z+0 |                                          |
| 3 TOOL DEF 1 L+0 R+2.5         | Verktøydefinisjon, grovfres              |
| 4 TOOL DEF 2 L+0 R+3           | Verktøydefinisjon, slettfres             |
| 5 TOOL CALL 1 Z S2500          | Verktøyoppkalling, grovfres              |
| 6 L Z+250 RO FMAX              | Frikjør verktøy                          |
| 7 SEL CONTOUR «MODEL»          | Angi konturdefinisjonsprogram            |
| 8 CYCL DEF 20 KONTURDATA       | Definer generelle bearbeidingsparametere |
| Q1=-20 ;FRESEDYBDE             |                                          |
| Q2=1 ;BANEOVERLAPPING          |                                          |
| Q3=+0.5 ;TOLERANSE FOR SIDE    |                                          |
| Q4=+0.5 ;TOLERANSE FOR DYBDE   |                                          |
| Q5=+0 ;KOOR. OVERFLATE         |                                          |
| Q6=2 ;SIKKERHETSAVST.          |                                          |
| Q7=+100 ;SIKKER HØYDE          |                                          |
| Q8=0.1 ;AVRUNDINGSRADIUS       |                                          |
| Q9=-1 ;ROTASJONSRETNING        |                                          |
| 9 CYCL DEF 22 UTFRESING        | Syklusdefinisjon, utboring               |
| Q10=5 ;MATEDYBDE               |                                          |

| Syklusoppkalling, utboring           |
|--------------------------------------|
| Verktøyoppkalling, slettfres         |
| Syklusdefinisjon, slettfresing dybde |
|                                      |
|                                      |
| Syklusoppkalling, slettfresing dybde |
| Syklusdefinisjon, slettfresing side  |
|                                      |
|                                      |
|                                      |
|                                      |
|                                      |
| Syklusoppkalling, slettfresing side  |
| Frikjør verktøy, avslutt program     |
|                                      |
|                                      |

Konturdefinisjonsprogram med konturformel:

| O BEGIN PGM MODEL MM                   | Konturdefinisjonsprogram                                    |
|----------------------------------------|-------------------------------------------------------------|
| 1 DECLARE CONTOUR QC1 = «SIRKEL1»      | Definisjon av konturbetegnelse for programmet «SIRKEL1»     |
| 2 FN 0: Q1 =+35                        | Verditilordning for benyttede parametere i PGM «SIRKEL31XY» |
| 3 FN 0: Q2 =+50                        |                                                             |
| 4 FN 0: Q3 =+25                        |                                                             |
| 5 DECLARE CONTOUR QC2 = «SIRKEL31XY»   | Definisjon av konturbetegnelse for programmet «SIRKEL31XY»  |
| 6 DECLARE CONTOUR QC3 = «TREKANT»      | Definisjon av konturbetegnelse for programmet «TREKANT»     |
| 7 DECLARE CONTOUR QC4 = «KVADRAT»      | Definisjon av konturbetegnelse for programmet «KVADRAT»     |
| 8 QC10 = ( QC 1   QC 2 ) \ QC 3 \ QC 4 | Konturformel                                                |
| 9 END PGM MODEL MM                     |                                                             |

Konturbeskrivelsesprogrammer:

| O BEGIN PGM KREIS1 MM     | Konturbeskrivelsesprogram: sirkel høyre    |
|---------------------------|--------------------------------------------|
| 1 CC X+65 Y+50            |                                            |
| 2 L PR+25 PA+0 R0         |                                            |
| 3 CP IPA+360 DR+          |                                            |
| 4 END PGM SIRKEL1 MM      |                                            |
|                           |                                            |
| O BEGIN PGM SIRKEL31XY MM | Konturbeskrivelsesprogram: sirkel venstre  |
| 1 CC X+Q1 Y+Q2            |                                            |
| 2 LP PR+Q3 PA+O RO        |                                            |
| 3 CP IPA+360 DR+          |                                            |
| 4 END PGM SIRKEL31XY MM   |                                            |
|                           |                                            |
| O BEGIN PGM TREKANT MM    | Konturbeskrivelsesprogram: trekant høyre   |
| 1 L X+73 Y+42 R0          |                                            |
| 2 L X+65 Y+58             |                                            |
| 3 L X+58 Y+42             |                                            |
| 4 L X+73                  |                                            |
| 5 END PGM TREKANT MM      |                                            |
|                           |                                            |
| O BEGIN PGM KVADRAT MM    | Konturbeskrivelsesprogram: kvadrat venstre |
| 1 L X+27 Y+58 R0          |                                            |
| 2 L X+43                  |                                            |
| 3 L Y+42                  |                                            |
| 4 L X+27                  |                                            |
| 5 L Y+58                  |                                            |
| 6 END PGM KVADRAT MM      |                                            |

# 9.2 SL-sykluser med enkel konturformel

# Grunnleggende

Med SL-sykluser og den enkle konturformelen kan du sette sammen konturer av opptil 9 delkonturer (lommer eller øyer) på en enkel måte. De enkelte delkonturene (geometridata) definerer du som separate programmer. På den måten kan alle delkonturer brukes igjen. TNC beregner en samlet kontur ut fra de valgte delkonturene.



En SL-syklus (alle konturdefinisjonsprogrammer) kan inneholde maksimalt **128 konturer**. Maksimalt antall konturelementer avhenger av konturtypen (innvendig/utvendig kontur) og antall konturdefinisjoner. Maksimalt antall konturelementer er ca. **8192**.

# Delkonturenes egenskaper

- TNC registrerer i utgangspunktet alle konturer som lommer. Ikke programmer radiuskorrigering.
- TNC ignorerer F-mateverdier og M-tilleggsfunksjoner.
- Omregning av koordinater er tillatt. Koordinater som er programmert for delkonturer, vil også bli benyttet i etterfølgende underprogrammer hvis de ikke tilbakestilles når syklusen starter.
- Underprogrammene kan også inneholde koordinater for spindelaksen, men disse blir ignorert.
- Du definerer arbeidsplanet i første koordinatsett i underprogrammet. Tilleggsaksene U, V og W er tillatt.

Eksempel: Skjema: Arbeide med SL-sykluser og kompleks konturformel

O BEGIN PGM CONTDEF MM

| • • | •       |     |  |
|-----|---------|-----|--|
| 5   | CONTOUR | DEF |  |

- P1= «POCK1.H»
- I2 = «ISLE2.H» DEPTH5
- I3 «ISLE3.H» DEPTH7.5

6 CYCL DEF 20 KONTURDATA ...

8 CYCL DEF 22 UTFRESING ...

9 CYCL CALL

•••

12 CYCL DEF 23 SLETTFRESING DYBDE ...

13 CYCL CALL

...

- 16 CYCL DEF 24 SLETTFRESING SIDE ...
- 17 CYCL CALL
- 63 L Z+250 R0 FMAX M2
- 64 END PGM CONTDEF MM

# Bearbeidingssyklusenes egenskaper

- TNC fører automatisk verktøyet til sikkerhetsavstand før hver syklus.
- Hvert dybdenivå blir bearbeidet uten at verktøyet løftes opp, og verktøyet føres rundt sidene av øyene.
- Radius for innvendige hjørner kan angis. Dermed kiles ikke verktøyet fast. Frikjøringsmerker unngås (gjelder for ytterste bane ved utfresing og sideslettfresing).
- Ved sideslettfresing kjører TNC frem konturen i en tangential sirkelbane
- Ved dybdeslettfresing fører TNC også verktøyet i en tangential sirkelbane mot emnet (f.eks.: spindelakse Z: sirkelbane i plan Z/X).
- TNC bearbeider alltid konturen i en med- eller motbevegelse.



Med maskinparameter 7420 definerer du hvor TNC skal plassere verktøyet etter at syklusene 21 til 24 er fullført.

Målene for bearbeidingen, som fresedybder, sluttoleranser og sikkerhetsavstand, angir du sentralt i syklus 20 som KONTURDATA.

# Legge inn en enkel konturformel

Med funksjonstastene kan du knytte ulike konturer til hverandre ved hjelp av en matematisk formel:



▶ Vis funksjonstastlinjen med spesialfunksjoner

KONTUR/-PUNKT BEHANDL.

DEF

- Velg menyen for funksjoner for kontur- og punktbearbeiding
- Trykk på funksjonstasten CONTOUR DEF: TNC starter inntastingen av konturformelen
- Velg eller angi direkte navnet til den første delkonturen via funksjonstasten UTVALGSVINDU. Den første delkonturen må alltid være den dypeste lomma. Bekreft med ENT-tasten
- Bestem per funksjonstast om neste kontur er en lomme eller en øy. Bekreft med ENT-tasten
- Velg eller angi direkte navnet til den andre delkonturen via funksjonstasten UTVALGSVINDU. Bekreft med tasten ENT.
- Angi dybde på andre delkontur om nødvendig, og bekreft med ENT-tasten
- Fortsett dialogen som beskrevet, til du har angitt alle delkonturer
- Begynn alltid listen over delkonturene med den dypeste lomma.
- Hvis konturen er definert som øy, registreres den angitte høyden som øyhøyde. Den angitte verdien (uten fortegn) refererer til emneoverflaten.
- Hvis dybden er angitt til 0, gjelder den dybden som er definert i syklus 20, for lommene. Øyene vil da være like høye som emneoverflaten!

# Bruke konturer med SL-sykluser



Bearbeiding av den definerte samlekonturen utføres med SL-syklusene 20-24 (se «Oversikt" på side 186).



9.2 SL-sy<mark>klu</mark>ser med enkel konturformel





Bearbeidingssykluser: planfresing

# 10.1 Grunnleggende

# Oversikt

TNC har fire sykluser for bearbeiding av flater med følgende egenskaper:

Hentet fra CAD-/CAM-system

- Jevn rettvinklet
- Jevn skjevvinklet
- Bøyd
- Vridd

| Syklus                                                                                   | Funksjonstast            | Side     |
|------------------------------------------------------------------------------------------|--------------------------|----------|
| 30 KJØRE 3D-DATA<br>For planfresing av 3D-data med flere<br>matinger                     | 30<br>3D-DATA<br>FRESING | Side 263 |
| 230 PLANFRES<br>For jevne, rettvinklede flater                                           | 230                      | Side 265 |
| 231 SKRÅFLATE<br>For skjevvinklede, bøyde og skadde<br>flater                            | 231                      | Side 267 |
| 232 PLANFRES<br>For jevne, rettvinklede flater med<br>toleranseverdier og flere matinger | 232                      | Side 271 |

# 10.2 KJØRE 3D-DATA (syklus 30, DIN/ISO: G60)

# Syklusforløp

- 1 TNC kjører verktøyet med hurtiggang FMAX fra den aktuelle posisjonen i spindelaksen til sikkerhetsavstand over maksimumspunktet som er programmert i syklusen
- 2 Deretter fører TNC verktøyet med FMAX i arbeidsplanet til minimumspunktet som er programmert i syklusen
- **3** Derfra føres verktøyet med mating for dybdemating til første konturpunkt
- 4 Deretter bearbeider TNC alle punktene som er lagret i det angitte programmet, med **fresemating**. Med jevne mellomrom fører TNC om nødvendig verktøyet til **sikkerhetsavstand**, for å hoppe over områder som ikke er bearbeidet
- 5 Til slutt kjører TNC verktøyet med FMAX tilbake til sikkerhetsavstand

# Merk under programmeringen!



Med syklus 30 kan du spesielt kjøre eksternt opprettede dialogprogrammer med klartekst i flere matinger.

# **Syklusparametere**

- 30 3D-DATA FRESING
- Filnavn 3D-data: Angi navnet på programmet der konturdataene er lagret. Angi hele filbanen hvis filen ikke ligger i den aktuelle katalogen. Maksimalt 254 tegn kan tastes inn.
  - MIN-punktområde: Minimumspunktet (X-, Y- og Z-koordinaten) for området som skal freses. Inndataområde -99999,9999 til 99999,9999
  - MAX-punktområde: Maksimumspunktet (X-, Y- og Z-koordinaten) for området som skal freses. Inndataområde -99999,9999 til 99999,9999
  - Sikkerhetsavstand 1 (inkremental): Avstanden mellom verktøyspissen og emneoverflaten ved hurtiggangbevegelser. Inndataområde 0 til 99999,9999
  - Matedybde 2 (inkremental): Mål for hvor langt verktøyet skal mates frem. Inndataområde -99999,9999 til 99999,9999
  - Mating for matedybde 3: Verktøyets bevegelseshastighet i mm/min ved nedsenking. Inndataområde 0 til 99999,999, alternativ FAUTO
  - Mating for fresing 4: Verktøyets bevegelseshastighet i mm/min ved fresing. Inndataområde 0 til 99999,9999, alternativ FAUTO
  - Tilleggsfunksjon M: Valgfri programmering av opptil to tilleggsfunksjoner, f.eks. M13. Inndataområde 0 til 999





### **Eksempel: NC-blokker**

| 64 | CYCL | DEF | 30.0 | KJØR 3D-DATA      |
|----|------|-----|------|-------------------|
| 65 | CYCL | DEF | 30.1 | PGM DIGIT.: BSP.H |
| 66 | CYCL | DEF | 30.2 | X+0 Y+0 Z-20      |
| 67 | CYCL | DEF | 30.3 | X+100 Y+100 Z+0   |
| 68 | CYCL | DEF | 30.4 | AVST 2            |
| 69 | CYCL | DEF | 30.5 | MATING -5 F100    |
| 70 | CYCL | DEF | 30.6 | F350 M8           |

Bearbeidingssykluser: planfresing

# 10.3 PLANFRESING (syklus 230, DIN/ISO: G230)

# Syklusforløp

- 1 TNC fører verktøyet med hurtiggang **FMAX** fra den aktuelle posisjonen i arbeidsplanet til startpunktet 1. TNC forskyver verktøyet mot venstre og oppover tilsvarende lengden på verktøyradiusen
- 2 Deretter føres verktøyet med FMAX til sikkerhetsavstanden i spindelaksen, og deretter med mating for matedybde til programmert startposisjon i spindelaksen
- **3** Deretter føres verktøyet med programmert fresemating til sluttpunktet **2**. TNC beregner sluttpunktet ut fra programmert startpunkt, programmert lengde og verktøyradius.
- **4** TNC flytter verktøyet med mating for fresing til startpunktet for neste linje. TNC beregner bevegelsen ut fra programmert bredde og antall snitt
- 5 Deretter føres verktøyet tilbake i negativ retning for 1. akse
- 6 Planfresingen repeteres til hele den programmerte flaten er bearbeidet
- 7 Til slutt kjører TNC verktøyet med FMAX tilbake til sikkerhetsavstand

# Legg merke til følgende under programmeringen!



TNC fører først verktøyet fra aktuell posisjon på arbeidsplanet og deretter til startpunktet på spindelaksen.

Forposisjoner verktøyet slik at det ikke kan kollidere med emnet eller oppspenningsutstyret.



# Kollisjonsfare!

Med maskinparameter 7441 Bit 0 kan du stille inn om TNC skal vise en feilmelding (Bit 0 = 0) eller ikke (Bit 0 = 1) hvis spindelen ikke går ved syklusoppkalling. Funksjonen må også tilpasses av maskinprodusenten.



# **Syklusparametere**



- Startpunkt 1. akse Q225 (absolutt): Minimumspunktkoordinat for flaten som skal planfreses på arbeidsplanets hovedakse. Inndataområde -99999,9999 til 99999,9999
- Startpunkt 2. akse Q226 (absolutt): Minimumspunktkoordinat for flaten som skal planfreses på arbeidsplanets hjelpeakse. Inndataområde -99999,9999 til 99999,9999
- Startpunkt 3. akse Q227 (absolutt): Høyden på spindelaksen der det skal planfreses. Inndataområde -99999,9999 til 99999,9999
- 1. sidelengde Q218 (inkremental): Lengden til flaten som skal planfreses på arbeidsplanets hovedakse, i forhold til startpunktet for 1. akse. Inndataområde 0 til 99999,9999
- 2. sidelengde Q219 (inkremental): Lengden til flaten som skal planfreses på arbeidsplanets hjelpeakse, i forhold til startpunktet for 2. akse. Inndataområde 0 til 99999,9999
- Antall snitt Q240: Antall linjer i bredden som TNC skal kjøre verktøyet over. Inndataområde 0 til 99999
- Mating for dybdemating Q206: Verktøyets bevegelseshastighet i mm/min ved kjøring fra sikkerhetsavstand til fresedybde. Inndataområde 0 til 99999,9999, alternativ FAUTO, FU, FZ
- Mating for fresing Q207: Verktøyets bevegelseshastighet i mm/min ved fresing. Inndataområde 0 til 99999,9999, alternativ FAUTO, FU, FZ
- Stepover mating Q209: Verktøyets bevegelseshastighet i mm/min ved bevegelse til neste linje. Angi en mindre verdi for Q209 enn for Q207 hvis materialet skal bearbeides på tvers. Ved frikjøring på tvers kan Q209 være større enn Q207. Inndataområde 0 til 99999,9999, alternativ FAUTO, FU, FZ
- Sikkerhetsavstand Q200 (inkremental): Avstanden mellom verktøyspissen og fresedybden for posisjonering ved syklusstart og syklusslutt. Inndataområde 0 til 99999,9999 alternativ PREDEF





# **Eksempel: NC-blokker**

| 71 | CYCL DEF 23 | 0 PLANFRESING         |
|----|-------------|-----------------------|
|    | Q225=+10    | ;STARTPUNKT 1. AKSE   |
|    | Q226=+12    | ;STARTPUNKT 2. AKSE   |
|    | Q227=+2.5   | ;STARTPUNKT 3. AKSE   |
|    | Q218=150    | ;1. SIDELENGDE        |
|    | Q219=75     | ;2. SIDELENGDE        |
|    | Q240=25     | ;ANTALL SNITT         |
|    | Q206=150    | ;MATING FOR MATEDYBDE |
|    | Q207=500    | ;MATING FRESING       |
|    | Q209=200    | ;STEPOVER MATING      |
|    | Q200=2      | ;SIKKERHETSAVST.      |

# 10.4 SKRÅFLATE (syklus 231, DIN/ISO: G231)

# Syklusforløp

- 1 TNC fører verktøyet med en tredimensjonal, lineær bevegelse fra aktuell posisjon til startpunktet 1
- 2 Deretter føres verktøyet med programmert fresemating til sluttpunktet 2
- **3** Der føres verktøyet med hurtiggang **FMAX** med en avstand lik verktøydiameteren i den positive spindelakseretningen, og deretter tilbake til startpunktet **1**
- 4 Fra startpunktet 1 fører TNC verktøyet tilbake til den sist kjørte Z-verdien
- Deretter fører TNC verktøyet langs alle tre akser fra punkt 1 mot punkt 4 på neste linje
- 6 Deretter fører TNC verktøyet til sluttpunktet på denne linjen. TNC beregner sluttpunktet ut fra punkt 2 og en forskyvning mot punkt 3.
- 7 Planfresingen repeteres til hele den programmerte flaten er bearbeidet
- 8 Til slutt posisjonerer TNC verktøyet over det høyeste programmerte punktet på spindelaksen med en avstand lik verktøydiameteren





# Snittføring

Startpunktet og dermed freseretningen kan velges fritt, fordi TNC i utgangspunktet utfører hvert enkelt snitt fra punkt 1 til punkt 2, slik at hele forløpet utføres fra punkt 1/2 til punkt 3/4. Punkt 1 kan være hvilket som helst hjørne av flaten som skal bearbeides.

Slik kan overflatematerialet behandles ved hjelp av endefreser:

- Med støtsnitt (spindelaksekoordinaten for punkt 1 er større enn spindelaksekoordinaten for punkt 2) hvis flaten ikke er bøyd for mye.
- Med trekksnitt (spindelaksekoordinaten for punkt 1 er mindre enn spindelaksekoordinaten for punkt 2) hvis flatene er svært bøyd.
- Hvis flaten er skjev, kan hovedbevegelsesretningen (fra punkt 1 til punkt 2) legges i den retningen som flaten er mest bøyd.

Slik kan overflatematerialer behandles ved hjelp av en radiusfreser:

Hvis flaten er skjev, kan hovedbevegelsesretningen (fra punkt 1 til punkt 2) legges i den retningen som flaten er mest bøyd.

# Legg merke til følgende under programmeringen!



TNC fører verktøyet med en tredimensjonal, lineær bevegelse fra gjeldende posisjon til startpunktet 1. Forposisjoner verktøyet slik at det ikke kan kollidere med emnet eller oppspenningsutstyret.

TNC fører verktøyet mellom de programmerte posisjonene med radiuskorrigering R0.

Bruk ev. en fres med en endetann som har over middels skjæreeffekt (DIN 844).



# Kollisjonsfare!

Med maskinparameter 7441 Bit 0 kan du stille inn om TNC skal vise en feilmelding (Bit 0 = 0) eller ikke (Bit 0 = 1) hvis spindelen ikke går ved syklusoppkalling. Funksjonen må også tilpasses av maskinprodusenten.



# Syklusparametere



- Startpunkt 1. akse Q225 (absolutt): Startpunktkoordinat for flaten som skal planfreses på arbeidsplanets hovedakse. Inndataområde -99999,9999 til 99999,9999
- Startpunkt 2. akse Q226 (absolutt): Startpunktkoordinat for flaten som skal planfreses på arbeidsplanets hjelpeakse. Inndataområde -99999,9999 til 99999,9999
- Startpunkt 3. akse Q227 (absolutt): Startpunktkoordinat for flaten som skal planfreses i spindelaksen. Inndataområde -99999,9999 til 99999,9999
- 2. punkt 1. akse Q228 (absolutt): Sluttpunktkoordinat for flaten som skal planfreses på arbeidsplanets hovedakse. Inndataområde -99999,9999 til 99999,9999
- 2. punkt 2. akse Q229 (absolutt): Sluttpunktkoordinat for flaten som skal planfreses på arbeidsplanets hjelpeakse. Inndataområde -99999,9999 til 99999,9999
- 2. punkt 3. akse Q230 (absolutt): Sluttpunktkoordinat for flaten som skal planfreses i spindelaksen. Inndataområde -99999,9999 til 99999,9999
- 3. punkt 1. akse Q231 (absolutt): Koordinat for punkt
   3 på arbeidsplanets hovedakse. Inndataområde
   -99999,9999 til 99999,9999
- 3. punkt 2. akse Q232 (absolutt): Koordinat for punkt
   3 på arbeidsplanets hjelpeakse. Inndataområde
   -99999,9999 til 99999,9999
- 3. punkt 3. akse Q233 (absolutt): Koordinat for punkt 3 i spindelaksen. Inndataområde -99999,9999 til 99999,9999





- 4. punkt 1. akse Q234 (absolutt): Koordinat for punkt
   4 på arbeidsplanets hovedakse. Inndataområde
   -99999,9999 til 99999,9999
- 4. punkt 2. akse Q235 (absolutt): Koordinat for punkt
   4 på arbeidsplanets hjelpeakse. Inndataområde
   -99999,9999 til 99999,9999
- 4. punkt 3. akse Q236 (absolutt): Koordinat for punkt 4 i spindelaksen. Inndataområde -99999,9999 til 99999,9999
- Antall snitt Q240: antall linjer som TNC skal kjøre verktøyet mellom, fra punkt 1 og 4 eller mellom punkt 2 og 3. Inndataområde 0 til 99999
- Mating fresing Q207: Verktøyets bevegelseshastighet i mm/min ved fresing. TNC utfører det første snittet med halvparten av programmert hastighet. Inndataområde 0 til 99999,999, alternativ FAUTO, FU, FZ

### **Eksempel: NC-blokker**

| 72 | CYCL DEF 23 | 1 SKRÅFLATE         |
|----|-------------|---------------------|
|    | Q225=+0     | ;STARTPUNKT 1. AKSE |
|    | Q226=+5     | ;STARTPUNKT 2. AKSE |
|    | Q227=-2     | ;STARTPUNKT 3. AKSE |
|    | Q228=+100   | ;2. PUNKT 1. AKSE   |
|    | Q229=+15    | ;2. PUNKT 2. AKSE   |
|    | Q230=+5     | ;2. PUNKT 3. AKSE   |
|    | Q231=+15    | ;3. PUNKT 1. AKSE   |
|    | Q232=+125   | ;3. PUNKT 2. AKSE   |
|    | Q233=+25    | ;3. PUNKT 3. AKSE   |
|    | Q234=+15    | ;4. PUNKT 1. AKSE   |
|    | Q235=+125   | ;4. PUNKT 2. AKSE   |
|    | Q236=+25    | ;4. PUNKT 3. AKSE   |
|    | Q240=40     | ;ANTALL SNITT       |
|    | Q207=500    | ;MATING FRESING     |

1

# 10.5 PLANFRESING (syklus 232, DIN/ISO: G232)

# Syklusforløp

Med syklus 232 kan du planfrese en jevn flate med flere matinger på grunnlag av en sluttoleranse. Tre bearbeidingsstrategier er tilgjengelige:

- Strategi Q389=0: Meandrisk bearbeiding, sidemating utenfor flaten som skal bearbeides
- Strategi Q389=1: Meandrisk bearbeiding, sidemating innenfor flaten som skal bearbeides
- Strategi Q389=2: Linjevis bearbeiding, retur og sidemating i posisjoneringsmating
- TNC fører verktøyet med posisjoneringslogikk fra gjeldende posisjon med hurtiggang FMAX til startpunktet 1: Hvis den gjeldende posisjonen i spindelaksen er større enn
   2. sikkerhetsavstand, vil TNC først føre verktøyet i arbeidsplanet og deretter i spindelaksen. Hvis ikke føres verktøyet først til
   2. sikkerhetsavstand og deretter i arbeidsplanet. Startpunktet i arbeidsplanet er forskjøvet med verktøyradiusen og sidesikkerhetsavstanden i forhold til emnet
- 2 Deretter føres verktøyet i spindelaksen med posisjoneringsmating til den første matedybden som er beregnet av TNC

# Strategi Q389=0

- **3** Deretter føres verktøyet med programmert fresemating til sluttpunktet **2**. Sluttpunktet ligger **utenfor** flaten. TNC beregner sluttpunktet ut fra programmert startpunkt, programmert lengde, programmert sidesikkerhetsavstand og verktøyradius
- 4 TNC fører verktøyet på tvers til startpunktet for neste linje med mating for forposisjonering. TNC beregner forskyvningen ut fra programmert bredde, verktøyradius og maksimal baneoverlappingsfaktor
- 5 Deretter føres verktøyet tilbake i retning mot startpunktet 1
- 6 Prosedyren gjentas til den programmerte flaten er ferdig bearbeidet. På slutten av siste bane mates det til neste bearbeidingsdybde
- 7 For å unngå unødige avstander bearbeides flaten deretter i omvendt rekkefølge.
- 8 Prosedyren gjentas til alle matetrinn er utført. Ved siste mating blir bare den angitte sluttoleransen frest bort med mating slettfresing
- **9** Til slutt kjører TNC verktøyet med **FMAX** tilbake til 2. sikkerhetsavstand.



# Strategi Q389=1

- 3 Deretter føres verktøyet med programmert fresemating til sluttpunktet 2. Sluttpunktet ligger **innenfor** flaten. TNC beregner punktet ut fra programmert startpunkt, programmert lengde og verktøyradius
- 4 TNC fører verktøyet på tvers til startpunktet for neste linje med mating for forposisjonering. TNC beregner forskyvningen ut fra programmert bredde, verktøyradius og maksimal baneoverlappingsfaktor.
- **5** Deretter føres verktøyet tilbake i retning mot startpunktet **1**. Flyttingen til neste linje utføres også innenfor emnet
- 6 Prosedyren gjentas til den programmerte flaten er ferdig bearbeidet. På slutten av siste bane mates det til neste bearbeidingsdybde
- 7 For å unngå unødige avstander bearbeides flaten deretter i omvendt rekkefølge.
- 8 Prosedyren gjentas til alle matetrinn er utført. Ved siste mating blir bare den angitte sluttoleransen frest bort med mating slettfresing
- **9** Til slutt kjører TNC verktøyet med **FMAX** tilbake til 2. sikkerhetsavstand.

# Strategi Q389=2

- 3 Deretter føres verktøyet med programmert fresemating til sluttpunktet 2. Sluttpunktet ligger utenfor flaten. TNC beregner sluttpunktet ut fra programmert startpunkt, programmert lengde, programmert sidesikkerhetsavstand og verktøyradius
- 4 TNC fører verktøyet i spindelaksen på sikkerhetsavstand over den aktuelle matedybden. Deretter føres verktøyet direkte tilbake til startpunktet på neste linje med mating for forposisjonering. TNC beregner forskyvningen ut fra programmert bredde, verktøyradius og maksimal baneoverlappingsfaktor
- 5 Deretter føres verktøyet tilbake til den aktuelle matedybden, og så tilbake i retning mot sluttpunktet 2
- 6 Planfresingen gjentas til den angitte flaten er ferdig bearbeidet. På slutten av siste bane mates det til neste bearbeidingsdybde
- 7 For å unngå unødige avstander bearbeides flaten deretter i omvendt rekkefølge.
- 8 Prosedyren gjentas til alle matetrinn er utført. Ved siste mating blir bare den angitte sluttoleransen frest bort med mating slettfresing
- **9** Til slutt kjører TNC verktøyet med **FMAX** tilbake til 2. sikkerhetsavstand.





# Legg merke til følgende under programmeringen!



Angi 2. sikkerhetsavstand Q204 slik at kollisjoner med emnet eller oppspenningsutstyret forhindres.



### Kollisjonsfare!

Med maskinparameter 7441 Bit 0 kan du stille inn om TNC skal vise en feilmelding (Bit 0 = 0) eller ikke (Bit 0 = 1) hvis spindelen ikke går ved syklusoppkalling. Funksjonen må også tilpasses av maskinprodusenten.

# Syklusparametere



 Bearbeidingsstrategi (0/1/2) Q389: Angi hvordan TNC skal bearbeide flaten:
 0: meandrisk bearbeiding, sidemating i

posisjoneringsmating utenfor flaten som skal bearbeides

 meandrisk bearbeiding, sidemating i fresemating innenfor flaten som skal bearbeides
 linjevis bearbeiding, retur og sidemating i posisjoneringsmating

- Startpunkt 1. akse Q225 (absolutt): Startpunktkoordinat for flaten som skal bearbeides på arbeidsplanets hovedakse. Inndataområde -99999,9999 til 99999,9999
- Startpunkt 2. akse Q226 (absolutt): Startpunktkoordinat for flaten som skal planfreses på arbeidsplanets hjelpeakse. Inndataområde -99999,9999 til 99999,9999
- Startpunkt 3. akse Q227 (absolutt): koordinaten for emneoverflaten som matingen beregnes ut fra. Inndataområde -99999,9999 til 99999,9999
- Sluttpunkt 3. akse Q386 (absolutt): koordinaten for spindelaksen der flaten skal planfreses. Inndataområde -99999,9999 til 99999,9999





- 1. sidelengde Q218 (inkremental): Lengden på flaten som skal bearbeides på arbeidsplanets hovedakse. Du kan definere retningen for første fresebane i forhold til startpunktet for 1. akse ved hjelp av fortegnet. Inndataområde -99999,9999 til 99999,9999
- 2 .sidelengde Q219 (inkremental): Lengden på flaten som skal bearbeides på arbeidsplanets hjelpeakse. Du kan definere retningen for første tverrstilling i forhold til startpunktet for 2. akse ved hjelp av fortegnet. Inndataområde -99999,9999 til 99999,9999
- Maksimal matedybde Q202 (inkremental): Mål for hvor langt verktøyet maksimalt skal mates frem. TNC beregner den faktiske matedybden ut fra differansen mellom sluttpunktet og startpunktet på verktøyaksen. Sluttoleransen benyttes som referanse, slik at samme matedybder alltid benyttes. Inndataområde 0 til 99999,9999
- Sluttoleranse for dybde Q369 (inkremental): Verdien for den siste matingen. Inndataområde 0 til 99999,9999
- Maks. baneover1appingsfaktor Q370: Maksimal sideveis mating k. TNC beregner faktisk sideveis mating ut fra 2. sidelengde (Q219) og verktøyradius, slik at samme sidemating hele tiden benyttes. Hvis du har definert radius R2 i verktøytabellen (f.eks. plateradius målt med målehode), reduserer TNC sidematingen i henhold til dette. Inndataområde 0,1 til 1,9999 alternativt PREDEF





1

- Mating for fresing Q207: Verktøyets bevegelseshastighet i mm/min ved fresing. Inndataområde 0 til 99999,9999, alternativ FAUTO, FU, FZ
- Mating for slettfresing Q385: Verktøyets bevegelseshastighet i mm/min ved fresing under siste mating. Inndataområde 0 til 99999,999, alternativ FAUTO. FU, FZ
- Mating forposisjonering Q253: Verktøyets bevegelseshastighet i mm/min ved bevegelse til startposisjonen og til neste linje. Hvis verktøyet beveger seg på tvers av materialet (Q389=1), kjører TNC tverrmatingen med fresemating Q207. Inndataområde 0 til 99999,9999, alternativ FMAX, FAUTO, PREDEF
- Sikkerhetsavstand Q200 (inkremental): Avstanden mellom verktøyspissen og startposisjonen i verktøyaksen. Hvis du freser med bearbeidingsstrategi Q389=2, fører TNC verktøyet i sikkerhetsavstand over den aktuelle matedybden til startpunktet for neste linje. Inndataområde 0 til 99999,9999 alternativ PREDEF
- Sikkerhetsavstand side Q357 (inkremental): Avstanden mellom siden av verktøyet og emnet når verktøyet beveger seg til første matedybde, og avstanden ved sidemating med bearbeidingsstrategi Q389=0 og Q389=2. Inndataområde 0 til 99999,9999
- 2. sikkerhetsavstand Q204 (inkremental): Koordinat for spindelaksen der verktøy og emne (oppspenningsutstyr) ikke kan kollidere. Inndataområde 0 til 99999,9999 alternativ PREDEF

# **Eksempel: NC-blokker**

| 71 CYCL DEF 23 | 2 PLANFRES           |
|----------------|----------------------|
| Q389=2         | ;STRATEGI            |
| Q225=+10       | ;STARTPUNKT 1. AKSE  |
| Q226=+12       | ;STARTPUNKT 2. AKSE  |
| Q227=+2.5      | ;STARTPUNKT 3. AKSE  |
| Q386=-3        | ;SLUTTPUNKT 3. AKSE  |
| Q218=150       | ;1. SIDELENGDE       |
| Q219=75        | ;2. SIDELENGDE       |
| Q202=2         | ;MAKS. MATEDYBDE     |
| Q369=0.5       | ;TOLERANSE FOR DYBDE |
| Q370=1         | ;MAKS. OVERLAPPING   |
| Q207=500       | ;MATING FRESING      |
| Q385=800       | ;MATING SLETTFRES    |
| Q253=2000      | ;MATING FORPOS.      |
| Q200=2         | ;SIKKERHETSAVST.     |
| Q357=2         | ;SI.AVSTAND SIDE     |
| Q204=2         | ;2. SIKKERHETSAVST.  |

# 10.6 Programmeringseksempler

# **Eksempel: planfresing**



| O BEGIN PGM C230 MM             |                               |
|---------------------------------|-------------------------------|
| 1 BLK FORM 0.1 Z X+0 Y+0 Z+0    | Råemnedefinisjon              |
| 2 BLK FORM 0.2 X+100 Y+100 Z+40 |                               |
| 3 TOOL DEF 1 L+0 R+5            | Verktøydefinisjon             |
| 4 TOOL CALL 1 Z S3500           | Verktøyoppkalling             |
| 5 L Z+250 RO FMAX               | Frikjør verktøy               |
| 6 CYCL DEF 230 PLANFRESING      | Syklusdefinisjon, planfresing |
| Q225=+0 ;STARTPUNKT 1. AKSE     |                               |
| Q226=+0 ;STARTPUNKT 2. AKSE     |                               |
| Q227=+35 ;STARTPUNKT 3. AKSE    |                               |
| Q218=100 ;1. SIDELENGDE         |                               |
| Q219=100 ;2. SIDELENGDE         |                               |
| Q240=25 ;ANTALL SNITT           |                               |
| Q206=250 ;F MATEDYBDE           |                               |
| Q207=400 ;F FRESING             |                               |
| Q209=150 ;F STEPOVER MATING     |                               |
| Q200=2 ;SIKKERHETSAVST.         |                               |

| 7 L X+-25 Y+0 R0 FMAX M3 | Forposisjonering i nærheten av startpunkt |
|--------------------------|-------------------------------------------|
| 8 CYCL CALL              | Syklusvalg                                |
| 9 L Z+250 RO FMAX M2     | Frikjør verktøy, avslutt program          |
| 10 FND PGM C230 MM       |                                           |

10.6 Programmeringseksempler





Sykluser: koordinatomregninger

# 11.1 Grunnleggende

# Oversikt

Med koordinatomregning kan en kontur som er programmert én gang, brukes flere steder på emnet med endrede posisjoner og størrelser. Følgende sykluser er tilgjengelige for koordinatomregning:

| Syklus                                                                                                                     | Funksjonstast | Side     |
|----------------------------------------------------------------------------------------------------------------------------|---------------|----------|
| 7 NULLPUNKT<br>Forskyv konturer direkte i programmet<br>eller ut fra nullpunktstabeller                                    | 2             | Side 281 |
| 247 SETTE NULLPUNKT<br>Definere et nullpunkt mens<br>programmet kjører                                                     | 247           | Side 288 |
| 8 SPEILING<br>Speilvende konturer                                                                                          | CŢ2ª          | Side 289 |
| 10 ROTERING<br>Rotere konturer i arbeidsplanet                                                                             | 10            | Side 291 |
| 11 SKALERING<br>Forstørre eller forminske konturer                                                                         | 11            | Side 293 |
| 26 AKSESPESIFIKK SKALERING<br>Forstørre eller forminske konturer med<br>aksespesifikk skalering                            | 26 CC         | Side 295 |
| 19 ARBEIDSPLAN<br>Utføre bearbeidinger med et dreid<br>koordinatsystem for maskiner med<br>dreiesupport og/eller dreiebord | 19            | Side 297 |

# Aktivere koordinatomregning

Aktivere funksjonen: En koordinatomregning aktiveres når den er definert. Det er altså ikke nødvendig å starte funksjonen. Omregningen er aktivert til den tilbakestilles eller omdefineres.

# Tilbakestille koordinatomregning:

- Definer syklusen på nytt med de opprinnelige verdiene, f.eks. med skaleringen 1,0
- Bruk tilleggsfunksjonene M2, M30 eller END PGM-blokken (avhengig av maskinparameter 7300)
- Velg et nytt program
- Programmer Slett tilleggsfunksjonen M142 modal programinformasjon

# 11.2 NULLPUNKT-forskyvning (syklus 7, DIN/ISO: G54)

# Funksjon

Med NULLPUNKTSFORSKYVNING kan du gjenta arbeidsmomenter forskjellige steder på emnet.

Etter en syklusdefinisjon med NULLPUNKTSFORSKYVNING forholder alle koordinatverdier seg til det nye nullpunktet. TNC viser forskyvningen for alle akser i et eget statusvindu. Det er også mulig å angi roteringsakser.

# Tilbakest.

- Programmer forskyvning til koordinatene X=0, Y=0 osv. gjennom en ny syklusdefinisjon
- Bruk funksjonen TRANS DATUM RESET
- Anrop forskyvning til koordinatene fra nullpunktstabellen X=0; Y=0 osv.

# Grafikk

Hvis du programmerer en ny **BLK FORM** etter en nullpunktsforskyvning, kan du via maskinparameter 7310 angi om **BLK FORM** BLK FORM skal forholde seg til det gamle eller nye nullpunktet. Ved bearbeiding av flere komponenter kan TNC derfor vise de enkelte komponentene grafisk.





# Syklusparametere

| 7 | 5 |
|---|---|
|   | Ţ |
| ۰ |   |

Forskyvning: Angi koordinater for det nye nullpunktet. Absolutte verdier refererer til nullpunktet som er definert på emnet. Inkrementale verdier forholder seg alltid til det sist definerte nullpunktet, men det kan allerede være forskjøvet. Inndataområde opptil 6 NCakser, fra -99999,9999 til 99999,9999

# **Eksempel: NC-blokker**

| 13 | CYCL | DEF | 7.0 | NULLPUNKT |
|----|------|-----|-----|-----------|
| 14 | CYCL | DEF | 7.1 | X+60      |
| 16 | CYCL | DEF | 7.3 | Z-5       |
| 15 | CYCL | DEF | 7.2 | Y+40      |

# 11.3 NULLPUNKT-forskyvning med nullpunktstabeller (syklus 7, DIN/ISO: G53)

# Funksjon

Nullpunktstabeller kan f.eks. brukes

- hvis en arbeidsoperasjon gjentar seg ofte på et sted på emnet
- hvis en nullpunktsforskyvning brukes ofte

l et program kan du både programmere nullpunkter direkte i syklusdefinisjonen og hente dem fra en nullpunktstabell.

# Tilbakestille

- Anrop forskyvning til koordinatene fra nullpunktstabellen X=0; Y=0 osv.
- Velg forskyvning til koordinatene X=0; Y=0 osv. direkte i en syklusdefinisjon
- Bruk funksjonen TRANS DATUM RESET

# Grafikk

Hvis du programmerer en ny **BLK FORM** etter en nullpunktsforskyvning, kan du via maskinparameter 7310 angi om **BLK FORM** skal forholde seg til det gamle eller nye nullpunktet. Ved bearbeiding av flere komponenter kan TNC derfor vise de enkelte komponentene grafisk.

### Statusvisning

Et separat statusvindu viser følgende data fra nullpunktstabellen:

- Navn og filbane for den aktive nullpunktstabellen
- Aktivt nullpunktnummer
- Kommentarene i DOC-kolonnen for det aktive nullpunktnummeret





# Legg merke til følgende under programmeringen:



### Kollisjonsfare!

Nullpunkter fra nullpunktstabellen forholder seg **alltid** til det aktuelle nullpunktet (forhåndsinnstilt).

Maskinparameter 7475, som tidligere er benyttet for å angi om nullpunktene skal forholde seg til maskinens eller emnets nullpunkt, er bare en sikkerhetsfunksjon. Hvis MP7475 = 1, viser TNC en feilmelding hvis en nullpunktsforskyvning fra en nullpunktstabell aktiveres.

Nullpunktstabeller i TNC 4xx, der koordinatene refererer til maskinnullpunktet (MP7475 = 1), må ikke brukes i TNC 530



For å aktivere nullpunktsforskyvning med nullpunktstabeller kan du bruke funksjonen **SEL TABLE** for å hente ønsket nullpunktstabell i NC-programmet.

Hvis du ikke bruker **SEL TABLE**, må du aktivere ønsket nullpunktstabell før programmet testes eller kjøres (gjelder også for programmeringsgrafikken):

- Velg ønsket tabell for programtest ved hjelp av filbehandlingen i driftsmodusen Programtest. Tabellen får statusen S.
- Velg ønsket tabell for kjøring av et program med en driftsmodus for programkjøring i filbehandlingen: Tabellen får statusen M.

Koordinatverdier fra nullpunktstabeller er alltid absolutte verdier.

Nye linjer kan legges til på slutten av tabellen.



# Syklusparametere



Forskyvning: Angi nullpunktets nummer fra nullpunktstabellen eller en Q-parameter. Hvis du angir en Q-parameter, aktiverer TNC nullpunktnummeret som er definert i Q-parameteren. Inndataområde 0 til 9999

# Velge en nullpunktstabell i NC-programmet

Bruk funksjonen **SEL TABLE** for å velge nullpunktstabellen som TNC skal hente nullpunktene fra:



Velg funksjonene for programoppkalling: Trykk på tasten PGM CALL.



- Trykk på NULLPUNKTTABELL-tasten
- Trykk på funksjonstasten VINDUSVALG: TNC viser et vindu der du kan velge ønsket nullpunktstabell
- Bekreft ønsket nullpunktstabell med piltaster eller museklikk, og bekreft med tasten ENT: TNC registrerer fullstendig banenavn i blokken SEL TABLE
- Avslutt funksjonen med tasten END

Tabellnavnet eller det fullstendige banenavnet for tabellen som skal hentes opp, kan eventuelt angis direkte via tastaturet.



**SEL TABLE**-blokk må programmeres før syklus 7 nullpunktsforskyvning.

En nullpunktstabell som er valgt med **SEL TABLE**, er aktiv til du velger en annen nullpunktstabell med **SEL TABLE** eller PGM MGT.

Med funksjonen **TRANS DATUM TABLE** kan du definere nullpunktstabeller og nullpunktnummer i en NC-blokk (se brukerhåndboken Klartekstdialog).

# **Eksempel: NC-blokker**

77 CYCL DEF 7.0 NULLPUNKT

78 CYCL DEF 7.1 #5



# Redigere nullpunktstabell i driftsmodusen Lagre/rediger program



Etter at du har endret en verdi i en nullpunktstabell, må du lagre endringen med ENT-tasten. Ellers vil ikke endringen bli brukt når et program kjøres.

Velg nullpunktstabellen i driftsmodusen Lagre/rediger program

|     | h |
|-----|---|
| PGM |   |
| MGT |   |
|     |   |

- ▶ Åpne filbehandlingen: Trykk på PGM MGT-tasten.
- Vise nullpunktstabell: Trykk på funksjonstastene VELG TYPE og VIS .D.
- Velg en tabell eller skriv inn et nytt filnavn
- Rediger filen. Funksjonstasten åpner en liste med følgende funksjoner:

| Funksjon                                                                   | Funksjonstast                  |
|----------------------------------------------------------------------------|--------------------------------|
| Gå til begynnelsen av tabellen                                             | START                          |
| Gå til slutten av tabellen                                                 |                                |
| Bla én side bakover                                                        | SIDE                           |
| Bla én side forover                                                        | SIDE                           |
| Sett inn linje (bare mulig på slutten av tabellen)                         | SETT INN<br>LINJE              |
| Slett linje                                                                | SLETT<br>LINJE                 |
| Bekreft gjeldende linje og gå til neste linje                              | NESTE<br>LINJE                 |
| Legg til programmerbart linjeantall (nullpunkter) i<br>slutten av tabellen | TILFØY<br>N LINJER<br>På Slutt |

**-**‡-

ALLE

VIST VERDI

# Rediger nullpunktstabell under kjøring av program

Du kan også velge redigering av nullpunktstabell under kjøring av program. Trykk på funksjonstasten NULLPUNKTTABELL. Du vil da få tilgang til samme redigeringsfunksjoner som under **Lagre/rediger program.** 

# Aktivere reelle verdier i nullpunktstabellen

Med tasten «Kopier nom. posisjon» kan du kopiere gjeldende verktøyposisjon eller siste probeposisjon til nullpunktstabellen:

Merk linjen og kolonnen som en posisjon skal kopieres til.

- Velg funksjonen for å kopiere aktuell posisjon: TNC ber deg om å bekrefte at du vil kopiere den gjeldende verktøyposisjonen eller de siste probeverdiene.
- Velg ønsket funksjon med piltastene, og bekreft med ENT-tasten.
- Kopiere verdier til alle akser: Trykk på funksjonstasten ALLE WERTE (alle verdier), eller
- kopier verdien til aksen som er merket på skjermen: Trykk på funksjonstasten AKTUELLEN WERT (aktuell verdi).

1



# Konfigurere nullpunktstabell

På andre og tredje funksjonstastrad kan du for hver nullpunktstabell velge hvilke akser du vil definere nullpunkter for. Alle akser er aktivert som standard. Hvis du vil utelate en akse, deaktiverer du den aktuelle aksefunksjonstasten. TNC vil da slette den tilhørende kolonnen i nullpunktstabellen.

Hvis du ikke vil definere noe nullpunkt for en aktiv akse, trykker du på NO ENT-tasten. TNC legger da inn en bindestrek i den aktuelle kolonnen.

| Prog.kjøring<br>blokkrekke                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Rediger r<br>Nullpunkt                                                                                                    | nullpunkt<br>forskyvn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | tabell<br>ing?                                                          |       |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|-------|--|
| a # 0         A HUHE (1)           0         0         0           0         4         95           2         +12         3           3         +137         55           5         +25         2           6         +27         26           6         -27,25         2           7         +12,080         9           8         -1766         10           101         +8         12           12         +8         12           12         +8         12           13         +8         12           14         +8         12 | 0 10 100<br>4 0 2 10 20<br>7 0 2 10 20<br>7 0 20 10 10 20<br>7 20 10 10 20<br>7 20 10 10 10 10 10 10 10 10 10 10 10 10 10 | Image: line         Image: line <thimage: line<="" th=""> <thimage: line<="" th=""></thimage:></thimage:> | 7<br>+ 0<br>+ 0<br>+ 0<br>+ 0<br>+ 0<br>+ 0<br>+ 0<br>+ 0<br>+ 0<br>+ 0 | »»    |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                           | SIDE SET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                         | NESTE |  |

# Lukke nullpunktstabellen

Velg en annen filtype og velg ønsket fil i filbehandlingsdialogen.



# 11.4 SETTE NULLPUNKT (syklus 247, DIN/ISO: G247)

# Funksjon

Med syklusen FASTSETT NULLPUNKT kan du velge en innstilling i forhåndsinnstillingstabellen som nytt nullpunkt.

Etter en syklusdefinisjon med FASTSETT NULLPUNKT refererer alle koordinatverdier og nullpunktsforskyvninger (absolutte og inkrementale) til den nye forhåndsinnstillingsverdien.

# Statusvisning

I statusvinduet viser TNC aktive forhåndsinnstillingsnummer etter nullpunktsymbolet.



# Legg merke til følgende før programmeringen!

Når et nullpunkt fra forhåndsinnstillingstabellen aktiveres, tilbakestiller TNC nullpunktsforskyvningen som er aktiv.

TNC definerer bare forhåndsverdier for akser som definerte verdier i forhåndsinnstillingstabellen. Nullpunktet for akser som er merket med –, blir ikke endret.

Hvis du aktiverer forhåndsinnstillingsnummer 0 (linje 0), aktiverer du nullpunktet som sist ble definert i en manuell driftsmodus.

Syklus 247 fungerer ikke med driftsmodusen PGM-test.

# Syklusparametere



Nummer for nullpunkt?: Angi nullpunktnummeret i forhåndsinnstillingstabellen som skal aktiveres. Inndataområde 0 til 65535

### Eksempel: NC-blokker

| 13 CYCL DEF | 247 FASTSETT NULLPUNKT |
|-------------|------------------------|
| Q339=4      | ;NULLPUNKTNUMMER       |


## 11.5 SPEILING (syklus 8, DIN/ISO: G28)

## Funksjon

TNC kan bearbeide arbeidsplanet speilvendt.

Speilvendingen aktiveres når funksjonen er definert i programmet. Funksjonen kan også aktiveres manuelt i posisjoneringsmodus. TNC viser den aktive refleksjonsaksen i et separat statusvindu.

- Hvis du bare vil speilvende én akse, endres verktøyets roteringsretning. Dette gjelder ikke for bearbeidingssykluser.
- Roteringsretningen blir ikke endret hvis du speilvender to akser.

Resultatet av speilvendingen avhenger av nullpunktposisjonen:

- Hvis nullpunktet befinner seg på konturen som skal speilvendes, speilvendes elementet direkte ved nullpunktet;
- Hvis nullpunktet ligger utenfor konturen som skal speilvendes, forskyves elementet i tillegg.

#### Tilbakestille

Programmer syklusen REFLEKTER på nytt, og velg NO ENT.





# Legg merke til følgende under programmeringen!

l fresesykluser med 200-nummer endres roteringsretningen selv om du bare speilvender én akse. Unntak: Syklus 208, hvor roteringsretningen som er definert i syklusen, blir beholdt.





Speilet akse?: Angi aksene som skal speilvendes. Du kan speilvende alle akser, inkl. roteringsakser, bortsett fra spindelaksen med tilhørende hjelpeakse. Maksimalt tre akser kan velges. Inndataområde opptil 3 NC-akser X, Y, Z, U, V, W, A, B, C **Eksempel: NC-blokker** 

79 CYCL DEF 8.0 SPEILING 80 CYCL DEF 8.1 X Y U

11.5 SPEILING (syklus 8, DIN/ISO: G28)

## 11.6 ROTERING (syklus 10, DIN/ISO: G73)

## Funksjon

I et program kan TNC rotere koordinatsystemet rundt det aktive nullpunktet i arbeidsplanet.

Roteringen aktiveres når funksjonen i programmet er aktivert. Funksjonen kan også aktiveres manuelt i posisjoneringsmodus. TNC viser den aktive roteringsvinkelen i det separate statusvinduet.

#### Referanseakse for roteringsvinkel:

- X/Y-plan X-akse
- Y/Z-plan Y-akse
- Z/X-plan Z-akse

#### Tilbakest.

Programmer syklusen ROTERING på nytt, og velg en svingvinkel på 0°.





## Legg merke til følgende under programmeringen!



TNC deaktiverer radiuskorreksjon når syklus 10 defineres. Programmer radiuskorreksjonen på nytt ved behov.

Kjør verktøyet langs begge aksene i arbeidsplanet for å aktivere roteringen etter at du har definert syklus 10.





Rotering: Angi roteringsvinkelen i grader (°). Inndataområde -360 000° til +360 000° (absolutt eller inkremental)

#### Eksempel: NC-blokker

| 12 | CALL | LBL | 1             |
|----|------|-----|---------------|
| 13 | CYCL | DEF | 7.0 NULLPUNKT |
| 14 | CYCL | DEF | 7.1 X+60      |
| 15 | CYCL | DEF | 7.2 Y+40      |
| 16 | CYCL | DEF | 10.0 ROTERING |
| 17 | CYCL | DEF | 10.1 ROT+35   |
| 18 | CALL | LBL | 1             |

## 11.7 SKALERING (syklus 11, DIN/ISO: G72)

## Funksjon

TNC kan forstørre eller forminske konturer i et program. På den måten kan du for eksempel ta hensyn til krymping og toleransefaktorer.

SKALERING aktiveres når funksjonen er definert i programmet. Funksjonen kan også aktiveres i driftsmodusen posisjonering med manuell inntasting. TNC viser den aktive skaleringen i det separate statusvinduet.

Skaleringen påvirker:

- arbeidsplanet, eller alle tre koordinatakser samtidig (avhengig av maskinparameter 7410)
- dimensjonene i sykluser
- parallellaksene U, V og W

#### Forutsetning

Før forstørring eller forminsking bør nullpunktet forskyves til en kant eller et hjørne i konturen.

Forstørre: SCL større enn 1 til 99,999 999

Forminske: SCL mindre enn 1 til 0,000 001

#### Tilbakest.

Programmer syklusen SKALERING på nytt, og velg skaleringsverdien 1.









Faktor?: Angi faktor SCL (eng.: scaling). TNC multipliserer koordinater og radier med SCL (som beskrevet under Funksjon). Inndataområde 0,000000 til 99,999999

#### Eksempel: NC-blokker

| 11 CALL LBL | 1              |
|-------------|----------------|
| 12 CYCL DEF | 7.0 NULLPUNKT  |
| 13 CYCL DEF | 7.1 X+60       |
| 14 CYCL DEF | 7.2 Y+40       |
| 15 CYCL DEF | 11.0 SKALERING |
| 16 CYCL DEF | 11.1 SCL 0.75  |
| 17 CALL LBL | 1              |

## 11.8 SKALERING AKSE (syklus 26)

## Funksjon

Med syklus 26 kan du ta hensyn til aksespesifikk krymping og toleransefaktorer.

SKALERING aktiveres når funksjonen er definert i programmet. Funksjonen kan også aktiveres i driftsmodusen posisjonering med manuell inntasting. TNC viser den aktive skaleringen i det separate statusvinduet.

#### Tilbakest.

Programmer syklusen SKALERING på nytt, og angi faktor 1 for den aktuelle aksen.



# Legg merke til følgende under programmeringen!



Koordinatakser med posisjoner for sirkelbaner kan ikke forlenges eller forkortes ved hjelp av ulike faktorer.

Du kan angi en separat aksespesifikk skaleringsverdi for hver koordinatakse.

I tillegg kan sentrumskoordinater for alle skaleringsverdier defineres.

Konturen kan forlenges fra eller forkortes mot dette sentrumet, altså ikke nødvendigvis fra og til gjeldende nullpunkt som i syklus 11 SKALERING.



- Akse og faktor: Velg koordinatakse(r) ved hjelp av funksjonstaster, og angi faktor(er) for aksespesifikk utvidelse eller forminskning. Inndataområde 0,000000 til 99,999999
- Sentrumskoordinater: Sentrum for aksespesifikk utvidelse eller forminskning. Inndataområde -99999,9999 til 99999,9999



#### **Eksempel: NC-blokker**

| 25 CALL LBL 1                         |       |
|---------------------------------------|-------|
| 26 CYCL DEF 26.0 SKALERING AKSESP.    |       |
| 27 CYCL DEF 26.1 X 1.4 Y 0.6 CCX+15 C | CY+20 |
| 28 CALL LBL 1                         |       |



## 11.9 ARBEIDSPLAN (syklus 19, DIN/ISO: G80, programvareversjon 1)

## Funksjon

l syklus 19 definerer du arbeidsplanets posisjon ved å angi svingvinkler. Posisjonen defineres på grunnlag av verktøyakseposisjonen i forhold til maskinens faste koordinatsystem. Arbeidsplanets posisjon kan defineres på to måter:

- Angi dreieaksene direkte.
- Beskriv arbeidsplanets posisjon gjennom inntil tre roteringer (romvinkler) av maskinens koordinatsystem. Du beregner romvinkelen ved å legge et snitt loddrett gjennom det roterte arbeidsplanet og studere snittet i forhold til aksen som du vil dreie arbeidsplanet rundt. To romvinkler er tilstrekkelig for å definere alle verktøyposisjoner i tre dimensjoner.



Husk at posisjonen til det roterte koordinatsystemet og dermed også verktøybevegelsene i det roterte systemet, avhenger av hvordan du beskriver det roterte planet.

Hvis du programmerer arbeidsplanposisjonen ved hjelp av romvinkler, beregner TNC automatisk nødvendige vinkelinnstillinger for dreieaksene, og lagrer disse i parameterne Q120 (A-akse) til Q122 (C-akse).



#### Kollisjonsfare!

Avhengig av maskinkonfigurasjonen finnes det to mulige løsninger (akseposisjoner) for romvinkeldefinisjon. Kontroller hvilken akseposisjon programvaren til TNC velger, ved hjelp av aktuelle tester på din maskin.

Hvis programvarealternativet DCM er tilgjengelig, kan du i programtesten vise hver akseposisjon i visningen PROGRAM + KINEMATIKK (se brukerhåndboken Klartekstdialog, **Dynamisk kollisjonsovervåking**).





Roteringsrekkefølgen for beregning av arbeidsplanets posisjon er fast: Først dreier TNC A-aksen, deretter B-aksen og til slutt C-aksen.

Syklus 19 aktiverer innstillingene når de er definert i programmet. Når du bruker en akse i det roterte systemet, vil korreksjonen av denne aksen bli aktivert. Kjør verktøyet langs alle aksene for å aktivere korreksjonen for alle akser.

Hvis du har definert funksjonen **Rot. prog.kjøring** som **Aktiv** i manuell driftsmodus, blir vinkelverdien i denne menyen overskrevet av syklus 19 ARBEIDSPLAN.

### Legg merke til følgende under programmeringen:



Maskinprodusenten tilpasser funksjonene for dreiing av arbeidsplanet til TNC og den aktuelle maskinen. For noen typer dreibare hoder (dreiebord) definerer maskinprodusenten om de TNC-programmerte vinklene skal tolkes som koordinater for roteringsakser eller som matematiske vinkler for et skjevt plan. Les alltid informasjonen i maskinhåndboken.



Fordi ikke-programmerte roteringsakseverdier i prinsippet alltid tolkes som uendrede verdier, bør du alltid definere alle de tre romvinklene selv om én eller flere vinkler har verdien 0.

Arbeidsplanet dreies alltid rundt det aktive nullpunktet.

Hvis du bruker syklus 19 med aktivert M120, vil TNC automatisk oppheve radiuskorreksjonen og M120-funksjonen.



#### Kollisjonsfare!

Sørg for at den siste definerte vinkelen er mindre enn 360°!



Roteringsakse og -vinkel?: Angi roteringsaksen med tilhørende roteringsvinkel. Programmer roteringsaksene A, B og C ved hjelp av funksjonstastene. Inndataområde -360,000 til 360,000

Selv om TNC posisjonerer roteringsaksene automatisk, kan du likevel definere følgende parametere:

- Mating? F=: roteringsaksens bevegelseshastighet ved automatisk posisjonering. Inndataområde 0 til 99999,999
- Sikkerhetsavstand? (inkremental): TNC posisjonerer dreiehodet slik at posisjonen ikke endrer seg i forhold til emnet selv om verktøyet føres til sikkerhetsavstand. Inndataområde 0 til 99999,9999



#### Kollisjonsfare!

Sørg for at sikkerhetsavstanden for syklus 19 ikke henviser til overkanten av emnet (slik som for bearbeidingssyklusene), men til det aktive nullpunktet.

### Tilbakest.

Tilbakestill svingvinkelen ved å definere syklusen ARBEIDSPLAN på nytt og angi verdien 0° for alle roteringsakser. Definer deretter syklusen ARBEIDSPLAN på nytt, og bekreft med NO ENT-tasten når du blir bedt om det. Dette vil deaktivere funksjonen.

## Posisjonere roteringsakser



Maskinprodusenten definerer om syklus 19 automatisk skal posisjonere roteringsaksene, eller om roteringsaksene må posisjoneres manuelt i programmet. Les alltid informasjonen i maskinhåndboken.

#### Posisjonere roteringsaksene manuelt

Hvis syklus 19 ikke posisjonerer roteringsaksene automatisk, må du posisjonere dem med f.eks. en separat L-blokk etter syklusdefinisjonen.

Hvis du arbeider med aksevinkler, kan du definere akseverdiene direkte i L-blokken. Hvis du arbeider med romvinkel, bruker du Q-parameterne som beskrevet av syklus 19 **Q120** (A-akseverdi), **Q121** (B-akseverdi) og **Q122** (C-akseverdi).

NC-eksempelblokker:

| 10 L Z+100 RO FMAX            |                                                                     |
|-------------------------------|---------------------------------------------------------------------|
| 11 L X+25 Y+10 RO FMAX        |                                                                     |
| 12 CYCL DEF 19.0 ARBEIDSPLAN  | Definer romvinkel for korreksjonsberegning                          |
| 13 CYCL DEF 19.1 A+0 B+45 C+0 |                                                                     |
| 14 L A+Q120 C+Q122 R0 F1000   | Posisjoner roteringsakser med verdier som syklus<br>19 har beregnet |
| 15 L Z+80 R0 FMAX             | Aktiver spindelaksekorreksjon                                       |
| 16 L X-8.5 Y-10 RO FMAX       | Aktiver arbeidsplankorreksjon                                       |



Bruk alltid roteringsakseposisjonene som er lagret i Q-parameterne Q120 til Q122, ved manuell posisjonering!

Unngå funksjoner som M94 (vinkelredusering), slik at det ikke oppstår uoverensstemmelse mellom faktiske og innstilte posisjoner for roteringsaksene ved flere oppkallinger.

#### Posisjonere roteringsaksene automatisk

Hvis syklus 19 posisjonerer roteringsaksene automatisk:

- TNC kan bare posisjonere styrte akser automatisk.
- I syklusdefinisjonen må du i tillegg til svingvinklene angi en sikkerhetsavstand og en mateverdi som skal brukes ved posisjonering av dreieaksene.
- Bruk bare forhåndsinnstilte verktøy (full verktøylengde må være definert).
- Verktøyspissens posisjon i forhold til emnet endres ikke nevneverdig under dreiingen.
- TNC utfører roteringen med den sist definerte mateverdien. Maksimal mating avhenger av dreiehodets (dreiebordets) konstruksjon.

NC-eksempelblokker:

| 10 L Z+100 RO FMAX                         |                                         |
|--------------------------------------------|-----------------------------------------|
| 11 L X+25 Y+10 RO FMAX                     |                                         |
| 12 CYCL DEF 19.0 ARBEIDSPLAN               | Definer vinkel for korreksjonsberegning |
| 13 CYCL DEF 19.1 A+0 B+45 C+0 F5000 ABST50 | Definer mating og avstand i tillegg     |
| 14 L Z+80 RO FMAX                          | Aktiver spindelaksekorreksjon           |
| 15 L X-8.5 Y-10 RO FMAX                    | Aktiver arbeidsplankorreksjon           |



## Posisjonsvisning i rotert system

De viste posisjonene (**NOM.** og **AKT.**) og nullpunktvisningen i det separate statusvinduet forutsetter at syklus 19 er aktivert for det roterte koordinatsystemet. Like etter syklusdefinisjonen stemmer ikke den viste posisjonen overens med koordinatene for den siste posisjonen som ble programmert før syklus 19.

## Arbeidsromovervåking

I et rotert koordinatsystem kontrollerer TNC kun akser som er i bruk, via endebryteren. TNC kan vise en feilmelding.

## Posisjonering i rotert system

Med tilleggsfunksjonen M130 kan du også føre verktøyet i et rotert system til posisjoner som refererer til et koordinatsystem som ikke er rotert.

Også posisjonering med lineære blokker for maskinkoordinatsystemet (M91 eller M92) kan utføres med et rotert arbeidsplan. Begrensninger:

- Posisjoneringen utføres uten lengdekorreksjon
- Posisjoneringen utføres uten maskingeometrikorreksjon
- Verktøyradiuskorreksjon er ikke tillatt



# Kombinasjon med andre koordinatomregningssykluser

Hvis koordinatomregningssykluser kombineres, er det viktig å tenke på at rotering av arbeidsplanet alltid utføres rundt det aktive nullpunktet. Du kan utføre en nullpunktsforskyvning før syklus 19 aktiveres. Dermed forskyves maskinens koordinatsystem.

Hvis nullpunktet forskyves etter at syklus 19 er aktivert, vil det «roterte» koordinatsystemet bli forskjøvet.

Viktig: Syklusene tilbakestilles i omvendt rekkefølge av syklusdefinisjonen:

- 1. Aktiver nullpunktsforskyvning
- 2. Aktiver dreiing av arbeidsplan
- 3. Aktiver rotering

Emnebearbeiding

- ...
- 1. Tilbakestill rotering
- 2. Tilbakestill dreiing av arbeidsplan
- 3. Tilbakestill nullpunktsforskyvning

## Automatisk måling i rotert system

Med TNC-målesyklusene kan du måle emnet i et rotert system. TNC lagrer måleresultatene i Q-parametere, som kan viderebehandles i etterkant (måleresultater kan f.eks. skrives ut).

## Veiledning for arbeid med syklus 19 **ARBEIDSPLAN**

#### 1 Konfigurer program

- Definer verktøyet (ikke aktuelt hvis TOOL.T er aktivert). Angi hele verktøylengden
- Kalle opp verktøyet
- Frikjør spindelaksen slik at verktøyet ikke kan kollidere med emnet (oppspenningsutstyret)
- > Posisjoner ev. roteringsaksen(e) med en aktuell vinkelverdi via en L-blokk (avhenger av en maskinparameter)
- Aktiver ev. nullpunktsforskyvning
- Definer syklus 19 ARBEIDSPLAN. Angi vinkelverdier for roteringsaksene.
- ▶ Kjør systemet langs alle hovedaksene (X, Y, Z) for å aktivere korreksjonen.
- Programmer bearbeidingen på samme måte som for et urotert plan.
- Definer ev. syklus 19 ARBEIDSPLAN med andre vinkler for å utføre bearbeidingen med andre akseinnstillinger. I så fall er det ikke nødvendig å tilbakestille syklus 19. De nye vinkelinnstillingene kan defineres direkte
- ▶ Tilbakestill syklus 19 ARBEIDSPLAN. Angi verdien 0° for alle roteringsakser.
- Deaktiver funksjonen ARBEIDSPLAN. Definer syklus 19 på nytt. Bekreft med NO ENT når du blir bedt om det.
- Tilbakestill ev. nullpunktsforskyvning
- Posisjoner ev. roteringsaksene i 0°-stilling

#### 2 Spenn opp emnet

#### 3 Forberedelser i driftsmodus Posisjonering med manuell inntasting

Posisjoner roteringsaksen(e) for å definere nullpunktet for samsvarende vinkelverdi. Vinkelverdien avhenger av referanseflaten som er valgt på emnet.



304

#### 4 Forberedelser i driftsmodus Manuell drift

Definer funksjonen for rotering av arbeidsplan som AKTIV i manuell driftsmodus med funksjonstasten 3D-ROT. Angi vinkelverdier for ikkestyrte roteringsakser i menyen

Ved ikke-styrte akser angir du vinkelverdiene for roteringsaksen(e) i menyen. TNC vil ellers beregne feil nullpunkt.

#### **5 Definer nullpunktet**

- Manuelt ved hjelp av mekanisk måling
- Styrt med HEIDENHAIN 3D-touch-probe (se kapittel 2 i brukerhåndboken for touch-probe-sykluser)
- Automatisk med HEIDENHAIN 3D-touch-probe (se kapittel 3 i brukerhåndboken for touch-probe-sykluser)

#### 6 Start bearbeidingsprogrammet i programkjøringsmodus

#### 7 Manuell driftsmodus

Definer funksjonen Drei arbeidsplan som INAKTIV med funksjonstast 3D-ROT. Angi vinkelverdien 0° for alle vinkelverdier i menyen.



## 11.10 Programmeringseksempler

#### Programforløp

- Omregning av koordinater i hovedprogram
- Bearbeiding i underprogram



| O BEGIN PGM KOUMR MM           |                                          |
|--------------------------------|------------------------------------------|
| 1 BLK FORM 0.1 Z X+0 Y+0 Z-20  | Råemnedefinisjon                         |
| 2 BLK FORM 0.2 X+130 Y+130 Z+0 |                                          |
| 3 TOOL DEF 1 L+0 R+1           | Verktøydefinisjon                        |
| 4 TOOL CALL 1 Z S4500          | Verktøyoppkalling                        |
| 5 L Z+250 RO FMAX              | Frikjør verktøy                          |
| 6 CYCL DEF 7.0 NULLPUNKT       | Nullpunktsforskyvning mot sentrum        |
| 7 CYCL DEF 7.1 X+65            |                                          |
| 8 CYCL DEF 7.2 Y+65            |                                          |
| 9 CALL LBL 1                   | Start fresing                            |
| 10 LBL 10                      | Definer merker for repetisjon av program |
| 11 CYCL DEF 10.0 ROTERING      | 45° inkremental rotering                 |
| 12 CYCL DEF 10.1 IROT+45       |                                          |
| 13 CALL LBL 1                  | Start fresing                            |
| 14 CALL LBL 10 REP 6/6         | Tilbake til LBL 10; totalt seks ganger   |
| 15 CYCL DEF 10.0 ROTERING      | Tilbakestill rotering                    |
| 16 CYCL DEF 10.1 ROT+0         |                                          |
| 17 TRANS DATUM RESET           | Tilbakestill nullpunktsforskyvning       |

| 18 L Z+250 RO FMAX M2 | Frikjør verktøy, avslutt program |
|-----------------------|----------------------------------|
| 19 LBL 1              | Underprogram 1                   |
| 20 L X+0 Y+0 R0 FMAX  | Definisjon av fresing            |
| 21 L Z+2 RO FMAX M3   |                                  |
| 22 L Z-5 RO F200      |                                  |
| 23 L X+30 RL          |                                  |
| 24 L IY+10            |                                  |
| 25 RND R5             |                                  |
| 26 L IX+20            |                                  |
| 27 L IX+10 IY-10      |                                  |
| 28 RND R5             |                                  |
| 29 L IX-10 IY-10      |                                  |
| 30 L IX-20            |                                  |
| 31 L IY+10            |                                  |
| 32 L X+0 Y+0 R0 F5000 |                                  |
| 33 L Z+20 RO FMAX     |                                  |
| 34 LBL 0              |                                  |
| 35 END PGM KOUMR MM   |                                  |



11.10 Programmeringseksempler





Sykluser: spesialfunksjoner

## 12.1 Grunnleggende

## Oversikt

TNC har forskjellige sykluser for følgende spesialprogrammer:

| Syklus                                                | Funksjonstast     | Side     |
|-------------------------------------------------------|-------------------|----------|
| 9 FORSINKELSE                                         | ۳                 | Side 311 |
| 12 PROGRAMANROP                                       | 12<br>PGM<br>CALL | Side 312 |
| 13 SPINDELORIENTERING                                 | <sup>13</sup>     | Side 314 |
| 32 TOLERANSE                                          | 32                | Side 315 |
| 225 GRAVERING av tekster                              | ABC               | Side 319 |
| 290 INTERPOLASJONSROTERING<br>(programvarealternativ) | 290               | Side 323 |



## 12.2 FORSINKELSE (syklus 9, DIN/ISO: G04)

## Funksjon

Programforløpet stoppes under FORSINKELSEN. En forsinkelse kan for eksempel brukes ved sponbrudd.

Syklusen begynner å virke når den er definert i programmet. Modale (bestående) tilstander påvirkes imidlertid ikke, som f.eks. spindelrotasjonen.



Beispiel: NC-blokker

| 89 | CYCL | DEF | 9.0 | FORSINKELSE   |  |
|----|------|-----|-----|---------------|--|
| 90 | CYCL | DEF | 9.1 | FORSINKL. 1.5 |  |

### Syklusparametere



Forsinkelse i sekunder: Angi forsinkelsen i sekunder. Innstillingsområde 0 til 3600 s (1 time) i trinn på 0,001 s.

## 12.3 PROGRAMANROP (syklus 12, DIN/ISO: G39)

## Syklusfunksjon

Du kan bruke ulike bearbeidingsprogrammer, f.eks. spesielle boresykluser eller geometrimoduler, på samme måte som en bearbeidingssyklus. Slike programmer kan startes på samme måte som en syklus.



## Legg merke til følgende under programmeringen!

Det startede programmet må være lagret på TNCharddisken.

Hvis du bare angir programnavnet, må det aktuelle programmet være installert i samme katalog som hovedprogrammet.

Hvis programmet som skal tilordnes syklusen, ikke er installert i samme katalog som hovedprogrammet, må hele filbanen angis, f.eks. **TNC:\KLAR35\FK1\50.H**.

Hvis du vil tilordne et DIN/ISO-program til syklusen, må du angi filtypen .I etter programnavnet.

Q-parametere kan i prinsippet alltid brukes i en programoppkalling for syklus 12. Vær derfor oppmerksom på at endringer på Q-parametrene i det startede programmet også påvirker programmet som skal startes.





Programnavn: Navnet på programmet som skal startes, eventuelt med filbanen der programmet ligger. Maksimalt 254 tegn kan tastes inn.

Et definert program kan kalles opp med følgende funksjoner:

- CYCL CALL (separat blokk) eller
- CYCL CALL POS (separat blokk) eller
- M99 (blokkvis)
- **M89** (utføres etter hver posisjoneringsblokk)

Beispiel: Tilordne program 50 som syklus, og kall opp med M99

| 55 | CYCL  | DEF   | 12.0   | PGM   | CALL                 |
|----|-------|-------|--------|-------|----------------------|
| 56 | CYCL  | DEF   | 12.1   | PGM   | TNC:\KLAR35\FK1\50.H |
| 57 | L X+2 | 20 Y+ | -50 FM | IAX N | 199                  |

## 12.4 SPINDELORIENTERING (syklus 13, DIN/ISO: G36)

## Syklusfunksjon



Maskinen og TNC må klargjøres av maskinprodusenten.

TNC kan styre hovedspindelen på en verktøymaskin og vinkle den i forskjellige posisjoner.

Spindelorientering er f.eks. nødvendig:

- for verktøybyttesystemer med bestemte bytteposisjoner for verktøyet
- for å justere sende- og mottaksutstyr for 3D-touch-prober som bruker infrarøde signaler

TNC posisjonerer vinkelen som er definert i syklusen, ut fra innstillingene i M19 eller M20 (maskinavhengig).

Hvis du programmerer M19 eller M20 uten å ha definert syklus 13 først, vil TNC posisjonere hovedspindelen med en vinkelverdi som er definert av maskinprodusenten (se maskinhåndboken).



**Beispiel: NC-blokker** 

93 CYCL DEF 13.0 ORIENTERING 94 CYCL DEF 13.1 VINKEL 180

### Legg merke til følgende under programmeringen!



Syklus 13 brukes internt i bearbeidingssyklusene 202, 204 og 209. Vær oppmerksom på at det kan være nødvendig å programmere syklus 13 på nytt i NC-programmet når du har kjørt en av bearbeidingssyklusene som er nevnt ovenfor.

### **Syklusparametere**



Orienteringsvinkel: Vinkelen angis i forhold til vinkelreferanseaksen i arbeidsplanet. Inndataområde: 0,0000° til 360,0000°



## Syklusfunksjon



Maskinen og TNC må klargjøres av maskinprodusenten. Syklusen kan være sperret.

Ved hjelp av data som er lagt inn i syklus 32, kan du påvirke resultatet for høyhastighetsbearbeidingen (HSC) når det gjelder nøyaktighet, overflatekvalitet og hastighet. Dette forutsetter at TNC er tilpasset de maskinspesifikke egenskapene.

TNC jevner automatisk ut konturen mellom (ukorrigerte eller korrigerte) konturelementer. Verktøyet kjører da kontinuerlig på emneoverflaten, og skåner dermed maskinmekanikken. I tillegg virker toleransen som er definert i syklusen, også på bevegelsen langs sirkelbuer.

Om nødvendig reduserer TNC den programmerte matingen automatisk, slik at TNC alltid kan styre programmet så raskt og smidig som mulig. **Også når TNC ikke kjører med redusert hastighet, blir den toleransen som du har definert, i utgangspunktet alltid fulgt**. Jo høyere verdi du angir for toleransen, desto raskere kan TNC kjøre.

Under utjevning av konturen vil det oppstå et avvik. Konturavvikets størrelse (**toleranseverdien**) er fastsatt av maskinprodusenten i en maskinparameter. Du kan endre den forhåndsinnstilte toleranseverdien med syklus **32**.



# Påvirkningsfaktorer ved geometridefinisjonen i CAM-systemet

Den viktigste påvirkningsfaktoren ved ekstern opprettelse av NCprogrammer er periferifeilen som kan defineres i CAM-systemet. Via en periferifeil defineres maksimal punktavstand i et NC-program som er opprettet i en postprosessor (PP). Hvis periferifeilen er lik eller mindre enn den toleranseverdien **T** som er valgt i syklus 32, kan TNC jevne ut konturpunktene hvis ikke den programmerte matingen blir begrenset av spesielle maskininnstillinger.

Optimal utjevning av en kontur får du når toleranseverdien **T** i syklus 32 er minst dobbelt så stor som periferifeilen som er valgt i CAM-systemet.



1

## Legg merke til følgende under programmeringen!



Ved svært små toleranseverdier kan maskinen ikke lenger bearbeide konturen uten rykk. Rykkingen kommer ikke av at regnefunksjonen i TNC ikke er god nok, men av at TNC kjører nesten helt frem til konturovergangene, og derfor må redusere kjørehastigheten.

Syklus 32 er DEF-aktiv, dvs. at den aktiveres i programmet når den er definert.

TNC tilbakestiller syklus 32 når

- du definerer syklus 32 på nytt og bekrefter dialogspørsmålet etter toleranseverdien mit NO ENT
- du velger et nytt program med tasten PGM MGT

Når du har tilbakestilt syklus 32, aktiverer TNC på nytt toleransen som er forhåndsinnstilt, med maskinparameteren.

TNC tolker den programmerte toleranseverdien T som millimeter i MM-programmet og som tommer i et Inchprogram.

Når du lager et program med syklus 32 som bare inneholder **Toleranzwert** T som syklusparameter, legger TNC inn øvrige parametere med verdien 0.

Hvis toleranseverdien økes, vil sirkeldiameteren vanligvis reduseres ved sirkelbevegelser. Hvis HSC-filteret er aktivert på maskinen (ta kontakt med maskinprodusenten hvis du ønsker dette), kan sirkelbevegelsen også bli større.

Når syklus 32 er aktiv viser TNC den definerte syklus 32parameteren i den ekstra statusvisningen, kategorien **CYC**.



- Toleranseverdi T: Tillatt konturavvik i mm (eller tommer i Inch-programmer). Inndataområde 0 til 99999,9999
- HSC-MODE, slettfresing=0, skrubbing=1: Aktivere filter:
  - Inndataverdi 0: Fresing med høyere konturpresisjon. TNC bruker internt definerte filterinnstillinger for slettfresing
  - Innstillingsverdi 1: Fresing med høyere matehastighet. TNC bruker internt definerte filterinnstillinger for skrubbing
- ▶ Toleranse for roteringsakser TA: Tillatt posisjonsavvik for roteringsakser i grader ved aktiv M128 (FUNKSJON TCPM). Ved bevegelse langs flere akser reduserer TNC alltid banematingen slik at den aksen som beveger seg langsomst, kjøres med maksimal banemating. Roteringsakser er normalt vesentlig langsommere enn lineærakser. Ved å angi en høyere toleranse (f.eks. 10°) kan du redusere bearbeidingstiden betydelig for programmer som bruker flere akser, fordi TNC ikke alltid trenger å føre roteringsaksen til den forhåndsinnstilte nominelle posisjonen. Definering av toleransen for en roteringsaksen stilling i forhold til emneoverflaten som endres. Inndataområde 0 til 179,9999

#### **Beispiel: NC-blokker**

| 95 CYCL DEF 32.0 | TOLERANSE      |
|------------------|----------------|
| 96 CYCL DEF 32.1 | . T0.05        |
| 97 CYCL DEF 32.2 | HSC-MODE:1 TA5 |



## 12.6 GRAVERING (syklus 225, DIN/ISO: G225)

## Syklusforløp

Med denne syklusen kan tekster graveres på en jevn overflate på emnet. Tekstene kan plasseres langs en rett linje eller på en sirkelbue.

- 1 TNC plasserer verktøyet i bearbeidingsnivået til startpunktet for det første tegnet.
- 2 Verktøyet senkes loddrett ned på graveringsflaten og freser inn tegnene. Den nødvendige løftebevegelsen mellom tegnene gjøres med sikkerhetsavstand. Når tegnet er ferdig, står verktøyet med sikkerhetsavstand over overflaten.
- **3** Denne prosedyren gjentas for alle tegnene som skal graveres.
- 4 Til slutt fører TNC verktøyet tilbake til 2. sikkerhetsavstand.



### Merk under programmeringen!



Fortegnet til syklusparameteren for dybde slår fast arbeidsretningen.

Når teksten graveres på en rett linje (**Q516=0**), avgjør verktøysposisjonen ved syklusoppkallingen startpunktet for det første tegnet.

Når teksten graveres på en sirkel (**Q516=1**), avgjør verktøysposisjonen ved syklusoppkallingen senterpunktet for sirkelen.

Graveringsteksten kan også angis med strengvariabel (QS).

- ABC
- Graveringstekst QS500: graveringstekst innenfor apostrofer. Tildeling av en strengvariabel med Qtasten på talltastaturet. Q-tasten på ASCII-tastaturet tilsvarer normal tekstinntasting. Maksimalt 256 tegn tillatt, tillatte tegn: Se Gravere systemvariabler på side 322
- Tegnhøyde Q513 (absolutt): Høyde på tegnene som skal graveres, i mm. Inndataområde 0 til 99999,9999
- Faktor avstand Q514: Den anvendte fonten er en såkalt proporsjonalfont. Hvert tegn har i henhold denne sin egen bredde som TNC graverer ved definisjon av Q514=0. Ved definisjon av Q514 forskjellig fra 0 skalerer TNC avstanden mellom tegnene. Inndataområde 0 til 9,9999
- Skrifttype Q515: Foreløpig uten funksjon
- Tekst på linje/sirkel (0/1) Q516: Gravere tekst langs en rett linje: Inntasting = 0 Gravere tekst på en sirkelbue: Inntasting = 1
- Roteringsposisjon Q374: Sentervinkel, hvis teksten skal plasseres på en sirkelbue. Graveringsvinkel ved rettlinjet tekstplassering. Inndataområde: -360,0000 til +360,0000°
- Radius ved tekst på sirkelbue Q517 (absolutt): Radius på sirkelbuen som TNC skal plassere teksten på, i mm. Inndataområde 0 til 99999,9999
- Mating fresing Q207: verktøyets bevegelseshastighet i mm/min ved gravering. Inndataområde 0 til 99999,999, alternativ FAUTO, FU eller FZ
- Dybde Q201 (inkremental): Avstanden mellom emneoverflaten og graveringsbunnen
- Mating for matedybde Q206: Verktøyets bevegelseshastighet i mm/min ved boring. Inndataområde 0 til 99999,999, alternativ FAUTO, FU
- Sikkerhetsavstand Q200 (inkremental): Avstanden mellom verktøyspissen og emneoverflaten. Inndataområde 0 til 99999,9999 alternativ PREDEF
- Koord. emneoverflate Q203 (absolutt): Koordinat for emneoverflaten. Inndataområde -99999,9999 til 99999,9999
- Sikkerhetsavstand Q204 (inkremental): Koordinat for spindelaksen der verktøy og emne (oppspenningsutstyr) ikke kan kollidere. Inndataområde 0 til 99999,9999 alternativ PREDEF



#### **Beispiel: NC-blokker**

| 62 CYCL DEF 225 GR | AVERING               |
|--------------------|-----------------------|
| QS500="TXT2"       | ;GRAVERINGSTEKST      |
| Q513=10            | ;TEGNHØYDE            |
| Q514=0             | ;FAKTOR AVSTAND       |
| Q515=0             | ;SKRIFTTYPE           |
| Q516=0             | ;TEKSTPLASSERING      |
| Q374=0             | ;ROTERINGSPOSISJON    |
| Q517=0             | ;SIRKELRADIUS         |
| Q207=750           | ;MATING FRESING       |
| Q201=-0.5          | ;DYBDE                |
| Q206=150           | ;MATING FOR MATEDYBDE |
| Q200=2             | ;SIKKERHETSAVST.      |
| Q203=+20           | ;KOOR. OVERFLATE      |
| Q204=50            | ;2. SIKKERHETSAVST.   |

## Tillatte graveringstegn

l tillegg til små bokstaver, store bokstaver og tall, er følgende spesialtegn mulig:

!#\$%&'()\*+,-./:;<=>?@[\]



Spesialtegnene % og \ bruker TNC for spesielle funksjoner. Hvis du vil gravere disse, må du angi dem dobbelt i graveringsteksten, f.eks.: %%.

Du kan også gravere omlydtegn og diametertegn med denne syklusen.:

| Tegn | Innføring |
|------|-----------|
| ä    | %ae       |
| Ö    | %oe       |
| ü    | %ue       |
| Ä    | %AE       |
| Ö    | %OE       |
| Ü    | %UE       |
| Ø    | %D        |

### Ikke trykkbare tegn

l tillegg til tekst er det også mulig å definere noen ikke-trykkbare tegn til formateringsbruk. Angivelse av ikke trykkbare tegn innledes med spesialtegnet  $\lambda$ .

Du har følgende muligheter:

- **\n**: Linjeskift
- \t: Horisontal tabulator (tabulatorbredde er fast innstilt til 8 tegn)
- \v: Vertikal tabulator (tabulatorbredde er fast innstilt til 8 tegn)

## Gravere systemvariabler

I tillegg til faste tegn er det mulig å gravere innholdet i bestemte systemvariabler. Angivelse av en systemvariabel innledes med spesialtegnet %.

Det er mulig å gravere dags dato. Angi **%time<x>. <x>** definerer datoformatet, og betydningen er identisk med funksjonen **SYSSTR ID332** (se brukerhåndboken Klartekstdialog, kapittel Programmering av Q-parameter, avsnitt Kopiere systemdata inn i en strengparameter).



Vær oppmerksom på at det må være en 0 foran datoformet 1 til 9, f.eks. **time08**.

## 12.7 INTERPOLASASJONSROTERING (programvarealternativ, syklus 290, DIN/ISO: G290)

## Syklusforløp

Med denne syklusen kan du lage en rotasjonssymmetrisk avsats eller et innstikk i bearbeidingsnivået, som er definert ved start- og sluttpunket (se også Bearbeidingsvarianter på side 327). Rotasjonssenteret er startpunktet (XY) ved syklusoppkall. Rotasjonsflatene kan avrundes på skrå og mot hverandre. Flatene kan lages både med interpolasjonsdreiing og med fresing.

Emnet roterer ikke ved interpolasjonsdreiing. Emnet utfører en sirkelbevegelse i hovedaksene X og Y. Samtidig fører TNC spindel S på en slik måte at skjæret og dreiestålet alltid er rettet mot emnets roteringssenter. Dermed kan du også bruke syklus 290 på en treakset maskin.

Midtpunktet til bearbeidingen må ikke ligge i sentrum av et rundbord. Du fastsetter midtpunktet ved hjelp av posisjonen til verktøyet ved syklusoppkallingen.

- 1 TNC plasserer verktøyet i sikker høyde over startpunktet for bearbeidingen. Denne fremgår av en tangentiell forlengelse av konturstartpunktet med sikkerhetsavstanden.
- 2 TNC lager den definerte konturen med interplasjonsdreiing. Hovedaksene for arbeidsplanet beskriver da en sirkelformet bevegelse, mens spindelaksen blir ført loddrett mot overflaten.
- **3** Ved kontursluttpunket kj'rer TNC verktøyet loddrett tilbake til sikker høyde.
- 4 Til posisjonerer TNC verktøyet i sikker høyde



## Merk under programmeringen!

Verktøyet du bruker for denne syklusen kan både være et dreieverktøy og et freseverktøy (Q444=0). Geometridataene for dette verktøyet definerer du i verktøystabellen TOOL.T på følgende måte:

- Kolonne L (DL for korrigeringsverdier): Verktøyets lengde (nederste punkt på verktøyets skjær)
- Kolonne R (DR for korrigeringsverdier): Verktøyets sentrifugalradius (ytterste punkt på verktøyets skjær)
- Kolonne R2 (DR2 for korrigeringsverdier): Verktøyets skjærradius

Maskinen og TNC må klargjøres av maskinprodusenten. Se maskinhåndboken.

Denne syklusen kan bare brukes på maskiner med regulert spindel (unntak **Q444=0**)

Programvarealternativ 96 må være aktivert.



Syklusen muliggjør ikke skrubbdreiing i flere trinn.

Interpolasjonssenteret er verktøysposisjonen ved syklusoppkall.

TNC forlenger den første overflaten som skal bearbeides med sikkerhetsavstanden.

Med verdien **DL** og **DR** til **TOOL CALL**-blokken kan du utføre oppmålinger. **DR2**-inntastinger i **TOOL CALL**-blokken tas ikke hensyn til av TNC.

For at maskinen skal kunne oppnå høy banehastighet, definer før syklusoppkall en stor toleranse med syklus 32.

Programmer en skjærehastighet som med banehastigheten til maskinens akser også kan oppnås rettlinjet. Dette gir en optimal geometrioppløsning og en konstant bearbeidingshastighet.

TNC overvåker ikke potensielle konturoverskridelser som kan oppstå på grunn av verktøysgeometrien.

Vær oppmerksom på bearbedingsvariantene: Se Bearbeidingsvarianter på side 327.
### Syklusparametere



- Sikkerhetsavstand Q200 (inkremental): Forlengeravstand for den definerte konturen ved fremkjøirng og bortkjøring. Inndataområde 0 til 99999,9999 alternativ PREDEF
- Sikker høyde: Q445 (absolutt): Absolutt høyde hvor verktøy og emne ikke kan kollidere, og verktøyets returposisjon er ved syklusens slutt. Inndataområde
   99999,9999 til 99999,9999
- Vinkel for spindelorientering Q336 (absolutt): Vinkelen som TNC som skjæret setter i spindelens 0°posisjon. Inndataområde -360,0000 til 360,0000
- Skjærehastighet [m/min] Q440: Skjærehastighet for verktøyet i m/min. Inndataområde 0 til 99,999
- Fremmating per omdreining [mm/U] Q441: matingen som verktøyet utfører per omdreining. Inndataområde 0 til 99,999
- Startvinkel nivå XY Q442: Startvinkel i XY-nivået. Inndataområde 0 til 359,999
- Bearbeidingsretning (-1/+1) Q443: Bearbeiding med urviseren: Tast inn = -1 Bearbeiding mot urviseren: Tast inn = +1

 Interpolerende akse (4...9) Q444: Aksebetegnelse for den interpolerende aksen.
 A-aksen er interpolerende akse: Inntasting = 4
 B-aksen er interpolerende akse: Inntasting = 5
 C-aksen er interpolerende akse: Inntasting = 6
 U-aksen er interpolerende akse: Inntasting = 7
 V-aksen er interpolerende akse: Inntasting = 8
 W-aksen er interpolerende akse: Inntasting = 9
 Frese kontur: Tast inn = 0



' (

- Konturstart diameter Q491 (absolutt): Hjørne på startpunktet i Z. Tast inn diameter. Inndataområde
   99999,9999 til 99999,9999
- ▶ Konturstart Z Q492 (absolutt): Hjørne på startpunktet i Z. Inndataområde -99999,9999 til 99999,9999
- Konturslutt diameter Q493 (absolutt): Hjørne på sluttpunktet i X. Tast inn diameter. Inndataområde
   99999,9999 til 99999,9999
- **Konturslutt Z** Q494 (absolutt): Hjørne på sluttpunktet i Z. Inndataområde -99999,9999 til 99999,9999
- Vinkel omfangsflate Q495: Vinkel på den første flaten som skal bearbeides, i grader. Inndataområde -179,999 til 179,999
- Vinkel planflate Q496: Vinkel på den andre flaten som skal bearbeides, i grader. Inndataområde -179,999 til 179,999
- Radius på konturhjørne Q500: Hjørneavrunding mellom flatene som skal bearbeides. Inndataområde 0 til 999,999



### **Beispiel: NC-blokker**

| 62 CYCL DEF 290 | INTERPOLASJONSROTERING |
|-----------------|------------------------|
| Q200=2          | ;SIKKERHETSAVST.       |
| Q445=+50        | ;SIKKER HØYDE          |
| Q336=0          | ;VINKEL SPINDEL        |
| Q440=20         | ;SKJÆREHASTIGHET       |
| Q441=0,75       | ;FREMMATING            |
| Q442=+0         | ;STARTVINKEL           |
| Q443=-1         | ;BEARBEIDINGSR.        |
| Q444=+6         | ;INTERP. AKSE          |
| Q491=+25        | ;KONTURSTART DIAM      |
| Q492=+0         | ;KONTURSTART Z         |
| Q493=+50        | ;KONTURSLUTT X         |
| Q494=-45        | ;KONTURSLUTT Z         |
| Q495=+0         | ;VINKEL OMKRETSFLATE   |
| Q496=+0         | ;VINKEL PLANFLATE      |
| Q500=4,5        | ;RADIUS KONTURHJØRNE   |

### Konturresing

Med inntasting av **Q444=0** kan du frese flatene. Til dette arbeidet bruker du en freser med en skjæreradius (R2). Hvis flatene har stor toleranse, er det vanligvis bedre å frese disse enn å bruke interpolasjonsdreiing.



Syklusen muliggjør fresing i flere trinn.

Vær oppmerksom på at matehastigheten ved fresing tilsvarer angivelsen i **Q440** (skjærehastighet). Enheten for skjærehastigheten er meter per minutt.

### Bearbeidingsvarianter

Ved å kombinere start- og sluttpunktet med vinklene Q495 og Q496 får man følgende bearbeidingsmuligheter:

### Utvendig bearbeiding i kvadrant 1 (1):

- Angi vinkel omfangsflate Q495 positiv
- Angi vinkel planflate Q496 negativ
- Angi konturstart X Q491 mindre enn konturslutt X Q493
- Angi konturstart Z Q492 større enn konturslutt Z Q494

### Innvendig bearbeiding i kvadrant 2 (2):

- Angi vinkel omfangsflate Q495 negativ
- Angi vinkel planflate Q496 positiv
- Angi konturstart X Q491 større enn konturslutt X Q493
- Angi konturstart Z Q492 større enn konturslutt Z Q494

### Utvendig bearbeiding i kvadrant 3 (3):

- Angi vinkel omfangsflate Q495 positiv
- Angi vinkel planflate Q496 negativ
- Angi konturstart X Q491 større enn konturslutt X Q493
- Angi konturstart Z Q492 mindre enn konturslutt Z Q494

### Innvendig bearbeiding i kvadrant 4 (4):

- Angi vinkel omfangsflate Q495 negativ
- Angi vinkel planflate Q496 positiv
- Angi konturstart X Q491 mindre enn konturslutt X Q493
- Angi konturstart Z Q492 mindre enn konturslutt Z Q494

### Innstikk aksial:

- Angi konturstart X Q491 lik konturslutt X Q
- Innstikk radial:
  - Angi konturstart Z Q492 mindre enn konturslutt Z Q494



# 12.7 INTERPOLASASJONSROTE<mark>RI</mark>NG(programvarealternativ, syklus 290, DIN/ISO: G290)







Arbeide med touch-probe-sykluser

### 13.1 Generelt om touch-probe-syklusene

TNC må være forberedt for bruk av 3D touch-prober fra maskinprodusentens side. Se maskinhåndboken.

Vær oppmerksom på at HEIDENHAIN prinsipielt kun garanterer for funksjonen til touch-probe-sykluser hvis du bruker touch-prober fra HEIDENHAIN!



Når du utfører målinger mens programmet kjører, må du sørge for at verktøydataene (lengde, radius) fra de kalibrerte dataene eller fra den sist brukte **TOOL CALL**blokken er tilgjengelige (velges via MP7411).

### Funksjon

Når TNC kjører en touch-probe-syklus, kjører 3D-touch-proben akseparallelt mot emnet (også når grunnroteringen er aktivert og arbeidsplanet er dreid). Maskinprodusenten fastsetter probemating i en maskinparameter (se Før du begynner å arbeide med touch-probesykluser lenger bak i dette kapitlet).

Når nålen berører emnet,

- sender 3D-touch-proben et signal til TNC: Koordinatene til den probede posisjonen lagres.
- stopper 3D-touch-proben og
- kjører i hurtigmating tilbake til startposisjonen til probesyklusen

Hvis nålen ikke får utslag under en fastlagt bevegelse, viser TNC en feilmelding (bevegelse: MP6130).



### Touch-probe-sykluser i driftsmodusene Manuell drift og El. håndratt

Med TNCs tilgjengelige touch-probe-sykluser i driftsmodusene Manuell drift og El. håndratt kan du gjøre følgende:

- kalibrere touch-prober
- kompensere for emner som ligger skjevt
- fastsette nullpunkter

### Touch-probe-sykluser for automatisk drift

I tillegg til touch-probe-syklusene som brukes i driftsmodusene Manuell og El. håndratt, finnes det mange tilgjengelige sykluser for ulike bruksområder i automatisk drift:

- kalibrere koblende touch-probe
- kompensere for emner som ligger skjevt
- fastsette nullpunkter
- automatisk emnekontroll
- automatisk verktøymåling

Touch-probe-syklusene programmeres ved hjelp av tasten TOUCH PROBE i driftsmodusen Lagre/rediger program. Bruk touch-probesykluser fra og med nummer 400. Bruk også nyere bearbeidingssykluser og Q-parametere som

konfigurasjonsparametere. Parametere med lik funksjon og som TNC trenger i forskjellige sykluser, har alltid samme nummer: f.eks. Q260 er alltid sikker høyde, Q261 er alltid målehøyde osv.

For å gjøre programmeringen enklere vises det et hjelpebilde i TNC mens du definerer syklusene. Den parameteren som du skal legge inn, er merket med lys bakgrunn på hjelpebildet (se bildet til høyre).



TOUCH PROBE

410

### Definere en touch-probe-syklus i driftsmodusen Lagre/rediger

- Linjen med funksjonstaster viser alle de tilgjengelige touch-probe-funksjonene. Funksjonene er ordnet i grupper.
- Du kan velge probesyklusgruppe og f.eks. fastsette nullpunkt. Sykluser for automatisk verktøyoppmåling er bare tilgjengelige hvis maskinen er forberedt for disse funksjonene.
- Du kan velge syklus, f.eks. fastsette nullpunkt for sentrum av lomma. I TNC åpnes det en dialog hvor du skal taste inn verdiene. På høyre halvdel av skjermen vises det samtidig en grafikk hvor parameteren som skal legges inn, er markert med lys bakgrunn.
- Legg inn alle parameterne som TNC trenger, og avslutt hver inntasting med ENT-tasten.
- Etter at du har lagt inn alle de nødvendige dataene, lukkes dialogen.

| Målesyklusgruppe                                                                       | Funksjonstast        | Side     |
|----------------------------------------------------------------------------------------|----------------------|----------|
| Sykluser for automatisk registrering<br>og kompensasjon for emner som<br>ligger skjevt |                      | Side 338 |
| Sykluser for automatisk fastsetting av nullpunkt                                       |                      | Side 360 |
| Sykluser for automatisk<br>emnekontroll                                                |                      | Side 414 |
| Kalibreringssykluser, spesielle<br>sykluser                                            | SPESIAL-<br>SYKLUSER | Side 462 |
| Sykluser for automatisk<br>kinematikkmåling                                            | KINEMATIKK           | Side 478 |
| Sykluser for automatisk<br>verktøyoppmåling (aktiveres av<br>maskinprodusenten)        |                      | Side 508 |

### **Eksempel: NC-blokker**

| 5 TCH | I PROBE 41 | O NULLPUNKT FIRKANT INNV. |
|-------|------------|---------------------------|
|       | Q321=+50   | ;SENTRUM 1. AKSE          |
|       | Q322=+50   | ;SENTRUM 2. AKSE          |
|       | Q323=60    | ;1. SIDELENGDE            |
|       | Q324=20    | ;2. SIDELENGDE            |
|       | Q261=-5    | ;MÅLEHØYDE                |
|       | Q320=0     | ;SIKKERHETSAVST.          |
|       | Q260=+20   | ;SIKKER HØYDE             |
|       | Q301=0     | ;KJØR TIL S. HØYDE        |
|       | Q305=10    | ;NR. I TABELL             |
|       | Q331=+O    | ;NULLPUNKT                |
|       | Q332=+0    | ;NULLPUNKT                |
|       | Q303=+1    | ;MÅLEVERDIOVERFØRING      |
|       | Q381=1     | ;PROBE TS-AKSE            |
|       | Q382=+85   | ;1. KOOR. FOR TS-AKSE     |
|       | Q383=+50   | ;2. KOOR. FOR TS-AKSE     |
|       | Q384=+0    | ;3. KOOR. FOR TS-AKSE     |
|       | Q333=+0    | ;NULLPUNKT                |

٦

### 13.2 Viktig før du arbeider med touch-probe-sykluser

For å kunne løse så mange måleoppgaver som mulig, kan du foreta forskjellige innstillinger via maskinparameterne. Disse innstillingene styrer alle touch-probe-syklusene.

### Maksimal avstand til probepunktet: MP6130

Hvis nålen ikke får utslag i bevegelsen som er fastsatt i MP6130, viser TNC en feilmelding.

### Sikkerhetsavstand til probepunktet: MP6140

I MP6140 fastsetter du hvor langt fra det definerte probepunktet eller fra probepunktet som er blitt beregnet i syklusen, touch-proben skal forposisjoneres. Jo mindre verdi du angir, desto nøyaktigere må du definere probeposisjonen. I mange touch-probe-sykluser kan du i tillegg definere en sikkerhetsavstand. Sikkerhetsavstanden fungerer i tillegg til maskinparameter 6140.

### Rette infrarød touch-probe mot programmert proberetning: MP6165

Hvis MP 6165 = 1, oppnår du større målenøyaktighet. Før hver probeprosess blir en infrarød touch-probe rettet inn mot den programmerte proberetningen. Dermed får nålen alltid utslag i samme retning.



Hvis du endrer MP6165, må du kalibrere touch-proben på nytt, ettersom bevegelseskarakteristikken endres.







### Ta hensyn til grunnroteringen i manuell drift: MP6166

Hvis MP 6166 = 1, får du større målenøyaktighet ved probing etter enkelte posisjoner i oppsettmodus. Under probeprosessen tar TNC hensyn til en aktiv grunnrotering og beveger seg eventuelt på skrå mot emnet.



Funksjonen for skrå probing gjelder ikke for følgende funksjoner i manuell drift.

- Kalibrere lengde
- Kalibrere radius
- Bestemme grunnrotering

### Repetert måling: MP6170

For å oppnå større målesikkerhet kan TNC utføre hver probeprosess inntil tre ganger på rad. Hvis de målte posisjonsverdiene avviker for mye fra hverandre, viser TNC en feilmelding (grenseverdien er fastsatt i MP6171). Repetert måling gjør det også mulig å oppdage tilfeldige målefeil, som for eksempel kan være resultat av tilsmussing.

Hvis måleverdiene ligger innenfor pålitelighetsområdet, blir gjennomsnittsverdien til de registrerte posisjonene lagret i TNC.

### Pålitelighetsområde for repetert måling: MP6171

Når du foretar repetert måling, må du legge inn verdier for godtatt avvik i MP6171. Hvis differansen i måleverdiene overskrider verdien i MP6171, viser TNC en feilmelding.

### 3.2 Viktig før du arbeider med touch-probe-sykluser

### Koblende touch-probe, probemating: MP6120

I MP6120 fastlegger du mating for probing av emnet.

### Koblende touch-probe, mating for posisjoneringsbevegelser: MP6150

I MP6150 fastsetter du matingen som TNC forposisjonerer touchproben med, eller som TNC posisjonerer mellom målepunktene.

### Koblende touch-probe, hurtiggang for posisjoneringsbevegelser: MP6151

I MP6151 fastsetter du om TNC skal posisjonere touch-proben med matingen som er definert i MP6150, eller med hurtiggang.

- Inndataverdi = 0. Posisjonere med mating fra MP6150
- Inndataverdi = 1: Forposisjonere med hurtiggang

### KinematicsOpt, optimere toleransegrense for modus: MP6600

l **MP6600** fastsetter du toleransegrensen der TNC skal vise en merknad i optimeringsmodus, hvis de fastsatte kinematikkdataene ligger over denne grenseverdien. Forhåndsinnstilling: 0,05. Jo større maskinen er, desto større verdier må velges

Inndataområde: 0,001 til 0,999

### KinematicsOpt, tillatt avvik kalibreringskuleradius: MP6601

Angi maks. tillatt avvik i **MP6601**. Avviket er basert på kalibreringsradiusen som ble målt automatisk i syklusene på grunnlag av den angitte syklusparameteren.

Inndataområde: 0,01 til 0,1

TNC beregner kalibreringsradiusen ved hvert målepunkt, to ganger via alle probepunkter. Hvis radiusen er større enn Q407 + MP6601, vises en feilmelding, fordi det tyder på tilsmussing.

Hvis radiusen som er fastsatt av TNC, er mindre enn 5 \* (Q407 - MP6601), viser TNC en feilmelding.



### Kjøre touch-probe-sykluser

Alle touch-probe-syklusene er DEF-aktive. TNC går automatisk gjennom syklusen når syklusdefinisjonene kjøres av TNC i programkjøringen.



Når syklusen starter, må du passe på at korrekturdataene (lengde, radius) blir aktivert fra de kalibrerte dataene eller fra den siste TOOL-CALL-blokken (velges via MP7411, se brukerhåndboken til iTNC 530 Generelle brukerparametere).

Touch-probe-syklus 408 til 419 kan også utføres når grunnroteringen er aktivert. Pass på at grunnroteringsvinkelen ikke forandrer seg når du etter målesyklusen arbeider med syklus 7 Nullpunktsforskyvning fra nullpunktabellen.

Touch-probe-sykluser med høyere nummer enn 400 posisjoneres av touch-proben etter følgende posisjoneringslogikk:

- Hvis den aktuelle koordinaten til sydpolen på nålen er mindre enn koordinaten til den sikre høyden (definert i syklusen), trekker TNC først touch-proben tilbake til den sikre høyden på probeaksen og posisjonerer den deretter på det første probepunktet på arbeidsplanet.
- Hvis den aktuelle koordinaten til sydpolen på nålen er større enn koordinaten til den sikre høyden, posisjonerer TNC først touchproben på det første probepunktet på arbeidsplanet og deretter direkte i målehøyde på probeaksen.





Touch-probe-sykluser: registrere emner som ligger skjevt, automatisk

### 14.1 Grunnleggende

### Oversikt

TNC har fem sykluser som kan brukes for å registrere og kompensere for et skråstilt emne. I tillegg kan du tilbakestille en grunnrotering med syklus 404:

| Syklus                                                                                                                                                              | Funksjonstast | Side     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----------|
| 400 GRUNNROTERING:<br>Automatisk registrering via to<br>punkter, kompensasjon via<br>grunnroteringsfunksjonen                                                       | 400           | Side 340 |
| 401 ROT 2 BORINGER: Automatisk<br>registrering via to boringer,<br>kompensasjon via<br>grunnroteringsfunksjonen                                                     | 481<br>6-01   | Side 343 |
| 402 ROT 2 TAPPER: Automatisk<br>registrering via to tapper,<br>kompensasjon via<br>grunnroteringsfunksjonen                                                         | 402           | Side 346 |
| 403 ROT VIA ROTERINGSAKSE:<br>Automatisk registrering via to<br>punkter, kompensasjon via<br>rundbordrotering                                                       | 483           | Side 349 |
| 405 ROT VIA C-AKSE: Automatisk<br>innstilling av vinkelforskyvning<br>mellom et boringssenterpunkt og<br>den positive Y-aksen,<br>kompensasjon via rundbordrotering | 405           | Side 354 |
| 404 ANGI GRUNNROTERING:<br>Innstilling av ønsket grunnrotering                                                                                                      | 484           | Side 353 |

i

### Fellestrekk for touch-probe-syklusene for registrering av skråstilte emner

Med syklusene 400, 401 og 402 kan du via parameter Q307 **Forhåndsinnstilt grunnrotering** definere om måleresultatet skal korrigeres med en kjent vinkel  $\alpha$  (se bildet til høyre). På den måten kan du måle grunnroteringen for en hvilken som helst rett linje 1 på emnet i forhold til den egentlige 0°-retningen 2.





### 14.2 GRUNNROTERING (syklus 400, DIN/ISO: G400)

### Syklusforløp

Touch-probe-syklus 400 registrerer skråstillingen for et emne ved hjelp av to målepunkter som må ligge langs en rett linje. TNC korrigerer den målte verdien ved hjelp av grunnroteringsfunksjonen.

- 1 TNC posisjonerer touch-proben med hurtigmating (verdi fra MP6150) og med posisjoneringslogikk (se Kjøre touch-probesykluser på side 336) til det programmerte probepunktet 1. TNC beveger samtidig touch-proben mot den valgte kjøreretningen for å legge inn en sikkerhetsavstand.
- 2 Deretter kjører touch-proben til den angitte målehøyden og utfører første probeprosess med probemating (MP6120)
- 3 Så beveger touch-proben seg til neste probepunkt 2 og utfører andre probeprosess
- 4 TNC flytter touch-proben tilbake til sikker høyde og utfører den beregnede grunnroteringen

### Legg merke til følgende under programmeringen!

Før du definerer en syklus, må du programmere en verktøyoppkalling for å definere probeaksen.

TNC tilbakestiller en aktiv grunnrotering når syklusen starter.



### Syklusparametere



- 1. målepunkt 1. akse Q263 (absolutt): Koordinat for det første probepunktet på arbeidsplanets hovedakse. Inndataområde • 99999,9999 til 99999,9999
- ▶ 1. målepunkt 2. akse Q264 (absolutt): Koordinat for det første probepunktet på arbeidsplanets hjelpeakse. Inndataområde 99999,9999 til 99999,9999
- 2. målepunkt 1. akse Q265 (absolutt): Koordinat for det andre probepunktet på arbeidsplanets hovedakse. Inndataområde • 99999,9999 til 99999,9999
- 2. målepunkt 2. akse Q266 (absolutt): Koordinat for det andre probepunktet på arbeidsplanets hjelpeakse. Inndataområde • 99999,9999 til 99999,9999
- Måleakse Q272: Aksen til arbeidsplanet som målingen skal utføres på:
   1:Hovedakse = måleakse
   2:Hielpeakse = måleakse
- Bevegelsesretning 1 Q267:Touch-probens bevegelsesretning mot emnet:
   -1: Negativ kjøreretning
   +1:Positiv kjøreretning
- Målehøyde i touch-probe-aksen Q261 (absolutt): Koordinat for kulesentrum (=berøringspunkt) på touch-probe-aksen som målingen skal utføres på. Inndataområde • 99999,9999 til 99999,9999
- Sikkerhetsavstand Q320 (inkremental): Tilleggsavstand mellom målepunktet og touch-probekulen. Q320 kommer i tillegg til MP6140. Inndataområde 0 til 99999,9999 alternativ PREDEF
- Sikker høyde Q260 (absolutt): Koordinat for probeaksen der touch-probe og emne (oppspenningsutstyr) ikke kan kollidere. Inndataområde -99999,9999 til 99999,9999 alternativ PREDEF





- Kjør til sikker høyde Q301: Angi hvordan touchproben skal bevege seg mellom målepunktene:
  - 0: Bevegelse mellom målepunkter i målehøyde 1: Bevegelse mellom målepunkter i sikker høyde Alternativ **PREDEF**
- Forhåndsinnstilling for grunnrotering Q307 (absolutt): Hvis skråstillingen ikke skal måles i forhold til hovedaksen, men i forhold til en annen rett linje, må vinkelen til referanselinjene angis. TNC vil da beregne grunnroteringen på grunnlag av differansen mellom den målte verdien og vinkelen til referanselinjene. Inndataområde -360,000 til 360,000
- Forhåndsinnstillingsnummer i tabell Q305: Angi under hvilket nummer i forhåndsinnstillingstabellen TNC skal lagre den beregnede grunnroteringen. Hvis verdien Q305=0 angis, oppretter TNC den beregnede grunnroteringen i ROT-menyen for manuell drift. Inndataområde 0 til 99999

### **Beispiel: NC-blokker**

| 5 TCH PROBE 4 | 00 GRUNNROTERING                    |
|---------------|-------------------------------------|
| Q263=+10      | ;1. PUNKT 1. AKSE                   |
| Q264=+3,      | 5 ;1. PUNKT 2. AKSE                 |
| Q265=+25      | ;2. PUNKT 1. AKSE                   |
| Q266=+8       | ;2. PUNKT 2. AKSE                   |
| Q272=2        | ;MÅLEAKSE                           |
| Q267=+1       | ;KJØRERETNING                       |
| Q261=-5       | ;MÅLEHØYDE                          |
| Q320=0        | ;SIKKERHETSAVST.                    |
| Q260=+20      | ;SIKKER HØYDE                       |
| Q301=0        | ;KJØRING PÅ S. HØYDE                |
| Q307=0        | ;FORH.INNSTILLING.<br>GRUNNROTERING |
| Q305=0        | ;NR. I TABELL                       |

1

### Syklusforløp

Touch-probe-syklus 401 registrerer midtpunktene i to boringer. Deretter beregner TNC vinkelen mellom arbeidsplanenes hovedakse og de rette linjene mellom boringenes midtpunkter. TNC korrigerer den beregnede verdien ved hjelp av grunnroteringsfunksjonen. Du kan også kompensere for den fastsatte skråstillingen ved å rotere rundbordet.

- TNC posisjonerer touch-proben med hurtigmating (verdi fra MP6150) og med posisjoneringslogikk (se Kjøre touch-probesykluser på side 336) til probepunktet 1
- 2 Deretter beveger touch-proben seg til angitt målehøyde og registrerer midtpunktet i første boring via fire prober.
- **3** Så beveger touch-proben seg tilbake til sikker høyde og plasserer seg på det angitte midtpunktet i andre boring **2**
- **4** TNC flytter touch-proben til angitt målehøyde og registrerer midtpunktet i andre boring via fire prober
- **5** Til slutt flytter TNC touch-proben tilbake til sikker høyde og utfører den beregnede grunnroteringen

### Legg merke til følgende under programmeringen!

Før du definerer en syklus, må du programmere en verktøyoppkalling for å definere probeaksen.

TNC tilbakestiller en aktiv grunnrotering når syklusen starter.

Denne touch-probe-syklusen kan ikke brukes hvis funksjonen Drei arbeidsplanet ikke er tillatt.

Hvis du vil kompensere for den skjeve stillingen med en rundbordrotering, bruker TNC automatisk følgende roteringsakser:

- C for verktøyakse Z
- B for verktøyakse Y
- A for verktøyakse X





14.3 GRUNNROTERING via to boringer (syklus 401, DIN/ISO: G401)

## 14.3 GRUNNROTERING via to boringer (syklus 401, DIN/ISO: G401

### **Syklusparametere**



- ▶ 1. 1. boring: sentrum 1. akse Q268 (absolutt): Sentrum i første boring på arbeidsplanets hovedakse. Inndataområde • 99999,9999 til 99999,9999
- 1. 1. boring: sentrum 2. akse Q269 (absolutt): Sentrum i første boring på arbeidsplanets hjelpeakse. Inndataområde • 99999,9999 til 99999,9999
- 2. 2. boring: sentrum 1. akse Q270 (absolutt): Sentrum i andre boring på arbeidsplanets hovedakse. Inndataområde • 99999,9999 til 99999,9999
- 2. 2. boring: sentrum 2. akse Q271 (absolutt): Sentrum i andre boring på arbeidsplanets hjelpeakse. Inndataområde • 99999,9999 til 99999,9999
- Målehøyde i touch-probe-aksen Q261 (absolutt): Koordinat for kulesentrum (=berøringspunkt) på touch-probe-aksen som målingen skal utføres på. Inndataområde • 99999,9999 til 99999,9999
- Sikker høyde Q260 (absolutt): Koordinat for probeaksen der touch-probe og emne (oppspenningsutstyr) ikke kan kollidere. Inndataområde -99999,9999 til 99999,9999 alternativ PREDEF
- Forhåndsinnstilling for grunnrotering Q307 (absolutt): Hvis skråstillingen ikke skal måles i forhold til hovedaksen, men i forhold til en annen rett linje, må vinkelen til referanselinjene angis. TNC vil da beregne grunnroteringen på grunnlag av differansen mellom den målte verdien og vinkelen til referanselinjene. Inndataområde -360,000 til 360,000





- ▶ Forhåndsinnstillingsnummer i tabell Q305: Angi under hvilket nummer i forhåndsinnstillingstabellen TNC skal lagre den beregnede grunnroteringen. Hvis verdien Q305=0 angis, oppretter TNC den beregnede grunnroteringen i ROT-menyen for manuell drift. Parameteren har ingen funksjon hvis det skal kompenseres for skjevstillingen via rundbordroteringen (Q402=1). I dette tilfellet lagres ikke skråstillingen som vinkelverdi. Inndataområde 0 til 99999
- Grunnrotering/justering Q402: Angi om TNC skal fastsette skråstillingen som grunnrotering, eller om TNC skal justere skråstillingen med en rundbordrotering:
  - 0: Fastsette grunnrotering
  - 1: Utføre rundbordrotering

Hvis du velger rundbordrotering, lagrer ikke TNC den fastsatte skråstillingen, heller ikke hvis det er definert en tabellinje i parameteren **Q305** 

 Nullstille etter justering Q337: Angi om TNC skal sette visningen for den justerte roteringsaksen til 0:
 0: Ikke sett visningen for roteringsaksen til 0 etter justering

1: Sette visningen for roteringsaksen til 0 etter justering

TNC setter visningen bare til 0 hvis Q402=1 er definert

### **Beispiel: NC-blokker**

| 5 TCH PROBE 40 | 1 ROT 2 BORINGER                    |
|----------------|-------------------------------------|
| Q268=+37       | ;1. SENTRUM, 1. AKSE                |
| Q269=+12       | ;1. SENTRUM 2. AKSE                 |
| Q270=+75       | ;2. SENTRUM, 1. AKSE                |
| Q271=+20       | ;2. SENTRUM 2. AKSE                 |
| Q261=-5        | ;MÅLEHØYDE                          |
| Q260=+20       | ;SIKKER HØYDE                       |
| Q307=0         | ;FORH.INNSTILLING.<br>GRUNNROTERING |
| Q305=0         | ;NR. I TABELL                       |
| Q402=0         | ;JUSTER                             |
| Q337=0         | ;MÅ NULLSTILLES                     |

### 14.4 GRUNNROTERING via to tapper (syklus 402, DIN/ISO: G402)

### Syklusforløp

Touch-probe-syklus 402 registrerer midtpunktene på to tapper. Deretter beregner TNC vinkelen mellom arbeidsplanets hovedakse og de rette linjene mellom tappenes midtpunkter. TNC korrigerer den beregnede verdien ved hjelp av grunnroteringsfunksjonen. Du kan også kompensere for den fastsatte skråstillingen ved å rotere rundbordet.

- TNC posisjonerer touch-proben med hurtigmating (verdi fra MP6150) og med posisjoneringslogikk (se Kjøre touch-probesykluser på side 336) til probepunktet 1 for første tapp
- 2 Deretter beveger touch-proben seg til angitt målehøyde 1 og registrerer midtpunktet til første tapp via fire prober. Touch-proben beveger seg i en bue mellom probepunktene, som er forskjøvet 90° i forhold til hverandre
- 3 Deretter beveger touch-proben seg tilbake til sikker høyde og plasserer seg på probepunktet 5 for andre tapp
- 4 TNC flytter touch-proben til angitt målehøyde 2 og registrerer midtpunktet til andre tapp via fire prober
- **5** Til slutt flytter TNC touch-proben tilbake til sikker høyde og utfører den beregnede grunnroteringen

### Legg merke til følgende under programmeringen!



Før du definerer en syklus, må du programmere en verktøyoppkalling for å definere probeaksen.

TNC tilbakestiller en aktiv grunnrotering når syklusen starter.

Denne touch-probe-syklusen kan ikke brukes hvis funksjonen Drei arbeidsplanet ikke er tillatt.

Hvis du vil kompensere for den skjeve stillingen med en rundbordrotering, bruker TNC automatisk følgende roteringsakser:

- C for verktøyakse Z
- B for verktøyakse Y
- A for verktøyakse X



### 14.4 GRUNNROTERING via to tapper (syklus 402, DIN/ISO: G402)

### Syklusparametere



- 1. 1. boring: sentrum 1. akse (absolutt): Sentrum i første tapp på arbeidsplanets hovedakse.
   Inndataområde • 99999,9999 til 99999,9999
- 1. 1. boring: sentrum 2. akse Q269 (absolutt): Sentrum i første tapp på arbeidsplanets hjelpeakse. Inndataområde • 99999,9999 til 99999,9999
- Diameter tapp 1 Q313: Omtrentlig diameter på 1. tapp. senkebor. Det er bedre at verdien er for høy enn for lav. Inndataområde 0 til 99999,9999
- Målehøyde tapp 1 touch-probe-aksen Q261 (absolutt): Koordinat for kulesentrum (=berøringspunkt) på touch-probe-aksen som målingen av tapp 1 skal utføres på. Inndataområde
   99999,9999 til 99999,9999
- 2. 2. tapp: sentrum 1. akse Q270 (absolutt): Sentrum i andre tapp på arbeidsplanets hovedakse. Inndataområde • 99999,9999 til 99999,9999
- 2. 2. tapp: sentrum 2. akse Q271 (absolutt): Sentrum i andre tapp på arbeidsplanets hjelpeakse. Inndataområde • 99999,9999 til 99999,9999
- Diameter tapp 2 Q314: Omtrentlig diameter på 2. tapp. senkebor. Det er bedre at verdien er for høy enn for lav. Inndataområde 0 til 99999,9999
- Målehøyde tapp 2 touch-probe-aksen Q315 (absolutt): Koordinat for kulesentrum (=berøringspunkt) på touch-probe-aksen som målingen av tapp 2 skal utføres på. Inndataområde
   99999,9999 til 99999,9999
- Sikkerhetsavstand Q320 (inkremental): Tilleggsavstand mellom målepunktet og touch-probekulen. Q320 kommer i tillegg til MP6140. Inndataområde 0 til 99999,9999 alternativ PREDEF
- Sikker høyde Q260 (absolutt): Koordinat for probeaksen der touch-probe og emne (oppspenningsutstyr) ikke kan kollidere. Inndataområde -99999,9999 til 99999,9999 alternativ PREDEF





- Kjør til sikker høyde Q301: Angi hvordan touchproben skal bevege seg mellom målepunktene:
   0: Bevegelse mellom målepunkter i målehøyde
  - 1: Bevegelse mellom målepunkter i sikker høyde Alternativ **PREDEF**
- Forhåndsinnstilling for grunnrotering Q307 (absolutt): Hvis skråstillingen ikke skal måles i forhold til hovedaksen, men i forhold til en annen rett linje, må vinkelen til referanselinjene angis. TNC vil da beregne grunnroteringen på grunnlag av differansen mellom den målte verdien og vinkelen til referanselinjene. Inndataområde -360,000 til 360,000
- Forhåndsinnstillingsnummer i tabell Q305: Angi under hvilket nummer i forhåndsinnstillingstabellen TNC skal lagre den beregnede grunnroteringen. Hvis verdien Q305=0 angis, oppretter TNC den beregnede grunnroteringen i ROT-menyen for manuell drift. Parameteren har ingen funksjon hvis det skal kompenseres for skjevstillingen via rundbordroteringen (Q402=1). I dette tilfellet lagres ikke skråstillingen som vinkelverdi. Inndataområde 0 til 99999
- Grunnrotering/justering Q402: Angi om TNC skal fastsette skråstillingen som grunnrotering, eller om TNC skal justere skråstillingen med en rundbordrotering:
  - 0: Fastsette grunnrotering
  - 1: Utføre rundbordrotering

Hvis du velger rundbordrotering, lagrer ikke TNC den fastsatte skråstillingen, heller ikke hvis det er definert en tabellinje i parameteren **Q305** 

 Nullstille etter justering Q337: Angi om TNC skal sette visningen for den justerte roteringsaksen til 0:
 0: Ikke sett visningen for roteringsaksen til 0 etter justering

**1**: Sette visningen for roteringsaksen til 0 etter justering

TNC setter visningen bare til 0 hvis Q402=1 er definert

### **Beispiel: NC-blokker**

| 5 | TCH PROBE 40 | 2 ROT 2 TAPPER                      |
|---|--------------|-------------------------------------|
|   | Q268=-37     | ;1. SENTRUM, 1. AKSE                |
|   | Q269=+12     | ;1. SENTRUM 2. AKSE                 |
|   | Q313=60      | ;DIAMETER TAPP 1                    |
|   | Q261=-5      | ;MÅLEHØYDE 1                        |
|   | Q270=+75     | ;2. SENTRUM, 1. AKSE                |
|   | Q271=+20     | ;2. SENTRUM 2. AKSE                 |
|   | Q314=60      | ;DIAMETER TAPP 2                    |
|   | Q315=-5      | ;MÅLEHØYDE 2                        |
|   | Q320=0       | ;SIKKERHETSAVST.                    |
|   | Q260=+20     | ;SIKKER HØYDE                       |
|   | Q301=0       | ;KJØRING PÅ S. HØYDE                |
|   | Q307=0       | ;FORH.INNSTILLING.<br>GRUNNROTERING |
|   | Q305=0       | ;NR. I TABELL                       |
|   | Q402=0       | ;JUSTER                             |
|   | Q337=0       | ;MÅ NULLSTILLES                     |

### 14.5 Kompensere for GRUNNROTERING via en roteringsakse (syklus 403, DIN/ISO: G403)

### Syklusforløp

Touch-probe-syklus 403 registrerer skråstillingen for et emne ved hjelp av to målepunkter som må ligge langs en rett linje. TNC korrigerer emnets skråstilling ved å rotere A-, B- eller C-aksen. Emnet kan spennes fast hvor som helst på rundbordet.

- 1 TNC posisjonerer touch-proben med hurtigmating (verdi fra MP6150) og med posisjoneringslogikk (se Kjøre touch-probesykluser på side 336) til det programmerte probepunktet 1. TNC beveger samtidig touch-proben mot den valgte kjøreretningen for å legge inn en sikkerhetsavstand.
- 2 Deretter kjører touch-proben til den angitte målehøyden og utfører første probeprosess med probemating (MP6120)
- **3** Så beveger touch-proben seg til neste probepunkt **2** og utfører andre probeprosess
- 4 TNC flytter touch-proben tilbake til sikker høyde og posisjonerer roteringsaksen som er definert i syklusen, ut fra den beregnede verdien. Verdien kan eventuelt stilles på 0 etter innrettingen.





### Legg merke til følgende under programmeringen!



### Kollisjonsfare!

Pass på at det er tilstrekkelig stor **sikker høyde**, slik at det ikke kan oppstå kollisjoner ved den påfølgende posisjoneringen av roteringsaksen!

HEIDENHAIN anbefaler å alltid definere parameteren **Q312 akse for utjevningsbevegelser** med verdien 0. Dermed formidler syklusen dette automatisk til dreieaksen som skal justeres og sikrer at den riktige dreieaksen brukes til justeringen. TNC beregner ved Q312=0, avhengig av rekkefølgen til probepunktene, en vinkel med den faktiske retningen. Den beregnede vinkelen peker fra første til andre probepunkt. Hvis du velger A-, B- eller C-aksen som utligningsakse i parameteren **Q312**, beregner syklusen vinklene uavhengig av rekkefølgen til probepunktene. Den beregnede vinkelen ligger i området -90° til +90°.

Kontroller posisjonen alltid til roteringsaksen etter justeringen.



Før du definerer en syklus, må du programmere en verktøyoppkalling for å definere probeaksen.

TNC lagrer også den beregnede vinkelen under parameteren **Q150**.

For at utligningsaksen automatisk skal kunne bestemmes av syklusen må det være lagret en kinematikkbeskrivelse i TNC.



### Syklusparametere



- 1. målepunkt 1. akse Q263 (absolutt): Koordinat for det første probepunktet på arbeidsplanets hovedakse. Inndataområde • 99999,9999 til 99999,9999
- ▶ 1. målepunkt 2. akse Q264 (absolutt): Koordinat for det første probepunktet på arbeidsplanets hjelpeakse. Inndataområde 99999,9999 til 99999,9999
- 2. målepunkt 1. akse Q265 (absolutt): Koordinat for det andre probepunktet på arbeidsplanets hovedakse. Inndataområde • 99999,9999 til 99999,9999
- 2. målepunkt 2. akse Q266 (absolutt): Koordinat for det andre probepunktet på arbeidsplanets hjelpeakse. Inndataområde • 99999,9999 til 99999,9999
- Måleakse Q272: Aksen der målingen skal utføres:
  1:Hovedakse = måleakse
  2:Hjelpeakse = måleakse
- **3**: Probeakse = måleakse
- **Bevegelsesretning 1** Q267:Touch-probens bevegelsesretning mot emnet:
  - -1: Negativ kjøreretning
  - +1: Positiv kjøreretning
- Målehøyde i touch-probe-aksen Q261 (absolutt): Koordinat for kulesentrum (=berøringspunkt) på touch-probe-aksen som målingen skal utføres på. Inndataområde • 99999,9999 til 99999,9999
- Sikkerhetsavstand Q320 (inkremental): Tilleggsavstand mellom målepunktet og touch-probekulen. Q320 kommer i tillegg til MP6140. Inndataområde 0 til 99999,9999 alternativ PREDEF





- Sikker høyde Q260 (absolutt): Koordinat for probeaksen der touch-probe og emne (oppspenningsutstyr) ikke kan kollidere. Inndataområde -99999,9999 til 99999,9999 alternativ PREDEF
- Kjør til sikker høyde Q301: Angi hvordan touchproben skal bevege seg mellom målepunktene:
   0: Bevegelse mellom målepunkter i målehøyde
   1: Bevegelse mellom målepunkter i sikker høyde
- Akse for utjevningsbevegelse Q312: Definere hvilken roteringsakse TNC skal bruke for å kompensere for den målte skråstillingen.
   O: Automatisk modus – TNC beregner roteringsaksen som skal justeres, ved hjelp av den aktive kinematikken. I automatisk modus blir den første bordroteringsaksen (som går ut fra emnet) brukt som utligningsakse. Anbefalt innstilling.
  - 4: Kompenser for skråstilling med dreieakse A
  - 5: Kompenser for skråstilling med dreieakse B
  - 6: Kompenser for skråstilling med dreieakse C
- Nullstille etter justering Q337: Angi om TNC skal sette visningen for den justerte roteringsaksen til 0:
   0: Ikke sett visningen for roteringsaksen til 0 etter justering

**1**: Sett visningen for roteringsaksen til 0 etter justering

- Nummer i tabell Q305: Nummer i nullpunkt-/forhåndsinnstillingstabellen der TNC skal nullstille roteringsaksen. Fungerer bare hvis Q337 = 1. Inndataområde 0 til 99999
- Måleverdioverføring (0,1) Q303: Angi om det beregnede vinkelen skal lagres i nullpunktstabellen eller forhåndsinnstillingstabellen:

**0**: Legg inn beregnet vinkel som nullpunktforskyvning i den aktive nullpunktstabellen. Referansesystemet er det aktive emnekoordinatsystemet.

1: Legg inn beregnet vinkel i forhåndsinnstillingstabellen. Maskinkoordinatsystemet er referansesystem (REF.system).

Referansevinkel ?(0=hovedakse) Q380: Vinkelen som TNC skal rette inn den målte linjen etter. Fungerer bare hvis roteringsakse = automatisk modus eller C er valgt (Q312 = 0 eller 6). Inndataområde -360,000 til 360,000

### **Beispiel: NC-blokker**

| 5 | TCH PROBE 40 | D3 RØD OVER C-AKSE   |  |
|---|--------------|----------------------|--|
|   | Q263=+25     | ;1. PUNKT 1. AKSE    |  |
|   | Q264=+10     | ;1. PUNKT 2. AKSE    |  |
|   | Q265=+40     | ;2. PUNKT 1. AKSE    |  |
|   | Q266=+17     | ;2. PUNKT 2. AKSE    |  |
|   | Q272=2       | ;MÅLEAKSE            |  |
|   | Q267=+1      | ;KJØRERETNING        |  |
|   | Q261=-5      | ;MÅLEHØYDE           |  |
|   | Q320=0       | ;SIKKERHETSAVST.     |  |
|   | Q260=+20     | ;SIKKER HØYDE        |  |
|   | Q301=0       | ;KJØRING PÅ S. HØYDE |  |
|   | Q312=0       | ;UTLIGNINGSAKSE      |  |
|   | Q337=0       | ;MÅ NULLSTILLES      |  |
|   | Q305=1       | ;NR. I TABELL        |  |
|   | Q303=+1      | ;MÅLEVERDIOVERFØRING |  |
|   | Q380=+0      | ;REFERANSEVINKEL     |  |
|   |              |                      |  |

### 14.6 SETTE GRUNNROTERING (syklus 404, DIN/ISO: G404)

### Syklusforløp

Med touch-probe-syklus 404 kan ønsket grunnrotering angis automatisk mens programmet kjører. Denne syklusen skal fortrinnsvis brukes for å tilbakestille en grunnrotering som er utført tidligere. **Beispiel: NC-blokker** 

| 5 TCH PROBE 4 | 04 GRUNNROTERING   |
|---------------|--------------------|
| Q307=+0       | ;FORH.INNSTILLING. |
|               | GRUNNROTERING      |
| Q305=1        | ;NR. I TABELL      |

### Syklusparametere



### ► Forhåndsinnstilling for grunnrotering:

Vinkelverdien som skal benyttes for grunnroteringen. Inndataområde -360,000 til 360,000

Nummer i tabell Q305: Nummer i nullpunkt-/forhåndsinnstillingstabellen som TNC skal lagre den definerte grunnroteringen på.

-1: TNC overskriver det aktive nullpunktet og aktiverer det

0: TNC kopierer det aktive nullpunktet i nullpunkt 0, legger inn grunnroteringen og aktiverer nullpunkt 0 >0:TNC legger bare inn den definerte grunnroteringen i det angitte nullpunktnummeret, men aktiverer ikke dette nullpunktet. Bruk eventuelt syklus 247 (se SETTE NULLPUNKT (syklus 247, DIN/ISO: G247) på side 288)

Inndataområde 0 til 99999



### 14.7 Justere skråstillingen for et emne via C-aksen (syklus 405, DIN/ISO: G405)

### Syklusforløp

Med touch-probe-syklus 405 kan du måle

- vinkelforskyvningen mellom den positive Y-aksen i det aktive koordinatsystemet og midtlinjen i en boring eller
- vinkelforskyvningen mellom den nominelle og faktiske posisjonen til midtpunktet i en boring

TNC korrigerer den beregnede vinkelforskyvningen ved å rotere C-aksen. Emnet kan spennes fast hvor som helst på rundbordet, men boringens Y-koordinat må være positiv. Hvis du måler boringens vinkelforskyvning med probeakse Y (boringens horisontale posisjon), kan det være nødvendig å kjøre syklusen flere ganger, fordi målestrategien kan ha et avvik på ca. 1 %.

- TNC posisjonerer touch-proben med hurtigmating (verdi fra MP6150) og med posisjoneringslogikk (se Kjøre touch-probesykluser på side 336) til probepunktet 1. TNC beregner probepunktene ut fra syklusdefinisjonene og sikkerhetsavstanden ut fra MP6140.
- 2 Deretter kjører touch-proben til den angitte målehøyden og utfører første probeprosess med probemating (MP6120). TNC definerer proberetningen automatisk, avhengig av programmert startvinkel.
- **3** Deretter beveger touch-proben seg i en sirkel (til målehøyde eller sikker høyde) til neste probepunkt **2** og utfører neste probeprosess der
- 4 TNC posisjonerer touch-proben på probepunkt 3 og deretter på probepunkt 4 der 3. og eventuelt 4. probeprosess utføres, før touch-proben plasseres på det beregnede midtpunktet i boringen
- 5 Til slutt flytter TNC touch-proben tilbake til sikker høyde og retter inn emnet ved å rotere rundbordet. Etter korrigeringen dreier TNC rundbordet slik at boringens midtpunkt ligger langs den positive Y-aksen eller i den nominelle posisjonen for boringens midtpunkt, uansett om probeaksen er vertikal eller horisontal. Den målte vinkelforskyvningen er også tilgjengelig i parameter Q150.





### Legg merke til følgende under programmeringen!



### Kollisjonsfare!

For å unngå kollisjon mellom touch-proben og emnet er det bedre å angi for **lav** verdi for lommens (boringens) nominelle diameter enn for høy verdi.

Hvis lommedimensjonene og sikkerhetsavstanden hindrer en forposisjonering i nærheten av probepunktet, utfører TNC alltid proben i forhold til lommas midtpunkt. Touchproben flyttes i så fall ikke til sikker høyde mellom de fire målepunktene.

Før du definerer en syklus, må du programmere en verktøyoppkalling for å definere probeaksen.

Jo lavere vinkeltrinnverdi som programmeres, desto mer unøyaktig vil TNC beregne sirkelens sentrum. Minste inndataverdi: 5°.

### **Syklusparametere**



- Sentrum 1. akse Q321 (absolutt): Sentrum i boringen på arbeidsplanets hovedakse. Inndataområde
   99999,9999 til 99999,9999
- Sentrum 2. akse Q322 (absolutt): Sentrum i boringen på arbeidsplanets hjelpeakse. Hvis du programmerer at Q322 = 0, retter TNC inn boringens midtpunkt etter den positive Y-aksen. Hvis du angir at Q322 er forskjellig fra 0, retter TNC inn boringens midtpunkt etter den nominelle posisjonen (vinkelen som dannes av boringens midtpunkt). Inndataområde
   99999,9999 til 99999,9999
- Nominell diameter Q262: Omtrentlig diameter på sirkellomme (boring). Det er bedre at verdien er for liten enn for stor. Inndataområde 0 til 99999,9999
- Startvinkel Q325 (absolutt): Vinkel mellom arbeidsplanets hovedakse og første probepunkt. Inndataområde -360,000 til 360,000
- Vinkeltrinn Q247 (inkremental): Vinkel mellom to målepunkter, der vinkeltrinnets fortegn definerer touch-probens roteringsretning (- = med klokken) mot neste målepunkt. Angi en vinkeltrinnverdi som er under 90°, hvis du vil måle sirkelbuer. Inndataområde -120,000 til 120,000



1

- Målehøyde i touch-probe-aksen Q261 (absolutt): Koordinat for kulesentrum (=berøringspunkt) på touch-probe-aksen som målingen skal utføres på. Inndataområde • 99999,9999 til 99999,9999
- Sikkerhetsavstand Q320 (inkremental): Tilleggsavstand mellom målepunktet og touch-probekulen. Q320 kommer i tillegg til MP6140. Inndataområde 0 til 99999,9999 alternativ PREDEF
- Sikker høyde Q260 (absolutt): Koordinat for probeaksen der touch-probe og emne (oppspenningsutstyr) ikke kan kollidere. Inndataområde -99999,9999 til 99999,9999 alternativ PREDEF
- Kjør til sikker høyde Q301: Angi hvordan touchproben skal bevege seg mellom målepunktene:
   0: Bevegelse mellom målepunkter i målehøyde
   1: Bevegelse mellom målepunkter i sikker høyde Alternativ PREDEF
- Nullstille etter justering Q337: Angi om TNC skal vise C-aksen som 0, eller om vinkelforskyvningen skal benyttes i C-kolonnen i nullpunktstabellen:

**0**: Sett visningen av C-aksen til 0 og legg inn verdien i linje 0 i nullpunktstabellen

>0:Målt vinkelforskyvning skal brukes i nullpunktstabellen med riktig fortegn. Linjenummer = verdi fra Q337. Hvis en C-forskyvning allerede er lagt inn i nullpunktstabellen, tilføyer TNC den målte vinkelforskyvningen med riktig fortegn.



### **Beispiel: NC-blokker**

| 5 TCH PROBE 40 | D5 ROT VIA C-AKSE  |
|----------------|--------------------|
| Q321=+50       | ;SENTRUM 1. AKSE   |
| Q322=+50       | ;SENTRUM 2. AKSE   |
| Q262=10        | ;NOMINELL DIAMETER |
| Q325=+0        | ;STARTVINKEL       |
| Q247=90        | ;VINKELTRINN       |
| Q261=-5        | ;MÅLEHØYDE         |
| Q320=0         | ;SIKKERHETSAVST.   |
| Q260=+20       | ;SIKKER HØYDE      |
| Q301=0         | ;KJØR TIL S. HØYDE |
| Q337=0         | ;MÅ NULLSTILLES    |

### **Eksempel: Definere grunnrotering via to boringer**



| O BEGIN PGM CYC401 MM                       |                                                         |
|---------------------------------------------|---------------------------------------------------------|
| 1 TOOL CALL 69 Z                            |                                                         |
| 2 TCH PROBE 401 ROT 2 BORINGER              |                                                         |
| Q268=+25 ;1. SENTRUM 1. AKSE                | Sentrum for 1. Boring: X-koordinat                      |
| Q269=+15 ;1. SENTRUM 2. AKSE                | Sentrum for 1. Boring: Y-koordinat                      |
| Q270=+80 ;2. SENTRUM 1. AKSE                | Sentrum for 2. Boring: X-koordinat                      |
| Q271=+35 ;2. SENTRUM 2. AKSE                | Sentrum for 2. Boring: Y-koordinat                      |
| Q261=-5 ;MÅLEHØYDE                          | Koordinat på probeaksen som målingen skal utføres etter |
| Q260=+20 ;SIKKER HØYDE                      | Høyden som probeaksen kan kjøre på uten kollisjoner     |
| Q307=+0 ;FORH.INNSTILLING.<br>GRUNNROTERING | Referanselinjevinkel                                    |
| Q402=1 ;MÅ JUSTERES                         | Kompenser for skjevstillingen ved å rotere rundbordet   |
| Q337=1 ;MÅ NULLSTILLES                      | Null ut indikatoren etter justeringen                   |
| 3 CALL PGM 35K47                            | Start behandlingsprogram                                |
| 4 END PGM CYC401 MM                         |                                                         |

1





Touch-probe-sykluser: registrere nullpunkter automatisk

### 15.1 Grunnleggende

### Oversikt

TNC har tolv sykluser som kan brukes ved automatisk fastsetting av nullpunkter. Slik kan nullpunktene bearbeides:

- Fastsette de beregnede verdiene som direkte visningsverdier
- Legge de beregnede verdiene inn i forhåndsinnstillingstabellen
- Legge de beregnede verdiene inn i en nullpunktstabell

| Syklus                                                                                                                                                  | Funksjonstast  | Side     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------|
| 408 RFPKT NOTSENTRUM: Måle<br>notbredden innvendig, definere midten<br>av noten som nullpunkt                                                           | 408<br>(779-7) | Side 363 |
| 409 RFPKT STEGSENTRUM Måle<br>bredden på steget utvendig, definere<br>midten av steget som nullpunkt                                                    | 409            | Side 367 |
| 410 REFPKT FIRKANT INNV.: Måle<br>innvendig lengde og bredde på en<br>firkant, definere firkantens sentrum<br>som nullpunkt                             | 418            | Side 370 |
| 411 REFPKT FIRKANT UTV.: Måle<br>utvendig lengde og bredde på en<br>firkant, definere firkantens sentrum<br>som nullpunkt                               | 411            | Side 374 |
| 412 REFPKT SIRKEL INNV.: Måle fire<br>valgfrie punkter inne i en sirkel,<br>definere sirkelens sentrum som<br>nullpunkt                                 | 412            | Side 378 |
| 413 REFPKT SIRKEL UTV.: Måle fire<br>valgfrie punkter utenfor en sirkel,<br>definere sirkelens sentrum som<br>nullpunkt                                 | 413            | Side 382 |
| 414 REFPKT HJØRNE UTV.: Måle to<br>rette linjer utvendig, definere linjenes<br>skjæringspunkt som nullpunkt                                             | 414            | Side 386 |
| 415 REFPKT HJØRNE INNV.: Måle to<br>rette linjer innvendig, definere linjenes<br>skjæringspunkt som nullpunkt                                           | 415            | Side 391 |
| 416 REFPKT HULLS.SENTR.<br>(2. funksjonstastnivå): Måle hullsirkelen<br>for tre valgfrie boringer, og definere<br>sentrum av hullsirkelen som nullpunkt | 418            | Side 395 |

i
| Syklus                                                                                                                                           | Funksjonstast  | Side     |
|--------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------|
| 417 NULLPKT TSAKSE<br>(2. funksjonstastnivå): Måle et valgfritt<br>punkt på probeaksen og definere dette<br>som nullpunkt                        | 417<br>\$77777 | Side 399 |
| 418 REFPKT 4 BORINGER<br>(2. funksjonstastnivå): Kryssmåle 2<br>boringer, og definere<br>forbindelseslinjenes skjæringspunkt<br>som nullpunkt    |                | Side 401 |
| 419 NULLPUNKT ENKEL AKSE<br>(2. funksjonstastnivå): Måle en hvilket<br>som helst posisjon på en valgfri akse,<br>og definere dette som nullpunkt | 419            | Side 405 |

# Fellestrekk ved alle touch-probe-sykluser for definisjon av nullpunkt



Du kan bruke touch-probe-syklusene 408 til 419 selv om en grunnrotering er aktivert (grunnrotering eller syklus 10).

#### Nullpunkt og probeakse

TNC fastsetter nullpunktet i arbeidsplanet avhengig av probeaksen som du har definert i måleprogrammet:

| Aktiv probeakse | Definere nullpunkt på |
|-----------------|-----------------------|
| Z eller W       | X og Y                |
| Y eller V       | Z og X                |
| X eller U       | Y og Z                |



#### Lagre beregnet nullpunkt

I alle sykluser for fastsetting av nullpunkt kan du ved hjelp av inndataparameterne Q303 og Q305 bestemme hvordan TNC skal lagre det beregnede nullpunktet:

#### ■ Q305 = 0, Q303 = valgfri verdi:

TNC fastsetter det beregnede nullpunktet i visning. Det nye nullpunktet aktiveres umiddelbart. Samtidig lagrer TNC nullpunktet som er fastsatt for syklusen i visningen, også i 0-linjen til forhåndsinnstillingstabellen

#### ■ Q305 forskjellig fra 0, Q303 = -1



Denne kombinasjonen er bare mulig hvis du:

- har installert programmer med syklusene 410 til 418, som er opprettet på en TNC 4xx
- har installert programmer med syklusene 410 til 418, opprettet med en eldre programvareversjon for iTNC 530
- ikke eksplisitt har overført måleverdien med parameteren Q303 under syklusdefinisjonen

I så fall viser TNC en feilmelding. Hele systemet med referansepunktavhengige nullpunktstabeller er endret, og du må definere en spesifikk måleverdioverføring via parameteren Q303.

#### Q305 ulik 0, Q303 = 0

TNC skriver det beregnede nullpunktet i den aktive nullpunktstabellen. Det aktive emnekoordinatsystemet er referansesystem. Parameterverdien Q305 definerer nullpunktnummeret. **Aktiver nullpunktet via syklus 7 i NC-programmet** 

#### Q305 forskjellig fra 0, Q303 = 1

TNC skriver det beregnede nullpunktet i forhåndsinnstillingstabellen. Maskinkoordinatsystemet er referansesystem (REF-koordinat). Parameterverdien Q305 definerer forhåndsinnstillingsnummeret. **Aktiver forhåndsinnstillingen via syklus 247 i NC-programmet** 

#### Måleresultater i Q-parametere

TNC lagrer måleresultatene fra den aktuelle probesyklusen i de globale Q-parameterne Q150 til Q160. Denne parameteren kan du fortsette å bruke i programmet. Vær oppmerksom på resultatparametertabellen i forbindelse med hver syklusbeskrivelse.

## 15.2 NULLPUNKT NOTSENTRUM (syklus 408, DIN/ISO: G408, FCL 3-funksjon)

## Syklusforløp

Touch-probe-syklus 408 beregner midtpunktet i en not og definerer dette midtpunktet som nullpunkt. TNC kan også lagre midtpunktet i en nullpunkts- eller forhåndsinnstillingstabell.

- TNC posisjonerer touch-proben med hurtigmating (verdi fra MP6150) og med posisjoneringslogikk (se Kjøre touch-probesykluser på side 336) til probepunktet 1. TNC beregner probepunktene ut fra syklusdefinisjonene og sikkerhetsavstanden ut fra MP6140.
- 2 Deretter kjører touch-proben til den angitte målehøyden og utfører første probeprosess med probemating (MP6120)
- **3** Deretter beveger touch-proben seg enten parallelt med aksen til målehøyden eller lineært til sikker høyde for neste probepunkt 2 og utfører neste probeprosess der
- 4 Til slutt posisjonerer TNC touch-proben tilbake på sikker høyde og bearbeider det fastsatte nullpunktet på grunnlag av syklusparameterne Q303 og Q305 (se Lagre beregnet nullpunkt på side 362). Deretter lagres de aktuelle verdiene i Q-parametrene nedenfor.
- **5** Ved behov kan TNC også beregne nullpunktet på probeaksen på nytt ved hjelp av en separat probeprosess

| Parameternummer | Beskrivelse                      |
|-----------------|----------------------------------|
| Q166            | Faktisk verdi for målt notbredde |
| Q157            | Faktisk verdi posisjon midtakse  |



## Legg merke til følgende under programmeringen!



#### Kollisjonsfare!

For å unngå kollisjon mellom touch-proben og emnet er det bedre å angi for **lav** enn for høy notbreddeverdi.

Hvis notbredden og sikkerhetsavstanden hindrer en forposisjonering i nærheten av probepunktet, utfører TNC alltid proben i forhold til midten av noten. Touch-proben flyttes i så fall ikke til sikker høyde mellom de to målepunktene.

Før du definerer en syklus, må du programmere en verktøyoppkalling for å definere probeaksen.

### Syklusparametere

- 408
- Sentrum 1. akse Q321 (absolutt): Sentrum i noten på arbeidsplanets hovedakse. Inndataområde
  99999,9999 til 99999,9999
- Sentrum 2. akse Q322 (absolutt): Sentrum i noten på arbeidsplanets hjelpeakse. Inndataområde
  99999,9999 til 99999,9999
- Bredde på noten Q311 (inkremental): Bredde på noten uavhengig av plasseringen på arbeidsplanet. Inndataområde 0 til 99999,9999
- Måleakse (1=1.akse/2=2.akse) Q272: Aksen målingen skal utføres på:
  1:Hovedakse = måleakse
  2:Hjelpeakse = måleakse
- Målehøyde i touch-probe-aksen Q261 (absolutt): Koordinat for kulesentrum (=berøringspunkt) på touch-probe-aksen som målingen skal utføres på. Inndataområde • 99999,9999 til 99999,9999
- Sikkerhetsavstand Q320 (inkremental): Tilleggsavstand mellom målepunktet og touch-probekulen. Q320 kommer i tillegg til MP6140. Inndataområde 0 til 99999,9999 alternativ PREDEF
- Sikker høyde Q260 (absolutt): Koordinat for probeaksen der touch-probe og emne (oppspenningsutstyr) ikke kan kollidere. Inndataområde -99999,9999 til 99999,9999 alternativ PREDEF





- Kjør til sikker høyde Q301: Angi hvordan touchproben skal bevege seg mellom målepunktene:
  0: Bevegelse mellom målepunkter i målehøyde
  1: Bevegelse mellom målepunkter i sikker høyde Alternativ PREDEF
- Nummer i tabell Q305: Angi under hvilket nummer i nullpunktstabellen/forhåndsinnstillingstabellen TNC skal lagre koordinatene for notsentrum. Hvis Q305=0 og Q303=1 tastes inn, bruker TNC automatisk notsentrum som nytt nullpunkt. Hvis Q305=0 og Q303=0 tastes inn, legger TNC inn notsentrumet i linje 0 i nullpunktstabellen. Inndataområde 0 til 99999
- Nytt nullpunkt Q405 (absolutt): Koordinat på måleaksen der TNC skal plassere beregnet notsentrum. Grunninnstilling = 0. Inndataområde -99999,9999 til 99999,9999
- Måleverdioverføring (0,1) Q303: Angi om det beregnede nullpunktet skal lagres i nullpunktstabellen eller forhåndsinnstillingstabellen:
  0: Legg inn beregnet nullpunkt i den aktive nullpunktstabellen. Referansesystemet er det aktive

emnekoordinatsystemet.

1: Legg inn beregnet nullpunkt i

forhåndsinnstillingstabellen.

Maskinkoordinatsystemet er referansesystem (REF.-system).

i

- 15.2 NULLPUNKT NOTSENTRUM (syklus 408, DIN/ISO: G408, FCL 3-funksjon)
- Probing på TS-akse Q381: Angi om TNC også skal definere nullpunktet på probeaksen:
  0: Ikke definer nullpunkt på probeaksen
  1: Definer nullpunkt på probeaksen
- Probe TS-akse: koor. 1. akse Q382 (absolutt): Koordinat for probepunktet på arbeidsplanets hovedakse, som skal brukes som nullpunkt for probeaksen. Kun aktivert hvis Q381 = 1. Inndataområde • 99999,9999 til 99999,9999
- Probe TS-akse: koor. 2. akse Q383 (absolutt): Koordinat for probepunktet på arbeidsplanets hjelpeakse, som skal brukes som nullpunkt for probeaksen. Kun aktivert hvis Q381 = 1. Inndataområde • 99999,9999 til 99999,9999
- Probe TS-akse: koor. 3. akse Q384 (absolutt): Koordinat for probepunktet på touch-probe-aksen, som skal brukes som nullpunkt for probeaksen. Kun aktivert hvis Q381 = 1. Inndataområde • 99999,9999 til 99999,9999
- Nytt nullpunkt TS-akse Q333 (absolutt): Koordinat på touch-probe-aksen der TNC skal sette nullpunktet. Grunninnstilling = 0. Inndataområde • 99999,9999 til 99999,9999

#### **Beispiel: NC-blokker**

| 5 TCH PROBE 40 | 8 NULLPKT SENTRUM NOT  |
|----------------|------------------------|
| Q321=+50       | ;SENTRUM 1. AKSE       |
| Q322=+50       | ;SENTRUM 2. AKSE       |
| Q311=25        | ;NOTBREDDE             |
| Q272=1         | ;MÅLEAKSE              |
| Q261=-5        | ;MÅLEHØYDE             |
| Q320=0         | ;SIKKERHETSAVST.       |
| Q260=+20       | ;SIKKER HØYDE          |
| Q301=0         | ;KJØR TIL S. HØYDE     |
| Q305=10        | ;NR. I TABELL          |
| Q405=+0        | ;NULLPUNKT             |
| Q303=+1        | ;MÅLEVERDIOVERFØRING   |
| Q381=1         | ;PROBE TS-AKSE         |
| Q382=+85       | ;1. KOORD. FOR TS-AKSE |
| Q383=+50       | ;2. KOORD. FOR TS-AKSE |
| Q384=+0        | ;3. KOORD. FOR TS-AKSE |
| Q333=+1        | ;NULLPUNKT             |

1



## 15.3 NULLPUNKT STEGSENTRUM (syklus 409, DIN/ISO: G409, FCL 3-funksjon)

## Syklusforløp

Touch-probe-syklus 409 beregner midtpunktet til steget og definerer dette midtpunktet som nullpunkt. TNC kan også lagre midtpunktet i en nullpunkts- eller forhåndsinnstillingstabell.

- TNC posisjonerer touch-proben med hurtigmating (verdi fra MP6150) og med posisjoneringslogikk (se Kjøre touch-probesykluser på side 336) til probepunktet 1. TNC beregner probepunktene ut fra syklusdefinisjonene og sikkerhetsavstanden ut fra MP6140.
- 2 Deretter kjører touch-proben til den angitte målehøyden og utfører første probeprosess med probemating (MP6120)
- **3** Deretter kjører touch-proben i sikker høyde til neste probepunkt **2** der andre probeprosess utføres.
- **4** Til slutt posisjonerer TNC touch-proben tilbake på sikker høyde og bearbeider det fastsatte nullpunktet på grunnlag av syklusparameterne Q303 og Q305 (se Lagre beregnet nullpunkt på side 362). Deretter lagres de aktuelle verdiene i Q-parametrene nedenfor.
- 5 Ved behov kan TNC også beregne nullpunktet på probeaksen på nytt ved hjelp av en separat probeprosess

| Parameternummer | Beskrivelse                       |
|-----------------|-----------------------------------|
| Q166            | Aktuell verdi for målt stegbredde |
| Q157            | Faktisk verdi posisjon midtakse   |

## Legg merke til følgende under programmeringen!



#### Kollisjonsfare!

For å unngå en kollisjon mellom touch-proben og emnet er det bedre å angi for **høy** verdi for stegbredden.

Før du definerer en syklus, må du programmere en verktøyoppkalling for å definere probeaksen.



### **Syklusparametere**

409

- Sentrum 1. akse Q321 (absolutt): Sentrum av steget på arbeidsplanets hovedakse. Inndataområde
  99999,9999 til 99999,9999
- Sentrum 2. akse Q322 (absolutt): Sentrum av steget på arbeidsplanets hjelpeakse. Inndataområde
  99999,9999 til 99999,9999
- Stegbredde Q311 (inkremental): Bredden på steget uavhengig av posisjonen i arbeidsplanet. Inndataområde 0 til 99999,9999
- Måleakse (1=1.akse/2=2.akse) Q272: Aksen målingen skal utføres på: 1:Hovedakse = måleakse 2:Hjelpeakse = måleakse
- Målehøyde i touch-probe-aksen Q261 (absolutt): Koordinat for kulesentrum (=berøringspunkt) på touch-probe-aksen som målingen skal utføres på. Inndataområde • 99999,9999 til 99999,9999
- Sikkerhetsavstand Q320 (inkremental): Tilleggsavstand mellom målepunktet og touch-probekulen. Q320 kommer i tillegg til MP6140. Inndataområde 0 til 99999,9999 alternativ PREDEF
- Sikker høyde Q260 (absolutt): Koordinat for probeaksen der touch-probe og emne (oppspenningsutstyr) ikke kan kollidere. Inndataområde -99999,9999 til 99999,9999 alternativ PREDEF
- Nummer i tabell Q305: Angi under hvilket nummer i nullpunktstabellen/forhåndsinnstillingstabellen TNC skal lagre koordinatene for stegsentrum. Hvis Q305=0 og Q303=1 tastes inn, bruker TNC automatisk stegsentrum som nytt nullpunkt. Hvis Q305=0 og Q303=0 tastes inn, legger TNC inn stegsentrumet i linje 0 i nullpunktstabellen. Inndataområde 0 til 99999
- Nytt nullpunkt Q405 (absolutt): Koordinat på måleaksen der TNC skal plassere beregnet stegsentrum. Grunninnstilling = 0. Inndataområde -99999,9999 til 99999,9999





 Måleverdioverføring (0,1) Q303: Angi om det beregnede nullpunktet skal lagres i nullpunktstabellen eller forhåndsinnstillingstabellen:
0: Legg inn beregnet nullpunkt i den aktive nullpunktstabellen. Referansesystemet er det aktive emnekoordinatsystemet.
1: Legg inn beregnet nullpunkt i forhåndsinnstillingstabellen.
Maskinkoordinatsystemet er referansesystem (REF.system).

- Probing på TS-akse Q381: Angi om TNC også skal definere nullpunktet på probeaksen:
  0: Ikke definer nullpunkt på probeaksen
  1: Definer nullpunkt på probeaksen
- Probe TS-akse: koor. 1. akse Q382 (absolutt): Koordinat for probepunktet på arbeidsplanets hovedakse, som skal brukes som nullpunkt for probeaksen. Kun aktivert hvis Q381 = 1. Inndataområde • 99999,9999 til 99999,9999
- Probe TS-akse: koor. 2. akse Q383 (absolutt): Koordinat for probepunktet på arbeidsplanets hjelpeakse, som skal brukes som nullpunkt for probeaksen. Kun aktivert hvis Q381 = 1. Inndataområde • 99999,9999 til 99999,9999
- Probe TS-akse: koor. 3. akse Q384 (absolutt): Koordinat for probepunktet på touch-probe-aksen, som skal brukes som nullpunkt for probeaksen. Kun aktivert hvis Q381 = 1. Inndataområde • 99999,9999 til 99999,9999
- Nytt nullpunkt TS-akse Q333 (absolutt): Koordinat på touch-probe-aksen der TNC skal sette nullpunktet. Grunninnstilling = 0. Inndataområde • 99999,9999 til 99999,9999

#### **Beispiel: NC-blokker**

| 5 TCH PROBE 40 | 9 NULLPKT SENTRUM STEG |
|----------------|------------------------|
| Q321=+50       | ;SENTRUM 1. AKSE       |
| Q322=+50       | ;SENTRUM 2. AKSE       |
| Q311=25        | ;STEGBREDDE            |
| Q272=1         | ;MÅLEAKSE              |
| Q261=-5        | ;MÅLEHØYDE             |
| Q320=0         | ;SIKKERHETSAVST.       |
| Q260=+20       | ;SIKKER HØYDE          |
| Q305=10        | ;NR. I TABELL          |
| Q405=+0        | ;NULLPUNKT             |
| Q3O3=+1        | ;MÅLEVERDIOVERFØRING   |
| Q381=1         | ;PROBE TS-AKSE         |
| Q382=+85       | ;1. KOORD. FOR TS-AKSE |
| Q383=+50       | ;2. KOORD. FOR TS-AKSE |
| Q384=+0        | ;3. KOORD. FOR TS-AKSE |
| Q333=+1        | ;NULLPUNKT             |
|                |                        |

## 15.4 NULLPUNKT FIRKANT INNVENDIG (syklus 410, DIN/ISO: G410)

## Syklusforløp

Touch-probe-syklus 410 beregner midtpunktet i en rektangulær lomme og definerer dette midtpunktet som nullpunkt. TNC kan også lagre midtpunktet i en nullpunkts- eller forhåndsinnstillingstabell.

- 1 TNC posisjonerer touch-proben med hurtigmating (verdi fra MP6150) og med posisjoneringslogikk (se Kjøre touch-probesykluser på side 336) til probepunktet 1. TNC beregner probepunktene ut fra syklusdefinisjonene og sikkerhetsavstanden ut fra MP6140.
- 2 Deretter kjører touch-proben til den angitte målehøyden og utfører første probeprosess med probemating (MP6120)
- 3 Deretter beveger touch-proben seg enten parallelt med aksen til målehøyden eller lineært til sikker høyde for neste probepunkt 2 og utfører neste probeprosess der
- 4 TNC posisjonerer touch-proben til probepunkt 3 og deretter til probepunkt 4 og gjennomfører tredje og fjerde probeprosess ved disse punktene
- 5 Til slutt flytter TNC touch-proben tilbake til sikker høyde og behandler det beregnede nullpunktet på grunnlag av syklusparameter Q303 og Q305. (se Lagre beregnet nullpunkt på side 362)
- 6 Hvis du ønsker det, kan nullpunktet til probeaksen deretter fastsettes i en egen probeprosess. De aktuelle verdiene lagres i følgende Q-parametre

| Parameternummer | Beskrivelse                          |
|-----------------|--------------------------------------|
| Q151            | Aktuell verdi, sentrum hovedakse     |
| Q152            | Aktuell verdi, sentrum hjelpeakse    |
| Q154            | Aktuell verdi, sidelengde hovedakse  |
| Q155            | Aktuell verdi, sidelengde hjelpeakse |



### Legg merke til følgende under programmeringen!



#### Kollisjonsfare!

For å unngå en kollisjon mellom touch-proben og emnet, er det bedre å angi for **lav** 1. og 2. sidelengde for lommen enn for stor.

Hvis lommedimensjonene og sikkerhetsavstanden hindrer en forposisjonering i nærheten av probepunktet, utfører TNC alltid proben i forhold til lommas midtpunkt. Touchproben flyttes i så fall ikke til sikker høyde mellom de fire målepunktene.

Før du definerer en syklus, må du programmere en verktøyoppkalling for å definere probeaksen.

### **Syklusparametere**



- Sentrum 1. akse Q321 (absolutt): Sentrum i lommen på arbeidsplanets hovedakse. Inndataområde
  99999,9999 til 99999,9999
- Sentrum 2. akse Q322 (absolutt): Sentrum i lommen på arbeidsplanets hjelpeakse. Inndataområde
  99999,9999 til 99999,9999
- 1. Sidelengde Q323 (inkremental): Lommens lengde, parallelt med arbeidsplanets hovedakse. Inndataområde 0 til 99999,9999
- Sidelengde Q324 (inkremental): Lommens lengde, parallelt med arbeidsplanets hjelpeakse. Inndataområde 0 til 99999,9999
- Målehøyde i touch-probe-aksen Q261 (absolutt): Koordinat for kulesentrum (=berøringspunkt) på touch-probe-aksen som målingen skal utføres på. Inndataområde • 99999,9999 til 99999,9999
- Sikkerhetsavstand Q320 (inkremental): Tilleggsavstand mellom målepunktet og touch-probekulen. Q320 kommer i tillegg til MP6140. Inndataområde 0 til 99999,9999 alternativ PREDEF
- Sikker høyde Q260 (absolutt): Koordinat for probeaksen der touch-probe og emne (oppspenningsutstyr) ikke kan kollidere. Inndataområde -99999,9999 til 99999,9999 alternativ PREDEF





- Kjør til sikker høyde Q301: Angi hvordan touchproben skal bevege seg mellom målepunktene:
  - 0: Bevegelse mellom målepunkter i målehøyde
  - 1: Bevegelse mellom målepunkter i sikker høyde Alternativ **PREDEF**
- Nullpunktnummer i tabell Q305: Angi under hvilket nummer i

nullpunktstabellen/forhåndsinnstillingstabellen TNC skal lagre koordinatene for sentrum av lomme. Hvis Q305=0 og Q303=1 tastes inn, bruker TNC automatisk sentrum av lomma som nytt nullpunkt. Hvis Q305=0 og Q303=0 tastes inn, legger TNC inn sentrum av lomma i linje 0 i nullpunktstabellen. Inndataområde 0 til 99999

- Nytt nullpunkt hovedakse Q331 (absolutt): Koordinat på hovedaksen der TNC skal plassere beregnet sentrum av lomme. Grunninnstilling = 0. Inndataområde • 99999,9999 til 99999,9999
- Nytt nullpunkt hjelpeakse Q332 (absolutt): Koordinat på hjelpeaksen der TNC skal plassere beregnet sentrum av lomme. Grunninnstilling = 0. Inndataområde • 99999,9999 til 99999,9999
- Måleverdioverføring (0,1) Q303: Angi om det beregnede nullpunktet skal lagres i nullpunktstabellen eller forhåndsinnstillingstabellen:

-1: Må ikke brukes! Registreres av TNC når gamle programmer lastes inn (se Lagre beregnet nullpunkt på side 362)

**0**: Legg inn beregnet nullpunkt i den aktive nullpunktstabellen. Referansesystemet er det aktive emnekoordinatsystemet.

1: Legg inn beregnet nullpunkt i

forhåndsinnstillingstabellen.

Maskinkoordinatsystemet er referansesystem (REF.-system).

1

- Probing på TS-akse Q381: Angi om TNC også skal definere nullpunktet på probeaksen:
  0: Ikke definer nullpunkt på probeaksen
  1: Definer nullpunkt på probeaksen
- Probe TS-akse: koor. 1. akse Q382 (absolutt): Koordinat for probepunktet på arbeidsplanets hovedakse, som skal brukes som nullpunkt for probeaksen. Kun aktivert hvis Q381 = 1. Inndataområde • 99999,9999 til 99999,9999
- Probe TS-akse: koor. 2. akse Q383 (absolutt): Koordinat for probepunktet på arbeidsplanets hjelpeakse, som skal brukes som nullpunkt for probeaksen. Kun aktivert hvis Q381 = 1. Inndataområde • 99999,9999 til 99999,9999
- Probe TS-akse: koor. 3. akse Q384 (absolutt): Koordinat for probepunktet på touch-probe-aksen, som skal brukes som nullpunkt for probeaksen. Kun aktivert hvis Q381 = 1. Inndataområde • 99999,9999 til 99999,9999
- Nytt nullpunkt TS-akse Q333 (absolutt): Koordinat på touch-probe-aksen der TNC skal sette nullpunktet. Grunninnstilling = 0. Inndataområde • 99999,9999 til 99999,9999

#### **Beispiel: NC-blokker**

| 5 TCH PROBE 41 | LO NULLPUNKT FIRKANT INNV. |
|----------------|----------------------------|
| Q321=+50       | ;SENTRUM 1. AKSE           |
| Q322=+50       | ;SENTRUM 2. AKSE           |
| Q323=60        | ;1. SIDELENGDE             |
| Q324=20        | ;2. SIDELENGDE             |
| Q261=-5        | ;MÅLEHØYDE                 |
| Q320=0         | ;SIKKERHETSAVST.           |
| Q260=+20       | ;SIKKER HØYDE              |
| Q301=0         | ;KJØR TIL S. HØYDE         |
| Q305=10        | ;NR. I TABELL              |
| Q331=+0        | ;NULLPUNKT                 |
| Q332=+0        | ;NULLPUNKT                 |
| Q3O3=+1        | ;MÅLEVERDIOVERFØRING       |
| Q381=1         | ;PROBE TS-AKSE             |
| Q382=+85       | ;1. KOORD. FOR TS-AKSE     |
| Q383=+50       | ;2. KOORD. FOR TS-AKSE     |
| Q384=+0        | ;3. KOORD. FOR TS-AKSE     |
| Q333=+1        | ;NULLPUNKT                 |

## 15.5 NULLPUNKT FIRKANT UTVENDIG (syklus 411, DIN/ISO: G411)

## Syklusforløp

Touch-probe-syklus 411 beregner midtpunktet i en rektangulær tapp og definerer dette midtpunktet som nullpunkt. TNC kan også lagre midtpunktet i en nullpunkts- eller forhåndsinnstillingstabell.

- 1 TNC posisjonerer touch-proben med hurtigmating (verdi fra MP6150) og med posisjoneringslogikk (se Kjøre touch-probesykluser på side 336) til probepunktet 1. TNC beregner probepunktene ut fra syklusdefinisjonene og sikkerhetsavstanden ut fra MP6140.
- 2 Deretter kjører touch-proben til den angitte målehøyden og utfører første probeprosess med probemating (MP6120)
- 3 Deretter beveger touch-proben seg enten parallelt med aksen til målehøyden eller lineært til sikker høyde for neste probepunkt 2 og utfører neste probeprosess der
- 4 TNC posisjonerer touch-proben til probepunkt 3 og deretter til probepunkt 4 og gjennomfører tredje og fjerde probeprosess ved disse punktene
- 5 Til slutt flytter TNC touch-proben tilbake til sikker høyde og behandler det beregnede nullpunktet på grunnlag av syklusparameter Q303 og Q305. (se Lagre beregnet nullpunkt på side 362)
- 6 Hvis du ønsker det, kan nullpunktet til probeaksen deretter fastsettes i en egen probeprosess. De aktuelle verdiene lagres i følgende Q-parametre

| Parameternummer | Beskrivelse                          |
|-----------------|--------------------------------------|
| Q151            | Aktuell verdi, sentrum hovedakse     |
| Q152            | Aktuell verdi, sentrum hjelpeakse    |
| Q154            | Aktuell verdi, sidelengde hovedakse  |
| Q155            | Aktuell verdi, sidelengde hjelpeakse |



### Legg merke til følgende under programmeringen!



#### Kollisjonsfare!

For å unngå en kollisjon mellom touch-proben og emnet, er det bedre å angi for **høy** 1. og 2. sidelengde for tappen enn for stor.

Før du definerer en syklus, må du programmere en verktøyoppkalling for å definere probeaksen.

### Syklusparametere



- Sentrum 1. akse Q321 (absolutt): Sentrum i tappen på arbeidsplanets hovedakse. Inndataområde
  99999,9999 til 99999,9999
- Sentrum 2. akse Q322 (absolutt): Sentrum i tappen på arbeidsplanets hjelpeakse. Inndataområde
  99999,9999 til 99999,9999
- ▶ 1. 1. sidelengde Q323 (inkremental): Tappens lengde, parallelt med arbeidsplanets hovedakse. Inndataområde 0 til 99999,9999
- Sidelengde Q324 (inkremental): Tappens lengde, parallelt med arbeidsplanets hjelpeakse. Inndataområde 0 til 99999,9999
- Målehøyde i touch-probe-aksen Q261 (absolutt): Koordinat for kulesentrum (=berøringspunkt) på touch-probe-aksen som målingen skal utføres på. Inndataområde • 99999,9999 til 99999,9999
- Sikkerhetsavstand Q320 (inkremental): Tilleggsavstand mellom målepunktet og touch-probekulen. Q320 kommer i tillegg til MP6140. Inndataområde 0 til 99999,9999 alternativ PREDEF
- Sikker høyde Q260 (absolutt): Koordinat for probeaksen der touch-probe og emne (oppspenningsutstyr) ikke kan kollidere. Inndataområde -99999,9999 til 99999,9999 alternativ PREDEF





- 15.5 NULLPUN<mark>KT F</mark>IRKANT UTVENDIG (syklus 411, DIN/ISO: G411)
- Kjør til sikker høyde Q301: Angi hvordan touchproben skal bevege seg mellom målepunktene:
  Bevegelse mellom målepunkter i målehøyde
  - 1: Bevegelse mellom målepunkter i sikker høyde Alternativ **PREDEF**
- Nullpunktnummer i tabell Q305: Angi nummeret i nullpunktstabellen/forhåndsinnstillingstabellen der TNC skal lagre koordinatene for midten av tappen. Hvis Q305=0 og Q303=1 tastes inn, bruker TNC automatisk midten av tappen som nytt nullpunkt. Hvis Q305=0 og Q303=0 tastes inn, legger TNC inn midten av tappen i linje 0 i nullpunktstabellen. Inndataområde 0 til 99999
- Nytt nullpunkt hovedakse Q331 (absolutt): Koordinat på hovedaksen der TNC skal plassere beregnet sentrum av tappen. Grunninnstilling = 0. Inndataområde • 99999,9999 til 99999,9999
- Nytt nullpunkt hjelpeakse Q332 (absolutt): Koordinat på hjelpeaksen der TNC skal plassere beregnet sentrum av tappen. Grunninnstilling = 0. Inndataområde • 99999,9999 til 99999,9999
- Måleverdioverføring (0,1) Q303: Angi om det beregnede nullpunktet skal lagres i nullpunktstabellen eller forhåndsinnstillingstabellen:

-1: Må ikke brukes! Registreres av TNC når gamle programmer lastes inn (se Lagre beregnet nullpunkt på side 362)

**0**: Legg inn beregnet nullpunkt i den aktive nullpunktstabellen. Referansesystemet er det aktive emnekoordinatsystemet.

**1**: Legg inn beregnet nullpunkt i forhåndsinnstillingstabellen.

Maskinkoordinatsystemet er referansesystem (REF.-system).

- Probing på TS-akse Q381: Angi om TNC også skal definere nullpunktet på probeaksen:
  0: Ikke definer nullpunkt på probeaksen
  1: Definer nullpunkt på probeaksen
- Probe TS-akse: koor. 1. akse Q382 (absolutt): Koordinat for probepunktet på arbeidsplanets hovedakse, som skal brukes som nullpunkt for probeaksen. Kun aktivert hvis Q381 = 1. Inndataområde • 99999,9999 til 99999,9999
- Probe TS-akse: koor. 2. akse Q383 (absolutt): Koordinat for probepunktet på arbeidsplanets hjelpeakse, som skal brukes som nullpunkt for probeaksen. Kun aktivert hvis Q381 = 1. Inndataområde • 99999,9999 til 99999,9999
- Probe TS-akse: koor. 3. akse Q384 (absolutt): Koordinat for probepunktet på touch-probe-aksen, som skal brukes som nullpunkt for probeaksen. Kun aktivert hvis Q381 = 1. Inndataområde • 99999,9999 til 99999,9999
- Nytt nullpunkt TS-akse Q333 (absolutt): Koordinat på touch-probe-aksen der TNC skal sette nullpunktet. Grunninnstilling = 0. Inndataområde • 99999,9999 til 99999,9999

#### **Beispiel: NC-blokker**

| 5 TCH PROBE 4 | 11 NULLPKT FIRKANT UT. |
|---------------|------------------------|
| Q321=+50      | ;SENTRUM 1. AKSE       |
| Q322=+50      | ;SENTRUM 2. AKSE       |
| Q323=60       | ;1. SIDELENGDE         |
| Q324=20       | ;2. SIDELENGDE         |
| Q261=-5       | ;MÅLEHØYDE             |
| Q320=0        | ;SIKKERHETSAVST.       |
| Q260=+20      | ;SIKKER HØYDE          |
| Q301=0        | ;KJØR TIL S. HØYDE     |
| Q305=0        | ;NR. I TABELL          |
| Q331=+O       | ;NULLPUNKT             |
| Q332=+0       | ;NULLPUNKT             |
| Q3O3=+1       | ;MÅLEVERDIOVERFØRING   |
| Q381=1        | ;PROBE TS-AKSE         |
| Q382=+85      | ;1. KOORD. FOR TS-AKSE |
| Q383=+50      | ;2. KOORD. FOR TS-AKSE |
|               |                        |
| Q384=+0       | ;3. KOORD. FOR TS-AKSE |

## 15.6 NULLPUNKT SIRKEL INNVENDIG (syklus 412, DIN/ISO: G412)

## Syklusforløp

Touch-probe-syklus 412 beregner midtpunktet i en sirkulær lomme (boring) og definerer dette midtpunktet som nullpunkt. TNC kan også lagre midtpunktet i en nullpunkts- eller forhåndsinnstillingstabell.

- 1 TNC posisjonerer touch-proben med hurtigmating (verdi fra MP6150) og med posisjoneringslogikk (se Kjøre touch-probesykluser på side 336) til probepunktet 1. TNC beregner probepunktene ut fra syklusdefinisjonene og sikkerhetsavstanden ut fra MP6140.
- 2 Deretter kjører touch-proben til den angitte målehøyden og utfører første probeprosess med probemating (MP6120). TNC definerer proberetningen automatisk, avhengig av programmert startvinkel.
- **3** Deretter beveger touch-proben seg i en sirkel (til målehøyde eller sikker høyde) til neste probepunkt **2** og utfører neste probeprosess der
- 4 TNC posisjonerer touch-proben til probepunkt 3 og deretter til probepunkt 4 og gjennomfører tredje og fjerde probeprosess ved disse punktene
- 5 Til slutt posisjonerer TNC touch-proben tilbake på sikker høyde og bearbeider det fastsatte nullpunktet på grunnlag av syklusparameterne Q303 og Q305 (se Lagre beregnet nullpunkt på side 362). Deretter lagres de aktuelle verdiene i Q-parametrene nedenfor.
- 6 Ved behov kan TNC også beregne nullpunktet på probeaksen på nytt ved hjelp av en separat probeprosess

| Parameternummer | Beskrivelse                       |
|-----------------|-----------------------------------|
| Q151            | Aktuell verdi, sentrum hovedakse  |
| Q152            | Aktuell verdi, sentrum hjelpeakse |
| Q153            | Aktuell verdi, diameter           |



## Legg merke til følgende under programmeringen!



#### Kollisjonsfare!

For å unngå kollisjon mellom touch-proben og emnet er det bedre å angi for **lav** verdi for lommens (boringens) nominelle diameter enn for høy verdi.

Hvis lommedimensjonene og sikkerhetsavstanden hindrer en forposisjonering i nærheten av probepunktet, utfører TNC alltid proben i forhold til lommas midtpunkt. Touchproben flyttes i så fall ikke til sikker høyde mellom de fire målepunktene.

Jo lavere vinkeltrinnverdi Q247 du angir, desto mer unøyaktig vil TNC beregne nullpunktet. Minste inndataverdi: 5°.

Før du definerer en syklus, må du programmere en verktøyoppkalling for å definere probeaksen.

### Syklusparametere



- Sentrum 1. akse Q321 (absolutt): Sentrum i lommen på arbeidsplanets hovedakse. Inndataområde
  99999,9999 til 99999,9999
- Sentrum 2. akse Q322 (absolutt): Sentrum i lommen på arbeidsplanets hjelpeakse. Med parameterverdien Q322 = 0 retter TNC inn boringens midtpunkt etter den positive Y-aksen. Hvis Q322 er forskjellig fra 0, retter TNC inn boringens midtpunkt etter den nominelle posisjonen. Inndataområde • 99999,9999 til 99999,9999
- Nominell diameter Q262: Omtrentlig diameter på sirkellomme (boring). Det er bedre at verdien er for liten enn for stor. Inndataområde 0 til 99999,9999
- Startvinkel Q325 (absolutt): Vinkel mellom arbeidsplanets hovedakse og første probepunkt. Inndataområde -360,0000 til 360,0000
- Vinkeltrinn Q247 (inkremental): Vinkel mellom to målepunkter, der vinkeltrinnets fortegn definerer touch-probens roteringsretning (- = med klokken) mot neste målepunkt. Angi en vinkeltrinnverdi som er under 90°, hvis du vil måle sirkelbuer. Inndataområde -120,0000 til 120,0000



- Målehøyde i touch-probe-aksen Q261 (absolutt): Koordinat for kulesentrum (=berøringspunkt) på touch-probe-aksen som målingen skal utføres på. Inndataområde • 99999,9999 til 99999,9999
- Sikkerhetsavstand Q320 (inkremental): Tilleggsavstand mellom målepunktet og touch-probekulen. Q320 kommer i tillegg til MP6140. Inndataområde 0 til 99999,9999 alternativ PREDEF
- Sikker høyde Q260 (absolutt): Koordinat for probeaksen der touch-probe og emne (oppspenningsutstyr) ikke kan kollidere. Inndataområde -99999,9999 til 99999,9999 alternativ PREDEF
- Kjør til sikker høyde Q301: Angi hvordan touchproben skal bevege seg mellom målepunktene:
  0: Bevegelse mellom målepunkter i målehøyde
  1: Bevegelse mellom målepunkter i sikker høyde Alternativ PREDEF
- Nullpunktnummer i tabell Q305: Angi under hvilket nummer i

nullpunktstabellen/forhåndsinnstillingstabellen TNC skal lagre koordinatene for sentrum av lomme. Hvis Q305=0 og Q303=1 tastes inn, bruker TNC automatisk sentrum av lomma som nytt nullpunkt. Hvis Q305=0 og Q303=0 tastes inn, legger TNC inn sentrum av lomma i linje 0 i nullpunktstabellen. Inndataområde 0 til 99999

- Nytt nullpunkt hovedakse Q331 (absolutt): Koordinat på hovedaksen der TNC skal plassere beregnet sentrum av lomme. Grunninnstilling = 0. Inndataområde • 99999,9999 til 99999,9999
- Nytt nullpunkt hjelpeakse Q332 (absolutt): Koordinat på hjelpeaksen der TNC skal plassere beregnet sentrum av lomme. Grunninnstilling = 0. Inndataområde • 99999,9999 til 99999,9999
- Måleverdioverføring (0,1) Q303: Angi om det beregnede nullpunktet skal lagres i nullpunktstabellen eller forhåndsinnstillingstabellen:

-1: Må ikke brukes! Registreres av TNC når gamle programmer lastes inn (se Lagre beregnet nullpunkt på side 362)

**0**: Legg inn beregnet nullpunkt i den aktive nullpunktstabellen. Referansesystemet er det aktive emnekoordinatsystemet.

1: Legg inn beregnet nullpunkt i

forhåndsinnstillingstabellen.

Maskinkoordinatsystemet er referansesystem (REF.system).



- Probing på TS-akse Q381: Angi om TNC også skal definere nullpunktet på probeaksen:
  0: Ikke definer nullpunkt på probeaksen
  1: Definer nullpunkt på probeaksen
- Probe TS-akse: koor. 1. akse Q382 (absolutt): Koordinat for probepunktet på arbeidsplanets hovedakse, som skal brukes som nullpunkt for probeaksen. Kun aktivert hvis Q381 = 1. Inndataområde • 99999,9999 til 99999,9999
- Probe TS-akse: koor. 2. akse Q383 (absolutt): Koordinat for probepunktet på arbeidsplanets hjelpeakse, som skal brukes som nullpunkt for probeaksen. Kun aktivert hvis Q381 = 1. Inndataområde • 99999,9999 til 99999,9999
- Probe TS-akse: koor. 3. akse Q384 (absolutt): Koordinat for probepunktet på touch-probe-aksen, som skal brukes som nullpunkt for probeaksen. Kun aktivert hvis Q381 = 1. Inndataområde • 99999,9999 til 99999,9999
- Nytt nullpunkt TS-akse Q333 (absolutt): Koordinat på touch-probe-aksen der TNC skal sette nullpunktet. Grunninnstilling = 0. Inndataområde • 99999,9999 til 99999,9999
- Antall målepunkter (4/3) Q423: Angi om TNC skal måle boringen med 4 eller 3 prober:
  - 4: Bruke 4 målepunkter (standardinnstilling)
  - 3: Bruke 3 målepunkter
- Kjøremåte? Linje=0/sirke1=1 Q365: Angi hvilken banefunksjon verktøyet skal kjøres med mellom målepunktene når kjøring til sikker høyde (Q301=1) er aktiv:

0: kjøre i en rettlinjet bane mellom bearbeidinger1: kjøre i en sirkulær bane mot delsirkeldiameteren mellom bearbeidinger

#### **Beispiel: NC-blokker**

| 5 TCH PROBE 41 | L2 NULLPKT SIRKEL INNV. |
|----------------|-------------------------|
| Q321=+50       | ;SENTRUM 1. AKSE        |
| Q322=+50       | ;SENTRUM 2. AKSE        |
| Q262=75        | ;NOMINELL DIAMETER      |
| Q325=+0        | ;STARTVINKEL            |
| Q247=+60       | ;VINKELTRINN            |
| Q261=-5        | ;MÅLEHØYDE              |
| Q320=0         | ;SIKKERHETSAVST.        |
| Q260=+20       | ;SIKKER HØYDE           |
| Q301=0         | ;KJØR TIL S. HØYDE      |
| Q305=12        | ;NR. I TABELL           |
| Q331=+0        | ;NULLPUNKT              |
| Q332=+0        | ;NULLPUNKT              |
| Q303=+1        | ;MÅLEVERDIOVERFØRING    |
| Q381=1         | ;PROBE TS-AKSE          |
| Q382=+85       | ;1. KOORD. FOR TS-AKSE  |
| Q383=+50       | ;2. KOORD. FOR TS-AKSE  |
| Q384=+0        | ;3. KOORD. FOR TS-AKSE  |
| Q333=+1        | ;NULLPUNKT              |
| Q423=4         | ;ANTALL MÅLEPUNKTER     |
| Q365=1         | ;KJØREMÅTE              |

## 15.7 NULLPUNKT SIRKEL UTVENDIG (syklus 413, DIN/ISO: G413)

## Syklusforløp

Touch-probe-syklus 413 beregner midtpunktet i en sirkeltapp og definerer dette midtpunktet som nullpunkt. TNC kan også lagre midtpunktet i en nullpunkts- eller forhåndsinnstillingstabell.

- TNC posisjonerer touch-proben med hurtigmating (verdi fra MP6150) og med posisjoneringslogikk (se Kjøre touch-probesykluser på side 336) til probepunktet 1. TNC beregner probepunktene ut fra syklusdefinisjonene og sikkerhetsavstanden ut fra MP6140.
- 2 Deretter kjører touch-proben til den angitte målehøyden og utfører første probeprosess med probemating (MP6120). TNC definerer proberetningen automatisk, avhengig av programmert startvinkel.
- **3** Deretter beveger touch-proben seg i en sirkel (til målehøyde eller sikker høyde) til neste probepunkt **2** og utfører neste probeprosess der
- 4 TNC posisjonerer touch-proben til probepunkt 3 og deretter til probepunkt 4 og gjennomfører tredje og fjerde probeprosess ved disse punktene
- 5 Til slutt posisjonerer TNC touch-proben tilbake på sikker høyde og bearbeider det fastsatte nullpunktet på grunnlag av syklusparameterne Q303 og Q305 (se Lagre beregnet nullpunkt på side 362). Deretter lagres de aktuelle verdiene i Q-parametrene nedenfor.
- 6 Ved behov kan TNC også beregne nullpunktet på probeaksen på nytt ved hjelp av en separat probeprosess

| Parameternummer | Beskrivelse                       |
|-----------------|-----------------------------------|
| Q151            | Aktuell verdi, sentrum hovedakse  |
| Q152            | Aktuell verdi, sentrum hjelpeakse |
| Q153            | Aktuell verdi, diameter           |



### Legg merke til følgende under programmeringen!



#### Kollisjonsfare!

For å unngå kollisjon mellom touch-proben og emnet, er det bedre å angi for **høy** verdi for tappens nominelle diameter enn for lav verdi.

Før du definerer en syklus, må du programmere en verktøyoppkalling for å definere probeaksen.

Jo lavere vinkeltrinnverdi Q247 du angir, desto mer unøyaktig vil TNC beregne nullpunktet. Minste inndataverdi: 5°.

### Syklusparametere

- 413
- Sentrum 1. akse Q321 (absolutt): Sentrum i tappen på arbeidsplanets hovedakse. Inndataområde
  99999.9999 til 99999.9999
- Sentrum 2. akse Q322 (absolutt): Sentrum i tappen på arbeidsplanets hjelpeakse. Med parameterverdien Q322 = 0 retter TNC inn boringens midtpunkt etter den positive Y-aksen. Hvis Q322 er forskjellig fra 0, retter TNC inn boringens midtpunkt etter den nominelle posisjonen. Inndataområde • 99999,9999 til 99999,9999
- Nominell diameter Q262: Omtrentlig diameter på tappen. Det er bedre at verdien er for høy enn for lav. Inndataområde 0 til 99999,9999
- Startvinkel Q325 (absolutt): Vinkel mellom arbeidsplanets hovedakse og første probepunkt. Inndataområde -360,0000 til 360,0000
- Vinkeltrinn Q247 (inkremental): Vinkel mellom to målepunkter, der vinkeltrinnets fortegn definerer touch-probens roteringsretning (- = med klokken) mot neste målepunkt. Angi en vinkeltrinnverdi som er under 90°, hvis du vil måle sirkelbuer. Inndataområde -120,0000 til 120,0000



- Målehøyde i touch-probe-aksen Q261 (absolutt): Koordinat for kulesentrum (=berøringspunkt) på touch-probe-aksen som målingen skal utføres på. Inndataområde • 99999,9999 til 99999,9999
- Sikkerhetsavstand Q320 (inkremental): Tilleggsavstand mellom målepunktet og touch-probekulen. Q320 kommer i tillegg til MP6140. Inndataområde 0 til 99999,9999 alternativ PREDEF
- Sikker høyde Q260 (absolutt): Koordinat for probeaksen der touch-probe og emne (oppspenningsutstyr) ikke kan kollidere. Inndataområde -99999,9999 til 99999,9999 alternativ PREDEF
- Kjør til sikker høyde Q301: Angi hvordan touchproben skal bevege seg mellom målepunktene:
  0: Bevegelse mellom målepunkter i målehøyde
  1: Bevegelse mellom målepunkter i sikker høyde Alternativ PREDEF
- Nullpunktnummer i tabell Q305: Angi nummeret i nullpunktstabellen/forhåndsinnstillingstabellen der TNC skal lagre koordinatene for midten av tappen. Hvis Q305=0 og Q303=1 tastes inn, bruker TNC automatisk midten av tappen som nytt nullpunkt. Hvis Q305=0 og Q303=0 tastes inn, legger TNC inn midten av tappen i linje 0 i nullpunktstabellen. Inndataområde 0 til 99999
- Nytt nullpunkt hovedakse Q331 (absolutt): Koordinat på hovedaksen der TNC skal plassere beregnet sentrum av tappen. Grunninnstilling = 0. Inndataområde • 99999,9999 til 99999,9999
- Nytt nullpunkt hjelpeakse Q332 (absolutt): Koordinat på hjelpeaksen der TNC skal plassere beregnet sentrum av tappen. Grunninnstilling = 0. Inndataområde • 99999,9999 til 99999,9999
- Måleverdioverføring (0,1) Q303: Angi om det beregnede nullpunktet skal lagres i nullpunktstabellen eller forhåndsinnstillingstabellen:

-1: Må ikke brukes! Registreres av TNC når gamle programmer lastes inn (se Lagre beregnet nullpunkt på side 362)

**0**: Legg inn beregnet nullpunkt i den aktive nullpunktstabellen. Referansesystemet er det aktive emnekoordinatsystemet.

1: Legg inn beregnet nullpunkt i

forhåndsinnstillingstabellen.

Maskinkoordinatsystemet er referansesystem (REF.-system).



- Probing på TS-akse Q381: Angi om TNC også skal definere nullpunktet på probeaksen:
  0: Ikke definer nullpunkt på probeaksen
  1: Definer nullpunkt på probeaksen
- Probe TS-akse: koor. 1. akse Q382 (absolutt): Koordinat for probepunktet på arbeidsplanets hovedakse, som skal brukes som nullpunkt for probeaksen. Kun aktivert hvis Q381 = 1. Inndataområde • 99999,9999 til 99999,9999
- Probe TS-akse: koor. 2. akse Q383 (absolutt): Koordinat for probepunktet på arbeidsplanets hjelpeakse, som skal brukes som nullpunkt for probeaksen. Kun aktivert hvis Q381 = 1. Inndataområde • 99999,9999 til 99999,9999
- Probe TS-akse: koor. 3. akse Q384 (absolutt): Koordinat for probepunktet på touch-probe-aksen, som skal brukes som nullpunkt for probeaksen. Kun aktivert hvis Q381 = 1. Inndataområde • 99999,9999 til 99999,9999
- Nytt nullpunkt TS-akse Q333 (absolutt): Koordinat på touch-probe-aksen der TNC skal sette nullpunktet. Grunninnstilling = 0
- Antall målepunkter (4/3) Q423: Angi om TNC skal måle tappen med 4 eller 3 prober:
- 4: Bruke 4 målepunkter (standardinnstilling)3: Bruke 3 målepunkter
- Kjøremåte? Linje=0/sirke1=1 Q365: Angi hvilken banefunksjon verktøyet skal kjøres med mellom målepunktene når kjøring til sikker høyde (Q301=1) er aktiv:

**0**: kjøre i en rettlinjet bane mellom bearbeidinger **1**: kjøre i en sirkulær bane mot delsirkeldiameteren mellom bearbeidinger

#### **Beispiel: NC-blokker**

| 5 TCH PROBE 41 | L3 NULLPKT SIRKEL UTVENDIG |
|----------------|----------------------------|
| Q321=+50       | ;SENTRUM 1. AKSE           |
| Q322=+50       | ;SENTRUM 2. AKSE           |
| Q262=75        | ;NOMINELL DIAMETER         |
| Q325=+0        | ;STARTVINKEL               |
| Q247=+60       | ;VINKELTRINN               |
| Q261=-5        | ;MÅLEHØYDE                 |
| Q320=0         | ;SIKKERHETSAVST.           |
| Q260=+20       | ;SIKKER HØYDE              |
| Q301=0         | ;KJØR TIL S. HØYDE         |
| Q305=15        | ;NR. I TABELL              |
| Q331=+O        | ;NULLPUNKT                 |
| Q332=+0        | ;NULLPUNKT                 |
| Q3O3=+1        | ;MÅLEVERDIOVERFØRING       |
| Q381=1         | ;PROBE TS-AKSE             |
| Q382=+85       | ;1. KOORD. FOR TS-AKSE     |
| Q383=+50       | ;2. KOORD. FOR TS-AKSE     |
| Q384=+0        | ;3. KOORD. FOR TS-AKSE     |
| Q333=+1        | ;NULLPUNKT                 |
| Q423=4         | ;ANTALL MÅLEPUNKTER        |
| 0365=1         | :KJØREMÅTE                 |



## 15.8 NULLPUNKT HJØRNE UTVENDIG (syklus 414, DIN/ISO: G414)

## Syklusforløp

Touch-probe-syklus 414 beregner skjæringspunktet mellom to rette linjer og definerer dette skjæringspunktet som nullpunkt. TNC kan også lagre skjæringspunktet i en nullpunkts- eller forhåndsinnstillingstabell.

- TNC posisjonerer touch-proben med hurtigmating (verdi fra MP6150) og med posisjoneringslogikk (se Kjøre touch-probesykluser på side 336) til probepunktet 1 (se bildet øverst til høyre). TNC beveger samtidig touch-proben i motsatt retning av den aktuelle kjøreretningen for å legge inn en sikkerhetsavstand.
- 2 Deretter kjører touch-proben til den angitte målehøyden og utfører første probeprosess med probemating (MP6120). TNC definerer proberetningen automatisk, avhengig av programmert 3. målepunkt.
- 3 Så beveger touch-proben seg til neste probepunkt 2 og utfører andre probeprosess der
- 4 TNC posisjonerer touch-proben til probepunkt 3 og deretter til probepunkt 4 og gjennomfører tredje og fjerde probeprosess ved disse punktene
- 5 Til slutt posisjonerer TNC touch-proben tilbake til sikker høyde og bearbeider det fastsatte nullpunktet på grunnlag av syklusparameterne Q303 og Q305 (se Lagre beregnet nullpunkt på side 362). Koordinatene for det fastsatte hjørnet lagres i Qparametrene nedenfor
- 6 Ved behov kan TNC også beregne nullpunktet på probeaksen på nytt ved hjelp av en separat probeprosess

| Parameternummer | Beskrivelse                          |
|-----------------|--------------------------------------|
| Q151            | Aktuell verdi for hjørne, hovedakse  |
| Q152            | Aktuell verdi for hjørne, hjelpeakse |





## Legg merke til følgende under programmeringen!



Før du definerer en syklus, må du programmere en verktøyoppkalling for å definere probeaksen.

TNC måler alltid første linje i retning mot arbeidsplanets hjelpeakse.

Definer hjørnet som TNC skal bruke som nullpunkt, ut fra målepunktene 1 og 3 (se bildet til høyre og tabellen nedenfor).

| Hjørne | X-koordinat            | Y-koordinat            |
|--------|------------------------|------------------------|
| А      | Punkt 1 høyere punkt 3 | Punkt 1 lavere punkt 3 |
| В      | Punkt 1 lavere punkt 3 | Punkt 1 lavere punkt 3 |
| С      | Punkt 1 lavere punkt 3 | Punkt 1 høyere punkt 3 |
| D      | Punkt 1 høyere punkt 3 | Punkt 1 høyere punkt 3 |





### **Syklusparametere**

414

- 1. målepunkt 1. akse Q263 (absolutt): Koordinat for det første probepunktet på arbeidsplanets hovedakse. Inndataområde • 99999,9999 til 99999,9999
- 1. målepunkt 2. akse Q264 (absolutt): Koordinat for det første probepunktet på arbeidsplanets hjelpeakse. Inndataområde • 99999,9999 til 99999,9999
- Avstand 1. akse Q326 inkremental): Avstanden mellom første og andre målepunkt på hovedaksen på arbeidsplanet. Inndataområde 0 til 99999,9999
- 3. målepunkt 1. akse Q296 (absolutt): Koordinat for det tredje probepunktet på arbeidsplanets hovedakse. Inndataområde • 99999,9999 til 99999,9999
- ▶ 3. målepunkt 2. akse Q297 (absolutt): Koordinat for det tredje probepunktet på arbeidsplanets hjelpeakse. Inndataområde ● 99999,9999 til 99999,9999
- Avstand 2. akse Q327 inkremental): Avstanden mellom tredje og fjerde målepunkt på hjelpeaksen på arbeidsplanet. Inndataområde 0 til 99999,9999
- Målehøyde i touch-probe-aksen Q261 (absolutt): Koordinat for kulesentrum (=berøringspunkt) på touch-probe-aksen som målingen skal utføres på. Inndataområde • 99999,9999 til 99999,9999
- Sikkerhetsavstand Q320 (inkremental): Tilleggsavstand mellom målepunktet og touch-probekulen. Q320 kommer i tillegg til MP6140. Inndataområde 0 til 99999,9999 alternativ PREDEF
- Sikker høyde Q260 (absolutt): Koordinat for probeaksen der touch-probe og emne (oppspenningsutstyr) ikke kan kollidere. Inndataområde -99999,9999 til 99999,9999 alternativ PREDEF





- Kjør til sikker høyde Q301: Angi hvordan touchproben skal bevege seg mellom målepunktene:
  0: Bevegelse mellom målepunkter i målehøyde
  1: Bevegelse mellom målepunkter i sikker høyde Alternativ PREDEF
- Utføre grunnrotering Q304: Angi om TNC skal kompensere for emnets skråstilling ved hjelp av en grunnrotering:
  - 0: Ikke utføre grunnrotering
  - 1: Utføre grunnrotering
- Nullpunktnummer i tabell Q305: Angi nummeret i nullpunktstabellen/forhåndsinnstillingstabellen der TNC skal lagre koordinatene for hjørnet. Hvis Q305=0 og Q303=1 tastes inn, bruker TNC automatisk hjørnet som nytt nullpunkt. Hvis Q305=0 og Q303=0 tastes inn, legger TNC inn hjørnet i linje 0 i nullpunktstabellen. Inndataområde 0 til 99999
- Nytt nullpunkt hovedakse Q331 (absolutt): Koordinat på hovedaksen der TNC skal plassere beregnet hjørne. Grunninnstilling = 0. Inndataområde
  99999,9999 til 99999,9999
- Nytt nullpunkt hjelpeakse Q332 (absolutt): Koordinat på hjelpeaksen der TNC skal plassere beregnet hjørne. Grunninnstilling = 0. Inndataområde
  99999,9999 til 99999,9999
- Måleverdioverføring (0,1) Q303: Angi om det beregnede nullpunktet skal lagres i nullpunktstabellen eller forhåndsinnstillingstabellen:
  -1: Må ikke brukes! Registreres av TNC når gamle

programmer lastes inn (se Lagre beregnet nullpunkt på side 362)

**0**: Legg inn beregnet nullpunkt i den aktive nullpunktstabellen. Referansesystemet er det aktive emnekoordinatsystemet.

1: Legg inn beregnet nullpunkt i forhåndsinnstillingstabellen. Maskinkoordinatsystemet er referansesystem (REF.-

system).



- 15.8 NULLPUNKT HJØRNE UTVENDIG (syklus 414, DIN/ISO: G414)
- Probing på TS-akse Q381: Angi om TNC også skal definere nullpunktet på probeaksen:
  0: Ikke definer nullpunkt på probeaksen
  1: Definer nullpunkt på probeaksen
- Probe TS-akse: koor. 1. akse Q382 (absolutt): Koordinat for probepunktet på arbeidsplanets hovedakse, som skal brukes som nullpunkt for probeaksen. Kun aktivert hvis Q381 = 1. Inndataområde • 99999,9999 til 99999,9999
- Probe TS-akse: koor. 2. akse Q383 (absolutt): Koordinat for probepunktet på arbeidsplanets hjelpeakse, som skal brukes som nullpunkt for probeaksen. Kun aktivert hvis Q381 = 1. Inndataområde • 99999,9999 til 99999,9999
- Probe TS-akse: koor. 3. akse Q384 (absolutt): Koordinat for probepunktet på touch-probe-aksen, som skal brukes som nullpunkt for probeaksen. Kun aktivert hvis Q381 = 1. Inndataområde • 99999,9999 til 99999,9999
- Nytt nullpunkt TS-akse Q333 (absolutt): Koordinat på touch-probe-aksen der TNC skal sette nullpunktet. Grunninnstilling = 0. Inndataområde • 99999,9999 til 99999,9999

#### **Beispiel: NC-blokker**

| 5 | TCH PROBE 41 | L4 NULLPKT HJOERNE UTVENDIG |
|---|--------------|-----------------------------|
|   | Q263=+37     | ;1. PUNKT 1. AKSE           |
|   | Q264=+7      | ;1. PUNKT 2. AKSE           |
|   | Q326=50      | ;AVSTAND 1. AKSE            |
|   | Q296=+95     | ;3. PUNKT 1. AKSE           |
|   | Q297=+25     | ;3. PUNKT 2. AKSE           |
|   | Q327=45      | ;AVSTAND 2. AKSE            |
|   | Q261=-5      | ;MÅLEHØYDE                  |
|   | Q320=0       | ;SIKKERHETSAVST.            |
|   | Q260=+20     | ;SIKKER HØYDE               |
|   | Q301=0       | ;KJØR TIL S. HØYDE          |
|   | Q304=0       | ;GRUNNROTERING              |
|   | Q305=7       | ;NR. I TABELL               |
|   | Q331=+0      | ;NULLPUNKT                  |
|   | Q332=+0      | ;NULLPUNKT                  |
|   | Q303=+1      | ;MÅLEVERDIOVERFØRING        |
|   | Q381=1       | ;PROBE TS-AKSE              |
|   | Q382=+85     | ;1. KOORD. FOR TS-AKSE      |
|   | Q383=+50     | ;2. KOORD. FOR TS-AKSE      |
|   | Q384=+0      | ;3. KOORD. FOR TS-AKSE      |
|   | Q333=+1      | ;NULLPUNKT                  |

1

## 15.9 NULLPUNKT HJØRNE INNVENDIG (syklus 415, DIN/ISO: G415)

## Syklusforløp

Touch-probe-syklus 415 beregner skjæringspunktet mellom to rette linjer, og definerer dette skjæringspunktet som nullpunkt. TNC kan også lagre skjæringspunktet i en nullpunkts- eller forhåndsinnstillingstabell.

- TNC posisjonerer touch-proben med hurtigmating (verdi fra MP6150) og med posisjoneringslogikk (se Kjøre touch-probesykluser på side 336) til det første probepunktet 1 (se bildet øverst til høyre) som du definerer i syklusen. TNC beveger samtidig touch-proben i motsatt retning av den aktuelle kjøreretningen for å legge inn en sikkerhetsavstand.
- 2 Deretter kjører touch-proben til den angitte målehøyden og utfører første probeprosess med probemating (MP6120). Hjørnenummeret bestemmer proberetningen.
- **3** Så beveger touch-proben seg til neste probepunkt **2** og utfører andre probeprosess der
- 4 TNC posisjonerer touch-proben til probepunkt 3 og deretter til probepunkt 4 og gjennomfører tredje og fjerde probeprosess ved disse punktene
- 5 Til slutt posisjonerer TNC touch-proben tilbake til sikker høyde og bearbeider det fastsatte nullpunktet på grunnlag av syklusparameterne Q303 og Q305 (se Lagre beregnet nullpunkt på side 362). Koordinatene for det fastsatte hjørnet lagres i Qparametrene nedenfor
- 6 Ved behov kan TNC også beregne nullpunktet på probeaksen på nytt ved hjelp av en separat probeprosess

| Parameternummer | Beskrivelse                          |
|-----------------|--------------------------------------|
| Q151            | Aktuell verdi for hjørne, hovedakse  |
| Q152            | Aktuell verdi for hjørne, hjelpeakse |





Før du definerer en syklus, må du programmere en verktøyoppkalling for å definere probeaksen.

TNC måler alltid første linje i retning mot arbeidsplanets hjelpeakse.

### Syklusparametere



- ▶ 1. målepunkt 1. akse Q263 (absolutt): Koordinat for det første probepunktet på arbeidsplanets hovedakse. Inndataområde 99999,9999 til 99999,9999
- 1. målepunkt 2. akse Q264 (absolutt): Koordinat for det første probepunktet på arbeidsplanets hjelpeakse. Inndataområde • 99999,9999 til 99999,9999
- Avstand 1. akse Q326 inkremental): Avstanden mellom første og andre målepunkt på hovedaksen på arbeidsplanet. Inndataområde 0 til 99999,9999
- Avstand 2. akse Q327 inkremental): Avstanden mellom tredje og fjerde målepunkt på hjelpeaksen på arbeidsplanet. Inndataområde 0 til 99999,9999
- Hjørne Q308: Hjørnenummeret som TNC skal definere nullpunktet fra. Inndataområde 1 til 4
- Målehøyde i touch-probe-aksen Q261 (absolutt): Koordinat for kulesentrum (=berøringspunkt) på touch-probe-aksen som målingen skal utføres på. Inndataområde • 99999,9999 til 99999,9999
- Sikkerhetsavstand Q320 (inkremental): Tilleggsavstand mellom målepunktet og touch-probekulen. Q320 kommer i tillegg til MP6140. Inndataområde 0 til 99999,9999 alternativ PREDEF
- Sikker høyde Q260 (absolutt): Koordinat for probeaksen der touch-probe og emne (oppspenningsutstyr) ikke kan kollidere. Inndataområde -99999,9999 til 99999,9999 alternativ PREDEF





- Kjør til sikker høyde Q301: Angi hvordan touchproben skal bevege seg mellom målepunktene:
  0: Bevegelse mellom målepunkter i målehøyde
  1: Bevegelse mellom målepunkter i sikker høyde Alternativ PREDEF
- Utføre grunnrotering Q304: Angi om TNC skal kompensere for emnets skråstilling ved hjelp av en grunnrotering:
  - 0: Ikke utføre grunnrotering
  - 1: Utføre grunnrotering
- Nullpunktnummer i tabell Q305: Angi nummeret i nullpunktstabellen/forhåndsinnstillingstabellen der TNC skal lagre koordinatene for hjørnet. Hvis Q305=0 og Q303=1 tastes inn, bruker TNC automatisk hjørnet som nytt nullpunkt. Hvis Q305=0 og Q303=0 tastes inn, legger TNC inn hjørnet i linje 0 i nullpunktstabellen. Inndataområde 0 til 99999
- Nytt nullpunkt hovedakse Q331 (absolutt): Koordinat på hovedaksen der TNC skal plassere beregnet hjørne. Grunninnstilling = 0. Inndataområde
  99999,9999 til 99999,9999
- Nytt nullpunkt hjelpeakse Q332 (absolutt): Koordinat på hjelpeaksen der TNC skal plassere beregnet hjørne. Grunninnstilling = 0. Inndataområde
  99999,9999 til 99999,9999
- Måleverdioverføring (0,1) Q303: Angi om det beregnede nullpunktet skal lagres i nullpunktstabellen eller forhåndsinnstillingstabellen:
  -1: Må ikke brukes! Registreres av TNC når gamle programmer lagtas inn (so Lagra beregnet nullpunkt)

programmer lastes inn (se Lagre beregnet nullpunkt på side 362)

**0**: Legg inn beregnet nullpunkt i den aktive nullpunktstabellen. Referansesystemet er det aktive emnekoordinatsystemet.

1: Legg inn beregnet nullpunkt i forhåndsinnstillingstabellen.

Maskinkoordinatsystemet er referansesystem (REF.-system).



- 15.9 NULLPUNK<mark>T H</mark>JØRNE INNVENDIG (syklus 415, DIN/ISO: G415)
- Probing på TS-akse Q381: Angi om TNC også skal definere nullpunktet på probeaksen:
  0: Ikke definer nullpunkt på probeaksen
  1: Definer nullpunkt på probeaksen
- Probe TS-akse: koor. 1. akse Q382 (absolutt): Koordinat for probepunktet på arbeidsplanets hovedakse, som skal brukes som nullpunkt for probeaksen. Kun aktivert hvis Q381 = 1. Inndataområde • 99999,9999 til 99999,9999
- Probe TS-akse: koor. 2. akse Q383 (absolutt): Koordinat for probepunktet på arbeidsplanets hjelpeakse, som skal brukes som nullpunkt for probeaksen. Kun aktivert hvis Q381 = 1. Inndataområde • 99999,9999 til 99999,9999
- Probe TS-akse: koor. 3. akse Q384 (absolutt): Koordinat for probepunktet på touch-probe-aksen, som skal brukes som nullpunkt for probeaksen. Kun aktivert hvis Q381 = 1. Inndataområde • 99999,9999 til 99999,9999
- Nytt nullpunkt TS-akse Q333 (absolutt): Koordinat på touch-probe-aksen der TNC skal sette nullpunktet. Grunninnstilling = 0. Inndataområde • 99999,9999 til 99999,9999

#### **Beispiel: NC-blokker**

| 5 | TCH PROBE 41 | L5 NULLPKT HJOERNE INNVENDIG |
|---|--------------|------------------------------|
|   | Q263=+37     | ;1. PUNKT 1. AKSE            |
|   | Q264=+7      | ;1. PUNKT 2. AKSE            |
|   | Q326=50      | ;AVSTAND 1. AKSE             |
|   | Q296=+95     | ;3. PUNKT 1. AKSE            |
|   | Q297=+25     | ;3. PUNKT 2. AKSE            |
|   | Q327=45      | ;AVSTAND 2. AKSE             |
|   | Q261=-5      | ;MÅLEHØYDE                   |
|   | Q320=0       | ;SIKKERHETSAVST.             |
|   | Q260=+20     | ;SIKKER HØYDE                |
|   | Q301=0       | ;KJØR TIL S. HØYDE           |
|   | Q304=0       | ;GRUNNROTERING               |
|   | Q305=7       | ;NR. I TABELL                |
|   | Q331=+0      | ;NULLPUNKT                   |
|   | Q332=+0      | ;NULLPUNKT                   |
|   | Q303=+1      | ;MÅLEVERDIOVERFØRING         |
|   | Q381=1       | ;PROBE TS-AKSE               |
|   | Q382=+85     | ;1. KOORD. FOR TS-AKSE       |
|   | Q383=+50     | ;2. KOORD. FOR TS-AKSE       |
|   | Q384=+0      | ;3. KOORD. FOR TS-AKSE       |
|   | Q333=+1      | ;NULLPUNKT                   |

1

## 15.10 NULLPUNKT HULLSIRKELSENTRUM (syklus 416, DIN/ISO: G416)

## Syklusforløp

Touch-probe-syklus 416 beregner midtpunktet i en hullsirkel ved å måle tre boringer og definere dette midtpunktet som nullpunkt. TNC kan også lagre midtpunktet i en nullpunkts- eller forhåndsinnstillingstabell.

- TNC posisjonerer touch-proben med hurtigmating (verdi fra MP6150) og med posisjoneringslogikk (se Kjøre touch-probesykluser på side 336) til probepunktet 1
- **2** Deretter beveger touch-proben seg til angitt målehøyde og registrerer midtpunktet i første boring via fire prober.
- 3 Så beveger touch-proben seg tilbake til sikker høyde og plasserer seg på det angitte midtpunktet i andre boring 2
- **4** TNC flytter touch-proben til angitt målehøyde og registrerer midtpunktet i andre boring via fire prober
- 5 Så beveger touch-proben seg tilbake til sikker høyde og plasserer seg på det angitte midtpunktet i tredje boring 3
- **6** TNC flytter touch-proben til angitt målehøyde og registrerer midtpunktet i tredje boring via fire prober
- 7 Til slutt posisjonerer TNC touch-proben tilbake på sikker høyde og bearbeider det fastsatte nullpunktet på grunnlag av syklusparameterne Q303 og Q305 (se Lagre beregnet nullpunkt på side 362). Deretter lagres de aktuelle verdiene i Q-parametrene nedenfor.
- 8 Ved behov kan TNC også beregne nullpunktet på probeaksen på nytt ved hjelp av en separat probeprosess

| Parameternummer | Beskrivelse                       |
|-----------------|-----------------------------------|
| Q151            | Aktuell verdi, sentrum hovedakse  |
| Q152            | Aktuell verdi, sentrum hjelpeakse |
| Q153            | Aktuell verdi, hullsirkeldiameter |



## Legg merke til følgende under programmeringen!

415

Før du definerer en syklus, må du programmere en verktøyoppkalling for å definere probeaksen.

### **Syklusparametere**

- Sentrum 1. akse Q273 (absolutt): Sentrum i hullsirkel (nominell verdi) på arbeidsplanets hovedakse Inndataområde • 99999,9999 til 99999,9999
- Sentrum 2. akse Q274 (absolutt): Sentrum i hullsirkel (nominell verdi) på arbeidsplanets hjelpeakse Inndataområde • 99999,9999 til 99999,9999
- Nominell diameter Q262: Angi hullsirkelens omtrentlige diameter Jo mindre boringens diameter er, desto mer nøyaktig må den nominelle diameteren angis. Inndataområde 0 til 99999,9999
- Vinkel 1. Boring Q291 (absolutt): Polarkoordinatvinkel for første boringsmidtpunkt på arbeidsplanet Inndataområde -360,0000 til 360,0000
- Vinkel 2. Boring Q292 (absolutt): Polarkoordinatvinkel for andre boringsmidtpunkt på arbeidsplanet. Inndataområde -360,0000 til 360,0000
- Vinkel 3. Boring Q293 (absolutt): Polarkoordinatvinkel for tredje boringsmidtpunkt på arbeidsplanet. Inndataområde -360,0000 til 360,0000
- Målehøyde i touch-probe-aksen Q261 (absolutt): Koordinat for kulesentrum (=berøringspunkt) på touch-probe-aksen som målingen skal utføres på. Inndataområde • 99999,9999 til 99999,9999
- Sikker høyde Q260 (absolutt): Koordinat for probeaksen der touch-probe og emne (oppspenningsutstyr) ikke kan kollidere. Inndataområde -99999,9999 til 99999,9999 alternativ PREDEF
- Nullpunktnummer i tabell Q305: Angi nummeret i nullpunktstabellen/forhåndsinnstillingstabellen der TNC skal lagre hullsirkelens sentrum. Hvis Q305=0 og Q303=1 tastes inn, bruker TNC automatisk sentrum av hullsirkelen som nytt nullpunkt. Hvis Q305=0 og Q303=0 tastes inn, legger TNC inn sentrum av hullsirkelen i linje 0 i nullpunktstabellen. Inndataområde 0 til 99999
- Nytt nullpunkt hovedakse Q331 (absolutt): Koordinat på hovedaksen der TNC skal plassere beregnet sentrum av hullsirkel. Grunninnstilling = 0. Inndataområde • 99999,9999 til 99999,9999




HULLSIRKELSENTRUM (syklus 416, DIN/ISO: G416) 5.10 NULLPUNKT

- Nytt nullpunkt hjelpeakse Q332 (absolutt): Koordinat på hjelpeaksen der TNC skal plassere beregnet sentrum av hullsirkel. Grunninnstilling = 0. Inndataområde • 99999,9999 til 99999,9999
- Måleverdioverføring (0,1) Q303: Angi om det beregnede nullpunktet skal lagres i nullpunktstabellen eller forhåndsinnstillingstabellen:

-1: Må ikke brukes! Registreres av TNC når gamle programmer lastes inn (se Lagre beregnet nullpunkt på side 362)

**0**: Legg inn beregnet nullpunkt i den aktive nullpunktstabellen. Referansesystemet er det aktive emnekoordinatsystemet.

1: Legg inn beregnet nullpunkt i

forhåndsinnstillingstabellen.

Maskinkoordinatsystemet er referansesystem (REF.-system).

- Probing på TS-akse Q381: Angi om TNC også skal definere nullpunktet på probeaksen:
  - 0: Ikke definer nullpunkt på probeaksen

1: Definer nullpunkt på probeaksen

- Probe TS-akse: koor. 1. akse Q382 (absolutt): Koordinat for probepunktet på arbeidsplanets hovedakse, som skal brukes som nullpunkt for probeaksen. Kun aktivert hvis Q381 = 1. Inndataområde • 99999,9999 til 99999,9999
- Probe TS-akse: koor. 2. akse Q383 (absolutt): Koordinat for probepunktet på arbeidsplanets hjelpeakse, som skal brukes som nullpunkt for probeaksen. Kun aktivert hvis Q381 = 1. Inndataområde • 99999,9999 til 99999,9999

#### **Beispiel: NC-blokker**

| 5 TCH PROBE 41 | 6 NULLPKT HULLSIRKELSENTRUM |
|----------------|-----------------------------|
| Q273=+50       | ;SENTRUM 1 AKSE             |
| Q274=+50       | ;SENTRUM 2 AKSE             |
| Q262=90        | ;NOMINELL DIAMETER          |
| Q291=+34       | ;VINKEL 1. BORING           |
| Q292=+70       | ;VINKEL 2. BORING           |
| Q293=+210      | ;VINKEL 3. BORING           |
| Q261=-5        | ;MÅLEHØYDE                  |
| Q260=+20       | ;SIKKER HØYDE               |
| Q305=12        | ;NR. I TABELL               |
| Q331=+0        | ;NULLPUNKT                  |
| Q332=+0        | ;NULLPUNKT                  |
| Q303=+1        | ;MÅLEVERDIOVERFØRING        |
| Q381=1         | ;PROBE TS-AKSE              |
| Q382=+85       | ;1. KOORD. FOR TS-AKSE      |
| Q383=+50       | ;2. KO. FOR PROBEAKSE       |
| Q384=+0        | ;3. KO. FOR PROBEAKSE       |
| Q333=+1        | ;NULLPUNKT                  |
| Q320=0         | ;SIKKERHETSAVST.            |

- Probe TS-akse: koor. 3. akse Q384 (absolutt): Koordinat for probepunktet på touch-probe-aksen, som skal brukes som nullpunkt for probeaksen. Kun aktivert hvis Q381 = 1. Inndataområde • 99999,9999 til 99999,9999
- Nytt nullpunkt TS-akse Q333 (absolutt): Koordinat på touch-probe-aksen der TNC skal sette nullpunktet. Grunninnstilling = 0. Inndataområde • 99999,9999 til 99999,9999
- Sikkerhetsavstand Q320 (inkremental): Tilleggsavstand mellom målepunktet og touch-probekulen. Q320 kommer i tillegg til MP6140 og virker bare ved probing på nullpunktet på touch-probeaksen. Inndataområde 0 til 99999,9999 alternativ PREDEF

ĺ

# 15.11 NULLPUNKT TOUCH-PROBE-AKSE (syklus 417, DIN/ISO: G417)

#### Syklusforløp

Touch-probe-syklus 417 måler en valgfri koordinat på probeaksen og definerer denne koordinaten som nullpunkt. TNC kan også legge inn den målte koordinaten i en nullpunkt- eller forhåndsinnstillingstabell.

- TNC posisjonerer touch-proben med hurtigmating (verdi fra MP6150) og med posisjoneringslogikk (se Kjøre touch-probesykluser på side 336) til det programmerte probepunktet 1. TNC flytter samtidig touch-proben mot den positive probeaksen for å skape en sikkerhetsavstand.
- 2 Deretter flyttes touch-proben langs probeaksen til den angitte koordinaten for probepunktet1 og avleser den faktiske posisjonen
- 3 Til slutt posisjonerer TNC touch-proben tilbake til sikker høyde og bearbeider det fastsatte nullpunktet på grunnlag av syklusparameterne Q303 og Q305 (se Lagre beregnet nullpunkt på side 362). Deretter lagres de aktuelle verdiene i Q-parameteren nedenfor

| Parameternummer | Beskrivelse                  |
|-----------------|------------------------------|
| Q160            | Aktuell verdi for målt punkt |

#### Legg merke til følgende under programmeringen!



Før du definerer en syklus, må du programmere en verktøyoppkalling for å definere probeaksen. TNC definerer deretter nullpunktet på denne aksen.



#### **Syklusparametere**



- 1. målepunkt 1. akse Q263 (absolutt): Koordinat for det første probepunktet på arbeidsplanets hovedakse. Inndataområde • 99999,9999 til 99999,9999
- 1. målepunkt 2. akse Q264 (absolutt): Koordinat for det første probepunktet på arbeidsplanets hjelpeakse. Inndataområde • 99999,9999 til 99999,9999
- 1. målepunkt 3. akse Q294 (absolutt): Koordinat for det første probepunktet på touch-probe-aksen. Inndataområde • 99999,9999 til 99999,9999
- Sikkerhetsavstand Q320 (inkremental): Tilleggsavstand mellom målepunktet og touch-probekulen. Q320 kommer i tillegg til MP6140. Inndataområde 0 til 99999,9999 alternativ PREDEF
- Sikker høyde Q260 (absolutt): Koordinat for probeaksen der touch-probe og emne (oppspenningsutstyr) ikke kan kollidere. Inndataområde -99999,9999 til 99999,9999 alternativ PREDEF
- Nullpunktnummer i tabell Q305: Angi nummeret i nullpunktstabellen/forhåndsinnstillingstabellen der TNC skal lagre koordinatene. Hvis Q305=0 og Q303=1 tastes inn, setter TNC automatisk det nye nullpunktet på den probede flaten. Hvis Q305=0 og Q303=0 tastes inn, legger TNC inn koordinaten i linje 0 i nullpunktstabellen. Inndataområde 0 til 99999
- Nytt nullpunkt TS-akse Q333 (absolutt): Koordinat på touch-probe-aksen der TNC skal sette nullpunktet. Grunninnstilling = 0. Inndataområde • 99999,9999 til 99999,9999
- Måleverdioverføring (0,1) Q303: Angi om det beregnede nullpunktet skal lagres i nullpunktstabellen eller forhåndsinnstillingstabellen:

-1: Må ikke brukes! Registreres av TNC når gamle programmer lastes inn (se Lagre beregnet nullpunkt på side 362)

**0**: Legg inn beregnet nullpunkt i den aktive nullpunktstabellen. Referansesystemet er det aktive emnekoordinatsystemet.

1: Legg inn beregnet nullpunkt i

forhåndsinnstillingstabellen.

Maskinkoordinatsystemet er referansesystem (REF.-system).





#### **Beispiel: NC-blokker**

| 5 | TCH PROBE 41 | L7 NULLPKT PROBEAKSE |
|---|--------------|----------------------|
|   | Q263=+25     | ;1. PUNKT 1. AKSE    |
|   | Q264=+25     | ;1. PUNKT 2. AKSE    |
|   | Q294=+25     | ;1. PUNKT 3. AKSE    |
|   | Q320=0       | ;SIKKERHETSAVST.     |
|   | Q260=+50     | ;SIKKER HØYDE        |
|   | Q305=0       | ;NR. I TABELL        |
|   | Q333=+0      | ;NULLPUNKT           |
|   | Q303=+1      | ;MÅLEVERDIOVERFØRING |

# 15.12 NULLPUNKT I MIDTEN AV 4 BORINGER (syklus 418, DIN/ISO: G418)

# Syklusforløp

Touch-probe-syklus 418 beregner skjæringspunktet for forbindelseslinjene mellom to boringer og definerer dette skjæringspunktet som nullpunkt. TNC kan også lagre skjæringspunktet i en nullpunkts- eller forhåndsinnstillingstabell.

- TNC posisjonerer touch-proben med hurtigmating (verdi fra MP6150) og med posisjoneringslogikk (se Kjøre touch-probesykluser på side 336) til midt på første boring 1
- 2 Deretter beveger touch-proben seg til angitt målehøyde og registrerer midtpunktet i første boring via fire prober.
- 3 Så beveger touch-proben seg tilbake til sikker høyde og plasserer seg på det angitte midtpunktet i andre boring 2
- **4** TNC flytter touch-proben til angitt målehøyde og registrerer midtpunktet i andre boring via fire prober
- 5 TNC gjentar trinn 3 og 4 for boringene 3 og 4
- 6 Til slutt flytter TNC touch-proben tilbake til sikker høyde og behandler det beregnede nullpunktet på grunnlag av syklusparameter Q303 og Q305. (se Lagre beregnet nullpunkt på side 362). TNC beregner nullpunktet som skjæringspunktet til forbindelseslinjene til boringsmidtpunkt 1/3 og 2/4. De faktiske verdiene lagres i følgende Q-parametre
- 7 Ved behov kan TNC også beregne nullpunktet på probeaksen på nytt ved hjelp av en separat probeprosess

| Parameternummer | Beskrivelse                                          |
|-----------------|------------------------------------------------------|
| Q151            | Aktuell verdi for skjæringspunktet til<br>hovedaksen |
| Q152            | Aktuell verdi for skjæringspunkt til<br>hjelpeaksen  |



# Legg merke til følgende under programmeringen!



Før du definerer en syklus, må du programmere en verktøyoppkalling for å definere probeaksen.

#### Syklusparametere

| 4: | 18 |     |  |
|----|----|-----|--|
|    | ٩. | 4 ° |  |
|    | 0  | ♥ ₀ |  |

- 1 sentrum 1. akse Q268 (absolutt): Sentrum i 1. boring på arbeidsplanets hovedakse. Inndataområde • 99999,9999 til 99999,9999
- 1 sentrum 2. akse Q269 (absolutt): Sentrum i 1. boring på arbeidsplanets hjelpeakse. Inndataområde • 99999,9999 til 99999,9999
- 2 sentrum 1. akse Q270 (absolutt): Sentrum i 2. boring på arbeidsplanets hovedakse. Inndataområde • 99999,9999 til 99999,9999
- 2 sentrum 2. akse Q271 (absolutt): Sentrum i 2. boring på arbeidsplanets hjelpeakse. Inndataområde • 99999,9999 til 99999,9999
- 3 sentrum 1. akse Q316 (absolutt): Sentrum i 3. boring på arbeidsplanets hovedakse. Inndataområde • 99999,9999 til 99999,9999
- 3 sentrum 2. akse Q317 (absolutt): Sentrum i 3. boring på arbeidsplanets hjelpeakse. Inndataområde • 99999,9999 til 99999,9999
- 4 sentrum 1. akse Q318 (absolutt): Sentrum i 4. boring på arbeidsplanets hovedakse. Inndataområde • 99999,9999 til 99999,9999
- 4 sentrum 2. akse Q319 (absolutt): Sentrum i 4. boring på arbeidsplanets hjelpeakse. Inndataområde • 99999,9999 til 99999,9999
- Målehøyde i touch-probe-aksen Q261 (absolutt): Koordinat for kulesentrum (=berøringspunkt) på touch-probe-aksen som målingen skal utføres på. Inndataområde • 99999,9999 til 99999,9999
- Sikker høyde Q260 (absolutt): Koordinat for probeaksen der touch-probe og emne (oppspenningsutstyr) ikke kan kollidere. Inndataområde -99999,9999 til 99999,9999 alternativ PREDEF





- Nummer i tabell Q305: Angi under hvilket nummer i nullpunktstabellen/forhåndsinnstillingstabellen TNC skal lagre koordinatene for skjæringspunktet til forbindelseslinjene. Hvis Q305=0 og Q303=1 tastes inn, bruker TNC automatisk skjæringspunktet til forbindelseslinjene som nytt nullpunkt. Hvis Q305=0 og Q303=0 tastes inn, legger TNC inn koordinatene for skjæringspunktet til forbindelseslinjene i linje 0 i nullpunktstabellen. Inndataområde 0 til 99999
- Nytt nullpunkt hovedakse Q331 (absolutt): Koordinat på hovedaksen der TNC skal plassere beregnet skjæringspunkt for forbindelseslinjene. Grunninnstilling = 0. Inndataområde -99999,9999 til 99999,9999
- Nytt nullpunkt hjelpeakse Q332 (absolutt): Koordinat på hjelpeaksen der TNC skal plassere beregnet skjæringspunkt for forbindelseslinjene. Grunninnstilling = 0. Inndataområde -99999,9999 til 99999,9999
- Måleverdioverføring (0,1) Q303: Angi om det beregnede nullpunktet skal lagres i nullpunktstabellen eller forhåndsinnstillingstabellen:

-1: Må ikke brukes! Registreres av TNC når gamle programmer lastes inn (se Lagre beregnet nullpunkt på side 362)

**0**: Legg inn beregnet nullpunkt i den aktive nullpunktstabellen. Referansesystemet er det aktive emnekoordinatsystemet.

1: Legg inn beregnet nullpunkt i

forhåndsinnstillingstabellen.

Maskinkoordinatsystemet er referansesystem (REF.-system).



- 15.12 NULLPUNKT I M<mark>IDT</mark>EN AV 4 BORINGER (syklus 418, DIN/ISO: G418)
- Probing på TS-akse Q381: Angi om TNC også skal definere nullpunktet på probeaksen:
   0: Ikke definer nullpunkt på probeaksen
   1: Definer nullpunkt på probeaksen
- Probe TS-akse: koor. 1. akse Q382 (absolutt): Koordinat for probepunktet på arbeidsplanets hovedakse, som skal brukes som nullpunkt for probeaksen. Kun aktivert hvis Q381 = 1
- Probe TS-akse: koor. 2. akse Q383 (absolutt): Koordinat for probepunktet på arbeidsplanets hjelpeakse, som skal brukes som nullpunkt for probeaksen. Kun aktivert hvis Q381 = 1. Inndataområde • 99999,9999 til 99999,9999
- Probe TS-akse: koor. 3. akse Q384 (absolutt): Koordinat for probepunktet på touch-probe-aksen, som skal brukes som nullpunkt for probeaksen. Kun aktivert hvis Q381 = 1. Inndataområde • 99999,9999 til 99999,9999
- Nytt nullpunkt TS-akse Q333 (absolutt): Koordinat på touch-probe-aksen der TNC skal sette nullpunktet. Grunninnstilling = 0. Inndataområde • 99999,9999 til 99999,9999

#### **Beispiel: NC-blokker**

| 5 | TCH PROBE 41 | 8 NULLPKT 4 BORINGER   |
|---|--------------|------------------------|
|   | Q268=+20     | ;1. SENTRUM 1. AKSE    |
|   | Q269=+25     | ;1. SENTRUM 2. AKSE    |
|   | Q270=+150    | ;2. SENTRUM, 1. AKSE   |
|   | Q271=+25     | ;2. SENTRUM 2. AKSE    |
|   | Q316=+150    | ;3. SENTRUM, 1. AKSE   |
|   | Q317=+85     | ;3. SENTRUM 2. AKSE    |
|   | Q318=+22     | ;4. SENTRUM, 1. AKSE   |
|   | Q319=+80     | ;4. SENTRUM 2. AKSE    |
|   | Q261=-5      | ;MÅLEHØYDE             |
|   | Q260=+10     | ;SIKKER HØYDE          |
|   | Q305=12      | ;NR. I TABELL          |
|   | Q331=+O      | ;NULLPUNKT             |
|   | Q332=+0      | ;NULLPUNKT             |
|   | Q303=+1      | ;MÅLEVERDIOVERFØRING   |
|   | Q381=1       | ;PROBE TS-AKSE         |
|   | Q382=+85     | ;1. KOORD. FOR TS-AKSE |
|   | Q383=+50     | ;2. KO. FOR PROBEAKSE  |
|   | Q384=+0      | ;3. KO. FOR PROBEAKSE  |
|   | Q333=+0      | ;NULLPUNKT             |

1



# 15.13 NULLPUNKT FOR ENKEL AKSE (syklus 419, DIN/ISO: G419)

# Syklusforløp

Touch-probe-syklus 419 måler en valgfri koordinat på en valgfri akse, og definerer denne koordinaten som nullpunkt. TNC kan også legge inn den målte koordinaten i en nullpunkt- eller forhåndsinnstillingstabell.

- 1 TNC posisjonerer touch-proben med hurtigmating (verdi fra MP6150) og med posisjoneringslogikk (se Kjøre touch-probesykluser på side 336) til det programmerte probepunktet 1. TNC flytter samtidig touch-proben mot den programmerte proberetningen for å skape en sikkerhetsavstand.
- 2 Deretter kjører touch-proben til angitt målehøyde og prober den faktiske posisjonen
- **3** Til slutt flytter TNC touch-proben tilbake til sikker høyde og behandler det beregnede nullpunktet på grunnlag av syklusparameter Q303 og Q305. (se Lagre beregnet nullpunkt på side 362)

# Legg merke til følgende under programmeringen!

Før du definerer en syklus, må du programmere en verktøyoppkalling for å definere probeaksen.

Hvis syklus 419 brukes flere ganger etter hverandre for å lagre nullpunktet i flere akser i forhåndsinnstillingstabellen, må du aktivere forhåndsinnstillingsnummeret som syklus 419 har skrevet i tidligere, hver gang syklus 419 er utført (ikke nødvendig hvis du overskriver den aktive forhåndsinnstillingen).





#### **Syklusparametere**



- 1. målepunkt 1. akse Q263 (absolutt): Koordinat for det første probepunktet på arbeidsplanets hovedakse. Inndataområde • 99999,9999 til 99999,9999
- 1. målepunkt 2. akse Q264 (absolutt): Koordinat for det første probepunktet på arbeidsplanets hjelpeakse. Inndataområde • 99999,9999 til 99999,9999
- Målehøyde i touch-probe-aksen Q261 (absolutt): Koordinat for kulesentrum (=berøringspunkt) på touch-probe-aksen som målingen skal utføres på. Inndataområde • 99999,9999 til 99999,9999
- Sikkerhetsavstand Q320 (inkremental): Tilleggsavstand mellom målepunktet og touch-probekulen. Q320 kommer i tillegg til MP6140. Inndataområde 0 til 99999,9999 alternativ PREDEF
- Sikker høyde Q260 (absolutt): Koordinat for probeaksen der touch-probe og emne (oppspenningsutstyr) ikke kan kollidere. Inndataområde -99999,9999 til 99999,9999 alternativ PREDEF
- Måleakse (1..3: 1=hovedakse) Q272: Akse som målingen skal utføres på:
  - 1:Hovedakse = måleakse 2:Hjelpeakse = måleakse
  - **3**: Probeakse = måleakse

| Aksetilordninger             |                                      |                                       |
|------------------------------|--------------------------------------|---------------------------------------|
| Aktiv probeakse:<br>Q272 = 3 | Tilhørende<br>hovedakse:<br>Q272 = 1 | Tilhørende<br>hjelpeakse:<br>Q272 = 2 |
| Z                            | Х                                    | Y                                     |
| Y                            | Z                                    | Х                                     |
| Х                            | Y                                    | Z                                     |





- Bevegelsesretning 1 Q267:Touch-probens bevegelsesretning mot emnet:

   -1: Negativ kjøreretning
   +1: Positiv kjøreretning
- Nullpunktnummer i tabell Q305: Angi nummeret i nullpunktstabellen/forhåndsinnstillingstabellen der TNC skal lagre koordinatene. Hvis Q305=0 og Q303=1 tastes inn, setter TNC automatisk det nye nullpunktet på den probede flaten. Hvis Q305=0 og Q303=0 tastes inn, legger TNC inn koordinaten i linje 0 i nullpunktstabellen. Inndataområde 0 til 99999
- Nytt nullpunkt Q333 (absolutt): Koordinat der TNC skal sette nullpunktet. Grunninnstilling = 0. Inndataområde • 99999,9999 til 99999,9999
- Måleverdioverføring (0,1) Q303: Angi om det beregnede nullpunktet skal lagres i nullpunktstabellen eller forhåndsinnstillingstabellen:

-1: Må ikke brukes! Se Lagre beregnet nullpunkt på side 362

**0**: Legg inn beregnet nullpunkt i den aktive nullpunktstabellen. Referansesystemet er det aktive

emnekoordinatsystemet.

1: Legg inn beregnet nullpunkt i

forhåndsinnstillingstabellen.

Maskinkoordinatsystemet er referansesystem (REF.-system)

#### **Beispiel: NC-blokker**

| 5 TCH PROBE 41 | 9 NULLPKT ENKEL AKSE |
|----------------|----------------------|
| Q263=+25       | ;1. PUNKT 1. AKSE    |
| Q264=+25       | ;1. PUNKT 2. AKSE    |
| Q261=+25       | ;MÅLEHØYDE           |
| Q320=0         | ;SIKKERHETSAVST.     |
| Q260=+50       | ;SIKKER HØYDE        |
| Q272=+1        | ;MÅLEAKSE            |
| Q267=+1        | ;KJØRERETNING        |
| Q305=0         | ;NR. I TABELL        |
| Q333=+0        | ;NULLPUNKT           |
| Q303=+1        | ;MÅLEVERDIOVERFØRING |

**7** (

# Eksempel: Fastsette nullpunktet i sentrum av sirkelsegmentet i overkanten av emnet



| O BEGIN PGM CYC413 MM |                                             |
|-----------------------|---------------------------------------------|
| 1 TOOL CALL 69 Z      | st inn verktøy 0 for å definere probeaksen. |

| 2 TCH PROBE 413 NULLPKT SIRKEL UTVENDIG |                                                             |
|-----------------------------------------|-------------------------------------------------------------|
| Q321=+25 ;SENTRUM 1. AKSE               | Sentrum i sirkel: X-koordinat                               |
| Q322=+25 ;SENTRUM 2. AKSE               | Sentrum i sirkel: Y-koordinat                               |
| Q262=30 ;NOMINELL DIAMETER              | Sirkelens diameter                                          |
| Q325=+90 ;STARTVINKEL                   | Polarkoordinatvinkel for 1. Probepunkt                      |
| Q247=+45 ;VINKELTRINN                   | Vinkeltrinn for beregning av probepunkt 2 til 4             |
| Q261=-5 ;MÅLEHØYDE                      | Koordinat på probeaksen som målingen skal utføres etter     |
| Q320=2 ;SIKKERHETSAVST.                 | Sikkerhetsavstand i tillegg til MP6140                      |
| Q260=+10 ;SIKKER HØYDE                  | Høyden som probeaksen kan kjøre på uten kollisjoner         |
| Q301=0 ;KJØR TIL S. HØYDE               | lkke flytt mellom målepunktene i sikker høyde               |
| Q305=0 ;NR. I TABELL                    | Definer visning                                             |
| Q331=+0 ;NULLPUNKT                      | Sett visning av X til 0                                     |
| Q332=+10 ;NULLPUNKT                     | Sett visning av Y til 10                                    |
| Q3O3=+O ;MÅLEVERDIOVERFØRING            | lkke aktuelt fordi visningen skal være definert             |
| Q381=1 ;PROBE TS-AKSE                   | Definer også nullpunkt på TS-aksen                          |
| Q382=+25 ;1. KOORD. FOR TS-AKSE         | X-koordinat for probepunkt                                  |
| Q383=+25 ;2. KO. FOR PROBEAKSE          | Y-koordinat for probepunkt                                  |
| Q384=+25 ;3. KO. FOR PROBEAKSE          | Z-koordinat for probepunkt                                  |
| Q333=+0 ;NULLPUNKT                      | Sett visning av Z til 0                                     |
| Q423=4 ;ANTALL MÅLEPUNKTER              | Antall målepunkter                                          |
| Q365=1 ;KJØREMÅTE                       | Posisjoner på sirkelbuen eller lineært til neste probepunkt |
| 3 CALL PGM 35K47                        | Start behandlingsprogram                                    |
| 4 END PGM CYC413 MM                     |                                                             |

# Eksempel: Definere nullpunkt i overkant av emnet midt i hullsirkelen

Det målte midtpunktet i hullsirkelen kan lagres i forhåndsinnstillingstabellen for senere bruk.



| O BEGIN PGM CYC416 MM             |                                                                                                                                         |
|-----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| 1 TOOL CALL 69 Z                  | Last inn verktøy 0 for å definere probeaksen.                                                                                           |
| 2 TCH PROBE 417 NULLPKT PROBEAKSE | Syklusdefinisjon for å angi nullpunkt på probeaksen                                                                                     |
| Q263=+7,5 ;1. PUNKT 1. AKSE       | Probepunkt: X-koordinat                                                                                                                 |
| Q264=+7,5 ;1. PUNKT 2. AKSE       | Probepunkt: Y-koordinat                                                                                                                 |
| Q294=+25 ;1. PUNKT 3. AKSE        | Probepunkt: Z-koordinat                                                                                                                 |
| Q320=0 ;SIKKERHETSAVST.           | Sikkerhetsavstand i tillegg til MP6140                                                                                                  |
| Q260=+50 ;SIKKER HØYDE            | Høyden som probeaksen kan kjøre på uten kollisjoner                                                                                     |
| Q305=1 ;NR. I TABELL              | Legg inn Z-koordinat i linje 1                                                                                                          |
| Q333=+0 ;NULLPUNKT                | Definer probeakse 0                                                                                                                     |
| Q3O3=+1 ;MÅLEVERDIOVERFØRING      | Lagre det beregnede nullpunktet basert på det maskinfaste<br>koordinatsystemet (REF-system) i forhåndsinnstilingstabellen<br>PRESET.PR. |

| 3 TCH PROBE 416 NULLPKT HULLSIRKELSENTRUM |                                                                                                                                         |
|-------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| Q273=+35 ;SENTRUM 1. AKSE                 | Sentrum i hullsirkel: X-koordinat                                                                                                       |
| Q274=+35 ;SENTRUM 2. AKSE                 | Sentrum i hullsirkel: Y-koordinat                                                                                                       |
| Q262=50 ;NOMINELL DIAMETER                | Hullsirkelens diameter                                                                                                                  |
| Q291=+90 ;VINKEL 1. BORING                | Polarkoordinatvinkel for 1. Midtpunkt i boringen 1                                                                                      |
| Q292=+180 ;VINKEL 2. BORING               | Polarkoordinatvinkel for 2. Midtpunkt i boringen 2                                                                                      |
| Q293=+270 ;VINKEL 3. BORING               | Polarkoordinatvinkel for 3. Midtpunkt i boringen 3                                                                                      |
| Q261=+15 ;MÅLEHØYDE                       | Koordinat på probeaksen som målingen skal utføres etter                                                                                 |
| Q260=+10 ;SIKKER HØYDE                    | Høyden som probeaksen kan kjøre på uten kollisjoner                                                                                     |
| Q305=1 ;NR. I TABELL                      | Legg inn hullsirkelsentrum (X og Y) i linje 1                                                                                           |
| Q331=+0 ;NULLPUNKT                        |                                                                                                                                         |
| Q332=+0 ;NULLPUNKT                        |                                                                                                                                         |
| Q3O3=+1 ;MÅLEVERDIOVERFØRING              | Lagre det beregnede nullpunktet basert på det maskinfaste<br>koordinatsystemet (REF-system) i forhåndsinnstilingstabellen<br>PRESET.PR. |
| Q381=0 ;PROBE TS-AKSE                     | Ikke definer nullpunkt på TS-aksen                                                                                                      |
| Q382=+0 ;1. KOORD. FOR TS-AKSE            | Uten funksjon                                                                                                                           |
| Q383=+0 ;2. KOORD. FOR TS-AKSE            | Uten funksjon                                                                                                                           |
| Q384=+0 ;3. KOORD. FOR TS-AKSE            | Uten funksjon                                                                                                                           |
| Q333=+0 ;NULLPUNKT                        | Uten funksjon                                                                                                                           |
| Q320=0 ;SIKKERHETSAVST.                   | Sikkerhetsavstand i tillegg til MP6140                                                                                                  |
| 4 CYCL DEF 247 FASTSETTE NULLPUNKT        | Aktiver ny forhåndsinnstilling med syklus 247                                                                                           |
| Q339=1 ;NULLPUNKTNUMMER                   |                                                                                                                                         |
| 6 CALL PGM 35KLZ                          | Start behandlingsprogram                                                                                                                |
| 7 FND PGM CYC416 MM                       |                                                                                                                                         |



15.13 NULLPU<mark>NK</mark>T FOR ENKEL AKSE (syklus 419, DIN/ISO: G419)





Touch-probe-sykluser: kontrollere emner automatisk

# 16.1 Grunnleggende

# Oversikt

TNC har 12 sykluser for automatisk måling av emner:

| Syklus                                                                                       | Funksjonstast                                                                                 | Side     |
|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|----------|
| 0 REFERANSEPLAN: Mål en koordinat<br>på en valgfri akse.                                     | e<br>                                                                                         | Side 420 |
| 1 REFERANSEPLAN POLAR: Mål et<br>punkt, proberetning via vinkel                              |                                                                                               | Side 421 |
| 420 MÅLE VINKEL: Mål vinkel i<br>arbeidsplanet                                               | 420                                                                                           | Side 423 |
| 421 MÅLE BORING: Mål posisjon og<br>diameter for en boring                                   | 421                                                                                           | Side 426 |
| 422 MÅLE SIRKEL UTVENDIG: Mål<br>posisjon og diameter for en<br>sirkelformet tapp            | 422                                                                                           | Side 430 |
| 423 MÅLE FIRKANT INNVENDIG: Mål<br>posisjon, lengde og bredde for en<br>kvadratisk lomme     | 423                                                                                           | Side 433 |
| 424 MÅLE FIRKANT UTVENDIG: Mål<br>posisjon, lengde og bredde for en<br>kvadratisk tapp       | 424                                                                                           | Side 437 |
| 425 MÅLE BREDDE INNVENDIG<br>(2. funksjonstastnivå): Mål innvendig<br>notbredde              | 425                                                                                           | Side 441 |
| 426 MÅLE STEG UTVENDIG<br>(2. funksjonstastnivå): Mål et steg<br>utvendig                    | 426                                                                                           | Side 444 |
| 427 MÅLE KOORDINAT<br>(2. funksjonstastnivå): Mål en valgfri<br>koordinat på en valgfri akse | 427                                                                                           | Side 447 |
| 430 MÅLE HULLSIRKEL<br>(2. funksjonstastnivå): Mål posisjon og<br>diameter for en hullsirkel | 438<br>••••                                                                                   | Side 450 |
| 431 MÅLE PLAN<br>(2. funksjonstastnivå): Mål A- og B-<br>aksevinkelen for et plan            | 431<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | Side 453 |

# Protokollføre måleresultater

En TNC kan opprette en måleprotokoll for alle syklusene som du kan måle emner automatisk med (unntak: syklus 0 og 1). I den aktuelle probesyklusen kan du definere om TNC

- skal lagre måleprotokollen i en fil
- skal vise måleprotokollen på skjermen og avbryte programmet
- ikke skal generere noen måleprotokoll

Hvis du vil lagre måleprotokollen i en fil, er standardinnstillingen at TNC lagrer informasjonen som en ASCII-fil i samme katalog som måleprogrammet. Du kan også skrive ut måleprotokollen på en tilkoblet skriver eller lagre den på en PC. Velg i så fall utskriftsfunksjonen (i konfigurasjonsmenyen for grensesnitt) RS 232:\ (se også brukerhåndboken, MOD-funksjoner, Opprette datagrensesnitt).



Alle måleverdier som lagres i protokollfilen, henviser til nullpunktet som er aktivert når den aktuelle syklusen kjøres. Koordinatsystemet kan også være rotert i planet eller med 3D-ROT. I så fall regner TNC om måleresultatene til det aktiverte koordinatsystemet.

Bruk HEIDENHAIN-dataoverføringssystemet TNCremo hvis du vil overføre måleprotokollen via datagrensesnittet. Eksempel: protokollfil for probesyklus 421:

#### Måleprotokoll probesyklus 421, måling av boring

Dato: 30-06-2005 Klokkeslett: 6:55:04 Måleprogram: TNC:\GEH35712\CHECK1.H

Nominelle verdier: Sentrum hovedakse: 50.0000 Sentrum hjelpeakse: 65.0000 Diameter: 12.0000

Forhåndsdefinerte grenseverdier: Størstemål sentrum hovedakse: 50.1000 Minstemål sentrum hovedakse: 49.9000 Størstemål sentrum hjelpeakse: 65.1000 Minstemål sentrum hjelpeakse: 64.9000 Størstemål boring: 12.0450 Minstemål boring: 12.0000

Faktiske verdier:sentrum Hovedakse: 50.0810 Sentrum hjelpeakse: 64.9530 Diameter: 12.0259

Avvik: Sentrum hovedakse: 0.0810 Sentrum hjelpeakse: -0.0470 Diameter: 0.0259

Flere måleresultater: målehøyde: -5.0000

#### Måleprotokollslutt



# Måleresultater i Q-parametere

TNC lagrer måleresultatene fra den aktuelle probesyklusen i de globale Q-parameterne Q150 til Q160. Avvik fra nominelle verdier lagres i parameterne Q161 til Q166. Vær oppmerksom på resultatparametertabellen i forbindelse med hver syklusbeskrivelse.

I hjelpevinduet for hver syklus viser TNC også resultatparametere sammen med syklusdefinisjonen (se bildet øverst til høyre). En resultatparameter vises på lys bakgrunn sammen med hver inndataparameter.

#### Målestatus

I enkelte sykluser kan du åpne statusen for målingen via den globalt gjeldende Q-parameteren Q180 til Q182:

| Målestatus                                       | Parameterverdi |
|--------------------------------------------------|----------------|
| Måleverdiene ligger innenfor<br>toleransegrensen | Q180 = 1       |
| Krever justering                                 | Q181 = 1       |
| Kassering                                        | Q182 = 1       |

TNC fastsetter justerings- eller kasseringsindikatoren med en gang måleverdiene ligger utenfor toleransegrensen. For å avgjøre hvilken måleverdi som ligger utenfor toleransegrensene, bør du sammenligne med måleprotokollen eller kontrollere grenseverdiene for hvert enkelt måleresultat (Q150 til Q160).

For syklus 427 går TNC ut fra at du måler et utvendig mål (tapp). Målestatusen kan korrigeres via tilsvarende valg av størstemål og minstemål i forbindelse med proberetningen.



TNC viser også statusmerker hvis grenseverdier eller største-/minstemål ikke er angitt.





# Toleranseovervåking

l de fleste sykluser for emnekontroll kan TNC overvåke grenseverdiene. For å aktivere denne funksjonen må du definere aktuelle grenseverdier under syklusdefinisjonen. Hvis du ikke ønsker overvåking av grenseverdiene, angir du verdien 0 (= forhåndsinnstilt verdi) for denne parameteren.

# Verktøyovervåking

l noen sykluser for emnekontroll kan TNC utføre verktøyovervåking. TNC overvåker i så fall om:

- verktøyradiusen skal korrigeres på grunn av avvik fra den nominelle verdien (verdier i Q16x)
- avvikene fra den nominelle verdien (verdier i Q16x) er større enn verktøyets bruddtoleranse

#### Korrigere verktøyet



Funksjonen er bare tilgjengelig

når verktøytabellen er aktivert
 når du kobler inn verktøyovervåkingen i syklusen: Q330
er ulik 0 eller angir et verktøynavn. Angi verktøynavnet

er ulik 0 eller angir et verktøynavn. Angi verktøynavnet ved hjelp av funksjonstaster. TNC viser ikke høyre apostrof mer.

Når du utfører flere korrigeringsmålinger, blir hvert målte avvik tilføyd til verdien som allerede er lagret i verktøytabellen.

TNC korrigerer alltid verktøyradiusen i DR-kolonnen i verktøytabellen selv om det målte avviket ligger innenfor de forhåndsdefinerte toleransene. Hvis du må justere, kan du åpne NC-programmet via parameteren Q181 (Q181=1: justering nødvendig).

For syklus 427 gjelder dessuten følgende:

- Hvis en akse i det aktive arbeidsplanet er definert som måleakse (Q272 = 1 eller 2), utfører TNC en verktøyradiuskorrigering som beskrevet ovenfor. TNC definerer korrigeringsretningen ut fra den definerte kjøreretningen (Q267)
- Hvis en probeakse er valgt som måleakse (Q272 = 3), utfører TNC en verktøylengdekorrigering

#### Verktøybruddovervåking



Funksjonen er bare tilgjengelig

- når verktøytabellen er aktivert
- når verktøyovervåkingen er aktivert i syklusen (Q330 forskjellig fra 0)
- når bruddtoleranseverdien (RBREAK) i tabellen er større enn 0 for det aktuelle verktøyet (se også brukerhåndboken, kapittel 5.2 Verktøydata)

TNC viser en feilmelding og stanser programmet hvis det målte avviket er større enn verktøyets bruddtoleranse. Samtidig blir verktøyet sperret i verktøytabellen (kolonne TL = L).

#### Referansesystem for måleresultater

TNC viser alle måleresultatene for det aktive koordinatsystemet i resultatparameterne og i protokollfilen, selv om koordinatsystemet er rotert/forskjøvet.



# 16.2 REFERANSEPLAN (syklus 0, DIN/ISO: G55)

# Syklusforløp

- 1 Touch-proben kjører i en 3D-bevegelse med hurtigmating (verdi fra MP6150) til forposisjon 1 som er programmert i syklusen
- 2 Touch-proben utfører også probeprosessen med probemating (MP6120). Proberetningen må defineres i syklusen.
- **3** Etter at TNC har registrert posisjonen, flyttes touch-proben tilbake til startpunktet for probeprosessen og lagrer den målte koordinaten i en Q-parameter. TNC lagrer også koordinatene for posisjonen, der touch-proben er på tidspunktet for koblingssignalet, i parameterne Q115 til Q119. TNC tar ikke hensyn til nålens lengde og radius i disse parameterverdiene.



# Legg merke til følgende under programmeringen!



#### Kollisjonsfare!

Touch-proben må forhåndsposisjoneres slik at det ikke kan oppstå kollisjon når systemet kjøres frem til den programmerte forposisjonen.

#### Syklusparametere



- Parameternummer for resultat: Angi Qparameternummeret som koordinatverdien skal tilordnes. Inndataområde 0 til 1999
- Probeakse/proberetning: Angi probeaksen og et fortegn for proberetningen med aksevalgtasten eller via ASCII-tastaturet. Bekreft med ENT-tasten Inndataområde for alle NC-akser
- Nominell verdi for posisjon: Angi alle koordinatene for forposisjoneringen av touch-proben via aksevalgtasten eller ASCII-tastaturet. Inndataområde
   99999,9999 til 99999,9999
- Avslutte inntasting: Trykk på ENT-tasten

#### **Beispiel: NC-blokker**

- 67 TCH PROBE 0.0 REFERANSEPLAN Q5 X-
- 68 TCH PROBE 0.1 X+5 Y+0 Z-5

# 16.3 REFERANSEPLAN Polar (syklus 1)

# Syklusforløp

Touch-probe-syklus 1 beregner en valgfri posisjon på emnet i en valgfri proberetning.

- 1 Touch-proben kjører i en 3D-bevegelse med hurtigmating (verdi fra MP6150) til forposisjon 1 som er programmert i syklusen
- 2 Touch-proben utfører også probeprosessen med probemating (MP6120). Under probeprosedyren flytter TNC touch-proben langs 2 akser (avhengig av målevinkel). Proberetningen er definert via polarvinkelen i syklusen.
- **3** Etter at TNC har registrert posisjonen, flyttes touch-proben tilbake til startpunktet for probeprosessen. TNC lagrer koordinatene for posisjonen der touch-proben er på tidspunktet for koblingssignalet, i parametrene Q115 til Q119.



# Legg merke til følgende under programmeringen!



#### Kollisjonsfare!

Touch-proben må forhåndsposisjoneres slik at det ikke kan oppstå kollisjon når systemet kjøres frem til den programmerte forposisjonen.

Probeaksen som er definert i syklusen, definerer probenivået:

- Probeakse X: X/Y-plan
- Probeakse Y: Y/Z-plan
- Probeakse Z: Z/X-plan

#### **Syklusparametere**



- Probeakse: Angi probeaksen med aksevalgtasten eller via ASCII-tastaturet. Bekreft med ENT-tasten Inndataområde X, Y eller Z
- Probevinke1: Vinkelen til probeaksen som touchproben skal kjøres til. Inndataområde -180,0000 til 180,0000
- Nominell verdi for posisjon: Angi alle koordinatene for forposisjoneringen av touch-proben via aksevalgtasten eller ASCII-tastaturet. Inndataområde 99999,9999 til 99999,9999
- Avslutte inntasting: Trykk på ENT-tasten

#### **Beispiel: NC-blokker**

| 67 | TCH | PROBE | 1.0 | REFERANSEPLAN POLAR |
|----|-----|-------|-----|---------------------|
| 68 | TCH | PROBE | 1.1 | X-VINKEL: +30       |

69 TCH PROBE 1.2 X+5 Y+0 Z-5

# 16.4 MÅLE VINKEL (syklus 420, DIN/ISO: G420)

# Syklusforløp

Touch-probe-syklus 420 beregner vinkelen, som omfatter en valgfri rett linje mot arbeidsplanets hovedakse.

- 1 TNC posisjonerer touch-proben med hurtigmating (verdi fra MP6150) og med posisjoneringslogikk (se Kjøre touch-probesykluser på side 336) til det programmerte probepunktet 1. TNC beveger samtidig touch-proben mot den valgte kjøreretningen for å legge inn en sikkerhetsavstand.
- **2** Deretter kjører touch-proben til den angitte målehøyden og utfører første probeprosess med probemating (MP6120)
- **3** Så beveger touch-proben seg til neste probepunkt **2**og utfører andre probeprosess der
- **4** TNC flytter touch-proben tilbake til sikker høyde og lagrer den beregnede vinkelen i følgende Q-parameter:

| Parameternummer | Beskrivelse                                           |
|-----------------|-------------------------------------------------------|
| Q150            | Målt vinkel i forhold til arbeidsplanets<br>hovedakse |

#### Legg merke til følgende under programmeringen!

Før du definerer en syklus, må du programmere en verktøyoppkalling for å definere probeaksen.

Hvis det er definert at touch-probe-aksen = måleaksen, skal **Q263** velges lik **Q265** hvis vinkelen skal måles i retning A-aksen, og **Q263** ulik **Q265** hvis vinkelen skal måles i retning B-aksen.





#### **Syklusparametere**



- 1. målepunkt 1. akse Q263 (absolutt): Koordinat for det første probepunktet på arbeidsplanets hovedakse. Inndataområde • 99999,9999 til 99999,9999
- 1. målepunkt 2. akse Q264 (absolutt): Koordinat for det første probepunktet på arbeidsplanets hjelpeakse. Inndataområde • 99999,9999 til 99999,9999
- 2. målepunkt 1. akse Q265 (absolutt): Koordinat for det andre probepunktet på arbeidsplanets hovedakse. Inndataområde • 99999,9999 til 99999,9999
- 2. målepunkt 2. akse Q266 (absolutt): Koordinat for det andre probepunktet på arbeidsplanets hjelpeakse. Inndataområde • 99999,9999 til 99999,9999
- Måleakse Q272: Aksen der målingen skal utføres:
  - 1: Hovedakse = måleakse
  - 2: Hjelpeakse = måleakse
  - 3: Probeakse = måleakse



1

- Bevegelsesretning 1 Q267:Touch-probens bevegelsesretning mot emnet:
   -1: Negativ kjøreretning
   +1:Positiv kjøreretning
- Målehøyde i touch-probe-aksen Q261 (absolutt): Koordinat for kulesentrum (=berøringspunkt) på touch-probe-aksen som målingen skal utføres på. Inndataområde • 99999,9999 til 99999,9999
- Sikkerhetsavstand Q320 (inkremental): Tilleggsavstand mellom målepunktet og touch-probekulen. Q320 kommer i tillegg til MP6140. Inndataområde 0 til 99999,9999 alternativ PREDEF
- Sikker høyde Q260 (absolutt): Koordinat for probeaksen der touch-probe og emne (oppspenningsutstyr) ikke kan kollidere. Inndataområde -99999,9999 til 99999,9999 alternativ PREDEF
- Kjør til sikker høyde Q301: Angi hvordan touchproben skal bevege seg mellom målepunktene:
   0: Bevegelse mellom målepunkter i målehøyde
   1: Bevegelse mellom målepunkter i sikker høyde Alternativ PREDEF
- Måleprotokoll Q281: Angi om TNC skal opprette en måleprotokoll:
  - 0: Ikke opprette måleprotokoll

1: Opprett måleprotokoll: TNC lagrer som standard protokollfilen TCHPR426.TXT i katalogen som du også har lagret måleprogrammet i.

**2**:Programmet avbrytes, og måleprotokollen vises på TNC-skjermen. Fortsett programmet med NC-start



#### **Beispiel: NC-blokker**

| 5 TCH PROBE 42 | 20 MÅLE VINKEL     |
|----------------|--------------------|
| Q263=+10       | ;1. PUNKT 1. AKSE  |
| Q264=+10       | ;1. PUNKT 2. AKSE  |
| Q265=+15       | ;2. PUNKT 1. AKSE  |
| Q266=+95       | ;2. PUNKT 2. AKSE  |
| Q272=1         | ;MÅLEAKSE          |
| Q267=-1        | ;KJØRERETNING      |
| Q261=-5        | ;MÅLEHØYDE         |
| Q320=0         | ;SIKKERHETSAVST.   |
| Q260=+10       | ;SIKKER HØYDE      |
| Q301=1         | ;KJØR TIL S. HØYDE |
| Q281=1         | ;MÅLEPROTOKOLL     |

(

# 16.5 MÅLE BORING (syklus 421, DIN/ISO: G421)

# Syklusforløp

Touch-probe-syklus 421 beregner sentrum og diameter for en boring (sirkellomme). Hvis du definerer toleranseverdier for syklusen, sammenligner TNC nominelle og faktiske verdier og legger inn avvik i systemparameterne.

- 1 TNC posisjonerer touch-proben med hurtigmating (verdi fra MP6150) og med posisjoneringslogikk (se Kjøre touch-probesykluser på side 336) til probepunktet 1. TNC beregner probepunktene ut fra syklusdefinisjonene og sikkerhetsavstanden ut fra MP6140.
- 2 Deretter kjører touch-proben til den angitte målehøyden og utfører første probeprosess med probemating (MP6120). TNC definerer proberetningen automatisk, avhengig av programmert startvinkel.
- 3 Deretter beveger touch-proben seg i en sirkel (til målehøyde eller sikker høyde) til neste probepunkt 2 og utfører neste probeprosess der
- 4 TNC posisjonerer touch-proben til probepunkt 3 og deretter til probepunkt 4 og gjennomfører tredje og fjerde probeprosess ved disse punktene
- **5** Til slutt flytter TNC touch-proben tilbake til sikker høyde og lagrer faktiske verdier og avvik i følgende Q-parametere:

| Parameternummer | Beskrivelse                       |
|-----------------|-----------------------------------|
| Q151            | Aktuell verdi, sentrum hovedakse  |
| Q152            | Aktuell verdi, sentrum hjelpeakse |
| Q153            | Aktuell verdi, diameter           |
| Q161            | Avvik, sentrum hovedakse          |
| Q162            | Avvik, sentrum hjelpeakse         |
| Q163            | Avvik, diameter                   |

# Legg merke til følgende under programmeringen!



Før du definerer en syklus, må du programmere en verktøyoppkalling for å definere probeaksen.

Jo mindre vinkeltrinn som angis, desto mer unøyaktig beregner TNC boringens dimensjoner. Minste inndataverdi: 5°.



#### Syklusparametere



- Sentrum 1. akse Q273 (absolutt): Sentrum i boringen på arbeidsplanets hovedakse. Inndataområde
   99999,9999 til 99999,9999
- Sentrum 2. akse Q274 (absolutt): Sentrum i boringen på arbeidsplanets hjelpeakse. Inndataområde
   99999,9999 til 99999,9999
- ▶ Nominell delsirkeldiameter Q262: Angi boringens diameter. Inndataområde 0 til 99999,9999
- Startvinkel Q325 (absolutt): Vinkel mellom arbeidsplanets hovedakse og første probepunkt. Inndataområde -360,0000 til 360,0000
- Vinkeltrinn Q247 (inkrementalt): Vinkel mellom to målepunkter. Fortegnet til vinkeltrinnet angir bearbeidingsretningen (- = med klokken). Angi en vinkeltrinnverdi som er under 90°, hvis du vil måle sirkelbuer. Inndataområde -120,0000 til 120,0000





- Målehøyde i touch-probe-aksen Q261 (absolutt): Koordinat for kulesentrum (=berøringspunkt) på touch-probe-aksen som målingen skal utføres på. Inndataområde • 99999,9999 til 99999,9999
- Sikkerhetsavstand Q320 (inkremental): Tilleggsavstand mellom målepunktet og touch-probekulen. Q320 kommer i tillegg til MP6140. Inndataområde 0 til 99999,9999 alternativ PREDEF
- Sikker høyde Q260 (absolutt): Koordinat for probeaksen der touch-probe og emne (oppspenningsutstyr) ikke kan kollidere. Inndataområde -99999,9999 til 99999,9999 alternativ PREDEF
- Kjør til sikker høyde Q301: Angi hvordan touchproben skal bevege seg mellom målepunktene:
   0: Bevegelse mellom målepunkter i målehøyde
   1: Bevegelse mellom målepunkter i sikker høyde Alternativ PREDEF
- Størstemål boring Q275: Største tillatte diameter på boringen (sirkellomme). Inndataområde 0 til 99999,9999
- Minstemål boring Q276: Minste tillatte diameter på boringen (sirkellomme). Inndataområde 0 til 99999,9999
- Toleranseverdi sentrum 1. akse Q279: Tillatt posisjonsavvik på hovedaksen til arbeidsplanet. Inndataområde 0 til 99999,9999
- Toleranseverdi sentrum 2. akse Q280: Tillatt posisjonsavvik på hjelpeaksen til arbeidsplanet. Inndataområde 0 til 99999,9999



1

- Måleprotokoll Q281: Angi om TNC skal opprette en måleprotokoll:
  - **0**: Ikke opprette måleprotokoll

1: Opprett måleprotokoll: TNC lagrer som standard **protokollfilen TCHPR421.TXT** i katalogen som du også har lagret måleprogrammet i.

**2**:Programmet avbrytes, og måleprotokollen vises på TNC-skjermen. Fortsett programmet med NC-start

- PGM-stopp ved toleransefeil Q309: Angi om TNC skal avbryte programmet og vise en feilmelding hvis toleransegrensene overskrides:
  - 0: Ikke avbryt programmet, og ikke vis feilmeldinger1: Avbryte programmet og vise feilmelding
- Verktøy for overvåking Q330: Angi om TNC skal utføre en verktøyovervåking (se Verktøyovervåking på side 418). Inndataområde 0 til 32767,9, alternativt verktøynavn med maksimalt 16 tegn
   O: Overvåking ikke aktivert
   Verktøynummer i verktøytabellen TOOL.T
- Antall målepunkter (4/3) Q423: Angi om TNC skal måle boringen med 4 eller 3 prober:
  - 4: Bruke 4 målepunkter (standardinnstilling)
  - 3: Bruke 3 målepunkter
- Kjøremåte? Linje=0/sirke1=1 Q365: Angi hvilken banefunksjon verktøyet skal kjøres med mellom målepunktene når kjøring til sikker høyde (Q301=1) er aktiv:

0: kjøre i en rettlinjet bane mellom bearbeidinger1: kjøre i en sirkulær bane mot delsirkeldiameteren mellom bearbeidinger

#### **Beispiel: NC-blokker**

| 5 TCH PROBE 42 | 21 MÅLE BORING        |
|----------------|-----------------------|
| Q273=+50       | ;SENTRUM 1. AKSE      |
| Q274=+50       | ;SENTRUM 2. AKSE      |
| Q262=75        | ;NOMINELL DIAMETER    |
| Q325=+0        | ;STARTVINKEL          |
| Q247=+60       | ;VINKELTRINN          |
| Q261=-5        | ;MÅLEHØYDE            |
| Q320=0         | ;SIKKERHETSAVST.      |
| Q260=+20       | ;SIKKER HØYDE         |
| Q301=1         | ;KJØR TIL S. HØYDE    |
| Q275=75,1      | 2;STØRSTEMÅL          |
| Q276=74,9      | 5;MINSTEMÅL           |
| Q279=0,1       | ;TOLERANSE 1. SENTRUM |
| Q280=0,1       | ;TOLERANSE 2. SENTRUM |
| Q281=1         | ;MÅLEPROTOKOLL        |
| Q309=0         | ;PROG.STOPP VED FEIL  |
| Q330=0         | ;VERKTØY              |
| Q423=4         | ;ANTALL MÅLEPUNKTER   |
| Q365=1         | ;KJØREMÅTE            |



# Syklusforløp

Touch-probe-syklus 422 beregner midtpunktet og diameteren for en sirkelformet tapp. Hvis du definerer toleranseverdier for syklusen, sammenligner TNC nominelle og faktiske verdier og legger inn avvik i systemparameterne.

- TNC posisjonerer touch-proben med hurtigmating (verdi fra MP6150) og med posisjoneringslogikk (se Kjøre touch-probesykluser på side 336) til probepunktet 1. TNC beregner probepunktene ut fra syklusdefinisjonene og sikkerhetsavstanden ut fra MP6140.
- 2 Deretter kjører touch-proben til den angitte målehøyden og utfører første probeprosess med probemating (MP6120). TNC definerer proberetningen automatisk, avhengig av programmert startvinkel.
- 3 Deretter beveger touch-proben seg i en sirkel (til målehøyde eller sikker høyde) til neste probepunkt 2 og utfører neste probeprosess der
- 4 TNC posisjonerer touch-proben til probepunkt 3 og deretter til probepunkt 4 og gjennomfører tredje og fjerde probeprosess ved disse punktene
- **5** Til slutt flytter TNC touch-proben tilbake til sikker høyde og lagrer faktiske verdier og avvik i følgende Q-parametere:

| Parameternummer | Beskrivelse                       |
|-----------------|-----------------------------------|
| Q151            | Aktuell verdi, sentrum hovedakse  |
| Q152            | Aktuell verdi, sentrum hjelpeakse |
| Q153            | Aktuell verdi, diameter           |
| Q161            | Avvik, sentrum hovedakse          |
| Q162            | Avvik, sentrum hjelpeakse         |
| Q163            | Avvik, diameter                   |

# Legg merke til følgende under programmeringen!



Før du definerer en syklus, må du programmere en verktøyoppkalling for å definere probeaksen.

Jo mindre vinkeltrinn som programmeres, desto mer unøyaktig beregner TNC tappens dimensjoner. Minste inndataverdi: 5°.



# 16.6 MÅLE SIRKEL UTVENDIG (syklus 422, DIN/ISO: G422

#### Syklusparametere



- Sentrum 1. akse Q273 (absolutt): Sentrum i tappen på arbeidsplanets hovedakse. Inndataområde
   99999,9999 til 99999,9999
- Sentrum 2. akse Q274 (absolutt): Sentrum i tappen på arbeidsplanets hjelpeakse. Inndataområde
   99999,9999 til 99999,9999
- Nominell diameter Q262: Angi tappens diameter. Inndataområde 0 til 99999,9999
- Startvinkel Q325 (absolutt): Vinkel mellom arbeidsplanets hovedakse og første probepunkt. Inndataområde -360,0000 til 360,0000
- Vinkeltrinn Q247 (inkrementalt): Vinkel mellom to målepunkter, der vinkeltrinnets fortegn angir arbeidsretningen (- = med klokken). Angi en vinkeltrinnverdi som er under 90°, hvis du vil måle sirkelbuer. Inndataområde -120,0000 til 120,0000
- Målehøyde i touch-probe-aksen Q261 (absolutt): Koordinat for kulesentrum (=berøringspunkt) på touch-probe-aksen som målingen skal utføres på. Inndataområde • 99999,9999 til 99999,9999
- Sikkerhetsavstand Q320 (inkremental): Tilleggsavstand mellom målepunktet og touch-probekulen. Q320 kommer i tillegg til MP6140. Inndataområde 0 til 99999,9999 alternativ PREDEF
- Sikker høyde Q260 (absolutt): Koordinat for probeaksen der touch-probe og emne (oppspenningsutstyr) ikke kan kollidere. Inndataområde -99999,9999 til 99999,9999 alternativ PREDEF
- Kjør til sikker høyde Q301: Angi hvordan touchproben skal bevege seg mellom målepunktene:
   0: Bevegelse mellom målepunkter i målehøyde
   1: Bevegelse mellom målepunkter i sikker høyde Alternativ PREDEF
- Størstemål tapp Q277: Største tillatte diameter på tappen. Inndataområde 0 til 99999,9999
- Minstemål tapp Q278: Minste tillatte diameter på tappen. Inndataområde 0 til 99999,9999
- Toleranseverdi sentrum 1. akse Q279: Tillatt posisjonsavvik på hovedaksen til arbeidsplanet. Inndataområde 0 til 99999,9999
- Toleranseverdi sentrum 2. akse Q280: Tillatt posisjonsavvik på hjelpeaksen til arbeidsplanet. Inndataområde 0 til 99999,9999





- Måleprotokoll Q281: Angi om TNC skal opprette en måleprotokoll:
  - **0**: Ikke opprette måleprotokoll

1: Opprett måleprotokoll: TNC lagrer som standard **protokollfilen TCHPR422.TXT** i katalogen som du også har lagret måleprogrammet i.

2:Programmet avbrytes, og måleprotokollen vises på TNC-skjermen. Fortsett programmet med NC-start

- PGM-stopp ved toleransefeil Q309: Angi om TNC skal avbryte programmet og vise en feilmelding hvis toleransegrensene overskrides:
  - 0: Ikke avbryt programmet, og ikke vis feilmeldinger1: Avbryte programmet og vise feilmelding
- Verktøy for overvåking Q330: Angi om TNC skal utføre en verktøyovervåking (se Verktøyovervåking på side 418). Inndataområde 0 til 32767,9, alternativt verktøynavn med maksimalt 16 tegn
   O: Overvåking ikke aktivert
   Verktøynummer i verktøytabellen TOOL.T
- Antall målepunkter (4/3) Q423: Angi om TNC skal måle tappen med 4 eller 3 prober:
  - 4: Bruke 4 målepunkter (standardinnstilling)
  - **3**: Bruke 3 målepunkter
- Kjøremåte? Linje=0/sirke1=1 Q365: Angi hvilken banefunksjon verktøyet skal kjøres med mellom målepunktene når kjøring til sikker høyde (Q301=1) er aktiv:

0: kjøre i en rettlinjet bane mellom bearbeidinger1: kjøre i en sirkulær bane mot delsirkeldiameteren mellom bearbeidinger

#### **Beispiel: NC-blokker**

| 5 | TCH PROBE 42 | 2 MAALE SIRKEL UTVENDIG |
|---|--------------|-------------------------|
|   | Q273=+50     | ;SENTRUM 1. AKSE        |
|   | Q274=+50     | ;SENTRUM 2. AKSE        |
|   | Q262=75      | ;NOMINELL DIAMETER      |
|   | Q325=+90     | ;STARTVINKEL            |
|   | Q247=+30     | ;VINKELTRINN            |
|   | Q261=-5      | ;MÅLEHØYDE              |
|   | Q320=0       | ;SIKKERHETSAVST.        |
|   | Q260=+10     | ;SIKKER HØYDE           |
|   | Q301=0       | ;KJØR TIL S. HØYDE      |
|   | Q277=35,1    | 5;STØRSTEMÅL            |
|   | Q278=34,9    | ;MINSTEMÅL              |
|   | Q279=0,05    | ;TOLERANSE 1. SENTRUM   |
|   | Q280=0,05    | ;TOLERANSE 2. SENTRUM   |
|   | Q281=1       | ;MÅLEPROTOKOLL          |
|   | Q309=0       | ;PROG.STOPP VED FEIL    |
|   | Q330=0       | ;VERKTØY                |
|   | Q423=4       | ;ANTALL MÅLEPUNKTER     |
|   | Q365=1       | ;KJØREMÅTE              |
|   |              |                         |
# 16.7 MÅLE FIRKANT INNVENDIG (syklus 423, DIN/ISO: G423)

## Syklusforløp

Touch-probe-syklus 423 beregner midtpunktet samt lengde og bredde for en rektangulær lomme. Hvis du definerer toleranseverdier for syklusen, sammenligner TNC nominelle og faktiske verdier og legger inn avvik i systemparameterne.

- TNC posisjonerer touch-proben med hurtigmating (verdi fra MP6150) og med posisjoneringslogikk (se Kjøre touch-probesykluser på side 336) til probepunktet 1. TNC beregner probepunktene ut fra syklusdefinisjonene og sikkerhetsavstanden ut fra MP6140.
- **2** Deretter kjører touch-proben til den angitte målehøyden og utfører første probeprosess med probemating (MP6120)
- **3** Deretter beveger touch-proben seg enten parallelt med aksen til målehøyden eller lineært til sikker høyde for neste probepunkt 2 og utfører neste probeprosess der
- 4 TNC posisjonerer touch-proben til probepunkt 3 og deretter til probepunkt 4 og gjennomfører tredje og fjerde probeprosess ved disse punktene
- **5** Til slutt flytter TNC touch-proben tilbake til sikker høyde og lagrer faktiske verdier og avvik i følgende Q-parametere:

| Parameternummer | Beskrivelse                          |
|-----------------|--------------------------------------|
| Q151            | Aktuell verdi, sentrum hovedakse     |
| Q152            | Aktuell verdi, sentrum hjelpeakse    |
| Q154            | Aktuell verdi, sidelengde hovedakse  |
| Q155            | Aktuell verdi, sidelengde hjelpeakse |
| Q161            | Avvik, sentrum hovedakse             |
| Q162            | Avvik, sentrum hjelpeakse            |
| Q164            | Avvik, sidelengde hovedakse          |
| Q165            | Avvik, sidelengde hjelpeakse         |





Før du definerer en syklus, må du programmere en verktøyoppkalling for å definere probeaksen.

Hvis lommedimensjonene og sikkerhetsavstanden hindrer en forposisjonering i nærheten av probepunktet, utfører TNC alltid proben i forhold til lommas midtpunkt. Touchproben flyttes i så fall ikke til sikker høyde mellom de fire målepunktene.

### Syklusparametere



 Sentrum 1. akse 0273 (absolutt): Sentrum i lommen på arbeidsplanets hovedakse. Inndataområde
 99999,9999 til 99999,9999

- Sentrum 2. akse Q274 (absolutt): Sentrum i lommen på arbeidsplanets hjelpeakse. Inndataområde
   99999,9999 til 99999,9999
- 1. sidelengde Q282: Lommens lengde, parallelt med arbeidsplanets hovedakse. Inndataområde 0 til 99999,9999
- Sidelengde Q283: Lommens lengde, parallelt med arbeidsplanets hjelpeakse. Inndataområde 0 til 99999,9999
- Målehøyde i touch-probe-aksen Q261 (absolutt): Koordinat for kulesentrum (=berøringspunkt) på touch-probe-aksen som målingen skal utføres på. Inndataområde • 99999,9999 til 99999,9999



16.7 MÅLE FIRKANT INNVENDIG (syklus 423, DIN/ISO: G423)

- Sikkerhetsavstand Q320 (inkremental): Tilleggsavstand mellom målepunktet og touch-probekulen. Q320 kommer i tillegg til MP6140. Inndataområde 0 til 99999,9999 alternativ PREDEF
- Sikker høyde Q260 (absolutt): Koordinat for probeaksen der touch-probe og emne (oppspenningsutstyr) ikke kan kollidere. Inndataområde -99999,9999 til 99999,9999 alternativ PREDEF
- Kjør til sikker høyde Q301: Angi hvordan touchproben skal bevege seg mellom målepunktene:
   0: Bevegelse mellom målepunkter i målehøyde
   1: Bevegelse mellom målepunkter i sikker høyde Alternativ PREDEF
- Størstemål 1. sidelengde Q284: Største tillatte lengde på lommen. Inndataområde 0 til 99999,9999
- Minstemål 1. sidelengde O285: Minste tillatte lengde på lommen. Inndataområde 0 til 99999,9999
- Størstemål 2. sidelengde Q286: Største tillatte bredde på lommen. Inndataområde 0 til 99999,9999
- Minstemål 2. sidelengde Q287: Minste tillatte bredde på lommen. Inndataområde 0 til 99999,9999
- Toleranseverdi sentrum 1. akse Q279: Tillatt posisjonsavvik på hovedaksen til arbeidsplanet. Inndataområde 0 til 99999,9999
- ▶ Toleranseverdi sentrum 2. akse Q280: Tillatt posisjonsavvik på hjelpeaksen til arbeidsplanet. Inndataområde 0 til 99999,9999



- Måleprotokoll Q281: Angi om TNC skal opprette en måleprotokoll:
  - **0**: lkke opprette måleprotokoll

1: Opprett måleprotokoll: TNC lagrer som standard **protokollfilen TCHPR423.TXT** i katalogen som du også har lagret måleprogrammet i.

2:Programmet avbrytes, og måleprotokollen vises på TNC-skjermen. Fortsett programmet med NC-start

- PGM-stopp ved toleransefeil Q309: Angi om TNC skal avbryte programmet og vise en feilmelding hvis toleransegrensene overskrides:
  - **0**: Ikke avbryt programmet, og ikke vis feilmeldinger **1**: Avbryte programmet og vise feilmelding
- Verktøy for overvåking Q330: Angi om TNC skal utføre en verktøyovervåking (se Verktøyovervåking på side 418). Inndataområde 0 til 32767,9, alternativt verktøynavn med maksimalt 16 tegn
   Overvåking ikke aktivert
  - >0: Verktøynummer i verktøytabellen TOOL.T

### **Beispiel: NC-blokker**

| 3 MAALE FIRKANT INN.  |
|-----------------------|
| ;SENTRUM 1. AKSE      |
| ;SENTRUM 2. AKSE      |
| ;1. SIDELENGDE        |
| ;2. SIDELENGDE        |
| ;MÅLEHØYDE            |
| ;SIKKERHETSAVST.      |
| ;SIKKER HØYDE         |
| ;KJØR TIL S. HØYDE    |
| ;STØRSTEMÅL 1. SIDE   |
| ;MINSTEMÅL 1. SIDE    |
| ;STØRSTEMÅL 2. SIDE   |
| ;MINSTEMÅL 2. SIDE    |
| ;TOLERANSE 1. SENTRUM |
| ;TOLERANSE 2. SENTRUM |
| ;MÅLEPROTOKOLL        |
| ;PROG.STOPP VED FEIL  |
| ;VERKTØY              |
|                       |

1

# 16.8 MÅLE FIRKANT UTVENDIG (syklus 424, DIN/ISO: G424)

## Syklusforløp

Touch-probe-syklus 424 beregner midtpunktet samt lengde og bredde for en rektangulær tapp. Hvis du definerer toleranseverdier for syklusen, sammenligner TNC nominelle og faktiske verdier og legger inn avvik i systemparameterne.

- TNC posisjonerer touch-proben med hurtigmating (verdi fra MP6150) og med posisjoneringslogikk (se Kjøre touch-probesykluser på side 336) til probepunktet 1. TNC beregner probepunktene ut fra syklusdefinisjonene og sikkerhetsavstanden ut fra MP6140.
- **2** Deretter kjører touch-proben til den angitte målehøyden og utfører første probeprosess med probemating (MP6120)
- **3** Deretter beveger touch-proben seg enten parallelt med aksen til målehøyden eller lineært til sikker høyde for neste probepunkt 2 og utfører neste probeprosess der
- 4 TNC posisjonerer touch-proben til probepunkt 3 og deretter til probepunkt 4 og gjennomfører tredje og fjerde probeprosess ved disse punktene
- **5** Til slutt flytter TNC touch-proben tilbake til sikker høyde og lagrer faktiske verdier og avvik i følgende Q-parametere:

| Parameternummer | Beskrivelse                          |
|-----------------|--------------------------------------|
| Q151            | Aktuell verdi, sentrum hovedakse     |
| Q152            | Aktuell verdi, sentrum hjelpeakse    |
| Q154            | Aktuell verdi, sidelengde hovedakse  |
| Q155            | Aktuell verdi, sidelengde hjelpeakse |
| Q161            | Avvik, sentrum hovedakse             |
| Q162            | Avvik, sentrum hjelpeakse            |
| Q164            | Avvik, sidelengde hovedakse          |
| Q165            | Avvik, sidelengde hjelpeakse         |





### Legg merke til følgende under programmeringen!

Før du definerer en syklus, må du programmere en verktøyoppkalling for å definere probeaksen.

### **Syklusparametere**

- 424
- Sentrum 1. akse Q273 (absolutt): Sentrum i tappen på arbeidsplanets hovedakse. Inndataområde
   99999,9999 til 99999,9999
- Sentrum 2. akse Q274 (absolutt): Sentrum i tappen på arbeidsplanets hjelpeakse. Inndataområde
   99999,9999 til 99999,9999
- 1. 1. sidelengde Q282: Tappens lengde, parallelt med arbeidsplanets hovedakse. Inndataområde 0 til 99999,9999
- 2. 1. sidelengde Q283: Tappens lengde, parallelt med arbeidsplanets hjelpeakse. Inndataområde 0 til 99999,9999
- Målehøyde i touch-probe-aksen Q261 (absolutt): Koordinat for kulesentrum (=berøringspunkt) på touch-probe-aksen som målingen skal utføres på. Inndataområde • 99999,9999 til 99999,9999



1

- Sikkerhetsavstand Q320 (inkremental): Tilleggsavstand mellom målepunktet og touch-probekulen. Q320 kommer i tillegg til MP6140. Inndataområde 0 til 99999,9999 alternativ PREDEF
- Sikker høyde Q260 (absolutt): Koordinat for probeaksen der touch-probe og emne (oppspenningsutstyr) ikke kan kollidere. Inndataområde -99999,9999 til 99999,9999 alternativ PREDEF
- Kjør til sikker høyde Q301: Angi hvordan touchproben skal bevege seg mellom målepunktene:
   0: Bevegelse mellom målepunkter i målehøyde
   1: Bevegelse mellom målepunkter i sikker høyde Alternativ PREDEF
- Størstemål 1. sidelengde Q284: Største tillatte lengde på tappen. Inndataområde 0 til 99999,9999
- Minstemål 1. sidelengde Q285: Minste tillatte lengde på tappen. Inndataområde 0 til 99999,9999
- Størstemål 2. sidelengde Q286: Største tillatte bredde på tappen. Inndataområde 0 til 99999,9999
- Minstemål 2. sidelengde Q287: Minste tillatte bredde på tappen. Inndataområde 0 til 99999,9999
- Toleranseverdi sentrum 1. akse Q279: Tillatt posisjonsavvik på hovedaksen til arbeidsplanet. Inndataområde 0 til 99999,9999
- ▶ Toleranseverdi sentrum 2. akse Q280: Tillatt posisjonsavvik på hjelpeaksen til arbeidsplanet. Inndataområde 0 til 99999,9999





- Måleprotokoll Q281: Angi om TNC skal opprette en måleprotokoll:
  - **0**: lkke opprette måleprotokoll

1: Opprett måleprotokoll: TNC lagrer som standard **protokollfilen TCHPR424.TXT** i katalogen som du også har lagret måleprogrammet i.

2:Programmet avbrytes, og måleprotokollen vises på TNC-skjermen. Fortsett programmet med NC-start

- PGM-stopp ved toleransefeil Q309: Angi om TNC skal avbryte programmet og vise en feilmelding hvis toleransegrensene overskrides:
  - 0: Ikke avbryt programmet, og ikke vis feilmeldinger1: Avbryte programmet og vise feilmelding
- Verktøy for overvåking Q330: Angi om TNC skal utføre en verktøyovervåking (se Verktøyovervåking på side 418). Inndataområde 0 til 32767,9, alternativt verktøynavn med maksimalt 16 tegn:
   Overvåking ikke aktivert
  - >0: Verktøynummer i verktøytabellen TOOL.T

### **Beispiel: NC-blokker**

| 5 | TCH PROBE 42 | 4 MAALE FIRKANT UT.   |
|---|--------------|-----------------------|
|   | Q273=+50     | ;SENTRUM 1. AKSE      |
|   | Q274=+50     | ;SENTRUM 2. AKSE      |
|   | Q282=75      | ;1. SIDELENGDE        |
|   | Q283=35      | ;2. SIDELENGDE        |
|   | Q261=-5      | ;MÅLEHØYDE            |
|   | Q320=0       | ;SIKKERHETSAVST.      |
|   | Q260=+20     | ;SIKKER HØYDE         |
|   | Q301=0       | ;KJØR TIL S. HØYDE    |
|   | Q284=75,1    | ;STØRSTEMÅL 1. SIDE   |
|   | Q285=74,9    | ;MINSTEMÅL 1. SIDE    |
|   | Q286=35      | ;STØRSTEMÅL 2. SIDE   |
|   | Q287=34,9    | 5;MINSTEMÅL 2. SIDE   |
|   | Q279=0,1     | ;TOLERANSE 1. SENTRUM |
|   | Q280=0,1     | ;TOLERANSE 2. SENTRUM |
|   | Q281=1       | ;MÅLEPROTOKOLL        |
|   | Q309=0       | ;PROG.STOPP VED FEIL  |
|   | Q330=0       | ;VERKTØY              |
|   |              |                       |

1

# 16.9 MÅLE BREDDE INNVENDIG (syklus 425, DIN/ISO: G425)

## Syklusforløp

Touch-probe-syklus 425 beregner posisjon og bredde for en not (lomme). Hvis du definerer grenseverdier for syklusen, sammenligner TNC nominelle og aktuelle verdier og legger inn avvik i en systemparameter.

- TNC posisjonerer touch-proben med hurtigmating (verdi fra MP6150) og med posisjoneringslogikk (se Kjøre touch-probesykluser på side 336) til probepunktet 1. TNC beregner probepunktene ut fra syklusdefinisjonene og sikkerhetsavstanden ut fra MP6140.
- 2 Deretter kjører touch-proben til den angitte målehøyden og utfører første probeprosess med probemating (MP6120). 1. Probing skal alltid utføres i positiv retning av den programmerte aksen
- Hvis du legger inn en forskyvning for den andre målingen, flytter TNC touch-proben (eventuelt til sikker høyde) til neste probepunkt
   2 og utfører andre probeprosess der. I forbindelse med store nominelle lengder posisjonerer TNC ved hjelp av hurtigmating til det andre probepunktet. Hvis du ikke legger inn noen forskyvning, måler TNC bredden direkte i motsatt retning.
- **4** Til slutt flytter TNC touch-proben tilbake til sikker høyde og lagrer faktiske verdier og avvik i følgende Q-parametere:

| Parameternummer | Beskrivelse                     |
|-----------------|---------------------------------|
| Q156            | Aktuell verdi for målt lengde   |
| Q157            | Faktisk verdi posisjon midtakse |
| Q166            | Avvik for målt lengde           |

### Legg merke til følgende under programmeringen!



Før du definerer en syklus, må du programmere en verktøyoppkalling for å definere probeaksen.



### **Syklusparametere**



- Startpunkt 1. akse Q328 (absolutt): Startpunktet for probingen på arbeidsplanets hovedakse. Inndataområde • 99999,9999 til 99999,9999
- Startpunkt 2. akse Q329 (absolutt): Startpunktet for probingen på arbeidsplanets hjelpeakse.
   Inndataområde • 99999,9999 til 99999,9999
- Forskyvning for 2. måling Q310 (inkremental): Angivelse av hvor mye touch-proben forskyves før den andre målingen. Hvis 0 tastes inn, forskyver ikke TNC touch-proben. Inndataområde • 99999,9999 til 99999,9999
- Måleakse Q272: Aksen til arbeidsplanet som målingen skal utføres på:
   1:Hovedakse = måleakse
   2:Hjelpeakse = måleakse
- Målehøyde i touch-probe-aksen Q261 (absolutt): Koordinat for kulesentrum (=berøringspunkt) på touch-probe-aksen som målingen skal utføres på. Inndataområde • 99999,9999 til 99999,9999
- Sikker høyde Q260 (absolutt): Koordinat for probeaksen der touch-probe og emne (oppspenningsutstyr) ikke kan kollidere. Inndataområde -99999,9999 til 99999,9999 alternativ PREDEF
- Nominell lengde Q311: Nominell verdi for lengden som skal måles. Inndataområde 0 til 99999,9999
- Størstemål Q288: Største tillatte lengde. Inndataområde 0 til 99999,9999
- Minstemål Q289: Minste tillatte lengde. Inndataområde 0 til 99999,9999





- Måleprotokoll Q281: Angi om TNC skal opprette en måleprotokoll:
  - **0**: Ikke opprette måleprotokoll

1: Opprett måleprotokoll: TNC lagrer som standard **protokollfilen TCHPR425.TXT** i katalogen som du også har lagret måleprogrammet i.

**2**:Programmet avbrytes, og måleprotokollen vises på TNC-skjermen. Fortsett programmet med NC-start

- PGM-stopp ved toleransefeil Q309: Angi om TNC skal avbryte programmet og vise en feilmelding hvis toleransegrensene overskrides:
  - 0: Ikke avbryt programmet, og ikke vis feilmeldinger1: Avbryte programmet og vise feilmelding
- Verktøy for overvåking Q330: Angi om TNC skal utføre en verktøyovervåking (se Verktøyovervåking på side 418):. Inndataområde 0 til 32767,9, alternativt verktøynavn med maksimalt 16 tegn
   O: Overvåking ikke aktivert
   O: Verktøynummer i verktøytabellen TOOL.T
- Sikkerhetsavstand Q320 (inkremental): Tilleggsavstand mellom målepunktet og touch-probekulen. Q320 kommer i tillegg til MP6140. Inndataområde 0 til 99999,9999 alternativ PREDEF
- Kjør til sikker høyde Q301: Angi hvordan touchproben skal bevege seg mellom målepunktene:
   0: Bevegelse mellom målepunkter i målehøyde
  - 1: Bevegelse mellom målepunkter i sikker høyde Alternativ **PREDEF**

### **Beispiel: NC-blokker**

| 5 | TCH PROBE 42 | 25 MAALE BREDDE INNVENDIG |
|---|--------------|---------------------------|
|   | Q328=+75     | ;STARTPUNKT 1 AKSE        |
|   | Q329=-12.    | 5;STARTPUNKT 2 AKSE       |
|   | Q310=+0      | ;FORSKYVNING 2 MAALING    |
|   | Q272=1       | ;MÅLEAKSE                 |
|   | Q261=-5      | ;MÅLEHØYDE                |
|   | Q260=+10     | ;SIKKER HØYDE             |
|   | Q311=25      | ;NOMINELL LENGDE          |
|   | Q288=25.0    | 5;STØRSTEMÅL              |
|   | Q289=25      | ;MINSTEMÅL                |
|   | Q281=1       | ;MÅLEPROTOKOLL            |
|   | Q309=0       | ;PGM.STOPP VED FEIL       |
|   | Q330=0       | ;VERKTØY                  |
|   | Q320=0       | ;SIKKERHETSAVST.          |
|   | Q301=0       | ;KJØR TIL S. HØYDE        |

# 16.10 MÅLE STEG UTVENDIG (syklus 426, DIN/ISO: G426)

## Syklusforløp

Touch-probe-syklus 426 beregner posisjon og bredde for et steg. Hvis du definerer toleranseverdier for syklusen, sammenligner TNC nominelle og aktuelle verdier og legger inn avvik i systemparameterne.

- TNC posisjonerer touch-proben med hurtigmating (verdi fra MP6150) og med posisjoneringslogikk (se Kjøre touch-probesykluser på side 336) til probepunktet 1. TNC beregner probepunktene ut fra syklusdefinisjonene og sikkerhetsavstanden ut fra MP6140.
- 2 Deretter kjører touch-proben til den angitte målehøyden og utfører første probeprosess med probemating (MP6120). 1. Probing skal alltid utføres i negativ retning av den programmerte aksen
- **3** Deretter kjører touch-proben i sikker høyde til neste probepunkt 2 der andre probeprosess utføres.
- **4** Til slutt flytter TNC touch-proben tilbake til sikker høyde og lagrer faktiske verdier og avvik i følgende Q-parametere:

| Parameternummer | Beskrivelse                     |
|-----------------|---------------------------------|
| Q156            | Aktuell verdi for målt lengde   |
| Q157            | Faktisk verdi posisjon midtakse |
| Q166            | Avvik for målt lengde           |

### Legg merke til følgende under programmeringen!



Før du definerer en syklus, må du programmere en verktøyoppkalling for å definere probeaksen.

Sørg for at første måling alltid utføres i negativ retning for den valgte måleaksen. Definer **Q263** og **Q264** tilsvarende.



### Syklusparametere



- 1 målepunkt 1. akse Q263 (absolutt): Koordinat for det første probepunktet på arbeidsplanets hovedakse. Inndataområde • 99999,9999 til 99999,9999
- 1 målepunkt 2. akse Q264 (absolutt): Koordinat for det første probepunktet på arbeidsplanets hjelpeakse. Inndataområde • 99999,9999 til 99999,9999
- 2 målepunkt 1. akse Q265 (absolutt): Koordinat for det andre probepunktet på arbeidsplanets hovedakse. Inndataområde • 99999,9999 til 99999,9999
- 2 målepunkt 2. akse Q266 (absolutt): Koordinat for det andre probepunktet på arbeidsplanets hjelpeakse. Inndataområde • 99999,9999 til 99999,9999
- Måleakse Q272: Aksen til arbeidsplanet som målingen skal utføres på:
   1:Hovedakse = måleakse
   2:Hielpeakse = måleakse
- Målehøyde i touch-probe-aksen Q261 (absolutt): Koordinat for kulesentrum (=berøringspunkt) på touch-probe-aksen som målingen skal utføres på. Inndataområde • 99999,9999 til 99999,9999
- Sikkerhetsavstand Q320 (inkremental): Tilleggsavstand mellom målepunktet og touch-probekulen. Q320 kommer i tillegg til MP6140. Inndataområde 0 til 99999,9999 alternativ PREDEF
- Sikker høyde Q260 (absolutt): Koordinat for probeaksen der touch-probe og emne (oppspenningsutstyr) ikke kan kollidere. Inndataområde -99999,9999 til 99999,9999 alternativ PREDEF
- Nominell lengde Q311: Nominell verdi for lengden som skal måles. Inndataområde 0 til 99999,9999
- Størstemål Q288: Største tillatte lengde. Inndataområde 0 til 99999,9999
- Minstemål Q289: Minste tillatte lengde. Inndataområde 0 til 99999,9999





HEIDENHAIN iTNC 530

- Måleprotokoll Q281: Angi om TNC skal opprette en måleprotokoll:
  - **0**: lkke opprette måleprotokoll

1: Opprett måleprotokoll: TNC lagrer som standard **protokollfilen TCHPR426.TXT** i katalogen som du også har lagret måleprogrammet i.

2:Programmet avbrytes, og måleprotokollen vises på TNC-skjermen. Fortsett programmet med NC-start

- PGM-stopp ved toleransefeil Q309: Angi om TNC skal avbryte programmet og vise en feilmelding hvis toleransegrensene overskrides:
  - 0: Ikke avbryt programmet, og ikke vis feilmeldinger1: Avbryte programmet og vise feilmelding
- Verktøy for overvåking Q330: Angi om TNC skal utføre en verktøyovervåking (se Verktøyovervåking på side 418). Inndataområde 0 til 32767,9, alternativt verktøynavn med maksimalt 16 tegn
   Overvåking ikke aktivert
  - >0: Verktøynummer i verktøytabellen TOOL.T

### **Beispiel: NC-blokker**

| 5 TCH PROBE 426 MAALE STEG UTVEN | NDIG |
|----------------------------------|------|
| Q263=+50 ;1. PUNKT 1. AKSE       |      |
| Q264=+25 ;1. PUNKT 2. AKSE       |      |
| Q265=+50 ;2. PUNKT 1. AKSE       |      |
| Q266=+85 ;2. PUNKT 2. AKSE       |      |
| Q272=2 ;MÅLEAKSE                 |      |
| Q261=-5 ;MÅLEHØYDE               |      |
| Q320=0 ;SIKKERHETSAVST.          |      |
| Q260=+20 ;SIKKER HØYDE           |      |
| Q311=45 ;NOMINELL LENGDE         |      |
| Q288=45 ;STØRSTEMÅL              |      |
| Q289=44.95;MINSTEMÅL             |      |
| Q281=1 ;MÅLEPROTOKOLL            |      |
| Q309=0 ;PGM.STOPP VED FE         | IL   |
| Q330=0 ;VERKTØY                  |      |

1

# 16.11 MÅLE KOORDINAT (syklus 427, DIN/ISO: G427)

## Syklusforløp

Touch-probe-syklus 427 beregner en koordinat på en valgfri akse og lagrer verdien i en systemparameter. Hvis du vil definere grenseverdier i syklusen, sammenligner TNC nominelle og aktuelle verdier og lagrer avvik i systemparameterne.

- 1 TNC posisjonerer touch-proben med hurtigmating (verdi fra MP6150) og med posisjoneringslogikk (se Kjøre touch-probesykluser på side 336) til probepunktet 1. TNC beveger samtidig touch-proben mot den valgte kjøreretningen for å legge inn en sikkerhetsavstand.
- 2 Deretter flytter TNC touch-proben til arbeidsplanet på det angitte probepunktet 1 og måler den faktiske verdien for den valgte aksen der
- **3** Til slutt flytter TNC touch-proben tilbake til sikker høyde og lagrer den beregnede koordinaten i følgende Q-parameter:

| Parameternummer | Beskrivelse    |
|-----------------|----------------|
| Q160            | Målt koordinat |

### Legg merke til følgende under programmeringen!



Før du definerer en syklus, må du programmere en verktøyoppkalling for å definere probeaksen.



### **Syklusparametere**



- 1 målepunkt 1. akse Q263 (absolutt): Koordinat for det første probepunktet på arbeidsplanets hovedakse. Inndataområde • 99999,9999 til 99999,9999
- 1 målepunkt 2. akse Q264 (absolutt): Koordinat for det første probepunktet på arbeidsplanets hjelpeakse. Inndataområde • 99999,9999 til 99999,9999
- Målehøyde i touch-probe-aksen Q261 (absolutt): Koordinat for kulesentrum (=berøringspunkt) på touch-probe-aksen som målingen skal utføres på. Inndataområde • 99999,9999 til 99999,9999
- Sikkerhetsavstand Q320 (inkremental): Tilleggsavstand mellom målepunktet og touch-probekulen. Q320 kommer i tillegg til MP6140. Inndataområde 0 til 99999,9999 alternativ PREDEF
- Måleakse (1..3: 1=hovedakse) Q272: Akse som målingen skal utføres på:
  - 1: Hovedakse = måleakse
  - 2: Hjelpeakse = måleakse
  - **3**: Probeakse = måleakse
- Bevegelsesretning 1 Q267:Touch-probens
  - bevegelsesretning mot emnet:
  - -1: Negativ kjøreretning
  - +1:Positiv kjøreretning
- Sikker høyde Q260 (absolutt): Koordinat for probeaksen der touch-probe og emne (oppspenningsutstyr) ikke kan kollidere. Inndataområde -99999,9999 til 99999,9999 alternativ PREDEF





- Måleprotokoll Q281: Angi om TNC skal opprette en måleprotokoll:
  - **0**: Ikke opprette måleprotokoll

 Opprett måleprotokoll: TNC lagrer som standard protokollfilen TCHPR427.TXT i katalogen som du også har lagret måleprogrammet i.
 Programmet avbrytes, og måleprotokollen vises på

- TNC-skjermen. Fortsett programmet med NC-start
- Størstemål Q288: Største tillatte måleverdi. Inndataområde • 99999,9999 til 99999,9999
- Minstemål Q289: Minste tillatte måleverdi. Inndataområde • 99999,9999 til 99999,9999
- PGM-stopp ved toleransefeil Q309: Angi om TNC skal avbryte programmet og vise en feilmelding hvis toleransegrensene overskrides:
  - 0: Ikke avbryt programmet, og ikke vis feilmeldinger1: Avbryte programmet og vise feilmelding
- Verktøy for overvåking Q330: Angi om TNC skal utføre en verktøyovervåking (se Verktøyovervåking på side 418). Inndataområde 0 til 32767,9, alternativt verktøynavn med maksimalt 16 tegn:
   O:Overvåking ikke aktivert
   Verktøynummer i verktøytabellen TOOL.T

**Beispiel: NC-blokker** 

| 5 TCH PROBE 427 | MAALE KOORDINATER  |
|-----------------|--------------------|
| Q263=+35 ;      | 1. PUNKT 1. AKSE   |
| Q264=+45;       | 1. PUNKT 2. AKSE   |
| Q261=+5 ;       | MÅLEHØYDE          |
| Q320=0 ;        | SIKKERHETSAVST.    |
| Q272=3 ;        | MÅLEAKSE           |
| Q267=-1 ;       | KJØRERETNING       |
| Q260=+20 ;      | SIKKER HØYDE       |
| Q281=1 ;        | MÅLEPROTOKOLL      |
| Q288=5.1 ;      | STØRSTEMÅL         |
| Q289=4.95 ;     | MINSTEMÅL          |
| Q309=0 ;        | PGM.STOPP VED FEIL |
| Q330=0 ;        | VERKTØY            |

# 16.12 MÅLE HULLSIRKEL (syklus 430, DIN/ISO: G430)

## Syklusforløp

Touch-probe-syklus 430 beregner sentrum og diameter for en hullsirkel ved å måle tre boringer. Hvis du definerer toleranseverdier for syklusen, sammenligner TNC nominelle og aktuelle verdier og legger inn avvik i systemparameterne.

- TNC posisjonerer touch-proben med hurtigmating (verdi fra MP6150) og med posisjoneringslogikk (se Kjøre touch-probesykluser på side 336) til probepunktet 1
- 2 Deretter beveger touch-proben seg til angitt målehøyde og registrerer midtpunktet i første boring via fire prober.
- **3** Så beveger touch-proben seg tilbake til sikker høyde og plasserer seg på det angitte midtpunktet i andre boring **2**
- **4** TNC flytter touch-proben til angitt målehøyde og registrerer midtpunktet i andre boring via fire prober
- 5 Så beveger touch-proben seg tilbake til sikker høyde og plasserer seg på det angitte midtpunktet i tredje boring 3
- 6 TNC flytter touch-proben til angitt målehøyde og registrerer midtpunktet i tredje boring via fire prober
- 7 Til slutt flytter TNC touch-proben tilbake til sikker høyde og lagrer faktiske verdier og avvik i følgende Q-parametere:

| Parameternummer | Beskrivelse                       |
|-----------------|-----------------------------------|
| Q151            | Aktuell verdi, sentrum hovedakse  |
| Q152            | Aktuell verdi, sentrum hjelpeakse |
| Q153            | Aktuell verdi, hullsirkeldiameter |
| Q161            | Avvik, sentrum hovedakse          |
| Q162            | Avvik, sentrum hjelpeakse         |
| Q163            | Avvik, hullsirkeldiameter         |

### Legg merke til følgende under programmeringen!



Før du definerer en syklus, må du programmere en verktøyoppkalling for å definere probeaksen.

Syklus 430 utfører bare bruddovervåking, ingen automatisk verktøykorrigering.



### Syklusparametere



- Sentrum 1. akse Q273 (absolutt): Sentrum i hullsirkel (nominell verdi) på arbeidsplanets hovedakse Inndataområde • 99999,9999 til 99999,9999
- Sentrum 2. akse Q274 (absolutt): Sentrum i hullsirkel (nominell verdi) på arbeidsplanets hjelpeakse Inndataområde • 99999,9999 til 99999,9999
- Nominell diameter Q262: Angi hullsirkelens diameter. Inndataområde 0 til 99999,9999
- Vinkel 1. Boring Q291 (absolutt): Polarkoordinatvinkel for første boringsmidtpunkt på arbeidsplanet Inndataområde -360,0000 til 360,0000
- Vinkel 2. Boring Q292 (absolutt): Polarkoordinatvinkel for andre boringsmidtpunkt på arbeidsplanet. Inndataområde -360,0000 til 360,0000
- Vinkel 3. Boring Q293 (absolutt): Polarkoordinatvinkel for tredje boringsmidtpunkt på arbeidsplanet. Inndataområde -360,0000 til 360,0000



- Målehøyde i touch-probe-aksen Q261 (absolutt): Koordinat for kulesentrum (=berøringspunkt) på touch-probe-aksen som målingen skal utføres på. Inndataområde • 99999,9999 til 99999,9999
- Sikker høyde Q260 (absolutt): Koordinat for probeaksen der touch-probe og emne (oppspenningsutstyr) ikke kan kollidere. Inndataområde -99999,9999 til 99999,9999 alternativ PREDEF
- Størstemå1 Q288: Største tillatte hullsirkeldiameter. Inndataområde 0 til 99999,9999
- Minstemål Q289: Minste tillatte hullsirkeldiameter. Inndataområde 0 til 99999,9999
- Toleranseverdi sentrum 1. akse Q279: Tillatt posisjonsavvik på hovedaksen til arbeidsplanet. Inndataområde 0 til 99999,9999
- Toleranseverdi sentrum 2. akse Q280: Tillatt posisjonsavvik på hjelpeaksen til arbeidsplanet. Inndataområde 0 til 99999,9999
- Måleprotokoll Q281: Angi om TNC skal opprette en måleprotokoll:
  - 0: Ikke opprette måleprotokoll
  - 1: Opprett måleprotokoll: TNC lagrer som standard protokollfilen TCHPR430.TXT i katalogen som du også har lagret måleprogrammet i.

**2**:Programmet avbrytes, og måleprotokollen vises på TNC-skjermen. Fortsett programmet med NC-start

- PGM-stopp ved toleransefeil Q309: Angi om TNC skal avbryte programmet og vise en feilmelding hvis toleransegrensene overskrides:
  - 0: Ikke avbryt programmet, og ikke vis feilmeldinger1: Avbryte programmet og vise feilmelding
- Verktøy for overvåking Q330: Angi om TNC skal utføre en verktøybruddovervåking (se Verktøyovervåking på side 418). Inndataområde 0 til 32767,9, alternativt verktøynavn med maksimalt 16 tegn.
  - 0:Overvåking ikke aktivert
  - >0: Verktøynummer i verktøytabellen TOOL.T



### **Beispiel: NC-blokker**

| 5 TCH PROBE 430 MAALE HULLSIRKEL |
|----------------------------------|
| Q273=+50 ;SENTRUM 1 AKSE         |
| Q274=+50 ;SENTRUM 2 AKSE         |
| Q262=80 ;NOMINELL DIAMETER       |
| Q291=+0 ;VINKEL 1. BORING        |
| Q292=+90 ;VINKEL 2. BORING       |
| Q293=+180 ;VINKEL 3. BORING      |
| Q261=-5 ;MÅLEHØYDE               |
| Q260=+10 ;SIKKER HØYDE           |
| Q288=80.1 ;STØRSTEMÅL            |
| Q289=79.9 ;MINSTEMÅL             |
| Q279=0.15 ;TOLERANSE 1. SENTRUM  |
| Q280=0.15 ;TOLERANSE 2. SENTRUM  |
| Q281=1 ;MÅLEPROTOKOLL            |
| Q309=0 ;PGM.STOPP VED FEIL       |
| Q330=0 ;VERKTØY                  |

## 16.13 MÅLE PLAN (syklus 431, DIN/ISO: G431)

## Syklusforløp

Touch-probe-syklus 431 beregner vinkelen til et plan ved å måle tre punkter og legger til verdiene i systemparametere.

- 1 TNC posisjonerer touch-proben med hurtigmating (verdi fra MP6150) og med posisjoneringslogikk (se Kjøre touch-probesykluser på side 336) til det programmerte probepunktet 1. Der måles første nivåpunkt. TNC forskyver samtidig touch-proben mot proberetningen for å skape en sikkerhetsavstand.
- 2 Deretter flyttes touch-proben tilbake til sikker høyde og så til probepunkt 2 på arbeidsplanet, der den faktiske verdien for det andre planpunktet måles
- **3** Deretter flyttes touch-proben tilbake til sikker høyde og så til probepunkt **3** på arbeidsplanet, der den faktiske verdien for det tredje planpunktet måles
- **4** Til slutt flytter TNC touch-proben tilbake til sikker høyde og lagrer de beregnede vinkelverdiene i følgende Q-parametere:

| Parameternummer | Beskrivelse                                                    |
|-----------------|----------------------------------------------------------------|
| Q158            | A-aksens projeksjonsvinkel                                     |
| Q159            | B-aksens projeksjonsvinkel                                     |
| Q170            | Romvinkel A                                                    |
| Q171            | Romvinkel B                                                    |
| Q172            | Romvinkel C                                                    |
| Q173 til Q175   | Måleverdier på touch-probe-aksen (første<br>til tredje måling) |





### Legg merke til følgende under programmeringen!



Før du definerer en syklus, må du programmere en verktøyoppkalling for å definere probeaksen.

Hvis TNC skal kunne beregne vinkelverdier, kan ikke de tre målepunktene ligge på en rett linje.

l parameterne Q170 til Q172 lagres romvinklene som brukes av funksjonen Drei arbeidsplan. De to første målepunktene definerer innrettingen av hovedaksen når arbeidsplanet dreies.

Det tredje målepunktet definerer retningen til verktøyaksen. Definer det tredje målepunktet langs den positive Y-aksen slik at verktøyaksen i det høyreroterende koordinatsystemet ligger riktig.

Når du utfører syklusen ved aktivt dreid arbeidsplan, refererer den målte romvinkelen til det dreide koordinatsystemet. I disse tilfellene må de beregnede romvinklene bearbeides videre med **PLANE RELATIV**.

# 16.13 MÅLE PLAN (syklus 431, DIN/ISO: G431)

## Syklusparametere



- 1. målepunkt 1. akse Q263 (absolutt): Koordinat for det første probepunktet på arbeidsplanets hovedakse. Inndataområde • 99999,9999 til 99999,9999
  - 1. målepunkt 2. akse Q264 (absolutt): Koordinat for det første probepunktet på arbeidsplanets hjelpeakse. Inndataområde • 99999,9999 til 99999,9999
- 1. målepunkt 3. akse Q294 (absolutt): Koordinat for det første probepunktet på touch-probe-aksen. Inndataområde • 99999,9999 til 99999,9999
- 2. målepunkt 1. akse Q265 (absolutt): Koordinat for det andre probepunktet på arbeidsplanets hovedakse. Inndataområde • 99999,9999 til 99999,9999
- 2. målepunkt 2. akse Q266 (absolutt): Koordinat for det andre probepunktet på arbeidsplanets hjelpeakse. Inndataområde • 99999,9999 til 99999,9999
- 2. målepunkt 3. akse Q295 (absolutt): Koordinat for det andre probepunktet på touch-probe-aksen. Inndataområde • 99999,9999 til 99999,9999
- ▶ 3. målepunkt 1. akse Q296 (absolutt): Koordinat for det tredje probepunktet på arbeidsplanets hovedakse. Inndataområde • 99999,9999 til 99999,9999
- ▶ 3. målepunkt 2. akse Q297 (absolutt): Koordinat for det tredje probepunktet på arbeidsplanets hjelpeakse. Inndataområde • 99999,9999 til 99999,9999
- ▶ 3. målepunkt 3. akse Q298 (absolutt): Koordinat for det tredje probepunktet på touch-probe-aksen. Inndataområde ● 99999,9999 til 99999,9999





- Sikkerhetsavstand Q320 (inkremental): Tilleggsavstand mellom målepunktet og touch-probekulen. Q320 kommer i tillegg til MP6140. Inndataområde 0 til 99999,9999 alternativ PREDEF
- Sikker høyde Q260 (absolutt): Koordinat for probeaksen der touch-probe og emne (oppspenningsutstyr) ikke kan kollidere. Inndataområde -99999,9999 til 99999,9999 alternativ PREDEF
- Måleprotokoll Q281: Angi om TNC skal opprette en måleprotokoll:
  - 0: Ikke opprette måleprotokoll

1: Opprett måleprotokoll: TNC lagrer som standard protokollfilen TCHPR431.TXT i katalogen som du også har lagret måleprogrammet i.

2:Programmet avbrytes, og måleprotokollen vises på TNC-skjermen. Fortsett programmet med NC-start

### **Beispiel: NC-blokker**

| 5 TCH PROBE 43 | 1 MAALE PLAN      |
|----------------|-------------------|
| Q263=+20       | ;1. PUNKT 1. AKSE |
| Q264=+20       | ;1. PUNKT 2. AKSE |
| Q294=+10       | ;1. PUNKT 3. AKSE |
| Q265=+90       | ;2. PUNKT 1. AKSE |
| Q266=+25       | ;2. PUNKT 2. AKSE |
| Q295=+15       | ;2. PUNKT 3. AKSE |
| Q296=+50       | ;3. PUNKT 1. AKSE |
| Q297=+80       | ;3. PUNKT 2. AKSE |
| Q298=+20       | ;3. PUNKT 3. AKSE |
| Q320=0         | ;SIKKERHETSAVST.  |
| Q260=+5        | ;SIKKER HØYDE     |
| Q281=1         | ;MÅLEPROTOKOLL    |
|                |                   |

1

## Eksempel: Måle og bearbeide kvadratisk tapp

Programprosedyre:

- Skrubbe kvadratisk tapp med toleranse 0,5
- Måle kvadratisk tapp
- Slettfrese kvadratisk tapp med hensyn til måleverdiene



| O BEGIN PGM BEAMS MM              |                                                        |
|-----------------------------------|--------------------------------------------------------|
| 1 TOOL CALL 69 Z                  | Verktøyoppkalling og klargjøring                       |
| 2 L Z+100 RO FMAX                 | Frikjør verktøy                                        |
| 3 FN 0: Q1 = +81                  | X-lommelengde (skrubbmål)                              |
| 4 FN 0: Q2 = +61                  | Y-lommelengde (skrubbmål)                              |
| 5 CALL LBL 1                      | Start underprogram for bearbeiding                     |
| 6 L Z+100 RO FMAX                 | Frikjør verktøy, verktøybytte                          |
| 7 TOOL CALL 99 Z                  | Start probe                                            |
| 8 TCH PROBE 424 MAALE FIRKANT UT. | Mål frest firkant                                      |
| Q273=+50 ;SENTRUM 1. AKSE         |                                                        |
| Q274=+50 ;SENTRUM 2. AKSE         |                                                        |
| Q282=80 ;1. SIDELENGDE            | Nominell X-lengde (endelig mål)                        |
| Q283=60 ;2. SIDELENGDE            | Nominell Y-lengde (endelig mål)                        |
| Q261=-5 ;MÅLEHØYDE                |                                                        |
| Q320=0 ;SIKKERHETSAVST.           |                                                        |
| Q260=+30 ;SIKKER HØYDE            |                                                        |
| Q301=0 ;KJØR TIL S. HØYDE         |                                                        |
| Q284=0 ;STØRSTEMÅL 1. SIDE        | Inndataverdier for toleransekontroll er ikke nødvendig |

Í

| Q285=0 ;MINSTEMÅL 1. SIDE       |                                                         |
|---------------------------------|---------------------------------------------------------|
| Q286=0 ;STØRSTEMÅL 2. SIDE      |                                                         |
| Q287=0 ;MINSTEMÅL 2. SIDE       |                                                         |
| Q279=0 ;TOLERANSE 1. SENTRUM    |                                                         |
| Q280=0 ;TOLERANSE 2. SENTRUM    |                                                         |
| Q281=0 ;MÅLEPROTOKOLL           | Ikke vis måleprotokoll                                  |
| Q309=0 ;PROG.STOPP VED FEIL     | Ikke vis feilmelding                                    |
| Q330=0 ;VERKTØYNUMMER           | Ingen verktøyovervåking                                 |
| 9 FN 2: Q1 = +Q1 - +Q164        | Beregn X-lengde ut fra målt avvik                       |
| 10 FN 2: Q2 = +Q2 - +Q165       | Beregn Y-lengde ut fra målt avvik                       |
| 11 L Z+100 RO FMAX              | Frikjør probe, verktøybytte                             |
| 12 TOOL CALL 1 Z S5000          | Verktøyvalg for slettfresing                            |
| 13 CALL LBL 1                   | Start underprogram for bearbeiding                      |
| 14 L Z+100 R0 FMAX M2           | Frikjør verktøy, avslutt program                        |
| 15 LBL 1                        | Underprogram med bearbeidingssyklus for kvadratisk tapp |
| 16 CYCL DEF 213 SLETTFRESE TAPP |                                                         |
| Q200=20 ;SIKKERHETSAVST.        |                                                         |
| Q201=-10 ;DYBDE                 |                                                         |
| Q206=150 ;MATING MATEDYBDE      |                                                         |
| Q2O2=5 ;MATEDYBDE               |                                                         |
| Q207=500 ;MATING FRESING        |                                                         |
| Q203=+10 ;KOOR. OVERFLATE       |                                                         |
| Q204=20 ;2. SIKKERHETSAVST.     |                                                         |
| Q216=+50 ;SENTRUM 1 AKSE        |                                                         |
| Q217=+50 ;SENTRUM 2 AKSE        |                                                         |
| Q218=Q1 ;1. SIDELENGDE          | Lengde i X-variabel for skrubbing og slettfresing       |
| Q219=Q2 ;2. SIDELENGDE          | Lengde i Y-variabel for skrubbing og slettfresing       |
| Q220=0 ;HJØRNERADIUS            |                                                         |
| Q221=O ;OPPMÅLING 1 AKSE        |                                                         |
| 17 CYCL CALL M3                 | Syklusvalg                                              |
| 18 LBL 0                        | Avslutt underprogram                                    |
| 19 END PGM BEAMS MM             |                                                         |

i

## Eksempel: Måle kvadratisk lomme, protokollføre måleresultater



| O BEGIN PGM BSMESS MM              |                         |
|------------------------------------|-------------------------|
| 1 TOOL CALL 1 Z                    | Verktøyoppkallingsprobe |
| 2 L Z+100 RO FMAX                  | Frikjør probe           |
| 3 TCH PROBE 423 MAALE FIRKANT INN. |                         |
| Q273=+50 ;SENTRUM 1 AKSE           |                         |
| Q274=+40 ;SENTRUM 2 AKSE           |                         |
| Q282=90 ;1. SIDELENGDE             | Nominell X-lengde       |
| Q283=70 ;2. SIDELENGDE             | Nominell Y-lengde       |
| Q261=-5 ;MÅLEHØYDE                 |                         |
| Q320=0 ;SIKKERHETSAVST.            |                         |
| Q260=+20 ;SIKKER HØYDE             |                         |
| Q301=0 ;KJØRING PÅ S. HØYDE        |                         |



| Q284=90.15;STØRSTEMÅL 1. SIDE   | Største X-mål                                         |
|---------------------------------|-------------------------------------------------------|
| Q285=89.95;MINSTEMÅL 1. SIDE    | Minste X-mål                                          |
| Q286=70.1 ;STØRSTEMÅL 2. SIDE   | Største Y-mål                                         |
| Q287=69.9 ;MINSTEMÅL 2. SIDE    | Minste Y-mål                                          |
| Q279=0.15 ;TOLERANSE 1. SENTRUM | Tillatt X-posisjonsavvik                              |
| Q280=0.1 ;TOLERANSE 2 SENTRUM   | Tillatt Y-posisjonsavvik                              |
| Q281=1 ;MÅLEPROTOKOLL           | Vise måleprotokollen i en fil                         |
| Q309=0 ;PGM.STOPP VED FEIL      | Ikke vis feilmelding når toleransegrenser overskrides |
| Q330=0 ;VERKTØYNUMMER           | Ingen verktøyovervåking                               |
| 4 L Z+100 R0 FMAX M2            | Frikjør verktøy, avslutt program                      |
| 5 END PGM BSMESS MM             |                                                       |

i





Touch-probe-sykluser: spesialfunksjoner

# 17.1 Grunnleggende

# Oversikt

TNC sørger for syv tilgjengelige sykluser for følgende spesialprogrammer:

| Syklus                                                                      | Funksjonstast | Side     |
|-----------------------------------------------------------------------------|---------------|----------|
| 2 TS KALIBRERE: Radiuskalibrering for tilkoblet probe                       | 2 CAL.        | Side 463 |
| 9 TS KAL. LENGDE: Lengdekalibrering av touch-probe som kobles inn           | S CAL.L       | Side 464 |
| 3 MÅLE: Målesyklus for å opprette<br>produsentsykluser                      | 3 PA          | Side 465 |
| 4 MÅLE 3D Målesyklus for 3D-prober<br>for oppretting av produsentsykluser   | 4             | Side 467 |
| 440 MÅLE AKSEFORSKYVNING                                                    | 440 III III   | Side 469 |
| 441 HURTIGSØK                                                               | 441<br>••••   | Side 472 |
| 460 TS KALIBRERE: Radius- og<br>lengdekalibrering på en<br>kalibreringskule | 450           | Side 474 |

i

# 17.2 TS KALIBRERE (syklus 2)

## Syklusforløp

Touch-probe-syklus 2 kalibrerer automatisk en koblende touch-probe ved hjelp av en kalibreringsring eller kalibreringstapp.

- 1 Touch-proben flyttes med hurtigmating (verdi fra MP6150) til sikker høyde (bare hvis den aktuelle posisjonen ligger under sikker høyde)
- 2 Deretter flytter TNC touch-proben i arbeidsplanet til sentrum av kalibreringen (innvendig kalibrering) eller i nærheten av første probepunkt (utvendig kalibrering)
- **3** Så kjører touch-proben til måledybden (på grunnlag av maskinparameter 618x.2 og 6185.x) og prober kalibreringspunktene X+, Y+, X- og Y- etter hverandre
- **4** Til slutt flytter TNC touch-proben til sikker høyde og lagrer probekulens effektive radius i kalibreringsdataene

### Legg merke til følgende under programmeringen!



Før kalibreringen må kalibreringsemnets sentrum defineres i forhold til maskinens arbeidsområde ved hjelp av maskinparameterne 6180.0 til 6180.2 (REF-koordinater).

Hvis du arbeider med flere kjøreområder, kan du lagre et separat koordinatsett for sentrum av kalibreringsemnet for hvert område (MP6181.1 til 6181.2 og MP6182.1 til 6182.2.).

### Syklusparametere



- Sikker høyde (absolutt): Koordinat for probeaksen der touch-probe og emne (oppspenningsutstyr) ikke kan kollidere. Inndataområde -99999,9999 til 99999,9999
- **Radiuskalibrering**: Kalibreringsemnets radius. Inndataområde 0 til 99999,9999
- Innv. kalibr.=0/utv. kalibr.=1: Angi om TNC skal utføre innvendig eller utvendig kalibrering:
  - 0: Innvendig kalibrering
  - 1: Utvendig kalibrering

### **Eksempel: NC-blokker**

- 5 TCH PROBE 2.0 TS KALIBRERE
- 6 TCH PROBE
- 2.1 HØYDE: +50 R +25.003 MÅLETYPE: 0



# 17.3 TS KALIBRERE LENGDE (syklus 9)

## Syklusforløp

Touch-probe-syklus 9 kalibrerer automatisk lengden for en koblende touch-probe frem til et angitt punkt.

- 1 Forhåndsposisjoner touch-proben slik at det kan kjøres frem til koordinaten på probeaksen som er definert i syklusen, uten fare for kollisjon
- 2 TNC flytter touch-proben mot den negative verktøyaksen til det utløses et koblingssignal
- **3** Til slutt flytter TNC touch-proben tilbake til startpunktet for probeprosessen og lagrer den effektive touch-probelengden i kalibreringsdataene

### Syklusparametere

| 9  | 0.00 |
|----|------|
| -  | 0    |
|    |      |
| ×. |      |

- Koordinat nullpunkt (absolutt): Nøyaktig koordinat for punktet som skal probes. Inndataområde -99999,9999 til 99999,9999
- Referansesystem? (0=FAKT./1=REF): Fastslå hvilket koordinatsystem det angitte nullpunktet skal henvise til:

0: Det angitte nullpunktet henviser til det aktive emnekoordinatsystemet (AKT-system) +
1: Det angitte nullpunktet henviser til det aktive maskinkoordinatsystemet (REF-system)

### **Eksempel: NC-blokker**

- 5 L X-235 Y+356 R0 FMAX
- 6 TCH PROBE 9.0 TS KAL. LENGDE
- 7 TCH PROBE
- 9.1 NULLPUNKT +50 REFERANSESYSTEM 0

# 17.4 MÅLE (syklus 3)

## Syklusforløp

Touch-probe-syklus 3 beregner en valgfri posisjon på emnet i en valgfri proberetning. I motsetning til andre målesykluser kan du i syklus 3 angi måleområdet **AVST** og målematingen **F** direkte. Etter at måleverdien er registrert kan tilbaketrekkingen også utføres via en definerbar verdi **MB**.

- 1 Touch-proben flyttes fra den aktuelle posisjonen til den fastsatte proberetningen i henhold til den angitte matingen. Polarvinkelen i syklusen definerer proberetningen
- 2 Etter at TNC har registrert posisjonen, stopper touch-proben. TNC lagrer koordinatene for probekulens midtpunkt (X, Y, Z) i tre påfølgende Q-parametere. TNC utfører ikke lengde- og radiuskorrigering. Nummeret til første resultatparameter må angis i syklusen
- **3** Til slutt flytter TNC touch-proben tilbake i motsatt retning av proberetningen på grunnlag av verdien som er angitt for parameteren MB.

### Legg merke til følgende under programmeringen!



Maskinprodusenten eller en programvareprodusent avgjør hvordan touch-probe-syklus 3 fungerer. Syklus 3 skal brukes innenfor spesielle touch-probe-sykluser.

| / |
|---|
|   |

Maskinparameterne 6130 (maks. avstand til probepunktet) og 6120 (probemating) som brukes i andre målesykluser, fungerer ikke i touch-probe-syklus 3.

Vær oppmerksom på at TNC nesten alltid beskriver 4 parametere som følger etter hverandre.

Hvis TNC ikke kan fastsette et gyldig probepunkt, fortsetter programmet uten at det vises feilmelding. I dette tilfellet refererer TNC til verdi 1 for 4. resultatparameter, slik at en tilsvarende feilbehandling kan utføres.

TNC fører touch-proben tilbake via returbevegelsesbanen MB, men ikke over startpunktet til målingen. Slik kan kollisjon unngås under returen.

Med funksjonen FN17: SYSWRITE ID 990 NR 6 kan du definere om syklusen skal påvirke probeinngang X12 eller X13.

### Syklusparametere

- 3 PA
- Parameternr. for resultat: Angi Qparameternummeret som TNC skal tilordne verdien for første koordinat (X). Verdiene Y og Z finnes i følgende Q-parametere. Inndataområde 0 til 1999
  - Probeakse: Tast inn aksen i proberetningen, og bekreft med tasten ENT. Inndataområde X, Y eller Z
  - Probevinke1: Angi vinkelen i forhold til den definerte probeaksen som touch-proben skal bevege seg etter, og bekreft med tasten ENT. Inndataområde -180,0000 til 180,0000
  - Maksimal måleavstand: Angi hvor langt fra startpunktet touch-proben skal bevege seg, og bekreft med ENT. Inndataområde -99999,9999 til 99999,9999
  - Måle matingen: Angi matingen i mm/min. Inndataområde 0 til 3000,000
  - Maksimal returbevegelsesbane: Kjøreavstand mot proberetningen etter at følerspissen har svingt ut. TNC fører probesystemet maksimalt tilbake til startpunktet, slik at kollisjon unngås. Inndataområde 0 til 99999,9999
  - Referansesystem? (0=FAKTISK/1=REF): Angi om proberetningen og måleresultatet skal forholde seg til det gjeldende koordinatsystemet (FAKTISK, kan med andre ord være forskjøvet eller vridd) eller maskinens koordinatsystem (REF):

0: Prob i det gjeldende systemet, og lagre måleresultatet i FAKTISK-systemet
1: Prob i maskinens REF-system, og lagre måleresultatet i REF-systemet

- Feilmodus (0=AV/1=PÅ): Angi om TNC skal vise feilmelding eller ikke ved begynnelsen av syklusen når følerspissen har svingt ut. Hvis modus 1 er valgt, lagrer TNC verdien 2.0 i den 4. resultatparameteren og fortsetter syklusen:
   0: Vis feilmelding
  - 1: Ikke vis feilmelding

### **Eksempel: NC-blokker**

- 4 TCH PROBE 3.0 MÅLE 5 TCH PROBE 3.1 Q1
- 6 TCH PROBE 3.2 VINKEL: +15
- 7 TCH PROBE 3.3 AVST +10 F100 MB1 REFERANSESYSTEM:0
- 8 TCH PROBE 3.4 ERRORMODE1

# 17.5 MÅLE 3D (syklus 4, FCL 3-funksjon)

### Syklusforløp



Syklus 4 er en hjelpesyklus som bare kan settes inn sammen med ekstern programvare. TNC har ingen syklus som du kan kalibrere proben med.

Touch-probe-syklus 4 beregner en valgfri posisjon på emnet i en proberetning som defineres ved hjelp av en vektor. I motsetning til andre målesykluser kan du angi måleområde og mating direkte i syklus 4. Tilbaketrekkingen etter at måleverdien er registrert utføres også ut fra en definerbar verdi.

- 1 Touch-proben flyttes fra den aktuelle posisjonen til den fastsatte proberetningen i henhold til den angitte matingen. Proberetningen fastsettes i syklusen ved hjelp av en vektor (deltaverdier i X, Y og Z)
- 2 Etter at TNC har registrert posisjonen, stopper touch-proben. TNC lagrer koordinatene for probekulens midtpunkt X, Y, Z (uten beregning av kalibreringsdataene) i tre påfølgende Q-parametere. Første parameternummer må defineres i syklusen
- **3** Til slutt flytter TNC touch-proben tilbake i motsatt retning av proberetningen på grunnlag av verdien som er definert for parameteren MB.

### Legg merke til følgende under programmeringen!

TNC fører touch-proben tilbake via returbevegelsesbanen MB, men ikke over startpunktet til målingen. Slik kan kollisjon unngås under returen.

Ved forposisjonering bør du sørge for at TNC kjører probekulens midtpunkt ukorrigert til definert posisjon.

Vær oppmerksom på at TNC nesten alltid beskriver 4 parametere som følger etter hverandre. Hvis TNC ikke kan beregne et gyldig probepunkt, får 4. resultatparameter verdien -1.

TNC lagrer måleverdiene uten å beregne touch-probens kalibreringsdata.

Med funksjonen **FN17: SYSWRITE ID 990 NR 6** kan du definere om syklusen skal påvirke probeinngang X12 eller X13.



### **Syklusparametere**



- Parameternr. for resultat: Angi Qparameternummeret som TNC skal tilordne verdien for første koordinat (X). Inndataområde 0 til 1999
  - Relativ måleavstand i X: X-andel av retningsvektoren som touch-proben skal kjøres mot. Inndataområde -99999,9999 til 99999,9999
  - Relativ måleavstand i Y: Y-andel av retningsvektoren som touch-proben skal kjøres mot. Inndataområde -99999,9999 til 99999,9999
  - Relativ måleavstand i Z: Z-andel av retningsvektoren som touch-proben skal kjøres mot. Inndataområde -99999,9999 til 99999,9999
  - Maksimal måleavstand: Angi hvor langt touch-proben skal bevege seg fra startpunktet og langs retningsvektoren. Inndataområde -99999,9999 til 99999,9999
  - Måle matingen: Angi matingen i mm/min. Inndataområde 0 til 3000,000
  - Maksimal returbevegelsesbane: Kjøreavstand mot proberetningen etter at følerspissen har svingt ut. Inndataområde 0 til 99999,9999
  - Referansesystem? (0=FAKTISK/1=REF): Angi om måleresultatet skal lagres i det aktuelle koordinatsystemet (FAKTISK, det kan altså være forskjøvet eller vridd) eller i maskinkoordinatsystemet (REF):
    - 0: Lagre måleresultatet i FAKTISK-systemet
    - 1: Lagre måleresultatet i REF-systemet

### **Eksempel: NC-blokker**

- 5 TCH PROBE 4.0 MÅLE 3D
- 6 TCH PROBE 4.1 Q1
- 7 TCH PROBE 4.2 IX-0.5 IY-1 IZ-1
- 8 TCH PROBE
- 4.3 AVST +45 F100 MB50 REFERANSESYSTEM:0
# 17.6 MÅLE AKSEFORSKYVNING (touchprobe-syklus 440, DIN/ISO: G440)

## Syklusforløp

Med touch-probe-syklus 440 kan du beregne maskinens akseforskyvning. Du må bruke et sylinderformet kalibreringsverktøy med nøyaktige mål sammen med TT 130 for å gjøre dette.

- 1 TNC flytter kalibreringsverktøyet nær TT ved hjelp av hurtigmating (verdi fra MP6550) og posisjoneringslogikk (se kapittel 1.2)
- 2 TNC utfører først en måling på probeaksen. Samtidig forskyves kalibreringsverktøyet med den verdien som er definert i kolonnen TT:R-OFFS (standard = verktøyradius) i verktøytabellen TOOL.T. Målingen på probeaksen utføres alltid
- 3 Deretter utfører TNC målingen i arbeidsplanet. Med parameteren Q364 angir du hvilken akse og hvilken retning arbeidsplanet skal måles på
- 4 Hvis du utfører en kalibrering, lagrer TNC kalibreringsdataene internt. Når du utfører en måling, sammenligner TNC måleverdiene med kalibreringsdataene og legger inn avvik i følgende Q-parametere:

| Parameternummer | Beskrivelse                   |
|-----------------|-------------------------------|
| Q185            | Avvik fra X-kalibreringsverdi |
| Q186            | Avvik fra Y-kalibreringsverdi |
| Q187            | Avvik fra Z-kalibreringsverdi |

Du kan bruke avviket direkte for å kompensere ved hjelp av en inkremental nullpunktsforskyvning (syklus 7).

5 Til slutt flyttes kalibreringsverktøyet tilbake til sikker høyde



## Legg merke til følgende under programmeringen!

Før du bruker syklus 440 første gang, må TT kalibreres med TT-syklus 30.

Verktøydata for kalibreringsverktøyet må lagres i verktøytabellen TOOL.T.

Før syklusen startes, må du aktivere kalibreringsverktøyet via TOOL CALL.

Bord-touch-probe TT må kobles til logikkenheten via touch-probe-inngang X13 og aktiveres (maskinparameter 65xx).

Før du utfører en måling, må du kalibrere minst én gang for å unngå at TNC viser en feilmelding. Hvis du bruker flere arbeidsområder, må det utføres kalibrering for hvert arbeidsområde.

Proberetningen(e) ved kalibrering og måling må samsvare for å unngå at TNC beregner ugyldige verdier.

Hver gang syklus 440 kjøres, tilbakestiller TNC resultatparameterne Q185 til Q187.

Hvis du vil definere en grenseverdi for akseforskyvning i maskinaksene, må du angi de ønskede grenseverdiene i verktøytabellen TOOL.T, henholdsvis i kolonnene LTOL (for spindelaksen) og RTOL (for arbeidsplanet). Hvis grenseverdiene overskrides, viser TNC en feilmelding etter en kontrollmåling.

Nå syklusen avsluttes, gjenoppretter TNC den spindeltilstanden som var aktivert før syklusen (M3/M4).

## Syklusparametere

440 ⊑ ⊑ ↓-: ▲

 Måletype: 0=kalibr., 1=måle? Q363: Angi om du vil utføre en kalibrering eller kontrollmåling:
0: Kalibrere

1: Måle

Proberetninger Q364: Definer proberetningen(e) i arbeidsplanet:

- 0: Bare måle i den positive hovedakseretningen
- 1: Bare måle i den positive hjelpeakseretningen
- 2: Bare måle i den negative hovedakseretningen
- 3: Bare måle i den negative hjelpeakseretningen
- 4: Måle i den positive hovedakse- og
- hjelpeakseretningen

**5**: Måle i den positive hovedakseretningen og den negative hjelpeakseretningen

**6**: Måle i den negative hovedakseretningen og den positive hjelpeakseretningen

7:Måle i den negative hovedakseretningen og den negative hjelpeakseretningen

#### Sikkerhetsavstand Q320 (inkremental):

Tilleggsavstand mellom målepunktet og touch-probeskiva. Q320 kommer i tillegg til MP6540. Inndataområde 0 til 99999,9999 alternativ **PREDEF** 

Sikker høydeQ260 (absolutt): Koordinat på probeaksen der touch-probe og emne (oppspenningsutstyr) ikke kan kollidere (i forhold til det aktive nullpunktet). Inndataområde -99999,9999 til 99999,9999 alternativ PREDEF

#### **Eksempel: NC-blokker**

| 5 | TCH PROBE 4 | 440 MÅLE AKSEFORSKYVNING |  |
|---|-------------|--------------------------|--|
|   | Q363=1      | ;MÅLETYPE                |  |
|   | Q364=0      | ;PROBERETNINGER          |  |
|   | Q320=2      | ;SIKKERHETSAVST.         |  |
|   | Q260=+50    | ;SIKKER HØYDE            |  |

# 17.7 HURTIGPROBING (syklus 441, DIN/ISO: G441, FCL 2-funksjon)

## Syklusforløp

Med touch-probe-syklus 441 kan du definere ulike globale touchprobe-parametere (f.eks. posisjoneringsmating) for alle etterfølgende touch-probe-sykluser. Denne funksjonen gjør det enkelt å optimere programmene for å gi kortere samlet bearbeidingstid.

#### Legg merke til følgende under programmeringen:



#### Merk deg følgende før du programmerer

Syklus 441 utfører ingen maskinbevegelser. Den definerer bare ulike probeparametere.

**END PGM, M02, M30** tilbakestiller de globale innstillingene i syklus 441.

Den automatiske vinkelføringen (syklusparameter **Q399**) kan bare aktiveres hvis maskinparameter 6165=1 er fastsatt. Endring av maskinparameter 6165 forutsetter at touch-proben kalibreres på nytt.

1

## Syklusparametere



- Posisjoneringsmating Q396: Angi hvilken mating som skal brukes for touch-probens posisjoneringsbevegelser. Inndataområde 0 til 99999,9999
- Posisjoneringsmating=FMAX (0/1) Q397: Angi om touch-probens posisjoneringsbevegelser skal utføres med FMAX (maskinhurtiggang):
  0: Kjøre med mating fra 0396
  - 1: Kjøre med FMAX

Hvis maskinen har adskilte potensiometere for hurtiggang og mating, kan du også ved Q397 = 1 bare regulere matingen med potensiometeret for matebevegelser.

 Vinkelføring Q399: Angi om TNC skal orientere touch-proben før hver probe:
0: Ikke orientere

1: Utføre en spindelorientering før hver probeprosess for å øke nøyaktigheten

Automatisk avbrudd Q400: Fastsett om TNC skal avbryte programkjøringen og vise måleresultatene på skjermen etter en målesyklus for automatisk måling av emnet:

**0**: Ikke avbryte programkjøringen selv om visning av måleresultater på skjermen er valgt for den aktuelle probesyklusen

1: Avbryte programmet og vise måleresultatene på skjermen. Du kan fortsette programkjøringen med tasten NC-start

#### **Eksempel: NC-blokker**

| 5 | TCH PROBE 44 | 1 HURTIGPROBING       |
|---|--------------|-----------------------|
|   | Q396=3000    | ;POSISJONERINGSMATING |
|   | Q397=0       | ;UTVALG MATING        |
|   | Q399=1       | ;VINKELFØRING         |
|   | Q400=1       | ; AVBRUDD             |



## Syklusforløp

En koblende 3D-touch-probe kan kalibreres automatisk til en nøyaktig kalibreringskule ved hjelp av syklus 460. Det er mulig å utføre bare en radiuskalibrering eller en radius- og lengdekalibrering.

- 1 Spenn fast kalibreringskulen, og unngå kollisjoner
- 2 Posisjoner touch-proben i probeaksen via kalibreringskulen og på arbeidsplanet, ca. midt på kulen
- **3** Den første bevegelsen i syklusen utføres i den negative retningen av probeaksen
- 4 Syklusen fastsetter også nøyaktig kulesentrum i probeaksen

## Legg merke til følgende under programmeringen:



#### Merk deg følgende før du programmerer

Forposisjoner touch-proben i programmet, slik at den står over sentrum av kulen.



#### Syklusparametere



- Nøyaktig kalibreringskuleradius Q407: Angi nøyaktig radius for kalibreringskulen som brukes. Inndataområde 0,0001 til 99,9999
- Sikkerhetsavstand Q320 (inkremental): Tilleggsavstand mellom målepunktet og touch-probekulen. Q320 kommer i tillegg til MP6140. Inndataområde 0 til 99999,9999 alternativ PREDEF
- Kjør til sikker høyde Q301: Angi hvordan touchproben skal bevege seg mellom målepunktene:
  0: Bevegelse mellom målepunkter i målehøyde
  1: Bevegelse mellom målepunkter i sikker høyde alternativ PREDEF
- Antall probinger på planet (4/3) Q423: Angi om TNC skal måle kalibreringskulen på planet med 4 eller 3 prober. 3 probinger gir økt hastighet:
  4: Bruke 4 målepunkter (standardinnstilling)
- 3: Bruke 3 målepunkter
- Referansevinkel Q380 (absolutt): Referansevinkel (grunnrotering) for registrering av målepunktene i det gyldige koordinatsystemet for emnet. Hvis det defineres en referansevinkel, kan måleområdet til en akse forstørres betraktelig. Inndataområde 0 til 360,0000
- ► Kalibrere lengde (0/1) Q433: Fastsett om TNC skal kalibrere touch-probe-lengden etter radiuskalibreringen:
  - 0: Ikke kalibrer touch-probe-lengde
  - 1: Kalibrer touch-probe-lengde
- Nullpunkt for lengde Q434 (absolutt): Koordinat for sentrum av kalibreringskulen. Må bare defineres hvis lengdekalibrering skal utføres. Inndataområde -99999,9999 til 99999,9999

#### **Eksempel: NC-blokker**

| 5 TCH PROBE 46 | O TS KALIBRERE     |
|----------------|--------------------|
| Q407=12,5      | ;KULERADIUS        |
| Q320=0         | ;SIKKERHETSAVST.   |
| Q301=1         | ;KJØR TIL S. HØYDE |
| Q423=4         | ;ANTALL PROBINGER  |
| Q380=+0        | ;REFERANSEVINKEL   |
| Q433=0         | ;KALIBRERE LENGDE  |
| Q434=-2,5      | ;NULLPUNKT         |

17.8 TS KALIBRERE (syklus 460, DIN/ISO: G460)

i





Touch-probe-sykluser: måle kinematikk automatisk

## 18.1 Kinematikkoppmåling med touch-prober TS (alternativet KinematicsOpt)

## Grunnleggende

Kravene til nøyaktighet blir stadig høyere, også for bearbeiding med 5 akser. Komplekse deler må kunne produseres nøyaktig, noe som må kunne gjengis over lengre perioder.

Årsaker til unøyaktighet ved behandling av flere akser er bl.a. avvik mellom den kinematiske modellen, som er opprettet i styringen (se bildet til høyre 1), og de faktiske kinematiske forholdene ved maskinen (se bildet til høyre 2). Ved posisjonering av roteringsaksene fører avvikene til feil på emnet (se bildet til høyre 3). Det må også være mulig å kunne tilpasse modellen mest mulig til virkeligheten.

Den nye TNC-funksjonen **KinematicsOpt** er et viktig hjelpemiddel for å oppfylle dette komplekse kravet: En 3D touch-probe-syklus måler roteringsaksene på maskinen helautomatisk, uavhengig av om roteringsaksene er utført mekanisk som bord eller hode. En kalibreringskule monteres på et vilkårlig sted på maskinbordet og måles i en finhetsgrad som du kan definere. I syklusdefinisjonen definerer du området som skal måles, separat for hver roteringsakse.

TNC beregner statisk dreienøyaktighet på grunnlag av de målte verdiene. Programvaren minimerer dermed posisjoneringsfeilene som har oppstått under dreiebevegelsene, og lagrer maskingeometrien automatisk i hver maskinkonstant i kinematikktabellen på slutten av målingen.



## Oversikt

TNC oppretter sykluser som gjør det mulig å lagre, gjenopprette, kontrollere og optimere maskinkinematikken automatisk:

| Syklus                                                                                                       | Funksjonstast | Side     |
|--------------------------------------------------------------------------------------------------------------|---------------|----------|
| 450 LAGRE KINEMATIKK: Automatisk lagring og gjenoppretting av kinematikk                                     | 458           | Side 480 |
| 451 MÅLE KINEMATIKK: Automatisk<br>kontroll eller optimering av<br>maskinkinematikken                        | 451           | Side 482 |
| 452 KOMPENSASJON AV<br>FORHÅNDSINNSTILLING: Automatisk<br>kontroll eller optimering av<br>maskinkinematikken | 452<br>⊕ A    | Side 497 |



# 18.2 Forutsetninger

Følgende forutsetninger må være oppfylt for å kunne bruke KinematicsOpt:

- Programvarealternativene 48 (KinematicsOpt), 8 (programvarealternativ 1) og FCL3 må være aktivert
- Programvarealternativ 52 (KinematicsComp) trengs hvis det skal kompenseres for vinkelposisjoner
- 3D-touch-proben som brukes ved målingen, må være kalibrert
- Syklusene kan bare utføres med verktøyakse Z
- En målekule med helt nøyaktig radius og tilstrekkelig stivhet må være festet på et vilkårlig sted på maskinbordet. Vi anbefaler å bruke kalibreringskulene KKH 250 (bestillingsnummer 655 475-01) eller KKH 100 (bestillingsnummer 655 475-02) som har tilstrekkelig stivhet, og som er spesialkonstruert for maskinkalibrering. Ta om ønskelig kontakt med HEIDENHAIN for mer informasjon.
- Kinematikkbeskrivelsen for maskinen må være fullstendig og korrekt definert. Transformasjonsmålene må være registrert med en nøyaktighet på ca. 1 mm
- Maskinen må være målt helt geometrisk (utføres av maskinprodusenten ved igangsetting)
- Toleransegrensen må være fastsatt i maskinparameteren MP6600, slik at TNC kan vise en merknad hvis endringene i kinematikkdataene ligger over denne grenseverdien. (se KinematicsOpt, optimere toleransegrense for modus: MP6600 på side 335)
- I maskinparameteren MP6601 må maks. tillatt avvik for kalibreringskuleradiusen som ble automatisk målt i syklusene, være definert av den angitte syklusparameteren. (se KinematicsOpt, tillatt avvik kalibreringskuleradius: MP6601 på side 335)
- I maskinparameteren MP 6602 må M-funksjonsnummeret som skal brukes til roteringsakseposisjoneringer, være angitt, eller -1, hvis NC skal utføre posisjoneringen. Maskinprodusenten må ha definert en M-funksjon som er spesielt definert for denne bruken.

#### Legg merke til følgende under programmeringen!



KinematicsOpt-syklusene bruker de globale strengparameterne **QS0** til **QS99**. Sørg for at disse parameterne kan endres etter at disse syklusene er utført.

Hvis MP 6602 er ulik -1, må roteringsaksene posisjoneres på grad 0 (FAKTISK system) før én av KinematicsOptsyklusene (unntatt 450) startes.

## 18.3 LAGRE KINEMATIKK (syklus 450, DIN/ISO: G450, alternativ)

## Syklusforløp

Med touch-probe-syklus 450 kan du lagre den aktive maskinkinematikken, gjenopprette en tidligere lagret maskinkinematikk eller vise den gjeldende minnestatusen på skjermen og i en protokoll. Det finnes 10 minneplasser (nummer 0 til 9).

## Legg merke til følgende under programmeringen!

Før du utfører kinematikkoptimering, bør den aktive kinematikken i prinsippet lagres. Fordel:

Hvis resultatet ikke er i samsvar med forventningene, eller hvis det oppstår feil under optimering (f.eks. strømbrudd), kan de gamle dataene gjenopprettes.

Modusen Lagre: TNC lagrer i prinsippet alltid nøkkeltallet som sist ble angitt under MOD (vilkårlig nøkkeltall som kan defineres). Denne minneplassen kan bare overskrives på nytt hvis dette nøkkeltallet angis. Hvis du har lagret en kinematikk uten nøkkeltall, overskrives denne minneplassen automatisk av TNC ved neste sikkerhetskopiering!

Modusen **Opprette**: TNC kan bare tilbakeføre lagrede data i en identisk kinematikkbeskrivelse.

Modusen **Opprette**: Vær oppmerksom på at endringer i kinematikken fører til at også forhåndsinnstillingen endres. Definer forhåndsinnstillingen på nytt.



#### Syklusparametere



▶ Modus (0/1/2) Q410: Fastsett om du vil lagre eller gjenopprette en kinematikk:

- **0**: Lagre aktiv kinematikk
- 1: Gjenopprett kinematikk som er lagret tidligere
- **2**: Vis gjeldende minnestatus
- Minneplass (0–9) Q409: Nummeret på minneplassen der hele kinematikken skal lagres, f.eks. nummeret på minneplassen som den lagrede kinematikken skal gjenopprettes fra. Inndataområde 0 til 9 har ingen funksjon når modus 2 er valgt.

## Protokollfunksjon

Når syklus 450 er kjørt, oppretter TNC en protokoll (**TCHPR450.TXT**) som inneholder følgende data:

- Dato og klokkeslett for oppretting av protokollen
- Banenavn for NC-programmet som syklusen ble kjørt fra
- Utført modus (0 = lagre / 1 = opprett / 2 = minnestatus)
- Nummer på minneplass (0 til 9)
- Radnummeret til kinematikken fra kinematikktabellen
- Nøkkeltall, hvis det ble angitt et nøkkeltall rett før syklus 450 ble utført

De øvrige dataene i protokollen avhenger av valgt modus:

Modus 0:

Protokollering av alle akse- og transformasjonsoppføringer i kinematikkrekken som TNC har lagret

Modus 1:

Protokollering av alle transformasjonsoppføringer før og etter gjenopprettingen

Modus 2:

Opplisting av gjeldende minnestatus på skjermen og i tekstprotokollen med minneplassnummer, nøkkeltall, kinematikknummer og lagringsdato

#### **Beispiel: NC-blokker**

| 5 | TCH | PROBE | 450 | LAGRE  | KINEMATIKK |  |
|---|-----|-------|-----|--------|------------|--|
|   | Q   | 410=0 | ;   | MODUS  |            |  |
|   | Q   | 409=1 | ;   | MINNEP | LASS       |  |

# 18.4 MÅLE KINEMATIKK (syklus 451, DIN/ISO: G451, alternativ)

## Syklusforløp

Du kan kontrollere kinematikken til maskinen med touch-probe-syklus 451 og optimere den ved behov. Med 3D-touch-proben TS måler du en HEIDENHAIN kalibreringskule som er festet på maskinbordet.



HEIDENHAIN anbefaler å bruke kalibreringskulene **KKH 250** (bestillingsnummer 655 475-01) eller **KKH 100** (bestillingsnummer 655 475-02) som har tilstrekkelig stivhet, og som er spesialkonstruert for maskinkalibrering. Ta om ønskelig kontakt med HEIDENHAIN for mer informasjon.

TNC fastsetter statisk dreienøyaktighet. Programvaren minimerer dermed posisjoneringsfeilene som har oppstått under dreiebevegelsene, og lagrer maskingeometrien automatisk i hver maskinkonstant i kinematikkbeskrivelsen på slutten av målingen.

- 1 Spenn fast kalibreringskulen, og unngå kollisjoner
- 2 Sett nullpunktet i midten av kulen i manuell driftsmodus eller, hvis Q431=1 eller Q431=3 er definert: Posisjoner touch-proben manuelt i probeaksen over kalibreringskulen og på arbeidsplanet, i midten av kulen
- **3** Velg driftsmodusen programkjøring, og start kalibreringsprogrammet



**4** TNC måler automatisk alle roteringsaksene etter hverandre i finhetsgraden som er definert. TNC viser den gjeldende statusen til målingen i et overlappingsvindu. TNC skjuler statusvinduet så snart en strekning som er større enn probekuleradiusen, skal kjøres.

#### **5** TNC lagrer måleverdiene i følgende Q-parametere:

| Parameternummer | Beskrivelse                                                                              |
|-----------------|------------------------------------------------------------------------------------------|
| Q141            | Målt standardavvik A-akse<br>(-1 hvis ikke aksen er målt)                                |
| Q142            | Målt standardavvik B-akse<br>(-1 hvis ikke aksen er målt)                                |
| Q143            | Målt standardavvik C-akse<br>(-1 hvis ikke aksen er målt)                                |
| Q144            | Optimert standardavvik A-akse<br>(-1 hvis ikke aksen er optimert)                        |
| Q145            | Optimert standardavvik A-akse<br>(-1 hvis ikke aksen er optimert)                        |
| Q146            | Optimert standardavvik A-akse<br>(-1 hvis ikke aksen er optimert)                        |
| Q147            | Offsetfeil i X-retning, for manuell<br>overtagelse i den tilhørende<br>maskinparameteren |
| Q148            | Offsetfeil i Y-retning, for manuell<br>overtagelse i den tilhørende<br>maskinparameteren |
| Q149            | Offsetfeil i Z-retning, for manuell<br>overtagelse i den tilhørende<br>maskinparameteren |



## Posisjoneringsretning

Posisjoneringsretningen til rundaksen som skal måles, beregnes ut fra start- og sluttvinkelen som er definert i syklusen. En referansemåling utføres automatisk ved 0°. TNC viser en feilmelding hvis det vises en måleposisjon på 0° ved valg av startvinkel, sluttvinkel og antall målepunkter.

Velg start- og sluttvinkelen slik at samme posisjon ikke måles to ganger av TNC. Et dobbelt målepunktfeste (f.eks. måleposisjon +90° og -270°) er ikke nødvendig. Det vises likevel ingen feilmelding.

- Eksempel: startvinkel = +90°, sluttvinkel = -90°
  - Startvinkel = +90°
  - Sluttvinkel = -90°
  - Antall målepunkter = 4
  - Beregnet vinkeltrinn = (-90 +90) / (4-1) = -60°
  - Målepunkt 1= +90°
  - Målepunkt 2= +30°
  - Målepunkt 3= -30°
  - Målepunkt 4= -90°
- Eksempel: startvinkel = +90°, sluttvinkel = +270°
  - Startvinkel = +90°
  - Sluttvinkel = +270°
  - Antall målepunkter = 4
  - Beregnet vinkeltrinn = (270 90) / (4-1) = +60°
  - Målepunkt 1= +90°
  - Målepunkt 2= +150°
  - Målepunkt 3= +210°
  - Målepunkt 4= +270°

1

## Maskiner som har akser med Hirth-fortanning

#### Kollisjonsfare!

Aksen må bevege seg ut av Hirth-rasteret for å kunne posisjoneres. Pass på at det er tilstrekkelig sikkerhetsavstand, slik at touch-proben og kalibreringskulen ikke kolliderer. Pass på at det er nok plass under kjøring frem til sikkerhetsavstanden (programvareendebryter).

Definer en returkjøringshøyde **0408** som er større enn 0, hvis programvarealternativ 2 (M128, FUNCTION TCPM) ikke er tilgjengelig.

TNC avrunder eventuelt måleposisjonene, slik at de passer i Hirth-rammen (avhengig av startvinkel, sluttvinkel og antall målepunkter).

Avhengig av maskinkonfigurasjonen kan ikke TNC posisjonere roteringsaksene automatisk. I dette tilfellet trenger du en spesiell M-funksjon fra maskinprodusenten som TNC kan bruke for å kunne bevege roteringsaksene. I maskinparameteren MP6602 må maskinprodusenten ha registrert nummeret for M-funksjonen.

Måleposisjonene beregnes på grunnlag av startvinkel, sluttvinkel og antall målinger for hver akse og Hirth-ramme.

#### Beregningseksempel for måleposisjoner for en A-akse:

Startvinkel Q411 = -30

Sluttvinkel **Q412** = +90

Antall målepunkter **Q414** = 4

Hirth-ramme =  $3^{\circ}$ 

Beregnet vinkeltrinn = (Q412 - Q411) / (Q414 - 1)Beregnet vinkeltrinn = (90 - 30)/(4 - 1) = 120/3 = 40Måleposisjon 1 = Q411 + 0 \* vinkeltrinn =  $-30^{\circ} \rightarrow -30^{\circ}$ Måleposisjon 2 = Q411 + 1 \* vinkeltrinn =  $+10^{\circ} \rightarrow 9^{\circ}$ Måleposisjon 3 = Q411 + 2 \* vinkeltrinn =  $+50^{\circ} \rightarrow 51^{\circ}$ 

Måleposisjon 4 = Q411 + 3 \* vinkeltrinn =  $+90^{\circ} \rightarrow 90^{\circ}$ 

## Valg av antall målepunkter

For å spare tid kan du utføre en grovoptimering med få målepunkter (1-2).

En tilsvarende finoptimering utføres med et middels antall målepunkter (anbefalt verdi = 4). Selv om antallet målepunkter er høyere, fører det vanligvis ikke til bedre resultater. Målepunktene burde ideelt sett fordeles likt over aksens dreieområde.

En akse med et dreieområde på 0–360° bør måles med 3 målepunkter på 90°, 180° og 270°.

Hvis du vil kontrollere nøyaktigheten tilsvarende, kan du angi et høyere antall målepunkter i modusen **Kontroller**.



Du må ikke definere et målepunkt på 0° eller 360°. Disse posisjonene gir ingen måleteknisk relevante data, og det vises en feilmelding.

# Valg av posisjon for kalibreringskulen på maskinbordet

Du kan vanligvis plassere kalibreringskulen på et ledig sted på maskinbordet, men den kan også festes på oppspenningsutstyr eller emner. Følgende faktorer kan påvirke måleresultatet positivt:

- Maskiner med rundbord/dreiebord: Spenn opp kalibreringskulen så langt unna roteringssenteret som mulig
- Maskiner med store kjøreavstander: Spenn opp kalibreringskulen så nærme den senere bearbeidingsposisjonen som mulig

1

## Merknader til nøyaktighet

Geometri- og posisjoneringsfeil i maskinen påvirker måleverdiene og dermed optimeringen av en rundakse. Det finnes derfor alltid restfeil som ikke kan elimineres.

Hvis det aldri hadde oppstått geometri- eller posisjoneringsfeil, kunne verdiene som beregnes av syklusen, blitt gjengitt nøyaktig på et vilkårlig punkt i maskinen og på et bestemt tidspunkt. Jo større geometri- og posisjoneringsfeil som oppstår, desto større blir spredningen av måleresultatene dersom målekulen plasseres på forskjellige posisjoner i maskinkoordinatsystemet.

Spredningen som er angitt av TNC i måleprotokollen, er et mål på nøyaktigheten til de statiske dreiebevegelsene til en maskin. Når nøyaktigheten skal vurderes, må målesirkelradiusen og antall målepunkter med tilhørende posisjon også inkluderes. Spredning kan ikke beregnes hvis det bare dreier seg om ett målepunkt. Spredningen som vises, tilsvarer romfeilen til målepunktet i dette tilfellet.

Hvis flere rundakser beveger seg samtidig, overlagres feilene. I verste fall blir de addert.



Hvis maskinen er utstyrt med en styrt spindel, bør vinkelføringen aktiveres via maskinparameter **MP6165**. Dermed økes målenøyaktigheten med en 3D-touch-probe.

Låsingen av rundaksene bør deaktiveres mht. målingens varighet. Ellers kan måleresultatene forfalskes. Følg maskinhåndboken.



## Merknader til forskjellige kalibreringsmetoder

#### Grovoptimering under igangsetting etter inntasting av omtrentlige mål

- Målepunktantall mellom 1 og 2
- Vinkeltrinn for roteringsakser: ca. 90°

#### Finoptimering via hele prosessområdet

- Målepunktantall mellom 3 og 6
- Start- og sluttvinklene bør avdekke et størst mulig kjøreområde for roteringsaksene
- Posisjoner kalibreringskulen på maskinbordet, slik at det oppstår en større målesirkelradius, eller at målingen kan utføres i en representativ posisjon for hoderoteringsaksene (f.eks. i midten av kjøreområdet)

#### Optimere en spesiell roteringsakseposisjon

- Målepunktantall mellom 2 og 3
- Målingene utføres rundt roteringsaksevinkelen der bearbeidingen skal utføres senere
- Posisjoner kalibreringskulen på maskinbordet slik at kalibreringen utføres på samme sted som bearbeidingen

#### Kontroller maskinens nøyaktighet

- Målepunktantall mellom 4 og 8
- Start- og sluttvinklene bør avdekke et størst mulig kjøreområde for roteringsaksene

#### Fastsette roteringsakseslakk

- Målepunktantall mellom 8 og 12
- Start- og sluttvinklene bør avdekke et størst mulig kjøreområde for roteringsaksene



## Slakk

Slakk er et samspill mellom dreiegiver (vinkelmåleinstrument) og bord som oppstår når retningen endres. Hvis roteringsaksene har slakk utenfor den angitte distansen, f.eks. fordi vinkelmålingen utføres med motorens dreiegiver, kan det oppstå betydelige feil ved dreiing.

Du kan aktivere målingen av slakk med inndataparameter **Q432**. Angi en vinkel som TNC bruker som overkjøringsvinkel. Syklusen utfører to målinger per roteringsakse. Hvis du overtar vinkelverdien 0, beregner ikke TNC slakk.



TNC utfører ikke kompensasjon for slakk automatisk.

Hvis målesirkelradiusen er < 1 mm, beregner TNC ikke lenger slakk. Jo større målesirkelradius, desto mer nøyaktig kan TNC definere roteringsakseslakk (se også Protokollfunksjon på side 495).

Hvis maskinparameteren **MP6602** er definert, eller hvis aksen er en Hirth-akse, er det ikke mulig å beregne slakk.



## Legg merke til følgende under programmeringen!

Pass på at alle dreiefunksjonene for bearbeidingsnivået er tilbakestilt. **M128** eller **FUNCTION TCPM** blir koblet ut.

Velg posisjon for kalibreringskulen på maskinbordet, slik at det ikke oppstår kollisjon under målingen.

Før syklusdefinisjonen må du fastsette nullpunktet i sentrum av kalibreringskulen og aktivere dette, ellers kan du definer inndataparameteren Q431 tilsvarende på 1 eller 3.

Hvis maskinparameter **MP6602** er definert som ulik -1 (PLS-makro posisjonert, roteringsakser), kan du bare starte måling hvis alle roteringsaksene står på 0°.

Ved kjøring til probehøyden i probeaksen brukes den minste verdien fra syklusparameteren **Q253** og maskinparameteren **MP6150** som posisjoneringsmating. Roteringsaksebevegelsene utføres i hovedsak med posisjoneringsmating **Q253**. Dermed er probeovervåkingen inaktiv.

Hvis de beregnede kinematikkdataene i optimeringsmodusen ligger over tillatt grenseverdi (**MP6600**), vises en advarselmelding. Overføringen av de fastsatte verdiene må bekreftes med NC-start.

Vær oppmerksom på at endringer i kinematikken fører til at forhåndsinnstillingen endres. Fastsett forhåndsinnstillingen på nytt etter optimeringen.

TNC fastsetter radiusen til kalibreringskulen for hver probeprosess. Hvis den fastsatte kuleradiusen avviker mer fra den angitte kuleradiusen enn det som er definert i maskinparameteren **MP6601**, viser TNC en feilmelding, og målingen avsluttes.

Hvis du avbryter syklusen under målingen, befinner ikke kinematikkdataene seg i den opprinnelige tilstanden lenger. Lagre den aktive kinematikken før optimeringen med syklus 450, slik at kinematikken som sist var aktiv, kan gjenopprettes ved feil.

Inch-programmering: Måleresultater og protokolldata angis vanligvis i mm.

TNC ignorerer angivelsene i syklusdefinisjonen for ikke aktive akser.

#### Syklusparametere



 Modus (0/1/2) Q406: Fastsett om TNC skal kontrollere eller optimere den aktive kinematikken:
0: Kontrollere aktiv maskinkinematikk. TNC måler kinematikken i dreieaksene som er definert, men foretar ikke endringer i den aktive kinematikken. Måleresultatene vises i en måleprotokoll
1: Optimere aktiv maskinkinematikk. TNC måler kinematikken i roteringsaksene du har definert, og optimerer posisjonen til roteringsaksene i den aktive kinematikken
2: Optimere aktiv maskinkinematikk. TNC måler kinematikken i roteringsaksene du har definert, og

kinematikken i roteringsaksene du har definert, og optimerer posisjonen og kompenserer for vinkelen til roteringsaksene i den aktive kinematikken. Option KinematicsComp må være aktivert for modus 2

- Nøyaktig kalibreringskuleradius Q407: Angi nøyaktig radius for kalibreringskulen som brukes. Inndataområde 0,0001 til 99,9999
- Sikkerhetsavstand Q320 (inkremental): Tilleggsavstand mellom målepunktet og touch-probekulen. Q320 kommer i tillegg til MP6140. Inndataområde 0 til 99999,9999 alternativ PREDEF
- Returkjøringshøyde Q408 (absolutt): Inndataområde 0,0001 til 99999,9999
  - Inndata = 0:

Ikke kjør til returhøyde, TNC kjører til den neste måleposisjonen i aksen som skal måles. Ikke tillatt for Hirth-akser! TNC kjører første måleposisjon i rekkefølgen A, B og deretter C

■ Tast inn >0:

Returhøyde i emnekoordinatsystem som ikke er dreid og som TNC kjører til før rotasjonsakseposisjonering i spindelaksen. TNC posisjonerer også touch-proben i arbeidsplanet på nullpunktet. Probeovervåkingen er ikke aktiv i denne modusen. Definer posisjoneringshastigheten i parameter Q253. Beispiel: Kalibreringsprogram

| 4 | TOOL CALL "P | ROBE" Z       |                  |
|---|--------------|---------------|------------------|
| 5 | TCH PROBE 45 | O LAGRE KINE  | MATIKK           |
|   | Q410=0       | ;MODUS        |                  |
|   | Q409=5       | ;MINNEPLASS   |                  |
| 6 | TCH PROBE 45 | 1 MÅLE KINE   | MATIKK           |
|   | Q406=1       | ;MODUS        |                  |
|   | Q407=12.5    | ;KULERADIUS   |                  |
|   | Q320=0       | ;SIKKERHETSA  | VST.             |
|   | Q408=0       | ;RETURKJØRIN  | GSHØYDE          |
|   | Q253=750     | ;MATING FORP  | 05.              |
|   | Q380=0       | ;REFERANSEVI  | NKEL             |
|   | Q411=-90     | ;STARTVINKEL  | A-AKSE           |
|   | Q412=+90     | ;SLUTTVINKEL  | A-AKSE           |
|   | Q413=0       | ; POSISJONERI | NGSVINKEL A-AKSE |
|   | Q414=0       | ;MÅLEPUNKTER  | A-AKSE           |
|   | Q415=-90     | ;STARTVINKEL  | B-AKSE           |
|   | Q416=+90     | ;SLUTTVINKEL  | B-AKSE           |
|   | Q417=0       | ;POSISJONERI  | NGSVINKEL B-AKSE |
|   | Q418=2       | ;MÅLEPUNKTER  | B-AKSE           |
|   | Q419=-90     | ;STARTVINKEL  | C-AKSE           |
|   | Q420=+90     | ;SLUTTVINKEL  | C-AKSE           |
|   | Q421=0       | ;POSISJONERI  | NGSVINKEL C-AKSE |
|   | Q422=2       | ;MÅLEPUNKTER  | C-AKSE           |
|   | Q423=4       | ;ANTALL MÅLE  | PUNKTER          |
|   | Q431=1       | ;FASTSETTE    |                  |
|   |              | FORHANDSINN   | STILLING         |
|   | 0432=0       | :VINKELOMRÅD  | E. SLAKK         |



- Mating forposisjonering Q253: Verktøyets bevegelseshastighet i mm/min ved posisjonering. Inndataområde 0,0001 til 99999,9999, alternativ FMAX, FAUTO, PREDEF
- Referansevinkel Q380 (absolutt): Referansevinkel (grunnrotering) for registrering av målepunktene i aktivt emnekoordinatsystem. Hvis det defineres en referansevinkel, kan måleområdet til en akse forstørres betraktelig. Inndataområde 0 til 360,0000
- Startvinkel A-akse Q411 (absolutt): Startvinkel i A-aksen, som den første målingen skal utføres på. Inndataområde -359.999 til 359.999
- Sluttvinkel A-akse Q412 (absolutt): Sluttvinkel i A-aksen, som den siste målingen skal utføres på. Inndataområde -359.999 til 359.999
- Posisjoneringsvinkel A-akse Q413: Posisjoneringsvinkel i A-aksen der de andre roteringsaksene skal måles. Inndataområde -359.999 til 359.999
- Antall målepunkter A-akse Q414: Antall prober TNC skal bruke ved målingen av A-aksen. Hvis inndata = 0, utfører TNC ingen måling på denne aksen. Inndataområde 0 til 12
- Startvinkel B-akse Q415 (absolutt): Startvinkel i B-aksen, som den første målingen skal utføres på. Inndataområde -359.999 til 359.999
- Sluttvinkel B-akse Q416 (absolutt): Sluttvinkel i B-aksen, som den siste målingen skal utføres på. Inndataområde -359.999 til 359.999
- Posisjoneringsvinkel B-akse Q417: Posisjoneringsvinkel i B-aksen der de andre roteringsaksene skal måles. Inndataområde -359.999 til 359.999
- Antall målepunkter B-akse Q418: Antall prober TNC skal bruke ved målingen av B-aksen. Hvis inndata = 0, utfører TNC ingen måling på denne aksen. Inndataområde 0 til 12

- Startvinkel C-akse Q419 (absolutt): Startvinkel i C-aksen, som den første målingen skal utføres på. Inndataområde -359.999 til 359.999
- Sluttvinkel C-akse Q420 (absolutt): Sluttvinkel i C-aksen som den siste målingen skal utføres på. Inndataområde -359.999 til 359.999
- Posisjoneringsvinkel C-akse Q421: Posisjoneringsvinkel i C-aksen der de andre roteringsaksene skal måles. Inndataområde -359.999 til 359.999
- Antall målepunkter C-akse Q422: Antall prober TNC skal bruke ved målingen av C-aksen. Inndataområde 0 til 12. Hvis inndata = 0, utfører TNC ingen måling på denne aksen
- Antall målepunkter Q423: Fastsett hvor mange prober som skal brukes til å måle kalibreringskulen i probenivået. Inndataområde 3 til 8 målinger

 Fastsette forhåndsinnstilling (0/1/2/3) Q431: Fastslå om TNC automatisk skal definere den aktive forhåndsinnstillingen (nullpunkt) på midten av kulen:
0: Ikke definer forhåndsinnstilling automatisk på midten av kulen: Fastsett forhåndsinnstilling manuelt før syklusstart

1: Definer forhåndsinnstilling automatisk på midten av kulen før målingen: Forposisjoner touch-probesystemet manuelt over kalibreringskulen før syklusstart

2: Definer forhåndsinnstilling automatisk på midten av kulen etter målingen: Fastsett forhåndsinnstilling manuelt før syklusstart

3: Definer forhåndsinnstilling automatisk på midten av kulen før og etter målingen: Forposisjoner touchprobe-systemet manuelt over kalibreringskulen før syklusstart

Vinkelområde, slakk Q432: Her definerer du vinkelverdien som skal brukes som overkjøring for måling av roteringsakseslakk. Overkjøringsvinkelen må være tydelig større enn faktisk slakk for roteringsaksene. Hvis inndata = 0, utfører TNC ingen måling av slakk på denne aksen. Inndataområde: -3,0000 til +3,0000

Hvis du har aktivert «innstilling av forhåndsinnstilling» før målingen (Q431 = 1/3), må du posisjonere touch-proben ca. midt over kalibreringskulen før syklusstart.

## Forskjellige modier (Q406)

#### Modus «Kontroller» Q406 = 0

- TNC måler roteringsaksene i de definerte posisjonene og fastsetter statisk nøyaktighet for dreietransformasjon på grunnlag av disse
- TNC protokollfører resultatene av en mulig posisjonsoptimering, men foretar ingen tilpasninger

#### Optimere modus «Posisjon» Q406 = 1

- TNC måler roteringsaksene i de definerte posisjonene og fastsetter statisk nøyaktighet for dreietransformasjon på grunnlag av disse
- Samtidig forsøker TNC å endre posisjonen for roteringsaksen i kinematikkmodellen, slik at høyere nøyaktighet oppnås
- Justeringene av maskindataene utføres automatisk

#### Optimer modus «Posisjon og vinkel» Q406 = 2

- TNC måler roteringsaksene i de definerte posisjonene og fastsetter statisk nøyaktighet for dreietransformasjon på grunnlag av disse
- TNC forsøker først å optimere vinkelposisjonen til roteringsaksen via en kompensasjon (alternativ nr. 52 KinematicsComp).
- Hvis TNC klarte å utføre en vinkeloptimering, optimerer TNC deretter posisjonen i en ekstra måleserie.

Ved vinkeloptimering må maskinprodusenten ha tilpasset konfigurasjonen tilsvarende. Spør maskinprodusenten om det er tilfelle, og om vinkeloptimering er aktuelt. På små, kompakte maskiner kan vinkeloptimering medføre forbedringer.

Vinkelkompensasjon er bare mulig med alternativ nr. 52 **KinematicsComp**.

Beispiel: Vinkel- og posisjonsoptimering av roteringsaksene med foregående automatisk setting av nullpunkt

| 1 TOOL CALL "T | S640" Z                      |
|----------------|------------------------------|
| 2 TCH PROBE 45 | 1 MÅLE KINEMATIKK            |
| Q406=2         | ;MODUS                       |
| Q407=12.5      | ;KULERADIUS                  |
| Q320=0         | ;SIKKERHETSAVST.             |
| Q408=0         | ;RETURKJØRINGSHØYDE          |
| Q253=750       | ;MATING FORPOS.              |
| Q380=0         | ;REFERANSEVINKEL             |
| Q411=-90       | ;STARTVINKEL A-AKSE          |
| Q412=+90       | ;SLUTTVINKEL A-AKSE          |
| Q413=0         | ;POSISJONERINGSVINKEL A-AKSE |
| Q414=0         | ;MÅLEPUNKTER A-AKSE          |
| Q415=-90       | ;STARTVINKEL B-AKSE          |
| Q416=+90       | ;SLUTTVINKEL B-AKSE          |
| Q417=0         | ;POSISJONERINGSVINKEL B-AKSE |
| Q418=4         | ;MÅLEPUNKTER B-AKSE          |
| Q419=+90       | ;STARTVINKEL C-AKSE          |
| Q420=+270      | ;SLUTTVINKEL C-AKSE          |
| Q421=0         | ;POSISJONERINGSVINKEL C-AKSE |
| Q422=3         | ;MÅLEPUNKTER C-AKSE          |
| Q423=3         | ;ANTALL MÅLEPUNKTER          |
| Q431=1         | ;FASTSETTE                   |
|                | FORHANDSINNSTILLING          |
| Q432=0         | ;VINKELOMRÅDE, SLAKK         |



## Protokollfunksjon

Når syklus 450 er kjørt, oppretter TNC en protokoll **(TCHPR451.TXT)** som inneholder følgende data:

- Dato og klokkeslett for oppretting av protokollen
- Banenavn for NC-programmet som syklusen ble kjørt fra
- Utført modus (0 = kontroller / 1 = optimer posisjon / 2 = optimer «Pose»)
- Aktivt kinematikknummer
- Angitt målekuleradius
- For hver målte roteringsakse:
  - Startvinkel
  - Sluttvinkel
  - Posisjoneringsvinkel
  - Antall målepunkter
  - Spredning (standardavvik)
  - Maksimal feil
  - Vinkelfeil
  - Fastsatt slakk
  - Fastsatt posisjoneringsfeil
  - Målesirkelradius
  - Korreksjonsbeløp i alle akser (forskyvning av forhåndsinnstilling)
  - Vurdering av målepunktene
  - Måleusikkerhet for roteringsakser



#### Forklaring til protokollverdiene

#### Visning av feil

l «kontroller modus» (**Q406=0**) angir TNC nøyaktigheten som oppnås ved optimering, eller oppnådd nøyaktighet ved optimering (modus 1 og 2).

Hvis vinkelposisjonen til en roteringsakse kunne beregnes, vises de målte dataene i protokollen.

#### Spredning

TNC bruker begrepet spredning, som stammer fra statistikken, i som mål for nøyaktigheten i protokollen. Den **målte spredningen** angir at 68,3 % av den faktisk målte romfeilen ligger innenfor denne angitte spredningen (+/-). Den **optimerte spredningen** angir at 68,3 % av den forventede romfeilen ligger innenfor denne angitte spredningen (+/-) etter korrigering av kinematikken.

#### Vurdering av målepunktene

Vurderingstallene er et mål for kvaliteten på måleposisjonene i forhold til transformasjoner i kinematikkmodellen som kan endres. Jo høyere vurderingstallet er, desto bedre kan TNC beregne optimeringen. Vurderingstallet til hver roteringsakse må ikke underskride en verdi på **2**. Anbefalt verdi er større enn eller lik **4**. Hvis vurderingstallene er for små, bør du forstørre måleområdet til roteringsaksen, eller også antall målepunkter.



Hvis vurderingstallene er for små, bør du forstørre måleområdet til roteringsaksen, eller også antall målepunkter. Hvis det ikke er mulig å oppnå høyere vurderingstall med dette tiltaket, kan det skyldes feil kinematikkbeskrivelse. Meld ev. fra til kundeservice.

#### Måleusikkerhet for vinkel

TNC angir alltid måleusikkerheten i grader / 1  $\mu$ m systemusikkerhet. Denne informasjonen er viktig for å kunne vurdere kvaliteten til de målte posisjoneringsfeilene eller for slakk for en roteringsakse.

l systemusikkerheten inngår som minimum repetisjonsnøyaktigheten for aksene (slakk) hhv. posisjonsusikkerheten til lineæraksene (posisjoneringsfeil) og måleføleren. TNC kjenner ikke nøyaktigheten for hele systemet, derfor må du foreta en egen vurdering.

- Eksempel på usikkerhet for beregnede posisjoneringsfeil:
  - Posisjonsusikkerhet for lineærakse: 10 µm
  - Usikkerhet for måleføler: 2 m
  - Loggført måleusikkerhet: 0,0002 °/µm
  - Systemusikkerhet = SQRT( 3 \* 10<sup>2</sup> + 2<sup>2</sup>) = 17,4 µm
  - Måleusikkerhet = 0,0002 °/µm \* 17,4 µm = 0,0034°
- Eksempel på usikkerhet for beregnet slakk:
  - Repetisjonsnøyaktighet for hver lineærakse: 5 µm
  - Usikkerhet ved måleføleren: 2 µm
  - Loggført måleusikkerhet: 0,0002 °/µm
  - Systemusikkerhet = SQRT( 3 \* 5<sup>2</sup> + 2<sup>2</sup> ) = 8,9 µm
  - Måleusikkerhet = 0,0002 °/µm \* 8,9 µm = 0,0018°

## 18.5 KOMPENSASJON AV FORHÅNDSINNSTILLING (syklus 452, DIN/ISO: G452, alternativ)

## Syklusforløp

Med touch-probe-syklus 452 kan du optimere maskinens transformasjonskjede (se MÅLE KINEMATIKK (syklus 451, DIN/ISO: G451, alternativ) på side 482). Deretter korrigerer TNC emnekoordinatsystemet i kinematikkmodellen slik at den gjeldende forhåndsinnstillingen etter optimeringen er i midten av kalibreringskulen.

Med denne syklusen kan du for eksempel tilpasse utskiftbare hoder til hverandre.

- 1 Spenne fast kalibreringskule
- 2 Mål opp referansehodet helt med syklus 451, og la deretter forhåndsinnstillingen fastsettes i midten av kulen av syklus 451
- 3 Bytte hode nummer to
- 4 Mål opp det utskiftbare hodet til grensesnittet for skifte av hode med syklus 452
- **5** Juster ytterligere utskiftbare hoder etter referansehodet med syklus 452



7 (

Hvis kalibreringskulen kan være fastspent på maskinbordet under bearbeidingen, kan du for eksempel kompensere for drift på maskinen. Denne prosedyren er også mulig på maskiner uten roteringsakser.

- 1 Spenn fast kalibreringskulen, og unngå kollisjoner
- 2 Fastsett forhåndsinnstillingen i kalibreringskulen
- 3 Fastsett forhåndsinnstillingen på emnet, og start bearbeidingen av emnet
- **4** TNC måler automatisk alle roteringsaksene etter hverandre i finhetsgraden som er definert. TNC viser den gjeldende statusen til målingen i et overlappingsvindu. TNC skjuler statusvinduet så snart en strekning som er større enn probekuleradiusen, skal kjøres.
- **5** Utfør regelmessig kompensering av forhåndsinnstillingen med syklus 452. Dermed registrerer TNC driften til de impliserte aksene og korrigerer denne i kinematikken

| Parameternummer | Beskrivelse                                                                              |
|-----------------|------------------------------------------------------------------------------------------|
| Q141            | Målt standardavvik A-akse<br>(-1 hvis ikke aksen er målt)                                |
| Q142            | Målt standardavvik B-akse<br>(-1 hvis ikke aksen er målt)                                |
| Q143            | Målt standardavvik C-akse<br>(-1 hvis ikke aksen er målt)                                |
| Q144            | Optimert standardavvik A-akse<br>(-1 hvis ikke aksen er målt)                            |
| Q145            | Optimert standardavvik B-akse<br>(-1 hvis ikke aksen er målt)                            |
| Q146            | Optimert standardavvik C-akse<br>(-1 hvis ikke aksen er målt)                            |
| Q147            | Offsetfeil i X-retning, for manuell<br>overtagelse i den tilhørende<br>maskinparameteren |
| Q148            | Offsetfeil i Y-retning, for manuell<br>overtagelse i den tilhørende<br>maskinparameteren |
| Q149            | Offsetfeil i Z-retning, for manuell<br>overtagelse i den tilhørende<br>maskinparameteren |

1



#### Legg merke til følgende under programmeringen!



For å kunne utføre en kompensasjon av

forhåndsinnstillingen må kinematikken være forberedt tilsvarende. Følg maskinhåndboken.

Pass på at alle dreiefunksjonene for bearbeidingsnivået er tilbakestilt. **M128** eller **FUNCTION TCPM** blir koblet ut.

Velg posisjon for kalibreringskulen på maskinbordet, slik at det ikke oppstår kollisjon under målingen.

Før syklusen defineres må nullpunktet fastsettes i midten av kalibreringskulen og aktiveres.

Velg målepunktene slik i forbindelse med akser uten separat posisjonsmålesystem at du har en avstand på 1 grad til endebryteren. TNC trenger denne avstanden for den interne slakkompensasjonen.

Ved kjøring til probehøyden i probeaksen brukes den minste verdien fra syklusparameteren **Q253** og maskinparameteren MP6150 som posisjoneringsmating. Roteringsaksebevegelsene utføres i hovedsak med posisjoneringsmating **Q253**. Dermed er probeovervåkingen inaktiv.

Hvis de beregnede kinematikkdataene i optimeringsmodusen ligger over tillatt grenseverdi (**MP6600**), vises en advarselmelding. Overføringen av de fastsatte verdiene må bekreftes med NC-start.

Vær oppmerksom på at endringer i kinematikken fører til at forhåndsinnstillingen endres. Fastsett forhåndsinnstillingen på nytt etter optimeringen.

TNC fastsetter radiusen til kalibreringskulen for hver probeprosess. Hvis den fastsatte kuleradiusen avviker mer fra den angitte kuleradiusen enn det som er definert i maskinparameteren **MP6601**, viser TNC en feilmelding, og målingen avsluttes.

Hvis du avbryter syklusen under målingen, befinner ikke kinematikkdataene seg i den opprinnelige tilstanden lenger. Lagre den aktive kinematikken før optimeringen med syklus 450, slik at kinematikken som sist var aktiv, kan gjenopprettes ved feil.

Inch-programmering: Måleresultater og protokolldata angis vanligvis i mm.



#### Syklusparametere

- 452 ⊕ Â
- 18.<mark>5 K</mark>OMPENSASJON AV FORHÅNDSINNSTILLING (syklus 452 DIN/ISO: G452, alternativ
- Nøyaktig kalibreringskuleradius Q407: Angi nøyaktig radius for kalibreringskulen som brukes. Inndataområde 0,0001 til 99,9999
- Sikkerhetsavstand Q320 (inkremental): Tilleggsavstand mellom målepunktet og touch-probekulen. Q320 kommer i tillegg til MP6140. Inndataområde 0 til 99999,9999 alternativ PREDEF
- Returkjøringshøyde Q408 (absolutt): Inndataområde 0,0001 til 99999,9999
  - Inndata = 0:

lkke kjør til returhøyde, TNC kjører til den neste måleposisjonen i aksen som skal måles. Ikke tillatt for Hirth-akser! TNC kjører første måleposisjon i rekkefølgen A, B og deretter C

■ Tast inn >0:

Returhøyde i emnekoordinatsystem som ikke er dreid og som TNC kjører til før

rotasjonsakseposisjonering i spindelaksen. TNC posisjonerer også touch-proben i arbeidsplanet på nullpunktet. Probeovervåkingen er ikke aktiv i denne modusen. Definer posisjoneringshastigheten i parameter Q253.

- Mating forposisjonering Q253: Verktøyets bevegelseshastighet i mm/min ved posisjonering. Inndataområde 0,0001 til 99999,9999, alternativ FMAX, FAUTO PREDEF
- Referansevinkel Q380 (absolutt): Referansevinkel (grunnrotering) for registrering av målepunktene i aktivt emnekoordinatsystem. Hvis det defineres en referansevinkel, kan måleområdet til en akse forstørres betraktelig. Inndataområde 0 til 360,0000
- Startvinkel A-akse Q411 (absolutt): Startvinkel i A-aksen, som den første målingen skal utføres på. Inndataområde -359.999 til 359.999
- Sluttvinkel A-akse Q412 (absolutt): Sluttvinkel i A-aksen, som den siste målingen skal utføres på. Inndataområde -359.999 til 359.999
- Posisjoneringsvinkel A-akse Q413: Posisjoneringsvinkel i A-aksen der de andre roteringsaksene skal måles. Inndataområde -359.999 til 359.999
- Antall målepunkter A-akse Q414: Antall prober TNC skal bruke ved målingen av A-aksen. Hvis inndata = 0, utfører TNC ingen måling på denne aksen. Inndataområde 0 til 12
- Startvinkel B-akse Q415 (absolutt): Startvinkel i B-aksen, som den første målingen skal utføres på. Inndataområde -359.999 til 359.999

#### Beispiel: Kalibreringsprogram

| 4 TOOL CALL "P                   | ROBE" Z                      |
|----------------------------------|------------------------------|
| 5 TCH PROBE 45                   | O LAGRE KINEMATIKK           |
| Q410=0                           | ;MODUS                       |
| Q409=5                           | ;MINNEPLASS                  |
| 6 TCH PROBE 45<br>Forhåndsinnsti | 2 KOMPENSASJON AV<br>Lling   |
| Q407=12.5                        | ;KULERADIUS                  |
| Q320=0                           | ;SIKKERHETSAVST.             |
| Q408=0                           | ;RETURKJØRINGSHØYDE          |
| Q253=750                         | ;MATING FORPOS.              |
| Q380=0                           | ;REFERANSEVINKEL             |
| Q411=-90                         | ;STARTVINKEL A-AKSE          |
| Q412=+90                         | ;SLUTTVINKEL A-AKSE          |
| Q413=0                           | ;POSISJONERINGSVINKEL A-AKSE |
| Q414=0                           | ;MÅLEPUNKTER A-AKSE          |
| Q415=-90                         | ;STARTVINKEL B-AKSE          |
| Q416=+90                         | ;SLUTTVINKEL B-AKSE          |
| Q417=0                           | ;POSISJONERINGSVINKEL B-AKSE |
| Q418=2                           | ;MÅLEPUNKTER B-AKSE          |
| Q419=-90                         | ;STARTVINKEL C-AKSE          |
| Q420=+90                         | ;SLUTTVINKEL C-AKSE          |
| Q421=0                           | ;POSISJONERINGSVINKEL C-AKSE |
| Q422=2                           | ;MÅLEPUNKTER C-AKSE          |
| Q423=4                           | ;ANTALL MÅLEPUNKTER          |
| Q432=0                           | ;VINKELOMRÅDE, SLAKK         |

- Sluttvinkel B-akse Q416 (absolutt): Sluttvinkel i B-aksen, som den siste målingen skal utføres på. Inndataområde -359.999 til 359.999
- Posisjoneringsvinkel B-akse Q417: Posisjoneringsvinkel i B-aksen der de andre roteringsaksene skal måles. Inndataområde -359.999 til 359.999
- Antall målepunkter B-akse Q418: Antall prober TNC skal bruke ved målingen av B-aksen. Hvis inndata = 0, utfører TNC ingen måling på denne aksen. Inndataområde 0 til 12
- Startvinkel C-akse Q419 (absolutt): Startvinkel i C-aksen, som den første målingen skal utføres på. Inndataområde -359.999 til 359.999
- Sluttvinkel C-akse Q420 (absolutt): Sluttvinkel i C-aksen som den siste målingen skal utføres på. Inndataområde -359.999 til 359.999
- Posisjoneringsvinkel C-akse Q421: Posisjoneringsvinkel i C-aksen der de andre roteringsaksene skal måles. Inndataområde -359.999 til 359.999
- Antall målepunkter C-akse Q422: Antall prober TNC skal bruke ved målingen av C-aksen. Hvis inndata = 0, utfører TNC ingen måling på denne aksen. Inndataområde 0 til 12
- Antall målepunkter Q423: Fastsett hvor mange prober som skal brukes til å måle kalibreringskulen i probenivået. Inndataområde 3 til 8 målinger
- Vinkelområde, slakk Q432: Her definerer du vinkelverdien som skal brukes som overkjøring for måling av roteringsakseslakk. Overkjøringsvinkelen må være tydelig større enn faktisk slakk for roteringsaksene. Hvis inndata = 0, utfører TNC ingen måling av slakk på denne aksen. Inndataområde: -3,0000 til +3,0000

#### Kalibrering av utskiftbare hoder

Målet med denne prosedyren er at forhåndsinnstillingen på emnet skal være uendret etter skifte av roteringsakser (skifte av hoder).

l eksempelet nedenfor beskrives justeringen av et gaffelhode med aksene AC. A-aksene skiftes, mens C-aksen blir værende på basismaskinen.

- Bytte et utskiftbart hode som da brukes som referansehode
- Spenne fast kalibreringskulen
- Bytt touch-probe
- Mål hele kinematikken med referansehodet ved hjelp av syklus 451
- Fastsett forhåndsinnstillingen (med Q431 = 2 eller 3 i syklus 451) etter at referansehodet er målt opp

Beispiel: Måle opp referansehode

| 1 TOOL CALL "F | PROBE" Z                     |
|----------------|------------------------------|
| 2 TCH PROBE 45 | 1 MAALE KINEMATIKK           |
| Q406=1         | ;MODUS                       |
| Q407=12.5      | ;KULERADIUS                  |
| Q320=0         | ;SIKKERHETSAVST.             |
| Q408=0         | ;RETURKJØRINGSHØYDE          |
| Q253=2000      | ;MATING FORPOS.              |
| Q380=45        | ;REFERANSEVINKEL             |
| Q411=-90       | ;STARTVINKEL A-AKSE          |
| Q412=+90       | ;SLUTTVINKEL A-AKSE          |
| Q413=45        | ;POSISJONERINGSVINKEL A-AKSE |
| Q414=4         | ;MÅLEPUNKTER A-AKSE          |
| Q415=-90       | ;STARTVINKEL B-AKSE          |
| Q416=+90       | ;SLUTTVINKEL B-AKSE          |
| Q417=0         | ;POSISJONERINGSVINKEL B-AKSE |
| Q418=2         | ;MÅLEPUNKTER B-AKSE          |
| Q419=+90       | ;STARTVINKEL C-AKSE          |
| Q420=+270      | ;SLUTTVINKEL C-AKSE          |
| Q421=0         | ;POSISJONERINGSVINKEL C-AKSE |
| Q422=3         | ;MÅLEPUNKTER C-AKSE          |
| Q423=4         | ;ANTALL MÅLEPUNKTER          |
| Q431=3         | ;FASTSETTE                   |
|                | FORHANDSINNSTILLING          |
| Q432=0         | ;VINKELOMRÅDE, SLAKK         |



1

- Bytte utskiftbart hode nummer to
- ▶ Bytt touch-probe
- Mål opp det utskiftbare hodet med syklus 452
- Mål bare aksene som faktisk har blitt skiftet (i eksempelet er dette bare A-aksen, mens C-aksen er skjult av Q422)
- Forhåndsinnstillingen og posisjonen til kalibreringskulen må ikke endres under prosedyren.
- Alle andre utskiftbare hoder kan tilpasses på samme måte



Utskifting av hoder er en maskinspesifikk funksjon. Se maskinhåndboken.

#### Beispiel: Kalibrer det utskiftbare hodet

3

4

F

| TOOL CALL "P                  | ROBE" Z                      |
|-------------------------------|------------------------------|
| TCH PROBE 45<br>Drhåndsinnsti | 2 KOMPENSASJON AV<br>Illing  |
| Q407=12.5                     | ;KULERADIUS                  |
| Q320=0                        | ;SIKKERHETSAVST.             |
| Q408=0                        | ;RETURKJØRINGSHØYDE          |
| Q253=2000                     | ;MATING FORPOS.              |
| Q380=45                       | ;REFERANSEVINKEL             |
| Q411=-90                      | ;STARTVINKEL A-AKSE          |
| Q412=+90                      | ;SLUTTVINKEL A-AKSE          |
| Q413=45                       | ;POSISJONERINGSVINKEL A-AKSE |
| Q414=4                        | ;MÅLEPUNKTER A-AKSE          |
| Q415=-90                      | ;STARTVINKEL B-AKSE          |
| Q416=+90                      | ;SLUTTVINKEL B-AKSE          |
| Q417=0                        | ;POSISJONERINGSVINKEL B-AKSE |
| Q418=2                        | ;MÅLEPUNKTER B-AKSE          |
| Q419=+90                      | ;STARTVINKEL C-AKSE          |
| Q420=+270                     | ;SLUTTVINKEL C-AKSE          |
| Q421=0                        | ;POSISJONERINGSVINKEL C-AKSE |
| Q422=0                        | ;MÅLEPUNKTER C-AKSE          |
| Q423=4                        | ;ANTALL MÅLEPUNKTER          |
| Q432=0                        | ;VINKELOMRÅDE, SLAKK         |

## Driftskompensasjon

Under bearbeidingen utsettes ulike maskinelementer for en drift på grunn av at omgivelsesforholdene endres. Hvis driften er tilstrekkelig konstant over prosessområdet og kalibreringskulen kan bli stående på maskinbordet under bearbeidingen, kan denne driften registreres og kompenseres med syklus 452.

- Spenne fast kalibreringskulen
- Bytt touch-probe
- Mål kinematikken fullstendig med syklus 451 før du starter bearbeidingen
- Fastsett forhåndsinnstillingen (med Q432 = 2 eller 3 i syklus 451) etter at kinematikken er målt
- Fastsett deretter forhåndsinnstillingen for emnene, og start bearbeidingen

Beispiel: Referansemåling for kompensasjon ved drift

| 1 TOOL CALL "P | ROBE" Z                           |
|----------------|-----------------------------------|
| 2 CYCL DEF 247 | FASTSETT REFERANSEPUNKT           |
| Q339=1         | ;NULLPUNKTNUMMER                  |
| 3 TCH PROBE 45 | 1 MAALE KINEMATIKK                |
| Q406=1         | ;MODUS                            |
| Q407=12.5      | ;KULERADIUS                       |
| Q320=0         | ;SIKKERHETSAVST.                  |
| Q408=0         | ;RETURKJØRINGSHØYDE               |
| Q253=750       | ;MATING FORPOS.                   |
| Q380=45        | ;REFERANSEVINKEL                  |
| Q411=+90       | ;STARTVINKEL A-AKSE               |
| Q412=+270      | ;SLUTTVINKEL A-AKSE               |
| Q413=45        | ;POSISJONERINGSVINKEL A-AKSE      |
| Q414=4         | ;MÅLEPUNKTER A-AKSE               |
| Q415=-90       | ;STARTVINKEL B-AKSE               |
| Q416=+90       | ;SLUTTVINKEL B-AKSE               |
| Q417=0         | ;POSISJONERINGSVINKEL B-AKSE      |
| Q418=2         | ;MÅLEPUNKTER B-AKSE               |
| Q419=+90       | ;STARTVINKEL C-AKSE               |
| Q420=+270      | ;SLUTTVINKEL C-AKSE               |
| Q421=0         | ;POSISJONERINGSVINKEL C-AKSE      |
| Q422=3         | ;MÅLEPUNKTER C-AKSE               |
| Q423=4         | ;ANTALL MÅLEPUNKTER               |
| Q431=3         | ;FASTSETTE<br>Forhåndsinnstilling |
| Q432=0         | ;VINKELOMRÅDE, SLAKK              |


- Mål driften på aksene med regelmessige intervaller
- Bytt touch-probe
- Aktiver forhåndsinnstilling i kalibreringskulen
- Mål kinematikken med syklus 452
- Forhåndsinnstillingen og posisjonen til kalibreringskulen må ikke endres under prosedyren.



Denne prosedyren er også mulig på maskiner uten roteringsakser

### **Beispiel: Kompensere for drift**

| 4 TOOL CALL "PRO                    | BE" Z                       |
|-------------------------------------|-----------------------------|
| 5 TCH PROBE 452<br>Forhåndsinnstill | KOMPENSASJON AV<br>Ing      |
| Q407=12.5 ;k                        | KULERADIUS                  |
| Q320=0 ;S                           | SIKKERHETSAVST.             |
| Q408=0 ;R                           | RETURKJØRINGSHØYDE          |
| Q253=99999;                         | MATING FORPOS.              |
| Q380=45 ;R                          | REFERANSEVINKEL             |
| Q411=-90 ;S                         | STARTVINKEL A-AKSE          |
| Q412=+90 ;S                         | SLUTTVINKEL A-AKSE          |
| Q413=45 ;P                          | OSISJONERINGSVINKEL A-AKSE  |
| Q414=4 ;M                           | IÅLEPUNKTER A-AKSE          |
| Q415=-90 ;S                         | STARTVINKEL B-AKSE          |
| Q416=+90 ;S                         | SLUTTVINKEL B-AKSE          |
| Q417=0 ;P                           | POSISJONERINGSVINKEL B-AKSE |
| Q418=2 ;M                           | IÅLEPUNKTER B-AKSE          |
| Q419=+90 ;S                         | TARTVINKEL C-AKSE           |
| Q420=+270 ;S                        | LUTTVINKEL C-AKSE           |
| Q421=0 ;P                           | POSISJONERINGSVINKEL C-AKSE |
| Q422=3 ;M                           | IÅLEPUNKTER C-AKSE          |
| Q423=3 ;A                           | NTALL MÅLEPUNKTER           |
| Q432=0 ;V                           | /INKELOMRÅDE, SLAKK         |

Når syklus 452 er kjørt, oppretter TNC en protokoll **(TCHPR452.TXT)** som inneholder følgende data:

- Dato og klokkeslett for oppretting av protokollen
- Banenavn for NC-programmet som syklusen ble kjørt fra
- Aktivt kinematikknummer
- Angitt målekuleradius
- For hver målte roteringsakse:
  - Startvinkel
  - Sluttvinkel
  - Posisjoneringsvinkel
  - Antall målepunkter
  - Spredning (standardavvik)
  - Maksimal feil
  - Vinkelfeil
  - Fastsatt slakk
  - Fastsatt posisjoneringsfeil
  - Målesirkelradius
  - Korreksjonsbeløp i alle akser (forskyvning av forhåndsinnstilling)
  - Vurdering av målepunktene
  - Måleusikkerhet for roteringsakser

### Forklaring til protokollverdiene

(se Forklaring til protokollverdiene på side 496)







Touch-probe-sykluser: måle verktøy automatisk

# 19.1 Grunnleggende

### Oversikt

Maskinen og TNC må være forberedt for touch-proben TT fra maskinprodusentens side.

Syklusene og funksjonene som beskrives her, gjelder ikke for alle maskiner. Les alltid informasjonen i maskinhåndboken.

Med touch-probe-systemet og verktøymålingssyklusene til TNC måler du verktøyene automatisk. TNC lagrer korreksjonsverdiene for lengde og radius i det sentrale verktøyminnet TOOL.T, og de beregnes automatisk ved slutten av probesyklusen. Du har tilgang til følgende oppmålingstyper:

- Verktøyoppmåling når verktøyet er i ro
- Verktøyoppmåling når verktøyet roterer
- Enkelskjæringsoppmåling

Syklusene for verktøyoppmåling programmerer du ved hjelp av tasten TOUCH PROBE i driftsmodusen Lagre/rediger program. Du har tilgang til følgende sykluser:

| Syklus                                         | Nytt format | Gammelt format | Side     |
|------------------------------------------------|-------------|----------------|----------|
| Kalibrer TT, syklus 30 og 480                  | 480         | 30 Jai (1)     | Side 513 |
| Kalibrer ledningsfri TT 449, syklus 484        | 484         |                | Side 515 |
| Mål verktøylengde, syklus 31 og 481            | 481         | 31<br>         | Side 516 |
| Mål verktøyradius, syklus 32 og 482            | 482         | 32             | Side 518 |
| Mål verktøylengde og -radius, syklus 33 og 483 | 483         | 33             | Side 520 |



Oppmålingssyklusene fungerer bare når det sentrale verktøyminnet TOOL.T er aktivert.

Før du begynner å arbeide med oppmålingssyklusene, må du angi alle nødvendige data i det sentrale verktøyminnet. Du må også hente frem det verktøyet som skal måles opp, ved hjelp av TOOL CALL.

Du kan også måle opp verktøy når arbeidsplanet er dreid.

# Forskjeller mellom syklusene 31 til 33 og 481 til 483

Funksjonsomfanget og syklusforløpet er absolutt identisk. Det finnes bare to forskjeller mellom syklusene 31 til 33 og 481 til 483:

- Syklusene 481 til 483 er også tilgjengelige i DIN/ISO under G481 til G483.
- De nye syklusene bruker den faste parameteren Q199 for målestatusen i stedet for en valgfri parameter Q199

### Innstille maskinparametre



Probemating fra MP6520 brukes ved oppmåling når spindelen står i ro.

Når verktøyet roterer ved oppmåling, beregner TNC spindelturtallet og probematingen automatisk.

Slik beregnes spindelturtallet:

n = MP6570 / (r • 0,0063) med

n Turtall [o/min] MP6570 Maks. tillatt omløpshastighet [m/min] r Aktiv verktøyradius [mm]

Slik beregnes probematingen:

v = måletoleranse • n med

| v             | probemating [mm/min]                   |
|---------------|----------------------------------------|
| Måletoleranse | Måletoleranse [mm], avhengig av MP6507 |
| n             | Turtall [o/min]                        |



Med MP6507 kan du stille inn beregningen av probematingen:

### MP6507=0:

Måletoleransen endres ikke, uavhengig av verktøyradiusen. Hvis verktøyet er svært stort, reduseres probematingen til null. Hvis den totale omløpshastigheten (MP6570) og den tillatte toleransen (MP6510) defineres med lave verdier, vil du merke denne effekten tidlig.

### MP6507=1:

Måletoleransen endres med tiltagende verktøyradius. Dette gjør at probematingen blir tilstrekkelig også ved store verktøyradier. Slik endres måletoleransen etter følgende tabell:

| Verktøyradius | Måletoleranse |
|---------------|---------------|
| inntil 30 mm  | MP6510        |
| 30 til 60 mm  | 2 • MP6510    |
| 60 til 90 mm  | 3 • MP6510    |
| 90 til 120 mm | 4 • MP6510    |

### MP6507=2:

Probematingen holder seg konstant, men målefeilen vokser lineært med den tiltakende verktøyradiusen:

Måletoleranse = (r • MP6510)/ 5 mm) med

| r      | Aktiv verktøyradius [mm] |
|--------|--------------------------|
| MP6510 | Maks, tillatt målefeil   |



### Inndata i verktøytabellen TOOL.T

| Fork.                | Inndata                                                                                                                                                                         | Dialog                         |
|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|
| CUT                  | Antall verktøyskjær (maks. 20 skjær)                                                                                                                                            | Antall skjær?                  |
| LTOL                 | Tillatt avvik fra verktøylengden L for slitasjeregistrering. Hvis den<br>angitte verdien overskrides, sperrer TNC verktøyet (status L).<br>Inndataområde: 0 til 0,9999 mm       | Slitetoleranse: Lengde?        |
| RTOL                 | Tillatt avvik fra verktøyradius R for slitasjeregistrering. Verktøyet<br>sperres (status L) hvis den angitte verdien overskrides.<br>Inndataområde: 0 til 0,9999 mm             | Slitetoleranse: Radius?        |
| DIRECT.<br>(DIREKTE) | Verktøyets skjæreretning ved oppmåling med dreiende verktøy                                                                                                                     | Skjæreretning (M3 = –)?        |
| TT:R-OFFS            | Lengdeoppmåling: Verktøyets forskyvning mellom midtpunktet på<br>nålen og midtpunktet på verktøyet. Forhåndsinnstilling:<br>Verktøyradius R (NO ENT-tasten beregner <b>R</b> ). | Radius for verktøyforskyvning? |
| TT:L-OFFS            | Radiusoppmåling: Verktøyets ekstra forskyvning i forhold til<br>MP6530, mellom den øvre kanten på nålen og den nedre kanten<br>på verktøyet. Forhåndsinnstilling: 0             | Lengde for verktøyforskyvning? |
| LBREAK               | Tillatt avvik fra verktøylengden L for registrering av brudd. Hvis den<br>angitte verdien overskrides, sperrer TNC verktøyet (status L).<br>Inndataområde: 0 til 0,9999 mm      | Bruddtoleranse: Lengde?        |
| RBREAK               | Tillatt avvik fra verktøyradius R for registrering av brudd. Verktøyet<br>sperres (status L) hvis den angitte verdien overskrides.<br>Inndataområde: 0 til 0,9999 mm            | Bruddtoleranse: Radius?        |

### Eksempler på inndata for vanlige verktøytyper

| Verktøytype                               | CUT                | TT:R-OFFS                                                                                                       | TT:L-OFFS                                                                                                         |
|-------------------------------------------|--------------------|-----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| Bor                                       | – (ingen funksjon) | 0 (det er ikke nødvendig med<br>forskyvning fordi det er<br>borspissene som skal måles)                         |                                                                                                                   |
| <b>Sylinderfres</b> med diameter 19 mm    | 4 (4 skjær)        | 0 (det er ikke nødvendig med<br>forskyvning fordi<br>verktøydiameteren er mindre<br>enn platediameteren til TT) | 0 (ved radiusoppmåling er<br>det ikke nødvendig med<br>ekstra forskyvning.<br>Forskyvningen fra MP6530<br>brukes) |
| <b>Sylinderfres</b> med diameter<br>19 mm | 4 (4 skjær)        | R (forskyvning er nødvendig<br>fordi verktøydiameteren er<br>større enn platediameteren til<br>TT)              | 0 (ved radiusoppmåling er<br>det ikke nødvendig med<br>ekstra forskyvning.<br>Forskyvningen fra MP6530<br>brukes) |
| Radiusfres                                | 4 (4 skjær)        | 0 (det er ikke nødvendig med<br>forskyvning fordi det er<br>sydpolen på kulen som skal<br>måles)                | 5 (definer alltid<br>verktøyradiusen som<br>forskyvning, slik at ikke<br>diameteren måles i<br>radiusen)          |

511

### Vise måleresultater

l den ekstra statusvisningen kan du vise resultatene fra verktøyoppmålingen (i maskinens driftsmoduser). På venstre side ser du programmet, og på høyre side ser du måleresultatene. Måleverdier som overskrider den tillatte slitasjetoleransen, er merket med \*. Måleverdier som overskrider den tillatte bruddtoleransen, er merket med B.

| Progr                                                                                                                            | amkjør                                                                                             | ing bl             | okkrek                            | ke                          |                  |       | Li<br>pi          | agre<br>rogram |
|----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|--------------------|-----------------------------------|-----------------------------|------------------|-------|-------------------|----------------|
| 19 L IX-1<br>20 CYCL DE<br>21 CYCL DE<br>22 STOP<br>23 L Z+50<br>24 L X-50<br>25 CALL LE<br>25 CALL LE<br>26 PLANE F<br>27 LBL 0 | RØ FMAX<br>EF 11.0 SKALE<br>EF 11.1 SCL Ø<br>0 RØ FMAX<br>0 Y+20 RØ FM<br>9L 15 REPS<br>RESET STAY | RING<br>9995<br>AX | PGM<br>T:5<br>DOC:<br>M<br>M<br>D | PAL   LBI<br>IN<br>AX<br>YN | _   CYC  <br>D10 | M POS | TOOL TT           |                |
|                                                                                                                                  |                                                                                                    |                    |                                   |                             |                  |       |                   |                |
|                                                                                                                                  | 0% S-                                                                                              | IST<br>Nal LIMIT 1 | 13:24                             |                             |                  |       |                   | ě 🖶 –          |
| X                                                                                                                                | -10.3                                                                                              | 58 Y               | -347.                             | 642                         | z                | + 1 0 | 0.25              | 5100×          |
| ₩B                                                                                                                               | +0.0                                                                                               | 00 + C             | +0.                               | 000                         |                  |       |                   |                |
| ·≞ 🔬                                                                                                                             | ⊕: 20                                                                                              | тэ                 | ZS                                | 1875                        | S 1<br>F 0       | 0.00  | ) ()<br>  M 5 / E | s -            |
| STATUS<br>OVERSIKT                                                                                                               | STATUS<br>POS.VISN.                                                                                | STATUS<br>VERKTØY  | STATUS<br>KOORDINAT               |                             |                  |       |                   |                |

i

# 19.2 Kalibrere TT (syklus 30 eller 480, DIN/ISO: G480)

### Syklusforløp

Du kalibrerer TT med målesyklusen TCH PROBE 30 eller TCH PROBE 480 (se også Forskjeller mellom syklusene 31 til 33 og 481 til 483 på side 509). Kalibreringen går automatisk. Senterforskyvningen til kalibreringsverktøyet bestemmes også automatisk. Det foregår ved at spindelen dreies 180° halvveis i kalibreringssyklusen.

Du må bruke en helt sylinderformet del som kalibreringsverktøy, f.eks. en sylinderstift. Kalibreringsverdiene lagres av TNC og brukes under senere verktøyoppmålinger.



Kalbreringsverktøyet skal ha en diameter som er større enn 15 mm, og stå ca 50 mm ut fra spennpatronen. I denne konstellasjonen oppstår en deformasjon på 0,1 µm per 1 N probekraft.

### Legg merke til følgende under programmeringen!



Maskinparameteren 6500 avgjør hvordan kalibreringssyklusen fungerer. Les alltid informasjonen i maskinhåndboken.

Du må angi nøyaktig radius og lengde på kalibreringsverktøyet i verktøytabellen TOOL.T før du kalibrerer.

Posisjonen til TT i maskinens arbeidsrom må være fastsatt i maskinparameterne 6580.0 til 6580.2.

Hvis du endrer én av maskinparameterne 6580.0 til 6580.2, må du kalibrere på nytt.

Ved kalibrering må du passe på at touch-proben ikke har noe oppspenningsutstyr. Anbefaling: Gjør plass til dobbel diameter for kalibreringsverktøyet.

### **Syklusparametere**



Sikker høyde: Angi en posisjon i spindelaksen som utelukker kollisjon med emner eller spennjern. Sikker høyde refererer til det aktive nullpunktet til emnet. Hvis du har angitt en så liten sikker høyde at verktøyspissen ligger under den øvre kanten på platen, blir kalibreringsverktøyet automatisk posisjonert over platen (sikkerhetssone fra MP6540). Inndataområde -99999,9999 til 99999,9999 alternativ PREDEF Beispiel: NC-blokker, gammelt format

6 TOOL CALL 1 Z 7 TCH PROBE 30.0 KALIBRERE TT 8 TCH PROBE 30.1 HØYDE: +90

Beispiel: NC-blokker, nytt format

6 TOOL CALL 1 Z 7 TCH PROBE 480 KALIBRERE TT Q260=+100 ;SIKKER HØYDE

1

# 19.3 Kalibrer ledningsfri TT 449 (syklus 484, DIN/ISO: G484)

### Grunnleggende

Med syklus 484 kan du kalibrere den ledningsfrie infrarøde bord-touchproben TT 449. Kalibreringen skjer ikke automatisk, siden posisjonen til bord-touch-proben på maskinbordet ikke er definert.

### Syklusforløp

- Bytte kalibreringsverktøy
- Definere og starte kalibreringssyklus
- Posisjoner kalibreringsverktøyet manuelt over midten av touchproben, og følg anvisningene på skjermen. Pass på at kalibreringsverktøyet står over måleflaten til probeelementet.

Kalibreringen skjer halvautomatisk. TNC beregner også senterforskyvningen til kalibreringsverktøyet. Det foregår ved at spindelen dreies 180° halvveis i kalibreringssyklusen.

Du må bruke en helt sylinderformet del som kalibreringsverktøy, f.eks. en sylinderstift. Kalibreringsverdiene lagres og brukes under senere verktøyoppmålinger.



Kalbreringsverktøyet skal ha en diameter som er større enn 15 mm, og stå ca 50 mm ut fra spennpatronen. I denne konstellasjonen oppstår en deformasjon på 0,1 µm per 1 N probekraft.

### Legg merke til følgende under programmeringen!



Maskinparameteren 6500 avgjør hvordan kalibreringssyklusen fungerer. Les alltid informasjonen i maskinhåndboken.

Du må angi nøyaktig radius og lengde på kalibreringsverktøyet i verktøytabellen TOOL.T før du kalibrerer.

Hvis du endrer posisjonen til TT på bordet, må du kalibrere på nytt.

### Syklusparametere

Syklus 484 har ingen syklusparametere.

# 19.4 Måle opp verktøylengde (syklus 31 eller 481, DIN/ISO: G481)

### Syklusforløp

For å måle opp verktøylengden må du programmere målesyklusen TCH PROBE 31 eller TCH PROBE 481 (se også Forskjeller mellom syklusene 31 til 33 og 481 til 483 på side 509). Ved hjelp av inndataparameterne kan du bestemme verktøylengden på tre forskjellige måter:

- Når diameteren på verktøyet er større enn diameteren på måleflaten til TT, kan du måle opp med roterende verktøy
- Når diameteren på verktøyet er mindre enn diameteren på måleflaten til TT, kan du måle opp med verktøyet i ro. Det samme gjelder når du vil bestemme lengden til bor eller radiusfreser.
- Når diameteren på verktøyet er større enn diameteren på måleflaten til TT, kan du utføre en enkelskjæringsoppmåling med verktøyet i ro

### Oppmåling med roterende verktøy

For å beregne det lengste skjæret kjøres verktøyet roterende på måleflaten til TT. Verktøyet forskyves i forhold til touch-probemidtpunktet. Du programmerer forskyvningen i verktøytabellen under verktøyforskyvning: Radius (**TT: R-OFFS**).

### Oppmåling med verktøy i ro (f.eks. bor)

Verktøyet som skal måles opp, kjøres over midten av måleflaten. Deretter kjører det med spindelen i ro mot måleflaten til TT. For denne typen oppmåling angir du 0 som radius for verktøyforskyvningen (**TT: R-OFFS**) i verktøytabellen.

### Enkelskjæringsoppmåling

Verktøyet som skal måles opp, forposisjoneres ved siden av touchprobe-hodet. Frontflaten på verktøyet befinner seg da under den øvre kanten på touch-probe-hodet, slik det er fastsatt i MP6530. Du kan fastsette en ekstra forskyvning under Verktøyforskyvning: Lengde (**TT: L-OFFS**) i verktøytabellen. Når verktøyet roterer, prober TNC radialt. Slik bestemmes startvinkelen for enkelskjæringsoppmåling. Deretter måles lengden på alle skjærene ved at spindelorienteringen endres. For denne målingen må du programmere MÅLING AV SKJÆR i SYKLUSEN TCH PROBE 31 = 1.

### Legg merke til følgende under programmeringen!



Før du måler verktøy for første gang, må du legge inn den omtrentlige radiusen, den omtrentlige lengden, antall skjær og skjæreretningen for det aktuelle verktøyet i verktøytabellen TOOL.T.

Du kan utføre enkelskjæringsoppmåling for verktøy med **inntil 99 skjær**. I statusvisningen viser TNC måleverdiene for maksimalt 24 skjær



# 9.4 Måle opp verktøylengde (syklus 31 eller 481, DIN/ISO: G481

### Syklusparametere



Måle verktøy=0 / kontrollere verktøy=1: Bestem om du skal måle opp et verktøy for første gang, eller om du skal kontrollere et verktøy som allerede er målt. Når du måler opp et verktøy for første gang, overskrives verktøylengden L i det sentrale verktøyminnet TOOL.T. Deltaverdien DL settes til 0. Når du kontrollerer et verktøy, blir den målte lengden sammenlignet med verktøylengden L i TOOL.T. Avviket beregnes med riktig fortegn og angis som deltaverdi DL i TOOL.T. Avvikene er også tilgjengelige i Q-parameteren Q115. Verktøyet sperres hvis deltaverdien er større enn den tillatte slitasje- eller bruddtoleransen for verktøylengden (status L i TOOL.T).

 Parameternr. for resultat?: Parameternummer som TNC lagrer målestatusen i:
0,0: Verktøyet er innenfor toleransen
1,0: Verktøyet er slitt (LTOL overskredet)
2,0: Verktøyet er brukket (LBREAK overskredet). Hvis du ikke vil bearbeide måleresultatet videre i programmet, må du bekrefte dialogspørsmålet med tasten NO ENT

- Sikker høyde: Angi en posisjon i spindelaksen som utelukker kollisjon med emner eller spennjern. Sikker høyde refererer til det aktive nullpunktet til emnet. Hvis du har angitt en så liten sikker høyde at verktøyspissen ligger under den øvre kanten på platen, blir verktøyet automatisk posisjonert over platen (sikkerhetssone fra MP6540). Inndataområde -99999,9999 til 99999,9999 alternativ PREDEF
- Skjæreoppmåling 0=Nei / 1=Ja: Bestem om det skal utføres en enkelskjæringsoppmåling (maks. 99 skjær kan måles)

Beispiel: Første oppmåling med roterende verktøy, gammelt format

| 6 TOOL CALL 12 Z                  |      |
|-----------------------------------|------|
| 7 TCH PROBE 31.0 VERKTOEYLENGDE   |      |
| 8 TCH PROBE 31.1 KONTROLLERE: 0   |      |
| 9 TCH PROBE 31.2 HØYDE: +120      |      |
| 10 TCH PROBE 31.3 SKJÆREOPPMÅLING | i: 0 |

Beispiel: Kontroll med enkelskjæringsoppmåling, lagre status i Ω5, gammelt format

| 6 TOOL CALL 12 Z                     |
|--------------------------------------|
| 7 TCH PROBE 31.0 VERKTOEYLENGDE      |
| 8 TCH PROBE 31.1 KONTROLLERE: 1 Q5   |
| 9 TCH PROBE 31.2 HØYDE: +120         |
| 10 TCH PROBE 31.3 SKJÆREOPPMÅLING: 1 |

### Beispiel: NC-blokker, nytt format

| 6 | TOOL CALL 12 Z   |                                          |
|---|------------------|------------------------------------------|
| 7 | TCH PROBE 481 VE | RKTOEYLENGDE                             |
|   | QKONTROLLER=1    | ;340                                     |
|   | Q260=+100 ;SI    | KKER HØYDE                               |
|   | 03/11-1 •SK      | Ι ΓΕ Ο Ε Ο Ε Ο Ε Ο Ε Ο Ε Ο Ε Ο Ε Ο Ε Ο Ε |

# 19.5 Måle opp verktøyradius (syklus 32 eller 482, DIN/ISO: G482)

### Syklusforløp

Du må programmere målesyklusen TCH PROBE 32 eller TCH PROBE 482 (se også Forskjeller mellom syklusene 31 til 33 og 481 til 483 på side 509) for å måle opp verktøyradius. Ved hjelp av inndataparameterne kan du bestemme verktøyradiusen på to forskjellige måter:

- Oppmåling når verktøyet roterer
- Oppmåling når verktøyet roterer med påfølgende enkelskjæringsoppmåling

Verktøyet som skal måles opp, forposisjoneres ved siden av touchprobe-hodet. Frontflaten på fresen befinner seg da under den øvre kanten på touch-probe-hodet, slik det er fastsatt i MP6530. TNC prober radialt når verktøyet roterer. Hvis du i tillegg vil utføre en enkelskjæringsoppmåling, måles radiene til alle skjærene ved hjelp av spindelorienteringen.

### Legg merke til følgende under programmeringen!



Før du måler verktøy for første gang, må du legge inn den omtrentlige radiusen, den omtrentlige lengden, antall skjær og skjæreretningen for det aktuelle verktøyet i verktøytabellen TOOL.T.

Sylinderformede verktøy med diamantoverflater kan måles opp når spindelen står i ro. For å gjøre det må du definere antall skjær CUT med 0 i verktøytabellen og tilpasse maskinparameter 6500. Les alltid informasjonen i maskinhåndboken.

Du kan utføre enkelskjæringsoppmåling for verktøy med **inntil 99 skjær**. I statusvisningen viser TNC måleverdiene for maksimalt 24 skjær



# 9.5 Måle opp verktøyradius (syklus 32 eller 482, DIN/ISO: G482)

### **Syklusparametere**



Måle verktøv=0 / kontrollere verktøv=1: Bestem om du skal måle opp et verktøy for første gang, eller om du skal kontrollere et verktøv som allerede er målt. Når du måler opp et verktøy for første gang, overskrives verktøyradiusen R i det sentrale verktøvminnet TOOL.T. Deltaverdien DR settes til 0. Når du kontrollerer et verktøy, blir den målte radiusen sammenlignet med verktøyradiusen R i TOOL.T. Avviket beregnes med riktig fortegn og angis som deltaverdi DR i TOOL.T. Avviket er også tilgjengelig i Q-parameteren Q116. Verktøyet sperres hvis deltaverdien er større enn den tillatte slitasje- eller bruddtoleransen for verktøyradiusen (status L i TOOL.T)

**Parameternr. for resultat?**: Parameternummer som TNC lagrer målestatusen i: 0,0: Verktøyet er innenfor toleransen **1.0**: Verktøvet er slitt (**RTOL** overskredet) 2,0: Verktøyet er brukket (RBREAK overskredet). Hvis du ikke vil bearbeide måleresultatet videre i programmet, må du bekrefte dialogspørsmålet med tasten NO ENT

- **Sikker høyde**: Angi en posisjon i spindelaksen som utelukker kollision med emner eller spenniern. Sikker høyde refererer til det aktive nullpunktet til emnet. Hvis du har angitt en så liten sikker høyde at verktøyspissen ligger under den øvre kanten på platen, blir verktøyet automatisk posisjonert over platen (sikkerhetssone fra MP6540). Inndataområde -99999,9999 til 99999,9999 alternativ PREDEF
- Skjæreoppmåling 0=Nei / 1=Ja: Bestem om det i tillegg skal utføres en enkelskjæringsoppmåling (maks. 99 skjær kan måles) eller ikke

Beispiel: Første oppmåling med roterende verktøy, gammelt format

| 6 TOOL CALL 12 Z                   |   |
|------------------------------------|---|
| 7 TCH PROBE 32.0 VERKTOEYRADIUS    |   |
| 8 TCH PROBE 32.1 KONTROLLERE: 0    |   |
| 9 TCH PROBE 32.2 HØYDE: +120       |   |
| 10 TCH PROBE 32.3 SKJÆREOPPMÅLING: | 0 |

Beispiel: Kontroll med enkelskjæringsoppmåling, lagre status i Q5, gammelt format

| 6 TOOL CALL 12 Z                     |
|--------------------------------------|
| 7 TCH PROBE 32.0 VERKTOEYRADIUS      |
| 8 TCH PROBE 32.1 KONTROLLERE: 1 Q5   |
| 9 TCH PROBE 32.2 HØYDE: +120         |
| 10 TCH PROBE 32.3 SKJÆREOPPMÅLING: 1 |

### Beispiel: NC-blokker, nytt format

| 6 | TOOL CALL 12  | Z                      |
|---|---------------|------------------------|
| 7 | TCH PROBE 482 | 2 VERKTOEYRADIUS       |
|   | QKONTROLLE    | R=1;340                |
|   | Q260=+100     | ;SIKKER HØYDE          |
|   | 02/11-1       | • \$ κ 1 πρεαρρμάι της |



# 19.6 Komplett verktøyoppmåling (syklus 33 eller 483, DIN/ISO: G483)

### Syklusforløp

For en komplett oppmåling av verktøyet (lengde og radius), må du programmere målesyklusen TCH PROBE 33 eller TCH PROBE 483 (se også Forskjeller mellom syklusene 31 til 33 og 481 til 483 på side 509). Denne syklusen er spesielt egnet til å måle opp verktøyet for første gang. Du sparer tid i forhold til å måle opp lengde og radius hver for seg. Ved hjelp av inndataparameterne kan du måle opp verktøyet på to forskjellige måter:

- Oppmåling når verktøyet roterer
- Oppmåling når verktøyet roterer med påfølgende enkelskjæringsoppmåling

Oppmålingsprosessen er fast programmert. Først måles verktøyradiusen opp, deretter lengden. Oppmålingsprosessen tilsvarer oppmålingssyklus 31 og 32.

### Legg merke til følgende under programmeringen!

Før du måler verktøy for første gang, må du legge inn den omtrentlige radiusen, den omtrentlige lengden, antall skjær og skjæreretningen for det aktuelle verktøyet i verktøytabellen TOOL.T.

Sylinderformede verktøy med diamantoverflater kan måles opp når spindelen står i ro. For å gjøre det må du definere antall skjær CUT med 0 i verktøytabellen og tilpasse maskinparameter 6500. Les alltid informasjonen i maskinhåndboken.

Du kan utføre enkelskjæringsoppmåling for verktøy med **inntil 99 skjær**. I statusvisningen viser TNC måleverdiene for maksimalt 24 skjær

# Syklusparametere



Måle verktøy=0 / kontrollere verktøy=1: Bestem om du skal måle opp et verktøy for første gang, eller om du skal kontrollere et verktøy som allerede er målt. Når du måler opp et verktøy for første gang, overskrives verktøyradiusen R og verktøylengden L i det sentrale verktøyminnet TOOL.T. Deltaverdiene DR og DL settes til 0. Når du kontrollerer et verktøy, blir de målte verktøydataene sammenlignet med verktøydataene i TOOL.T. Avvikene beregnes med riktig fortegn og angis som delta-verdiene DR og DL i TOOL.T. Avvikene er også tilgjengelige i Qparameterne Q115 og Q116. Verktøyet sperres hvis én av deltaverdiene er større enn den tillatte slitasjeeller bruddtoleransen (status L i TOOL.T)

 Parameternr. for resultat?: Parameternummer som TNC lagrer målestatusen i:
0,0: Verktøyet er innenfor toleransen
1,0: Verktøyet er slitt (LTOL og/eller RTOL er overskredet)
2,0: Verktøyet er brukket (LBREAK og/eller RBREAK

overskredet). Hvis du ikke vil bearbeide måleresultatet videre i programmet, må du bekrefte dialogspørsmålet med tasten NO ENT

- Sikker høyde: Angi en posisjon i spindelaksen som utelukker kollisjon med emner eller spennjern. Sikker høyde refererer til det aktive nullpunktet til emnet. Hvis du har angitt en så liten sikker høyde at verktøyspissen ligger under den øvre kanten på platen, blir verktøyet automatisk posisjonert over platen (sikkerhetssone fra MP6540). Inndataområde -99999,9999 til 99999,9999 alternativ PREDEF
- Skjæreoppmåling 0=Nei / 1=Ja: Bestem om det i tillegg skal utføres en enkelskjæringsoppmåling (maks. 99 skjær kan måles) eller ikke

Beispiel: Første oppmåling med roterende verktøy, gammelt format

| 6 TOOL CALL 12 Z                  |     |
|-----------------------------------|-----|
| 7 TCH PROBE 33.0 MAALE VERKTOEY   |     |
| 8 TCH PROBE 33.1 KONTROLLERE: 0   |     |
| 9 TCH PROBE 33.2 HØYDE: +120      |     |
| 10 TCH PROBE 33.3 SKJÆREOPPMÅLING | : 0 |

Beispiel: Kontroll med enkelskjæringsoppmåling, lagre status i Q5, gammelt format

| 6 TOOL CALL 12 Z                     |
|--------------------------------------|
| 7 TCH PROBE 33.0 MAALE VERKTOEY      |
| 8 TCH PROBE 33.1 KONTROLLERE: 1 Q5   |
| 9 TCH PROBE 33.2 HØYDE: +120         |
| 10 TCH PROBE 33.3 SKJÆREOPPMÅLING: 1 |

Beispiel: NC-blokker, nytt format

| 6 | TOOL CALL 12 | 2 Z               |
|---|--------------|-------------------|
| 7 | TCH PROBE 48 | 33 MAALE VERKTOEY |
|   | QKONTROLL    | ER=1;340          |
|   | Q260=+100    | ;SIKKER HØYDE     |
|   | 0341=1       | • SK1ÆRFOPPMÅLTNG |

19.6 Komplett verktøyoppmåling (syklus 33 eller 483, DIN/ISO: G483)

i

# Oversiktstabell

### Bearbeidingssykluser

| Syklus-<br>nummer | Syklusbetegnelse                | DEF-<br>aktiv | CALL-<br>aktiv | Side     |
|-------------------|---------------------------------|---------------|----------------|----------|
| 7                 | Nullpunktsforskyvning           |               |                | Side 281 |
| 8                 | Speiling                        |               |                | Side 289 |
| 9                 | Forsinkelse                     |               |                | Side 311 |
| 10                | Rotering                        |               |                | Side 291 |
| 11                | Skalering                       |               |                | Side 293 |
| 12                | Programanrop                    |               |                | Side 312 |
| 13                | Spindelorientering              |               |                | Side 314 |
| 14                | Konturdefinisjon                |               |                | Side 187 |
| 19                | Dreie arbeidsplan               |               |                | Side 297 |
| 20                | Konturdata SL II                |               |                | Side 192 |
| 21                | Forboring SL II                 |               |                | Side 194 |
| 22                | Utfresing SL II                 |               |                | Side 196 |
| 23                | Slettfresing dybde SL II        |               |                | Side 200 |
| 24                | Slettfresing side SL II         |               |                | Side 202 |
| 25                | Konturkjede                     |               |                | Side 206 |
| 26                | Aksespesifikk skalering         |               |                | Side 295 |
| 27                | Sylindermantel                  |               |                | Side 229 |
| 28                | Sylindermantel notfresing       |               |                | Side 232 |
| 29                | Sylindermantel steg             |               |                | Side 235 |
| 30                | Kjøre 3D-data                   |               |                | Side 263 |
| 32                | Toleranse                       |               |                | Side 315 |
| 39                | Sylindermantel, utvendig kontur |               |                | Side 238 |
| 200               | Boring                          |               |                | Side 75  |
| 201               | Sliping                         |               |                | Side 77  |
| 202               | Utboring                        |               |                | Side 79  |
| 203               | Universalboring                 |               |                | Side 83  |



| Syklus-<br>nummer | Syklusbetegnelse                       | DEF-<br>aktiv | CALL-<br>aktiv | Side     |
|-------------------|----------------------------------------|---------------|----------------|----------|
| 204               | Senking bakover                        |               |                | Side 87  |
| 205               | Universaldypboring                     |               |                | Side 91  |
| 206               | Gjengeboring med Rigid Tapping, ny     |               |                | Side 107 |
| 207               | Gjengeboring uten Rigid Tapping, ny    |               |                | Side 109 |
| 208               | Borefresing                            |               |                | Side 95  |
| 209               | Gjengeboring med sponbrudd             |               |                | Side 112 |
| 220               | Punktmal på sirkel                     |               |                | Side 175 |
| 221               | Punktmal på linjer                     |               |                | Side 178 |
| 225               | Gravering                              |               |                | Side 319 |
| 230               | Planfresing                            |               |                | Side 265 |
| 231               | Skråflate                              |               |                | Side 267 |
| 232               | Planfresing                            |               |                | Side 271 |
| 240               | Sentrering                             |               |                | Side 73  |
| 241               | Kanonboring                            |               |                | Side 98  |
| 247               | Sette nullpunkt                        |               |                | Side 288 |
| 251               | Komplett bearbeiding rektangulær lomme |               |                | Side 141 |
| 252               | Komplett bearbeiding sirkellomme       |               |                | Side 146 |
| 253               | Notfresing                             |               |                | Side 150 |
| 254               | Avrundet not                           |               |                | Side 156 |
| 256               | Komplett bearbeiding firkanttapp       |               |                | Side 162 |
| 257               | Komplett bearbeiding sirkeltapp        |               |                | Side 166 |
| 262               | Gjengefresing                          |               |                | Side 117 |
| 263               | Forsenkningsgjengefresing              |               |                | Side 120 |
| 264               | Boregjengefresing                      |               |                | Side 124 |
| 265               | Heliks-boregjengefresing               |               |                | Side 128 |
| 267               | Fresing utvendig gjenge                |               |                | Side 132 |
| 270               | Konturkjededata                        |               |                | Side 204 |
| 275               | Konturnot, trokoidal                   |               |                | Side 210 |
| 290               | Interpol.dreiing                       |               |                | Side 323 |

i

### Touch-probe-sykluser

| Syklus-<br>nummer | Syklusbetegnelse                                   | DEF-<br>aktiv | CALL-<br>aktiv | Side     |
|-------------------|----------------------------------------------------|---------------|----------------|----------|
| 0                 | Referanseplan                                      |               |                | Side 420 |
| 1                 | Nullpunkt polar                                    |               |                | Side 421 |
| 2                 | TS kalibrere radius                                |               |                | Side 463 |
| 3                 | Måle                                               |               |                | Side 465 |
| 4                 | Måle 3D                                            |               |                | Side 467 |
| 9                 | TS kalibrere lengde                                |               |                | Side 464 |
| 30                | Kalibrere TT                                       |               |                | Side 513 |
| 31                | Måle/kontrollere verktøylengde                     |               |                | Side 516 |
| 32                | Måle/kontrollere verktøyradius                     |               |                | Side 518 |
| 33                | Måle/kontrollere verktøylengde og -radius          |               |                | Side 520 |
| 400               | Grunnrotering over to punkter                      |               |                | Side 340 |
| 401               | Grunnrotering over to boringer                     |               |                | Side 343 |
| 402               | Grunnrotering over to tapper                       |               |                | Side 346 |
| 403               | Kompensere skjev posisjon med dreieakse            |               |                | Side 349 |
| 404               | Fastsette grunnrotering                            |               |                | Side 353 |
| 405               | Kompensere skjev posisjon med C-akse               |               |                | Side 354 |
| 408               | Fastsette nullpunkt midt i not (FCL 3-funksjon)    |               |                | Side 363 |
| 409               | Fastsette nullpunkt midt i steg (FCL 3-funksjon)   |               |                | Side 367 |
| 410               | Fastsette nullpunkt for firkant, innvendig         |               |                | Side 370 |
| 411               | Fastsette nullpunkt for firkant, utvendig          |               |                | Side 374 |
| 412               | Fastsette nullpunkt for sirkel, innvendig (boring) |               |                | Side 378 |
| 413               | Fastsette nullpunkt for sirkel, utvendig (tapp)    |               |                | Side 382 |
| 414               | Fastsette nullpunkt for hjørne, utvendig           |               |                | Side 386 |
| 415               | Fastsette nullpunkt for hjørne, innvendig          |               |                | Side 391 |
| 416               | Fastsette nullpunkt for hullsirkel, midten         |               |                | Side 395 |
| 417               | Fastsette nullpunkt for touch-probe-akse           |               |                | Side 399 |
| 418               | Fastsette nullpunkt for fire boringer, i midten    |               |                | Side 401 |
| 419               | Fastsette nullpunkt for separate, valgbare akser   |               |                | Side 405 |



| Syklus-<br>nummer | Syklusbetegnelse                                                       | DEF-<br>aktiv | CALL-<br>aktiv | Side     |
|-------------------|------------------------------------------------------------------------|---------------|----------------|----------|
| 420               | Måle emne, vinkel                                                      |               |                | Side 423 |
| 421               | Måle emne, sirkel, innvendig (boring)                                  |               |                | Side 426 |
| 422               | Måle emne, sirkel, utvendig (tapp)                                     |               |                | Side 430 |
| 423               | Måle emne, firkant, innvendig                                          |               |                | Side 433 |
| 424               | Måle emne, firkant, utvendig                                           |               |                | Side 437 |
| 425               | Måle emne, bredde, innvendig (not)                                     |               |                | Side 441 |
| 426               | Måle emne, bredde, utvendig (fjær)                                     |               |                | Side 444 |
| 427               | Måle emne, separat valgbar akse                                        |               |                | Side 447 |
| 430               | Måle emne, hullsirkel                                                  |               |                | Side 450 |
| 431               | Måle emne, plan                                                        |               |                | Side 453 |
| 440               | Måle akseforskyvning                                                   |               |                | Side 469 |
| 441               | Hurtigprobe: fastsette globale touch-probe-parametere (FCL 2-funksjon) |               |                | Side 472 |
| 450               | KinematicsOpt: lagre kinematikk (valg)                                 |               |                | Side 480 |
| 451               | KinematicsOpt: måle kinematikk (valg)                                  |               |                | Side 482 |
| 452               | KinematicsOpt: kompensasjon av forhåndsinnstilling (valg)              |               |                | Side 482 |
| 460               | TS kalibrering: Radius- og lengdekalibrering på en kalibreringskule    |               |                | Side 474 |
| 480               | Kalibrere TT                                                           |               |                | Side 513 |
| 481               | Måle/kontrollere verktøylengde                                         |               |                | Side 516 |
| 482               | Måle/kontrollere verktøyradius                                         |               |                | Side 518 |
| 483               | Måle/kontrollere verktøylengde og -radius                              |               |                | Side 520 |
| 484               | Kalibrere infrarød-TT                                                  |               |                | Side 515 |

### Symbole

3D-touch-prober ... 44, 330

### Α

Automatisk verktøymåling ... 511

### В

Bearbeidingsmal ... 59 Borefresing ... 95 Boregjengefresing ... 124 Boresykluser ... 72 Boring ... 75, 83, 91 nedsenket startpunkt ... 94, 99

### D

Definere syklus ... 50 Dreie arbeidsplan ... 297 Syklus ... 297 Veiledning ... 304 Dybdeboring nedsenket startpunkt ... 94, 99 Dybdeslettfresing ... 200 Dypboring ... 91, 98

### F

FCL-funksjon ... 9 Firkanttapp ... 162 Forhåndsinnstillingstabell ... 362 Forsenkningsgjengefresing ... 120 Forsinkelse ... 311

### G

Gjengeboring med Rigid Tapping ... 107 med sponbrudd ... 112 uten Rigid Tapping ... 109, 112 Gjengefresing innvendig ... 117 Gjengefresing utvendig ... 132 Gjengefresing, grunnleggende ... 115 Globale innstillinger ... 472 Gravering ... 319 Grunnrotering registrering under programkjøringen ... 338 sette direkte ... 353

### Н

Hardfresing ... 210 Heliks-boregjengefresing ... 128 Hullsirkel ... 175 Hurtigprobing ... 472 I Interpol.dreiing ... 323

### К

kalibrere 3D-touch-prober koblende ... 463, 464 Kalibrere touch-proben automatisk ... 474 Kalle opp syklus ... 51 Kalle opp program via syklus ... 312 KinematicsOpt ... 478 Kinematikkmåling lagre kinematikk ... 480 måle kinematikk ... 482, 497 Kinematikkoppmåling ... 478 forutsetninger ... 479 Hirth-fortanning ... 485 kalibreringsmetoder ... 488, 502, 504 måleposisjonsvalg ... 486 nøvaktighet ... 487 protokollfunksjon ... 481, 495, 506 slakk ... 489 valg av målepunkter ... 486 Kjøre 3D-data ... 263 Kompensere for emner som ligger skjevt Kompensere skråstilling av emnet med to boringer ... 343 med to sirkeltapper ... 346 ved å måle to punkter for en linje ... 340 via en roteringsakse ... 349, 354 Konturkiede ... 206 Konturkjede 3D ... 215 Konturkjededata ... 204 Kontursykluser ... 184 Koordinatomregning ... 280

### Μ

Maldefinisjon ... 59 Måle boring ... 426 Måle bredden innvendig ... 441 Måle bredden utvendig ... 444 Måle emner ... 414 Måle enkelte koordinater ... 447 Måle hullsirkel ... 450 Måle kinematikk ... 482 kompensasjon av forhåndsinnstilling ... 497

### Μ

Måle notbredde ... 441 Måle planvinkel ... 453 Måle rektangulær lomme ... 437 Måle rektangulær tapp ... 433 Måle sirkel innvendig ... 426 Måle sirkel utvendig ... 420 Måle steg utvendig ... 444 Måle varmeutvidelsen ... 469 Måle vinkel ... 423 Måle vinkel en på et plan ... 453 Måleresultater i Q-parametere ... 362, 417 Målestatus ... 417 Målestatus ... 417

### Ν

Nedsenket startpunkt ved boring ... 94, 99 Notfresing konturnot ... 210 skrubbing+slettfresing ... 150 Nullpunkt lagre i forhåndsinnstillingstabellen ... 362 lagre i nullpunktstabellen ... 362 Nullpunktsforskyvning i programmet ... 281 med nullpunktstabeller ... 282

### Ρ

Pålitelighetsområde ... 334 Planfresing ... 271 Posisjoneringslogikk ... 336 Probemating ... 335 Probesykluser for automatisk drift ... 332 Programanrop Protokollføre måleresultater ... 415 Punktmal Oversikt ... 174 på linjer ... 178 på sirkel ... 175 Punkttabeller ... 67

### R

Rektangulær lomme skrubbing+slettfresing ... 141 Repetert måling ... 334 Resultatparameter ... 362, 417 Rotering ... 291 Rund not skrubbing+slettfresing ... 156

i

# Index

S Senking bakover ... 87 Sentrering ... 73 Sette nullpunkt automatisk i probeakse ... 399 innvendig hjørne ... 391 midten av 4 boringer ... 401 midtpunkt i en hullsirkel ... 395 midtpunkt i en rektangulær lomme ... 370 midtpunkt på en rektangulær tapp ... 374 midtpunkt på en sirkelformet tapp ... 382 midtpunkt på en sirkellomme (boring) ... 378 utvendig hjørne ... 386 Sette nullpunktet automatisk ... 360 notsentrum ... 363 stegsentrum ... 367 Sette nullunktet automatisk i en vilkårlig akse ... 405 Sideslettfresing ... 202 Sirkellomme skrubbing+slettfresing ... 146 Sirkeltapp ... 166 Skalering ... 293 Skalering, aksespesifikk ... 295 Skråflate ... 267 Sliping ... 77 SL-sykluser forboring ... 194 Grunnleggende ... 257 grunnleggende ... 184 konturdata ... 192 konturkjede ... 206 konturkjede 3D ... 215 konturkjededata ... 204 Overlagrede konturer ... 251 overlagrede konturer ... 188 slettfresing side ... 202 slettfresingsdybde ... 200 syklus kontur ... 187 utfresing ... 196 SL-sykluser med enkel konturformel ... 257 SL-sykluser med kompleks konturformel ... 246 Speiling ... 289 Spindelorientering ... 314 Syklus

### S

Sykluser og punkttabeller ... 70 Sylindermantel bearbeide kontur ... 229 bearbeide not ... 232 bearbeide steg ... 235 konturfres ... 238

### Т

Toleranseovervåking ... 418 Trokoidalfresing ... 210

### U

Universalboring ... 83, 91 Utboring ... 79 Utfresing:Se SL-sykluser, utfresing Utviklingsnivå ... 9

### v

Verktøykorrektur ... 418 Verktøymåling ... 511 kalibrere TT ... 513, 515 måle komplett ... 520 maskinparameter ... 509 verktøylengde ... 516 verktøyradius ... 518 vise måleresultater ... 512 Verktøyoppmåling Verktøyovervåking ... 418 Virvelfresing ... 210

# HEIDENHAIN

 TNC support
 Image: Head international support

 E-mail: service.nc-support@heidenhain.de

 NC programming
 Image: Head international support

 PLC programming
 Image: Head international support

 PLC programming
 Image: Head international support

 PLC programming
 Image: Head international support

 Image: Head international support
 Image: Head international support

 E-mail: service.plc@heidenhain.de
 Lathe controls

 Image: Head international support
 Head international support

 Image: Head international support
 Head international support

 Image: Head international support
 Image: Head international support

 Image: Head international support
 Image: Head international support

 Image: Head international support
 Image: Head international support

 Image: Head international support
 Head international support

 Imag

www.heidenhain.de

# Touch-prober fra HEIDENHAIN

hjelper deg å redusere dødtid og forbedre dimensjonsstabiliteten til de fremstilte emnene.

### **Tastesystemer for emner**

TT 220kabelbundet signaloverføringTS 440, TS 444Infrarød overføringTS 640, TS 740Infrarød overføring

- justere emner
- fastsette nullpunkter
- Måle emner



### Tastesystemer for verktøy

| TT 140 | kabelbundet signaloverføring |
|--------|------------------------------|
| TT 449 | Infrarød overføring          |
| TL     | berøringsløse lasersystemer  |

- måle emner
- kontrollere slitasje
- registrere brudd på verktøy



