

HEIDENHAIN

Kılavuz Açık metin diyaloğu

iTNC 530

NC Yazılımı 340 490-04 340 491-04 340 492-04 340 493-04 340 494-04

türkçe (tr) 12/2007

Kılavuz

... HEIDENHAIN kumandası iTNC 530 için kısaltılmış programlama yardımıdır. TNC'nin programlanması ve kullanımı hakkındaki tam bir açıklamayı Kullanıcı El Kitabı'nda bulabilirsiniz. Ayrıca burada da bilgiler bulabilirsiniz

Q parametresinin programlanması için

merkezi alet kaydedici için

3D alet düzeltmesi için

Alet ölçümü için

Kılavuzdaki semboller

Önemli bilgiler Lotsen'de aşağıdaki sembollerle ayarlıdır:

빤

Önemli Uyarı!

Uyarı: Kullanıcı veya makine için dikkatsizlik tehlikesi!

Makine ve TNC'nin makine üreticisi tarafından tanımlanan fonksiyon için hazırlanmış olması gerekir!

Kullanıcı el kitabındaki bölüm. Burada, istediğiniz konu hakkındaki bilgileri bulabilirsiniz.

Kumanda	NC yazılımı numarası
iTNC 530	340 490-04
iTNC 530, Export versiyonu	340 491-04
Windows XP ile iTNC 530	340 492-04
Windows XP ile iTNC 530, Export versiyonu	340 493-04
iTNC 530 Programlama yeri	340 494-04

İçerik

Kılavuz	3
Temel bilgiler	5
Konturlara hareket edin ve çıkın	16
Hat fonksiyonları	22
Serbest kontur programlama FK	31
Alt programlar ve program bölüm tekrarları	41
Döngülerle çalışma	44
Delik ve vida dişi oluşturma için döngüler	46
Cepler, pimler ve yivler	63
Nokta numunesi	70
SL döngüleri	72
İşlemek için döngüler	83
Koordinat hesap dönüşümü ile ilgili döngüler	87
Özel döngüler	95
PLANE fonksiyonu (Yazılım seçeneği 1)	99
Grafik ve durum göstergeleri	113
DIN/ISO Programlaması	116
Ek fonksiyon M	123

Temel bilgiler

Programlar/Dosyalar

	Z
-	

Bakınız "Programlama, Dosya Yönetimi"

TNC, programları, tabloları ve metinleri dosyalara kaydeder. Dosya tanımı, iki bileşenden oluşur:

PROG20	.H
Dosya ismi	Dosya Tipi
Maksimum uzunluk	Bakınız sağdaki tablo

TNC'deki dosyalar	Тір
Programlar HEIDENHAIN formatında DIN/ISO formatında	.H .I
smart.NC Programı Ünite programı Kontur Programı Nokta tabloları	.HU .HC .HP
Tablolar şunlar içindir Aletler Alet değiştirici Paletler Sıfır noktaları Noktalar Preset'ler (Referans noktaları) Kesim verileri Kesici maddeler, malzemeler	.T .TCH .P .D .PNT .CDT .TAB
Metinleri şöyle kaydedin: ASCII dosyaları Yardım dosyaları	.A .CHM

Yeni çalışma programını açın

- Programın kaydedilmesi gereken klasörü seçin
- Yeni program ismini girin, ENT tuşu ile onaylayın
- Ölçü birimi seçin: MM veya INÇ yazılım tuşuna basın. TNC program penceresini açar ve BLK-FORM tanımlama diyaloğunu açar (ham parça)
- Mil eksenini girin
- MİN noktasının X, Y ve Z koordinatlarını arka arkaya girin
- MAKS noktasının X, Y ve Z koordinatlarını arka arkaya girin

1 BLK FORM 0.1 Z X+0 Y+0 Z-50

2 BLK FORM 0.2 X+100 Y+100 Z+0

Ekran taksimini belirleyin

Bakınız "Giriş, iTNC 530".

ĸЛ

Ekran taksimi oluşturma yazılım tuşlarını gösterin

İşletim türü	Ekran içeriği	
Manuel işletim/el. el çarkı	Pozisyonlar	POZİSYON
	Sol pozisyonlar, sağ durum	POZİSYON + DURUM
El girişi ile pozisyonlama	Program	PROGRAM
	Sol program, sağ durum	PROGRAM + DURUM

BEECL X + 244.463 Y - 218.286 X vol.	man	uei :	(\$1et	1 111						kaydetme
EEEC X +244.463 EEA1 Dakus PCH LEL CVC M POS + Y -218.286 K VGL + 0.000 Y -218.286 K VGL + 0.000 H + 0.000 + 0.000 + 0.000 H + 76.700 + 0.000 + 0.000 H + 76.700 + 0.000 - 0.000 H + 0.000 - 0.000 - 0.000 S 0.000 - 0.000 - 0.000 S 0.000 - 0.000 - 0.000 S 0.000 - 0.000 - 0.000 S 0.000 - 0.000 - 0.000 S 0.000 - 0.000 - 0.000 S - 0.000 - 0.000 - 0.000 S - 0.000 - 0.000 - 0.000 C - 0.000 - 0.000 - 0.000 C - 0.000 - 0.000 - 0.000 D - 0.000 - 0.000 - 0.000 S - 0.000 - 0.000 - 0.000 S - 0.000 - 0.000 - 0.000 L										M
Y -218.286 Z +7.804 +a +0.000 +R +0.000 +R +0.000 +R +0.000 +R +0.000 +R +0.000 +R +0.000 +R +0.000 +R +0.000 +R +0.000 +R +0.000 R +0.000	GERC	X	+24	4.46	3	Genl bakış	PGM	LBL CYC	M POS	•
2 +7.804 X +332.659 +03022.380 +a +0.000 +133.659 +0.0002 +133.659 +a +0.000 +133.659 +0.0002 +133.659 +B +76.700 +133.659 +0.0000 +100.000 +C +0.000 +0.000 +0.0000 +0.0000 +0.0000 B +0.0000 -0.0000 -0.0000 -0.0000 -0.0000 B +0.0000 -0.0000 -0.0000 -0.0000 -0.0000 B -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 B E B R -0.0000 -0.0000 -0.0000 -0.0000 B -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 C L -2.000 -0		Y	-21	8.28	6	K YOL				S
+ a + 0.000 + a + 0.000 + B + 0.000 + B + 0.000 + C + 0.000 + C + 0.000 + C + 0.000 + C + 0.000 + C + 0.000 + C + 0.000 - 0.000 - 0.000 0 < 0.000	-8	Z	+	7.80	4	X +935.0	59	*8 +9992	z.300	
+ A + 0.000 + + + + + + + + + + + + + + + + + + +		* a	+	0.00	0	Y +1383.0 Z +5025.0	130	*C +9999	9.000	
+ B + 76.700 + C + 0.000 + C + 0.000 + C + 0.000 S1 0.000 S1 0.000 0 × 0.000 0 × 0.000 0 × 0.000 0 × 0.000 0 × 0.000 0 × 0.000 0 × 0.000 0 × 0.000 0 × 0.000 0 × 0.000 0 × 0.000 0 × 0.000 0 × 0.000 0 × 0.000 0 × 0.000 0 × 0.000 0 × 0.000 0 × 0.000 0 × 0.000 0 × 0.000 0 × 0.000 0 × 0.000 0 × 0.000 0 × 0.000 0 × 0.000 0 × 0.000 0 × 0.000 0 × 0.000 0 × 0.000 0 × 0.000 0 × 0.000 0 × 0.000 0 × 0.000 + 0.000 0 × 0.000 + 0.000		* A	+	0.00	0	*a +99999.0	99			Τ <u>Λ</u> . <u>Λ</u>
+C +0.000 +0.000 +0.000 +0.000 S1 0.000 +0.000 -0.000 -0.000 -0.000 S1 0.000 -0.000 -0.000 -0.000 -0.000 -0.000 0% S-IST 0% S-IST 0% S-IST 0% -0.000 0% S-IST 0% S-IST 0% S-IST 0% -0.000 0% S-IST 0% SCIMIT 20:34 -0.000 -0.000 0% S-IST 0% SCIMIT 20:34 -0.000 -0.000 1 L X-208 V-208 REFHX -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.0000 -0.000 </td <td></td> <td>* B</td> <td>+7</td> <td>6.70</td> <td>0</td> <td>*A +99999.0</td> <td>199</td> <td></td> <td></td> <td></td>		* B	+7	6.70	0	*A +99999.0	199			
Pilo Pilo		+ C	+	0.00	0	😰 VT 🔹 🔹	0.0000			
S1 0.0000 S1 0.0000 S1 0.0000 0% S-IST					-	A +0.0	999			Python
S1 0.000 S1 0.000 S1 0.000 S1 0.000 P 0 M 5 7 0% S-IST 0% S-IST 0% S-IST						B +0.0	000			Demos
PIIS Y S Z S		51	0.0	aa						
#:15 T 5 Z 5 288 #:15 T 5 2 7 288 #:15 T 5 2 7 288 #:15 T 5 2 8 78 FMX :15 L 5 28 78 FMX :15 L 5 28 78 FMX :15 L 5 28 78 FMX :15 L 5 28 78 FMX :15 L 5 28 78 FMX :15 L 5 28 78 FMX :15 L 5 28 78 FMX :15 L 5 28 78 FMX :16 0 0 0 1 FM :17 0 0 0 0 FM :18 0 0 0 FM :18 0 0 0 FM :19 0 0 0 FM :10 0 0 0 FM						Tenel da	nne +	0.0000		DIAGNOSIS
Into 1/2 Into 1/2 0% S-IST <	A. 15	T =		5 2529						
0% S-IST 0% SENMJ LIMIT 1 20:34 M S F FORMAN OWC BELLR TERRAN SWO SWO SWO SWO SWO SWO SWO SWO SWO SWO		FØ		5 2500	15 /9					
0% S L Nm 3 Limit 1 20:34 M S F THRAMA POWESSYOW ITABLO IFF 30 R01 PLET THROSU IFF BE GIN PGN SHOI HH L L X-280 V-200 RF HAX POSTOR- Raydeline 2 L-2180 R6 FHAX IFF IFF IFF 3 L 2-180 R6 FHAX IFF IFF IFF IFF 3 L 2-280 FHAX IFF IFF IFF IFF IFF 3 L 2-280 FHAX IFF IFF IFF IFF IFF IFF 3 L 3-280 FHAX IFF IFF IFF IFF IFF IFF 3 L 3-280 FHAX IFF IFF IFF IFF IFF IFF IFF IFF 3 L 3-280 RF HAX IFF <td></td> <td></td> <td></td> <td></td> <td>R%</td> <td>S-IST</td> <td></td> <td></td> <td></td> <td>Info 1/3</td>					R%	S-IST				Info 1/3
M S F TRR/HA NO BELIE Lototic M S F TRR/HA NO BELIE SD ROT RLET TRR/HA SD ROT RLET SD ROT RLET TRR/LOU EEI girişi ile pozisyonlama Program- kaydetee BecsIN PGH SHDI HH L x-238 V-288 R5 FH6X Ref HAX Ref HAX L b-20 R8 FH6X L b-20 R8 FH6X Ref HAX Ref HAX L b-20 R8 FH6X Ref HAX Ref HAX Ref HAX L b-20 R8 FH6X Ref HAX Ref HAX Ref HAX J cold chl z z Procee Ref HAX Ref HAX J cold chl z z Procee Ref HAX Ref HAX J cold chl H3 Procee Ref HAX Ref HAX S cold chl H3 Procee Ref HAX Ref HAX S cold chl H3 Procee Ref HAX Ref HAX S cold chl H3 Procee Procee Procee S table R00 HH4 Ref HAX Ref HAX Ref HAX S cold chl H3 Procee Procee Ref HAX S cold chl H3 Procee <					R2	SENMI			20:3	
M S F PORESIN POR SELER PORESIN POR SELER IF PORESIN THE PORESIN THE PORESIN IF PORESIN POR SELER IF PORESIN THE PORESIN IN THE PORESIN IF PORESIN POR SELECT IN PORT OF IT REALT THE PORESIN IN THE PORESIN IF PORESIN POR SELECT IN PORT OF IT IF PORESIN POR SELECT IN PORT OF IT IF PORESIN POR SELECT IN PORT OF IT IF PORESIN IN THE PORT OF IT IF PORESIN PORT SELECT IN PORT OF IT IF PORT OF IT		1	1		1		1			<u> </u>
Image: Contract of the second of the seco	м		c	F	FONK	RAMA ÖNCE SİYON TAB	ELIR LO		3D RO	T ALET
El giriși ile pozisyonlama PEGIN PGH SHOI HH 1 L X-288 V-288 RE FHAX 2 L Z-198 RE FHAX 3 L B-28 RE FHAX 3 L B-28 RE FHAX 3 L B-28 RE FHAX 3 L B-28 RE FHAX 3 L B-28 RE FHAX 4 L B-48 RE FHAX 5 L B-48 RE FHAX 6 L B-48 RE FHAX 6 L B-48 RE FHAX 6 L B-48 RE FHAX 6 L B-48 RE FHAX 7 L B-48 RE FHAX 7 L B-48 RE FHAX 7 L B-48 RE FHAX 7 L B-48 RE FHAX 7 L B-48 RE FHAX 7 L B-48 RE FHAX 7 L B-48 RE FHAX 8 L B-48 RE			3			-221 4	+		11.	T I
Volume I x - 200 x + 20 + 200 = R0 F HAX 2 L 2-150 R0 F HAX I	E 1	giri:	şi il	e po:	zisy	onlama	PGM	LBL CYC	M POS	Program- kaydetme
1 L 2-200 V200 KO FHAX 2 L 2-100 FMAX 3 L 3-20 R0 FMAX 4 L 3-20 R0 FMAX 5 L 5-20 R0 FMAX 6 -0.000 7 -0.000 7 -0.000 8 -0.000 9 CVCL CFLL 22 9 CVCL CFLL 23 9 CVCL CFLL H3 10 CFL 45.3 KF Limit 22:33 10 F2.4 4.4 4.5 3 10 -2.18.286 2 10 +0.000 10 +0.000						K YOL			-	<u>'</u> " 🖓
2 L 2-198 R8 PHAX 3 L B-28 R8 PHAX 4 L B-28 R8 PHAX 5 L B-8 R8 PHAX 5 L B-8 R8 PHAX 5 COLL CALL 2 Z 7 CVCL CALL H3	:	x-280 Y+	200 RØ FM				00			
3 L B-20 R0 FMAX ■ 0.0000 4 L B-20 R0 FMAX ■ 0.0000 5 L B+0 R0 FMAX ■ 0.0000 7 CVCL DEF 256 RECTANGULAR STUD 02 > ■ 0.0000 3 CVCL CALL M3 ■ 0.0000 ● x SIST ● x SIST ● x SIST	2 L :	Z-160 R0	FMAX			X +0.6		*0 · ·	0.000	
4 L 8-20 R0 FMAX 5 L 8-8 R0 FMAX 5 TOL CALL 2 Z 7 OCCL DEF 258 RECTANGULAR STUD 02 > 3 OFCL CALL H2	3 L I					X +0.6 Y +0.6 Z +0.6	100	*C +	8.888 8.888	
5 L B+0 R0 FMAX 5 TOOL CALL 2 Z 7 CVCL CALL 42 0 CVCL CALL M3 ■ ** 5-TST ● * 5-TST		8-20 R0 F	MAX			X +0.6 Y +0.6 Z +0.6	188 188 188	*C +	8.000	s []
3 TOOL CALL 2 Z 2 CVCL DEF 256 RECTANGULAR STUD 0Z > 3 CVCL CALL H3 ex 51751 ex 5181 ex 5181 ctrict 22:35 X + 2.4 4.4 63 Y - 218.286 2 +a +0.0800 +R +0.0800 +R +0.0800 +B	4 L I	8-20 R0 F 8+20 R0 F	MAX MAX			X +0.0 Y +0.0 Z +0.0 *a +0.0 *A +0.0	100 100 100	*C +	8.000	s I
7 CVCL DEF 256 RECTANGULAR STUD 02 > 8 CVCL CALL H3 ex 5-IST ex 5 INF 1 Lift(1 = 22:35 X + 2 4 4 . 4 6 3 Y - 218 . 286 Z + 7 . 804 + 0 . 000 + H + 0 . 000 + B + 76 . 700 F(2 + 0 . 000) + C + 0 . 000 + B + 76 . 700 F(2 + 0 . 000) + C + 0 . 000 + B + 76 . 700 F(2 + 0 . 000) + C + 0 . 000 + B + 76 . 700 F(2 + 0 . 000) + C + 0 . 000 + B + 76 . 700 F(2 + 0 . 000) + C + 0 . 000 + B + 76 . 700 F(2 + 0 . 000) + C + 0 . 000 + B + 76 . 700 F(2 + 0 . 000) + C + 0 . 000 + B + 76 . 700 F(2 + 0 . 000) + C + 0 . 000 + B + 76 . 700 F(2 + 0 . 000) + C + 0 . 000 + C + 0 . 000 + C + 0 . 000 F(2 + 0 . 000) + C + 0 . 000 + C + 0 . 000 + C + 0 . 000 F(2 + 0 . 000) + C + 0 . 000 + C + 0 . 000 + C + 0 . 000 + C + 0 . 000 F(2 + 0 . 000) + C + 0 . 000 + C + 0 . 000 + C + 0 . 000 F(2 + 0 . 000) + C + 0 . 000 + C + 0 . 000 + C + 0 . 000 F(2 + 0 . 000) + C + 0 . 000 + C + 0 . 000 + C + 0 . 000 F(2 + 0 . 000) + C + 0 . 000 + C + 0 . 000 + C + 0 . 000 F(2 + 0 . 000) + C + 0 . 000 + C + 0 . 000 F(2 + 0 . 000) + C + 0 . 000 + C + 0 . 000 F(2 + 0 . 000) + C + 0 . 000 + C + 0 . 000 F(2 + 0 . 000) + C + 0	4 L I 5 L I	8-20 R0 F 8+20 R0 F 8+0 R0 FM	MAX MAX AX			x +0.0 y +0.0 z +0.0 #0 +0.0 #0 +0.0	00 100 100 100 0.0000	*C +	8.000	S J
8 cvcL CALL H3 C +0.0000 Python ex 5-IST Image: Tesel done 0.0000 ex 5INE 1 clight*1 20:35 Draonosti Draonosti X +244.463 Y -218.286 Z +7.804 +a + 0.000 ++A + 0.000 ++B +76.700 Image: Tesel done Image: Tesel done +C + 0.000 Image: Tesel done Image: Tesel done	4 L I 5 L I 6 TOOI	8-20 R0 F 8+20 R0 F 8+0 R0 FM L CALL 2	MAX MAX AX Z			x +0.6 y +0.6 Z +0.6 sa +0.6 sa +0.6 xa +0.	000 100 100 100 0.0000	*C +	8.000	
ex s.tst itema damage ete.eeee ex statistication itema damage itema ete.eeee ex statistication itema ete.eeee itema ete.eeee itema ete.eeee itema ete.eeee itema ete.eeee itema ete.eeee itema ete.eeee itema ete.eeee itema ete.eeee itema ete.eeee itema ete.eeee itema ete.eeee itema ete.eeee itema ete.eeee itema ete.eeee itema ete.eeee itema ete.eeee itema ete.eeee itema ete.eeee itema ete.eeee itema ete.eeee itema ete.eeeee itema ete.eee itema ete.eeee itema ete.eeee itema ete.eeeee itema ete.eee itema ete.eeee itema ete.eeee itema ete.eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee	4 L I 5 L I 5 TOOI	8-20 R0 F 8+20 R0 F 8+0 R0 FM L CALL 2 L DFF 25F	MAX MAX AX Z	OP STUD	02.3	X +8.6 Y +8.6 Z +8.6 #8 +8.6 #8 +8.6 #8 +8.6 #8 +8.6 #8 +8.6 #8 +8.6	000 100 100 100 100 0.0000 100 100	*C +	2.000	
ex s-IST Image: Second se	4 L I 5 L I 6 TOOI 7 CYCI	8-20 R0 F 8+20 R0 F 8+0 R0 FM L CALL 2 L DEF 256	MAX MAX AX Z RECTANGU	AR STUD	02 »	X +86.6 Z +86.6 #8 +86.6 #8 +86.6 ₩0T 4 ₩ +80.80	000 100 100 100 000 000 000 000	*C +	2.000	
es site1 infinitie 20:35 orranson X + 2 4 4 . 4 6 3 Y - 2 18 . 2 8 6 Z + 7 . 8 04 U *a + 0 . 0 00 + R + 0 . 0 00 + B + 7 6 . 7 00 U U *C + 0 . 0 00 + B + 7 6 . 7 00 U </td <td>4 L 1 5 L 1 5 TOOI 7 CYCI 8 CYCI</td> <td>8-20 R0 F 8+20 R0 F 8+0 R0 FM L CALL 2 L DEF 256 L CALL M3</td> <td>MAX MAX AX Z RECTANGU</td> <td>AR STUD</td> <td>02 »</td> <td>x +86.6 y +80.6 x8 +80.6 x8 +80.6 x8 +80.6 x8 +80.80 R +80.</td> <td>100 100 100 100 100 100 100 100 100 100</td> <td>•C +</td> <td>2.000</td> <td>5 T Python</td>	4 L 1 5 L 1 5 TOOI 7 CYCI 8 CYCI	8-20 R0 F 8+20 R0 F 8+0 R0 FM L CALL 2 L DEF 256 L CALL M3	MAX MAX AX Z RECTANGU	AR STUD	02 »	x +86.6 y +80.6 x8 +80.6 x8 +80.6 x8 +80.6 x8 +80.80 R +80.	100 100 100 100 100 100 100 100 100 100	•C +	2.000	5 T Python
X +244.463 Y -218.286 Z +7.804 +a +0.000 +A +0.000 +B +76.700 +C +0.000 -A -A -A -A	4 L 1 5 L 1 5 TOOI 7 CYCI 8 CYCI	8-20 R0 F 8+20 R0 F 8+0 R0 FM L CALL 2 L DEF 256 L CALL M3	MAX MAX AX Z RECTANGU 8% S-IS	AR STUD	02 >	x +86.6 y +86.6 z +86.6 sa +86.6 kA +86.6 kA +86.0 C +86.00 C +86.00 kA +86.00 C +86.00 kA +86.00	198 198 198 198 198 198 198 198 198 198	•C +	8.888	S Python Denos
+a +0.000+A +0.000+B +76.700 +C +0.000 − − − − − − − − − − − − − − − − −	4 L 1 5 L 1 5 TOOI 7 CYCI 8 CYCI	8-20 R0 F 8+20 R0 F 8+0 R0 FM L CALL 2 L DEF 256 L CALL M3	MAX MAX Z RECTANGU 0% S-IS 0% SIN	LAR STUD	02 » 20:35	x +0.6 y +0.6 z +0.6 eA +0.6 eA +0.6 eA +0.6 B +0.0 C +0.0 C +0.0 ↓ Tenel db	000 000 000 000 000 000 000 000 000 00	•C +	0.000	S J Frithen Dress
+C +0.000 Into 1/3	4 L 1 5 L 1 6 TOOI 7 CYCI 8 CYCI	B-20 R0 F B+20 R0 F B+0 R0 FM L CALL 2 L DEF 256 L CALL M3 + 24	MAX MAX AX Z RECTANGU 0% S-IS 0% SINm 4 4 . 4 6	AR STUD	02 » 20:35	x +0.6 y +0.6 z +0.6 en +0.	e e e e e e e e e e e e e e e e e e e	*C +	eee eee eee	S Prihan Deeos DIAGNOSIS
	4 L 1 5 L 1 5 TOOI 7 CYCI 8 CYCI 8 CYCI	8-20 R0 F 8+20 R0 F 8+0 R0 FM L CALL 2 L DEF 256 L CALL M3 + 24	MAX MAX RX Z RECTANGU 0% S-IS 0% SINm 4 4 4 6	AR STUD	Q2 » 20:35 — ;	x +0.6 y +0.6 z +0.6 ee +0.6 ee +0.6 e +0.6 e +0.6 x +0.6 e +0.6 c +0.0 c +	e . ecee aee aee aee aee aee aee aee aee aee	€C + €C + €.88998	- 000 - 000 - 7 . 80 7 6 . 7 0	S Python Python Deacs Deacs Deacs
	4 L 1 5 L 1 5 TOO 7 CYCI 8 CYCI 8 CYCI 8 CYCI	8-20 R0 F 8+20 R0 F 8+0 R0 F L CALL 2 L DEF 256 L CALL M3 + 2 4	MAX MAX AX Z RECTANGUI 0% S-IS 0% SINM 4 4 4 6 0 0 0 0	AR STUD	Q2 > 20:35 -;	x +0.6 z +0.6 sa +0.6 sh +0	e . ecee aee aee aee aee aee aee aee aee aee	•C •	+7.80 76.70	S Python Denos JA Info 1/3

S 1

Z S 2500

DURUM

KOORD.

HESAP DON

SERC

DURUM

GENEL BAKS

T 5

DURUM

ALET

: 15

DURUM

POZ. GOS.

M 5 / 9

Temel bilgiler

İşletim türü	Ekran içeriği	Program akışı tümce takibi	Program- kaydetme
Program akışı seri sonu program akışı tekil seri	Program	e BEGIN PGH 17911 HH 1 BLK FORM 0.1 Z X-50 Y-70 Z-20 2 BLK FORM 0.2 X+130 Y+50 Z+45	
program testi	Sol program, Program düzenleme sağ	- 3 TOOL CALL 3 Z 53500 4 L X-50 V-30 Z+20 R0 F1000 H3 5 L X-30 V-40 Z+10 RR 5 RVD F20	s J
	Sol program, sağ durum	7 L X+70 V-50 Z-10 8 CT X+70 V+30 0X S-IST	Python Demos
	Sol program, sağ grafik	ex 51061 20133 X +244.463 Y -218.286 Z +7.86 +a +0.000 +B +76.76 +C +0.000 +C +76.76	DIAGNOSIS
	Grafik	S1 0.000 GRC 0:15 T 5 Z/5 Z590 F 0 H 5 / BRGLANG. SON VINI VINI LLERLEME KULLANITH TABLOS LLERLEME KULLANITH TABLOS	9 IOK ALET TABLOSU 3U
Program akışı seri sonu program akışı tekil serisi	Sol program, sağ aktif çarpışma objesi	Manuel Program kaydetme/diizeoleme	
	Aktif çarpışma objesi	Isletis Isletis 0 DESIN POH EMOSEFK HM 1 BLK FORM 0.1 Z X-90 Y-90 Z-20	M
Program kaydetme/ düzenleme	Program	2 BLK FORM 0.2 X+00 V+00 Z+0 3 TOOL CALL 5 Z 54000 4 L Z+50 R0 FMAX M3 5 L X+0 V+0 R0 FMAX	S
	Sol program, sağ PROBRAM programlama düzenleme		Python Demos
	Sol program, sağ programlama grafiği	- 10 FCT DR- R00 11 FL X+2 Y+SS LENIS RM+90 12 F9ELECT2 13 FL LEN23 RM+0	DIAGNOSIS
	Sol program, sağ 3D çizgisel grafiği	A FC DR- RES CCV+0 BRBLANG. SON VAN VAN ARA BASLAT TEK	T RESET

Temel bilgiler

Temel bilgiler

Dik açılı koordinatlar - kesin

Ölçü girişleri, güncel sıfır noktasını baz alır. Alet **mutlak** koordinatlara hareket eder.

Bir NC tümcesinde programlanabilen eksenler

Doğru hareketi Daire hareketi Herhangi 5 eksen bir düzlemin 2 doğrusal ekseni veya 3 doğrusal eksen döngü 19 ÇALIŞMA DÜZLEMİ ile

Dik açılı koordinatlar - artan

Ölçü girişleri, aletin son programlanan pozisyonunu baz alır. Alet **artan** koordinatlara hareket eder.

9

Daire orta noktası ve kutup: CC

Dairesel hat hareketlerini **C** (bakınız Sayfa 26) hat fonksiyonu ile programlamak için, **CC** daire merkezi girilir. **CC** diğer taraftan ölçü girişleri için kutupsal koordinatlarda kullanılır.

CC dik açılı koordinatlarda belirlenir.

Mutlak belirlenen daire merkezi veya **CC** kutbu daima aktif sıfır noktasını baz alır.

Artan olarak belirlenen bir daire merkezi veya **CC** kutbu daima aletin en son programlanan pozisyonunu baz alır.

Açı referans ekseni

Açı – **PA** kutup koordinatları açısı ve **KIRMIZI** devir açısı gibi – referans eksenini baz alır.

Çalışma düzlemi	Referans ekseni ve 0° yönü
X/Y	+X
Y/Z	+Y
Z/X	+Z

Temel bilgiler

Temel bilgiler

Kutupsal koordinatlar

Kutupsal koordinatlardaki ölçü girişleri **CC** kutbunu baz alır. Bir Pozisyon, çalışma düzleminde aşağıdakilerle belirlenir:

- Kutupsal koordinatlar yarıçapı PR = Pozisyonun CC kutbuna olan mesafesi
- Kutupsal koordinatlar açısı PA = Açı referans ekseni ile mesafe arasındaki açı CC – PR

Artan ölçü girişleri

Kutupsal koordinatlardaki artan ölçü girişleri, en son programlanan pozisyonu baz alır.

Kutupsal koordinatların programlanması

Hat fonksiyonunu seçin

- P tuşuna basın
- Diyalog sorularını cevaplayın

Aleti tanımlayın

Alet verileri

Her alet 0 ila 254 arasındaki bir alet numarası ile tanımlanır. Eğer alet tabloları ile çalışıyorsanız, daha yüksek numaralar kullanabilirsiniz ek olarak alet ismini girebilirsiniz.

Alet verilerini girin

Alet verileri (Uzunluk L ve yarıçap R) girilebilir:

bir alet tablosu formunda (merkezi, TOOL.T programı)

veya

TOOL DEF

Temel bilgiler

- programda hemen TOOL DEF tümceleri ile (lokal)
 - Alet numarası
 - Alet uzunluğu L
 - Alet yarıçapı R
- Gerçek alet uzunluğunu bir ayar cihazı ile belirleyin; belirlenen uzunluk programlanır.

Alet verilerini çağırın

- Alet numarası ve adı
- X/Y/Z'ye paralel mil ekseni: Alet ekseni
- S mil devri
- Besleme F
- Alet uzunluğu ölçüsü DL: (örn. aşınma)
- Alet yarıçapı ölçüsü DR: (örn. aşınma)
- Alet yarıçapı ölçüsü DR2: (örn. aşınma)
- 3 TOOL DEF 6 L+7.5 R+3
- 4 TOOL CALL 6 Z S2000 F650 DL+1 DR+0.5 DR2+0.1
- 5 L Z+100 R0 FMAX
- 6 L X-10 Y-10 RO FMAX M6

Alet değiştirme

呦

- Alet değişim pozisyonu hareketinde çarpışma tehlikesine dikkat edin!
- Mil dönüş yönünü M fonksiyonu ile belirleyin:
 - M3: Sağa akış
 - M4: Sola akış
- Alet yarıçapı için üst ölçü veya uzunluk maksimum ± 99.999 mm!

Temel bilgiler

Alet düzeltmesi

TNC, çalışma sırasında çağrılan aletin L uzunluğunu ve R yarıçapını dikkate alır.

Uzunluk düzeltme

Etkinlik başlangıcı:

Aleti mil ekseninde hareket ettirin

Etkinlik sonu:

L=0 uzunluğuyla yeni aleti veya aleti çağırın

Yarıçap düzeltmesi

- Etkinlik **başlangıcı**:
- Aleti, çalışma düzleminde RR veya RL ile hareket ettirin Etkinlik sonu:
- Konumlama tümcesini R0 ile programlayın
- Yarıçap düzeltmesiz çalışın (örn. delme):
- Konumlama tümcesini R0 ile programlayın

3D tarama sistemsiz referans noktası ayarı

Referans noktası ayarında, TNC göstergesi, bilinen bir malzeme pozisyonu koordinatına kaydedilir:

- Sıfır aletini, bilinen yarıçapla değiştirin
- Manuel işletim ve el. el çarkı işletim türünü seçin
- Alet eksenindeki referans yüzeyini işaretleyin ve alet uzunluğunu girin
- Çalışma düzlemindeki referans yüzeylerini işaretleyin ve alet orta noktası pozisyonunu girin

3D tarama sistemleri ile yönlendirme ve ölçüm

Makine yönlendirmesi HEIDENHAIN 3D tarama sistemi ile daha hızlı, kolay ve doğru yapılır.

Makine donanımı için tarama fonksiyonlarının yanısıra manuel ve el. elçarkı işletim türlerinde, program akışı işletim türlerinde birçok ölçüm döngüleri kullanıma sunulur (bakınız Kullanıcı El Kitabı Tarama Sistemi Döngüleri):

- Bir malzeme eğim konumunun belirlenmesi ve oluşumu için ölçüm döngüleri
- Bir referans noktasının otomatik belirlenmesi için ölçüm döngüleri
- Tolerans karşılaştırma ile otomatik alet düzeltme için ve otomatik alet düzeltme için ölçüm döngüleri

Konturlara hareket edin ve çıkın

Başlangıç noktası P_S

 P_{S} kontur dışında yer alır ve yarıçap düzeltmesiz olarak hareket edebilir.

Yardımcı nokta P_H

P_H kontur dışında yer alır ve TNC tarafından hesaplanır.

TNC aleti P_S başlangıç noktasından itibaren P_H yardımcı noktasına kadar en son programlanan beslemeyle hareket ettirir!

İlk kontur noktası P_A ve son kontur noktası P_E

P_A ilk kontur noktası **APPR** tümcesinde (İng.: approach = hareket) programlandı. Son kontur noktası, bilinen şekilde programlandı.

Son nokta P_N

 P_N kontur dışında yer alır ve **DEP** tümcesinden alınır (İng.: depart = çıkmak). P_N otomatik olarak **R0** ile hareket eder.

Kalkış ve çıkıştaki hat fonksiyonları

İstenen hat fonksiyonu ile yazılım tuşuna basın:

Tanjant bağlantısı içeren doğru

Kontur noktasına dik doğru

Tanjant bağlantısı ile çember

Konturdaki teğetsel geçiş dairesi içeren doğru parçası

17

Bir doğru üzerinde tanjant bağlantısı ile hareket: APPR LT

- İlk kontur noktası P_A'nın koordinatları
- LEN: Yardımcı nokta P_H'nın ilk kontur noktası P_A'ya mesafesi
- Yarıçap düzeltme RR/RL

7 L X+40 Y+10 R0 FMAX M3

8 APPR LT X+20 Y+20 Z-10 LEN15 RR F100

9 L Y+35 Y+35

10 L ...

Bir doğru üzerinde ilk kontur noktasına dik hareket: APPR LN

- APPR LN
- İlk kontur noktası P_A'nın koordinatları
- LEN: Yardımcı nokta P_H'nın ilk kontur noktası P_A'ya mesafesi
- Yarıçap düzeltme RR/RL

7 L X+40 Y+10 R0 FMAX M3

8 APPR LN X+10 Y+20 Z-10 LEN15 RR F100

9 L X+20 Y+35

10 L ...

Bir çember üzerinde tanjant bağlantısı ile hareket: APPR CT

- İlk kontur noktası P_A'nın koordinatları
- Yarıçap R R > 0 girin
- Orta nokta açısı CCA CCA > 0 girin
- Yarıçap düzeltme RR/RL

7 L X+40 Y+10 R0 FMAX M3

8 APPR CT X+10 Y+20 Z-10 CCA180 R+10 RR F100

9 L X+20 Y+35

10 L ...

Tanjant bağlantılı bir çember üzerinde kontura ve doğru parçasına hareket: APPR LCT

- İlk kontur noktası P_A'nın koordinatları
- Yarıçap R
 - R > 0 girin
- Yarıçap düzeltme RR/RL

7 L X+40 Y+10 R0 FMAX M3

8 APPR LCT X+10 Y+20 Z-10 R10 RR F100

9 L X+20 Y+35

10 L ...

19

24 DEP LT LEN12.5 F100

25 L Z+100 FMAX M2

Bir doğru üzerinde son kontur noktasına dik geriye hareket: DEP LN

P_E ve P_N arasındaki uzunluk LEN > 0 girin

23 L Y+20 RR F100

24 DEP LN LEN+20 F100

25 L Z+100 FMAX M2

Bir çember üzerinde tanjant bağlantısı ile geriye hareket: DEP CT

- DEP CT
- Yarıçap R R > 0 girin
- Orta nokta açısı CCA

23 L Y+20 RR F100

24 DEP CT CCA 180 R+8 F100

25 L Z+100 FMAX M2

Tanjant bağlantılı bir çember üzerinde kontura ve doğru parçasına geriye hareket: DEP LCT

 P_N son noktasının koordinatları
Yarıçap R R > 0 girin

23 L Y+20 RR F100

24 DEP LCT X+10 Y+12 R+8 F100

25 L Z+100 FMAX M2

Hat fonksiyonları

Konumlama tümceleri için hat fonksiyonları

Bakınız "Programlama: Konturları programlama".

Anlaşma

Alet hareketinin programlanması için prensip olarak aletin hareket ettiği ve malzemenin durduğu kabul edilir.

Hedef pozisyonların girişi

Hedef pozisyonlar dik açılı veya kutupsal koordinatlarda girilebilir – hem mutlak hem de artan olarak veya karışık mutlak ve artan olarak.

Konumlama tümcesindeki veriler

Tam bir konumlama tümcesi aşağıdaki verileri içerir:

- Hat fonksiyonu
- Kontur elemanı son noktası koordinatları (hedef pozisyonu)
- Yarıçap düzeltme RR/RL/R0
- Besleme F
- Ek fonksiyon M

Aleti, bir çalışma programı başlangıcındayken, alet ve malzeme hasarı olmayacak şekilde konumlandırın.

Hat fonksiyonları		Sayfa
Doğru	L	23
İki doğru arasındaki şev	CHF or Chro	24
Köşeler yuvarlak		25
Daire orta noktası veya Kutup koordinatlarını girin	D	26
Daire orta noktası CC çevresinde çember	2°	26
Yarıçap girişi ile çember	CR	27
Önceki kontur elemanındaki teğetsel bağlantı içeren çember	CT?	28
Serbest kontur programlama FK	FK	31

Doğru L

- Doğru son noktasının koordinatları
- Yarıçap düzeltme RR/RL/R0
- Besleme F
- Ek fonksiyon M

Dik açılı koordinatlar ile

7 L X+10 Y+40 F	RL F200 M3
-----------------	------------

- 8 L IX+20 IY-15
- 9 L X+60 IY-10

Kutup koordinatları ile

12 CC X+45 Y+25

13 LP PR+30 PA+0 RR F300 M3

14 LP PA+60

- 15 LP IPA+60
- 16 LP PA+180

- Kutupsal koordinatları programlamadan önce CC kutbunu belirleyin!
- **CC** kutbunu sadece dik açılı koordinatlarda programlayın!
- CC kutbu yeni bir CC kutbu belirlenene kadar etkilidir!

CHF şevini iki doğru arasına ekleyin

- Şev kesitlerinin uzunluğu
- Besleme F

7 L X+0 Y+30 RL F300 M3

8 L X+40 IY+5

9 CHF 12 F250

10 L IX+5 Y+0

- Bir kontur bir CHF tümcesiyle başlayamaz!
- Yarıçap düzeltmesi, CHF tümcesinden önce ve sonra aynı olmalıdır!
- Sev, çağrılan alet ile uygulanabilir olmalıdır!

Köşe yuvarlama RND

Çemberin başlangıç ve bitişi, önceki ve sonraki kontur elemanı ile teğetsel geçişleri oluşturur.

Yayın R yarıçapı

Köşe yuvarlama için F beslemesi

5 L X+10 Y+40 RL F300 M3

6 L X+40 Y+25

7 RND R5 F100

Çember, daire merkezi CC çevresinde

- CC daire orta noktasının koordinatları
- Koordinatlar yay son noktasına ait
- Dönüş yönü DR

C ve CP ile bir tam daire bir tümcede programlanabilir.

Dik açılı koordinatlar ile

5 CC X+25 Y+25	
6 L X+45 Y+25 RR F200 M3	
7 C X+45 Y+25 DR+	

Kutup koordinatları ile

18 CC X+25 Y+25

19 LP PR+20 PA+0 RR F250 M3

20 CP PA+180 DR+

- 叱
- Kutupsal koordinatları programlamadan önce CC kutbunu belirleyin!
- **CC** kutbunu sadece dik açılı koordinatlarda programlayın!
- CC kutbu yeni bir CC kutbu belirlenene kadar etkilidir!
- Daire son noktası sadece PA ile belirlenir!

Yarıçap girişi ile CR yayı

- Koordinatlar yay son noktasına ait
- Yarıçap R daha büyük yay: ZW > 180, R negatif daha küçük yay: ZW < 180, R pozitif</p>
- Dönüş yönü DR

10 L X+40 Y+40 RL F200 M3

11 CR X+70 Y+40 R+20 DR- (BOGEN 1)

veya

11 CR X+70 Y+40 R+20 DR+ (BOGEN 2)

veya

10 L X+40 Y+40 RL F200 M3

11 CR X+70 Y+40 R-20 DR- (BOGEN 3)

veya

11 CR X+70 Y+40 R-20 DR+ (KAVIS 4)

Hat fonksiyonları

Tanjant bağlantısı içeren çember CT

Hat fonksiyonları

- Koordinatlar yay son noktasına ait
- Yarıçap düzeltme RR/RL/R0
- Besleme F
- Ek fonksiyon M

Dik açılı koordinatlar ile

7 L X+0 Y+25 RL F300 M3	
8 L X+25 Y+30	
9 CT X+45 Y+20	
10 L Y+0	
Kutup koordinatları ile	

12 CC X+40 Y+35	
-----------------	--

13 L X+0 Y+35 RL F250 M3

14 LP PR+25 PA+120

15 CTP PR+30 PA+30

16 L Y+0

면

- Kutupsal koordinatları programlamadan önce CC kutbunu belirleyin!
- **CC** kutbunu sadece dik açılı koordinatlarda programlayın!
- CC kutbu yeni bir CC kutbu belirlenene kadar etkilidir!

Hat fonksiyonları

Cıvata hattı (sadece kutup koordinatlarında)

Hesaplamalar (Freze yönü aşağıdan yukarıya)

Geçiş sayısı:	n	Vida dişi geçişi + Geçiş atlama vida dişi başlangıcında ve sonunda
Tüm yükseklik:	h	Eğim P x Geçiş sayısı n
İç Kutup ko. açı:	IPA	Geçiş sayısı n x 360°
Başlangıç açısı:	ΡΑ	Vida dişi başlangıcı + Geçiş atlama için açı
Başlangıç koordinatı:	z	Eğim P x (Dişli geçişi + Dişli başlangıcında geçiş atlama)

Cıvata hattı formu

İçten vida dişi	Çalışma	Dönüş	Yarıçap
	yönü	yönü	düzeltme
sağa giden sola	Z+	DR+	RL
giden	Z+	DR-	RR
sağa giden sola	Z-	DR-	RR
giden	Z-	DR+	RL
Dış vida dişi	Çalışma	Dönüş	Yarıçap
	yönü	yönü	düzeltme

DR+

DR-

DR-

DR+

RR

RL

RL

RR

Hat fonksiyonları

5 geçişli dişli M6 x 1 mm:

12 CC)	(+40 Y+25
---------	-----------

sağa giden sola

sağa giden sola

giden

giden

13 L Z+0 F100 M3

14 LP PR+3 PA+270 RL F50

Z+

Z+

Z-

Z-

15 CP IPA-1800 IZ+5 DR-

1

Boş kontur programlama FK

Boş kontur programlama FK

B

Bakınız "Hat hareketleri - Boş kontur programlama FK"

Malzeme çiziminde hedef noktası koordinatları eksikse veya gri hat fonksiyonu tuşları ile girilemeyen bu çizim girişlerini içeriyorsa, "Serbest kontur programlama FK"'ya gidilir.

Bir kontur elemanı hakkında olası girişler:

- Bilinen son nokta koordinatları
- Kontur elemanındaki yardımcı noktalar
- Kontur elemanı yakınındaki yardımcı noktalar
- Diğer bir kontur elemanıyla göreceli ilişki
- Yön girişleri (açı) /Konum girişleri
- Kontur akışı girişleri

FK programlamayı doğru kullanın:

- Tüm kontur elemanları, çalışma düzleminde yer almalıdır
- Bir kontur elemanı için kullanılabilen tüm girişleri yapın
- Geleneksel ve FK tümcelerini karıştırmada FK ile programlanan her bölüm anlaşılır şekilde belirlenmelidir. Ancak bu işlemden sonra TNC, geleneksel hat fonksiyonları girişine izin verir.

Programlama grafiği ile çalışın

Ekran taksimi olarak PROGRAM+GRAFİK seçin!

Farklı çözümleri gösterin

Gösterilen çözümü seçin ve alın

ᇞ

GÖSTER. CÖZÜM

Diğer kontur elemanlarını programlayın

Sonraki programlanan tümce için programlama grafiğini oluşturun

Programlama grafiği standart renkleri

- mavi Kontur elemanı tam olarak belirlenmiştir
- yeşil Girilen değerler birden fazla çözüm sunar; doğru olanı siz seçin
- kırmızı Girilen değerler kontur elemanını tam olarak belirlemiyor; siz daha fazla giriş yapınız
- açık mavi Hareket hızlı olacak şekilde programlandı

-

FK diyaloğunu açın

FK diyaloğunu açın, aşağıdaki fonksiyonlar kullanıma sunulur:

FK elemanı	Yazılım tuşları
Tanjant bağlantısı içeren doğru	FLT
Tanjant bağlantısı içermeyen doğru	FL
Tanjant bağlantısı içeren yay	FCT
Tanjant bağlantısı içermeyen yay	FC
FK programlama kutbu	FPOL T

Son nokta koordinatları X, Y veya PA, PR

FC/FCT tümcesinde CC daire orta noktası

Bilinen girişler	Yazılım tuşları	
Dik açılı koordinatların merkezi		
Kutupsal koordinatların merkezi		
Artan girişler	Ι	

10 FC CCX+20 CCY+15 DR+ R15

11 FPOL X+20 Y+15

12 FL AN+40

13 FC DR+ R15 CCPR+35 CCPA+40

Bir konturun üzerinde veya yanındaki yardımcı noktalar

13 FC DR- R10 P1X+42.929 P1Y+60.071 14 FLT AH-70 PDX+50 PDY+53 D10

36
Boş kontur programlama FK

Kontur elemanın yönü ve uzunluğu

N tümcesine rölatif referans: Son nokta koordinatları

Boş kontur programlama FK ᇞ Rölatif dayanak ile koordinatları daima artarak girin. Ayrıca baz aldığınız kontur elamanı cümle numarasını da girin.

13 FL PR+20 PA+20

14 FL AN+45

15 FCT IX+20 DR- R20 CCA+90 RX 13

16 FL IPR+35 PA+0 RPR 13

N tümcesine rölatif referans: Kontur elemanlarının yönü ve mesafesi

ᇝ

Rölatif dayanak ile koordinatları daima artarak girin. Ayrıca baz aldığınız kontur elamanı cümle numarasını da girin.

Bilinen girişler

Yazılım tuşları

Doğru ve diğer kontur elemanı arasındaki veya yay giriş tanjantı ve diğer kontur elemanı arasındaki açı

Diğer kontur elemanına paralel doğru

RAN N...

Doğru ile paralel kontur elemanı arasındaki mesafe

17 FL LEN 20 AN+15

18 FL AN+105 LEN 12.5

19 FL PAR 17 DP 12.5

20 FSELECT 2

21 FL LEN 20 IAN+95

22 FL IAN+220 RAN 18

N tümcesine rölatif referans: CC daire orta noktası

빤

Boş kontur programlama FK

Rölatif dayanak ile koordinatları daima artarak girin. Ayrıca baz aldığınız kontur elamanı cümle numarasını da girin.

Bilinen girişler	Yazılım tu	şları
Daire merkezi dik açılı koordinatları N tümcesini baz alır	RCCX N	RCCY N
Daire merkezi kutupsal koordinatları N tümcesini baz alır	RCCPR N	RCCPA N

12 FL X+10 Y+10 RL

13 FL ...

14 FL X+18 Y+35

15 FL ...

16 FL ...

17 FC DR- R10 CCA+0 ICCX+20 ICCY-15 RCCX12 RCCY14

Alt programlar ve program bölüm tekrarları

Bir kez programlanmış çalışma adımlarını, alt programlarla ve program bölümü tekrarlarıyla yineleyerek uygulatabilirsiniz.

Alt programlarla çalışma

- 1 Ana program, alt program çağırmaya CALL LBL 1 kadar çalışır
- 2 Daha sonra alt program LBL 1 ile tanımlanır alt program sonun kadar LBL 0 uygulanır
- 3 Ana program devam ettirilir

Alt programları, ana program sonunun arkasına yerleştirin (M2)!

叱

REP diyalog sorusunu NO ENT ile cevaplayın!

CALL LBL0'a izin verilmez!

Program bölümü tekrarları ile çalışın

- 1 Ana program, program bölümü tekrarı çağırmaya CALL LBL 1 REP2 kadar çalışır
- 2 Program bölümü LBL 1 ve CALL LBL 1 REP2 arasında REP altında girildiği gibi sık tekrarlanır
- 3 Son tekrardan sonra ana program devam ettirilir

Tekrarlanan program bölümü, programlanan tekrarlardan daha sık olarak uygulanır!

Paketlenmiş alt programlar

Alt programdaki alt program

- 1 Ana program, ilk CALL LBL 1 alt programı çağırmaya kadar çalışır
- 2 Alt program 1 ikinci CALL LBL 2 alt programı çağırmaya kadar uygulanır
- 3 Alt program 2 alt program sonuna kadar çalışır
- 4 Alt program 1 uygulanır ve kendi sonuna kadar çalışır
- 5 Ana program devam ettirilir

- Bir alt program kendiliğinden kendisini çağırmamalıdır!
- Alt programlar, maksimum 8 düzleme kadar paketlenebilir.

Alt programlar ve program bölüm tekrarları

İstediğiniz programı alt program olarak girin

- 1 Çağrılan A ana programı CALL PGM B çağırmaya kadar çalışır
- 2 Çağrılan B programı tam olarak uygulanır
- 3 Çağrılan A ana programı devam ettirilir

Çağrılan program M2 veya M30 ile sonlanamaz!

Döngülerle çalışma

Sıkça tekrarlanan çalışmalar TNC'de döngüler olarak kaydedilir. Koordinat dönüsüm hesaplamaları ve bazı özel fonksiyonlarda döngü olarak kullanıma sunulur.

- Döngü tanımlamada eksik girişleri önlemek için
- çalışmadan önce grafik bir program testi uygulayın!
- Derinlik döngü parametresinin ön işareti çalışma yönünü tespit eder!
- TNC, 200'den büyük numaralı tüm döngülerdeki aleti ale ekseninde otomatik olarak konumlandırır.

Döngüleri tanımlayın

Döngülerle çalışma

Döngülere genel bakışı seçin:

200

Döngü gruplarını seçin DELME/

Döngü seçimi

	Döngü grubu	
I	Derin delme, raybalama, tornalama, havşalama, vida dişi delme, dişli kesme ve dişli frezeleme için döngüler	DELME/ Dişlişi
	Ceplerin, pimlerin ve yivlerin frezelenmesi için döngüler	CEPLER/ TIPALAR/ YİVLER
t	Nokta numunelerin, örneğin daire çemberi veya delikli yüzey üretilmesi için döngüler	NOKT. NUMUNE
	SL döngüleri (Subcontur-List), öyle ki bunlarla, birçok üst üste binmiş kısmi konturlardan oluşan daha külfetli konturlar, konturları paralel olacak bir şekilde işlenmektedir, silindir muhafazası enterpolasyonu	SL II
	Düz veya kendi içinde kıvrılan yüzeylerin işlenmesi için döngüler	SATIR DŞ
	Koordinat dönüşüm hesapları için döngüler, öyle ki bunlarla istenilen konturlar kaydırılır, tornalanır, yansıtılır, büyütülür veya küçütülür	KOORD HESAP DÖN
	Özel döngüler, bekleme süresi, program çağrısı, mil oryantasyonu, tolerans	ÖZEL Döngüler

Döngü programlamada grafik destek

TNC, sizi döngü tanımlamada, giriş parametresi grafik gösteriminde destekler.

Döngüleri çağırma

Aşağıdaki döngüler, çalışma programındaki tanımdan itibaren etkilidir:

- Koordinat hesap dönüşümü ile ilgili döngüler
- BEKLEME SÜRESİ döngüsü
- SL döngüleri KONTUR ve KONTUR VERİLERİ
- Nokta numunesi
- TOLERANS döngüsü

Diğer tüm döngüler çağırma işleminden sonra etki eder:

- CYCL CALL: tümceye bağlı etki eder
- CYCL CALL PAT: tümceye bağlı olarak nokta tabloları ile bağlantılı ve PATTERN DEF bağlantılı etki eder
- CYCL CALL POS: CYCL CALL POS tümcesinde tanımlanan pozisyon hareket ettikten sonra tümceye bağlı olarak etki eder
- M99: tümceye bağlı etki eder
- M89: model etkili (makine parametrelerine bağlı)

Delik ve vida dişi oluşturma için döngüler

Genel bakış

Kullan	ılabilir döngüler	Sayfa
240	MERKEZLEME	47
200	DELIK	48
201	SURTUNME	49
202	TORNALAMA	50
203	EVRENSEL DELME	51
204	GERİ HAVŞALAMA	52
205	EVR. DELME DERINLIGI	53
208	DELIK FREZESI	54
206	YENI DISLI DELME	55
207	YENI DISLI DELME GS	56
209	DISLI DEL PARCA KIR.	57
262	DISLI FREZESI	58
263	HAVŞA DİŞLİ FREZESİ	59
264	DELME DISLI FREZESI	60
265	HELEZ DELME DISL FRE	61
267	DIŞ DİŞLİ FREZELEME	62

1

MERKEZLEME (döngü 240)

- CYCL DEF: 400 MERKEZLEME döngüsünü seçin
 - Güvenlik mesafesi: Q200
 - Derinlik/Çap seçimi: Girilen derinlik veya girilen çap üzerinde mi merkezlemek gerektiğini belirleme: Q343
 - Derinlik: Malzeme yüzeyi delik tabanı mesafesi: Q201
 - Çap: Ön işaret çalışma adımını belirler: Q344
 - Derinlik beslemesi: Q206
 - Bekleme süresi altta: Q211
 - Koord. Malzeme yüzeyi: Q203
 - 2. güvenlik mesafesi: Q204

11 CYCL DEF 240	MERKEZLEME
Q200=2	;GÜVENLIK MESAFESI
Q343=1	;DERINLIK/ÇAP SEÇIMI
Q201=+0	;DERINLIK
Q344=-10	;ÇAP
Q206=250	;DERIN KESME BESLEME
Q211=0	;BEKLEME SÜRESI ALTTA
Q203=+20	;YÜZEY KOOR.
Q204=100	;2. GÜVENLIK MESAFESI
12 CYCL CALL PO	S X+30 Y+20 M3
13 CYCL CALL PO	S X+80 Y+50

Delik ve vida dişi oluşturma için döngüler

47

Delik ve vida dişi oluşturma için döngüler

DELME (döngü 200)

- CYCL DEF: 200 DELME döngüsünü seçin
- Güvenlik mesafesi: Q200
- Derinlik: Malzeme yüzeyi delik tabanı mesafesi: Q201
- Derinlik beslemesi: Q206
- Kesme derinliği: Q202
- Bekleme süresi üstte: Q210
- Koord. Malzeme yüzeyi: Q203
- 2. Güvenlik mesafesi: Q204
- Bekleme süresi altta: Q211

11 CYCL DEF 200	BOHREN
Q200=2	;GÜVENLIK MESAFESI
Q201=-15	;DERINLIK
Q206=250	;DERIN KESME BESLEME
Q202=5	;KESME DERINLIĞI
Q210=0	;BEKLEME SÜRESI ÜSTTE
Q203=+20	;YÜZEY KOOR.
Q204=100	;2. GÜVENLIK MESAFESI
Q211=0.1	;BEKLEME SÜRESI ALTTA
12 CYCL CALL PC	DS X+30 Y+20 M3
13 CYCL CALL PC	DS X+80 Y+50

RAYBALAMA (döngü 201)

- CYCL DEF: 201 RAYBALAMA döngüsünü seçin
 - Güvenlik mesafesi: Q200
 - Derinlik: Malzeme yüzeyi delik tabanı mesafesi: Q201
 - Derinlik beslemesi: Q206
 - Bekleme süresi altta: Q211
 - Geri çekme beslemesi: Q208
 - Koord. Malzeme yüzeyi: Q203
 - 2. güvenlik mesafesi: Q204

10 L Z+100 R0 FMAX

11 CYCL DEF 2	01 RAYBALAMA	
Q200=2	;GÜVENLIK MESAFESI	
Q201=-15	;DERINLIK	
Q206=100	;DERIN KESME BESLEME	
Q211=0.5	;BEKLEME SÜRESI ALTTA	
Q208=250	;BESLEME GERI ÇEKME	
Q203=+20	;YÜZEY KOOR.	
Q204=100	;2. GÜVENLIK MESAFESI	
12 CYCL CALL	POS X+30 Y+20 M3	
13 CYCL CALL	POS X+80 Y+50	

Delik ve vida dişi oluşturma için döngüler

TORNALAMA (döngü 202)

 Makine ve TNC'nin üreticisi tarafından TORNALAMA döngüsü için hazırlanmış olması gerekir!
 Çalışma, kurallı mil ile uygulanır!

Çarpışma tehlikesi! Serbest hareket yönünü, alet delik kenarından çıkacak şekilde seçin!

- CYCL DEF: 202 TORNALAMA döngüsünü seçin
- Güvenlik mesafesi: Q200
- Derinlik: Malzeme yüzeyi delik tabanı mesafesi: Q201
- Derinlik beslemesi: Q206
- Bekleme süresi altta: Q211
- Geri çekme beslemesi: Q208
- Koord. Malzeme yüzeyi: Q203
- 2. Güvenlik mesafesi: Q204
- Delik tabanında serbest hareket yönü (0/1/2/3/4): Q214
- Mil oryantasyon açısı: Q336

Delik ve vida dişi oluşturma için döngüler

UNİVERSAL DELME (döngü 203)

- CYCL DEF: 203 EVRENSEL DELME döngüsünü seçin
 - Güvenlik mesafesi: Q200
 - Derinlik: Malzeme yüzeyi delik tabanı mesafesi: Q201
 - Derinlik beslemesi: Q206
 - Kesme derinliği: Q202
 - Bekleme süresi üstte: Q210
 - Koord. Malzeme yüzeyi: Q203
 - 2. Güvenlik mesafesi: Q204
 - Her kesmeye göre eksilme tutarı: Q212
 - Sayı Geri çekmeye kadar germe kırılması: Q213
 - Minimum kesme derinliği eksilme tutarına göre girilir: Q205
 - Bekleme süresi altta: Q211
 - Geri çekme beslemesi: Q208
 - Germe kırılmasında geri çekme: Q256

GERİ HAVŞALAMA (döngü 204)

 Makine ve TNC'nin üreticisi tarafından GERİ HAVŞALAMA döngüsü için hazırlanmış olması gerekir!
 Çalışma, kurallı mil ile uygulanır!

Çarpışma tehlikesi! Serbest hareket yönünü, alet delik tabanından çıkacak şekilde seçin!

- Döngüyü sadece geri delik çubuğu ile kullanın!
- CYCL DEF: 204 GERİ HAVŞALAMA döngüsünü seçin
 - Güvenlik mesafesi: Q200
 - Derinlik havşalama: Q249
 - Materyal kalınlığı: Q250
 - Eksantrik ölçü: Q251
 - Kesim yüksekliği: Q252
 - Ön pozisyonlama beslemesi: Q253
 - Havşalama beslemesi: Q254
 - Havşalama tabanında bekleme süresi: Q255
 - Koord. Malzeme yüzeyi: Q203
 - 2. Güvenlik mesafesi: Q204
 - Serbest hareket yönü (0/1/2/3/4): Q214
 - Mil oryantasyon açısı: Q336

Delik ve vida dişi oluşturma için döngüler

UNİVERSAL DERİN DELME (döngü 205)

- CYCL DEF: 205 EVRENSEL DERIN DELME döngüsünü seçin
 - Güvenlik mesafesi: Q200
 - Derinlik: Malzeme yüzeyi delik tabanı mesafesi: Q201
 - Derinlik beslemesi: Q206
 - Kesme derinliği: Q202
 - Koord. Malzeme yüzeyi: Q203
 - 2. Güvenlik mesafesi: Q204
 - Her kesmeye göre eksilme tutarı: Q212
 - Minimum kesme derinliği eksilme tutarına göre girilir: Q205
 - Üst önde tutma mesafesi: Q258
 - Alt önde tutma mesafesi: Q259
 - Germe kırılmasına kadar delik derinliği: Q257
 - Germe kırılmasında geri çekme: Q256
 - Bekleme süresi altta: Q211
 - Derinleştirilen başlangıç noktası: Q379
 - Ön pozisyonlama beslemesi: Q253

DELME FREZELEME (döngü 208)

- Delik ortasında R0 ile ön pozisyonlama
- CYCL DEF: 208 DELİK FREZESİ döngüsünü seçin
 - Güvenlik mesafesi: Q200
 - Derinlik: Malzeme yüzeyi delik tabanı mesafesi: Q201
 - Derinlik beslemesi: Q206
- Cıvata hattı başına kesme: Q334
- Koord. Malzeme yüzeyi: Q203
- 2. Güvenlik mesafesi: Q204
- Deliğin nominal çapı: Q335
- Ön delik çapı: Q342
- Freze tipi: Q351
- Senkronize: +1
- Senkronize olmayan: -1

12 CYCL DEF 208	DELIK FREZESI
Q200=2	;GÜVENLIK MESAFESI
Q201=-80	;DERINLIK
Q206=150	;DERIN KESME BESLEME
Q334=1.5	;KESME DERINLIĞI
Q203=+100	;YÜZEY KOOR.
Q204=50	;2. GÜVENLIK MESAFESI
Q335=25	;NOMINAL ÇAP
Q342=0	;ÖNCE VERILEN ÇAP
Q351=0	;FREZE TIPI

Dengeleme aynasıyla VİDA DİŞİ DELME YENİ (Döngü 206)

Sağdan vida dişi için milin M3 ile etkinleştirilmesi, soldan vida dişi için M4 ile etkinleştirilmesi gerekir!

- Uzunluk dengeleme dolgusunu değiştirin
- CYCL DEF: 206 YENİ VİDA DİŞİ DELME döngüsünü seçin
 - Güvenlik mesafesi: Q200
 - Delik derinliği: Vida dişi uzunluğu: Malzeme yüzeyi ve vida dişi sonu arasındaki mesafe: Q201
 - Besleme F = Mil devri S x Hatve P: Q206
 - Bekleme süresini altta (değer 0 ila 0,5 saniye arasındadır) girin: Q211
 - Koord. Malzeme yüzeyi: Q203
 - 2. Güvenlik mesafesi: Q204

25 CYCL DEF 206 VIDA DIŞİ DELME YENİ

Q200=2	;GÜVENLIK MESAFESI
Q201=-20	;DERINLIK
Q206=150	;DERIN KESME BESLEME
Q211=0.25	;BEKLEME SÜRESI ALTTA
Q203=+25	;YÜZEY KOOR.
Q204=50	;2. GÜVENLIK MESAFESI

Delik ve vida dişi oluşturma için döngüler

Dengeleme aynasız VİDA DİŞİ DELME GS YENİ (döngü 207)

 Makine ve TNC'nin üreticisi tarafından dengeleme aynasız vida dişi delme için hazırlanmış olması gerekir!
 Çalışma, kurallı mil ile uygulanır!

- CYCL DEF: 207 VİDA DİŞİ DELME GS YENİ döngüsünü seçin
 - Güvenlik mesafesi: Q200
 - Delik derinliği: Vida dişi uzunluğu= Malzeme yüzeyi ve vida dişi sonu arasındaki mesafe: Q201

Hatve: Q239

Ön işaret sağdan ve soldan vida dişini belirler: Sağdan vida dişi: + Soldan vida dişi: -

- Koord. Malzeme yüzeyi: Q203
- > 2. Güvenlik mesafesi: Q204

26 CYCL DEF 207 VİDA DİŞİ DELME GS YENİ Q200=2 ;GÜVENLIK MESAFESI Q201=-20 ;DERINLIK Q239=+1 ;HATVE Q203=+25 ;YÜZEY KOOR. Q204=50 ;2. GÜVENLIK MESAFESI

VİDA DİŞİ DELME TALAŞ KIRILMASI (döngü 209)

Makine ve TNC'nin üreticisi tarafından vida dişi delme için hazırlanmış olması gerekir!

- Çalışma, kurallı mil ile uygulanır!
- CYCL DEF: 209 VIDA DİŞİ DELME GERME KIRILMASI döngüsünü seçin
 - Güvenlik mesafesi: Q200
 - Delik derinliği: Vida dişi uzunluğu= Malzeme yüzeyi ve vida dişi sonu arasındaki mesafe: Q201

Hatve: Q239

Ön işaret sağdan ve soldan vida dişini belirler: Sağdan vida dişi: + Soldan vida dişi: -

- Koord. Malzeme yüzeyi: Q203
- 2. Güvenlik mesafesi: Q204
- Germe kırılmasına kadar delik derinliği: Q257
- Germe kırılmasında geri çekme: Q256
- Mil oryantasyon açısı: Q336
- Devir değişimi geri çekme faktörü: Q403

Delik ve vida dişi oluşturma için döngüler

VİDA DİŞİ FREZELEME (döngü 262)

- Delik ortasında R0 ile ön pozisyonlama
- CYCL DEF: 262 VIDA DIŞI FREZELEME döngüsünü seçin
 - Vida dişinin nominal çapı: Q335
 - Hatve: Q239

Ön işaret sağdan ve soldan vida dişini belirler: Sağdan vida dişi: + Soldan vida dişi: -

- Vida dişi derinliği: Malzeme yüzeyi ve vida dişi sonu arasındaki mesafe: Q201
- Hatve sayısı ilavesi: Q355
- Ön pozisyonlama beslemesi: Q253
- Freze tipi: Q351 Senkronize: +1
- Senkronize olmavan: -1
- Güvenlik mesafesi: Q200
- Koord. Malzeme yüzeyi: Q203
- 2. Güvenlik mesafesi: Q204
- Freze beslemesi: Q207

TNC'nin sürüş hareketinden önce alet ekseninde bir dengeleme hareketi uygulamasını dikkate alın. Dengeleme hareketi büyüklüğü, hatveye bağlıdır. Delikte yeteri kadar yere dikkat edin!

HAVŞA VİDA DİŞİ FREZELEME (döngü 263)

- Delik ortasında R0 ile ön pozisyonlama
- CYCL DEF: 263 HAVŞA DİŞLİ FREZESİ döngüsünü seçin
 - Vida dişinin nominal çapı: Q335
 - Hatve: Q239

Ön işaret sağdan ve soldan vida dişini belirler: Sağdan vida dişi: + Soldan vida dişi: -

- Vida dişi derinliği: Malzeme yüzeyi ve vida dişi sonu arasındaki mesafe: Q201
- Havşa derinliği: Malzeme yüzeyi delik tabanı mesafesi: Q356
- Ön pozisyonlama beslemesi: Q253
- Freze tipi: Q351
 Senkronize: +1
 Senkronize olmayan: -1
- Güvenlik mesafesi: Q200
- Güvenlik mesafesi tarafı: Q357
- Havşa derinliği ön kısmı: Q358
- Ön taraf havşa kaydırması: Q359
- Koord. Malzeme yüzeyi: Q203
- 2. Güvenlik mesafesi: Q204
- Havşalama beslemesi: Q254
- Freze beslemesi: Q207

DELME VİDA DİŞİ FREZELEME (döngü 264)

- Delik ortasında R0 ile ön pozisyonlama
- CYCL DEF: 264 DELİK DİŞLİ FREZESİ döngüsünü seçin
- Vida dişinin nominal çapı: Q335
- Hatve: Q239

Ön işaret sağdan ve soldan vida dişini belirler: Sağdan vida dişi: + Soldan vida dişi: -

- Vida dişi derinliği: Malzeme yüzeyi ve vida dişi sonu arasındaki mesafe: Q201
- Delik derinliği: Malzeme yüzeyi delik tabanı mesafesi: Q356
- Ön pozisyonlama beslemesi: Q253
- Freze tipi: Q351
- Senkronize: +1
- Senkronize olmayan: -1
- Kesme derinliği: Q202
- Üst önde tutma mesafesi: Q258
- Germe kırılmasına kadar delik derinliği: Q257
- Germe kırılmasında geri çekme: Q256
- Bekleme süresi altta: Q211
- Havşa derinliği ön kısmı: Q358
- Ön taraf havşa kaydırması: Q359
- Güvenlik mesafesi: Q200
- Koord. Malzeme yüzeyi: Q203
- 2. Güvenlik mesafesi: Q204
- Derin kesme beslemesi: Q206
- Freze beslemesi: Q207

Delik ve vida dişi oluşturma için döngüler

HELİSEL DELME VİDA DİŞİ FREZELEME (döngü 265)

- Delik ortasında R0 ile ön pozisyonlama
- CYCL DEF: 265 HELEZ DELİK VİDA DİŞİ FREZELEME döngüsünü seçin
 - Vida dişinin nominal çapı: Q335
 - Hatve: Q239

Ön işaret sağdan ve soldan vida dişini belirler: Sağdan vida dişi: + Soldan vida dişi: -

- Vida dişi derinliği: Malzeme yüzeyi ve vida dişi sonu arasındaki mesafe: Q201
- Ön pozisyonlama beslemesi: Q253
- Havşa derinliği ön kısmı: Q358
- Ön taraf havşa kaydırması: Q359
- Havşa işlemi: Q360
- Kesme derinliği: Q202
- Güvenlik mesafesi: Q200
- Koord. Malzeme yüzeyi: Q203
- 2. Güvenlik mesafesi: Q204
- Havşalama beslemesi: Q254
- Freze beslemesi: Q207

DIŞ VİDA DİŞİ FREZELEME (döngü 267)

- Delik ortasında R0 ile ön pozisyonlama
- CYCL DEF: 267 DIŞ VİDA DİŞİ FREZELEME döngüsünü seçin
- Vida dişinin nominal çapı: Q335
- Hatve: Q239

Ön işaret sağdan ve soldan vida dişini belirler: Sağdan vida dişi: + Soldan vida dişi: -

- Vida dişi derinliği: Malzeme yüzeyi ve vida dişi sonu arasındaki mesafe: Q201
- Hatve sayısı ilavesi: Q355
- Ön pozisyonlama beslemesi: Q253
- Freze tipi: Q351
- Senkronize: +1
- Senkronize olmayan: -1
- Güvenlik mesafesi: Q200
- Havşa derinliği ön kısmı: Q358
- Ön taraf havşa kaydırması: Q359
- Koord. Malzeme yüzeyi: Q203
- 2. Güvenlik mesafesi: Q204
- Havşalama beslemesi: Q254
- Freze beslemesi: Q207

Cepler, pimler ve yivler

Genel bakış

Kullanılabilir döngüler		Sayfa
251	Tam DİKDÖRTGEN CEP	64
252	Tam DAİRESEL CEP	65
253	Tam YİV	66
254	Tam YUVARLAK YİV	67
256	DİKDÖRTGEN PİM	68
257	DAİRESEL PİM	69

DİKDÖRTGEN CEP (döngü 251)

- CYCL DEF: 251 DİKDÖRTGEN CEP döngüsünü seçin
 - Çalışma kapsamı (0/1/2): Q215
 - 1. Yan Uzunluk: Q218
- 2. Yan Uzunluk: Q219
- Köşe yarıçapı: Q220
- Yan perdahlama ölçüsü: Q368
- Dönme konumu: Q224
- Cep konumu: Q367
- Freze beslemesi: Q207
- Freze tipi: Q351. Senkronize: +1, Senkronize olmayan: -1
- Derinlik: Malzeme yüzeyi cep tabanı mesafesi: Q201
- Kesme derinliği: Q202
- Yan perdahlama derinliği: Q369
- Derinlik beslemesi: Q206
- Kesme perdahlaması: Q338
- Güvenlik mesafesi: Q200
- Koord. Malzeme yüzeyi: Q203
- 2. Güvenlik mesafesi: Q204
- Hattın üst üste binme faktörü: Q370
- Daldırma yöntemi: Q366. 0 = dikey daldırma, 1 = helisel biçimde daldırma, 2 = sallanarak daldırma
- Perdahlama beslemesi: Q385

DAİRESEL CEP (döngü 252)

- CYCL DEF: 252 DAİRESEL CEP döngüsünü seçin
 - Çalışma kapsamı (0/1/2): Q215
 - Bitmiş parça çapı: Q223
 - Yan perdahlama ölçüsü: Q368
 - Freze beslemesi: Q207
 - Freze tipi: Q351. Senkronize: +1, Senkronize olmayan: -1
 - Derinlik: Malzeme yüzeyi cep tabanı mesafesi: Q201
 - Kesme derinliği: Q202
 - Yan perdahlama derinliği: Q369
 - Derinlik beslemesi: Q206
 - Kesme perdahlaması: Q338
 - Güvenlik mesafesi: Q200
 - Koord. Malzeme yüzeyi: Q203
 - 2. Güvenlik mesafesi: Q204
 - Hattın üst üste binme faktörü: Q370
 - Daldırma yöntemi: Q366. 0 = dikey daldırma, 1 = helisel biçimde daldırma
 - Perdahlama beslemesi: Q385

65

YİV FREZELEME (döngü 253)

- CYCL DEF: 253 YİV FREZELEME döngüsünü seçin
 - Çalışma kapsamı (0/1/2): Q215
 - 1. Yan Uzunluk: Q218
- 2. Yan Uzunluk: Q219
- Yan perdahlama ölçüsü: Q368
- Tüm yivin döndürüleceği dönme açısı: Q374
- Yivin konumu (0/1/2/3/4): Q367
- Freze beslemesi: Q207
- Freze tipi: Q351. Senkronize: +1, Senkronize olmayan: -1
- Derinlik: Malzeme yüzeyi yiv tabanı mesafesi: Q201
- Kesme derinliği: Q202
- Yan perdahlama derinliği: Q369
- Derinlik beslemesi: Q206
- Kesme perdahlaması: Q338
- Güvenlik mesafesi: Q200
- Koord. Malzeme yüzeyi: Q203
- 2. Güvenlik mesafesi: Q204
- Daldırma yöntemi: Q366. 0 = dikey daldırma, 1 = sallanarak daldırma
- Perdahlama beslemesi: Q385

Cepler, pimler ve yivler

YUVARLAK YİV (döngü 254)

- CYCL DEF: 254 YUVARLAK YİV döngüsünü seçin
 - Çalışma kapsamı (0/1/2): Q215
 - 2. Yan Uzunluk: Q219
 - Yan perdahlama ölçüsü: Q368
 - Kısmi daire çapı: Q375
 - Yivin konumu (0/1/2/3): Q367
 - Orta 1. eksen: Q216
 - Orta 2. eksen: Q217
 - Başlangıç açısı: Q376
 - Yivin açılma açısı: Q248
 - Açı adımı: Q378
 - Çalışma sayısı: Q377
 - Freze beslemesi: Q207
 - Freze tipi: Q351. Senkronize: +1, Senkronize olmayan: -1
 - Derinlik: Malzeme yüzeyi yiv tabanı mesafesi: Q201
 - Kesme derinliği: Q202
 - Yan perdahlama derinliği: Q369
 - Derinlik beslemesi: Q206
 - Kesme perdahlaması: Q338
 - Güvenlik mesafesi: Q200
 - Koord. Malzeme yüzeyi: Q203
 - 2. Güvenlik mesafesi: Q204
 - Daldırma yöntemi: Q366. 0 = dikey daldırma, 1 = helisel biçimde daldırma
 - Perdahlama beslemesi: Q385

DİKDÖRTGEN PİM (döngü 256)

- CYCL DEF: 256 DIKDÖRTGEN CEP döngüsünü seçin
 - 1. Yan Uzunluk: Q218
 - Ham parça ölçüsü 1: Q424
- 2. Yan Uzunluk: Q219
- Ham parça ölçüsü 2: Q425
- Köşe yarıçapı: Q220
- Yan perdahlama ölçüsü: Q368
- Dönme konumu: Q224
- Pim konumu: Q367
- Freze beslemesi: Q207
- Freze tipi: Q351. Senkronize: +1, Senkronize olmayan: -1
- Derinlik: Malzeme yüzeyi pim tabanı mesafesi: Q201
- Kesme derinliği: Q202
- Derinlik beslemesi: Q206
- Güvenlik mesafesi: Q200
- Koord. Malzeme yüzeyi: **Q203**
- 2. Güvenlik mesafesi: Q204
- Hattın üst üste binme faktörü: Q370

DAİRESEL PİM (döngü 257)

- CYCL DEF: 257 DAIRESEL PİM döngüsünü seçin
 - Bitmiş parça çapı: Q223
 - Ham parça çapı: Q222
 - Yan perdahlama ölçüsü: Q368
 - Freze beslemesi: Q207
 - Freze tipi: Q351. Senkronize: +1, Senkronize olmayan: -1
 - Derinlik: Malzeme yüzeyi pim tabanı mesafesi: Q201
 - Kesme derinliği: Q202
 - Derinlik beslemesi: Q206
 - Güvenlik mesafesi: Q200
 - Koord. Malzeme yüzeyi: Q203
 - 2. Güvenlik mesafesi: Q204
 - Hattın üst üste binme faktörü: Q370

Nokta numunesi

Genel bakış

Kullanılabilir döngüler		Sayfa
220	DAİRE ÜZERİNDE NOKTA NUMUNESİ	70
221	ÇİZGİ ÜZERİNDE NOKTA NUMUNESİ	71

DAİRE ÜZERİNDE NOKTALI ÖRNEK (döngü 220)

- CYCL DEF: 220 DAIRE ÜZERINDE NOKTA NUMUNESİ döngüsünü seçin
 - Orta 1. eksen: Q216
 - Orta 2. eksen: Q217
 - Kısmi daire çapı: Q244
 - Başlangıç açısı: Q245
 - Son açı: Q246
 - Açı adımı: Q247
 - Çalışma sayısı: Q241
 - Güvenlik mesafesi: Q200
 - Koord. Malzeme yüzeyi: Q203
 - 2. Güvenlik mesafesi: Q204
 - Güvenli yüksekliğe hareket edin: Q301
 - Sürüş türü: Q365

ᇞ

Döngü 220 ile aşağıdaki döngüleri kombine edebilirsiniz: 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 240, 251, 252, 253, 254, 256, 257, 262, 263, 264, 265, 267.

Nokta numunesi

HATLAR ÜZERİNDE NOKTALI ÖRNEK (döngü 221)

CYCL DEF: 221 ÇİZGİ ÜZERİNDE NOKTA NUMUNESİ döngüsünü seçin

- Başlangıç noktası 1. eksen: Q225
- Başlangıç noktası 2. eksen: Q226
- Mesafe 1. eksen: Q237
- Mesafe 2. eksen: Q238
- Sütun sayısı: Q242
- Satır sayısı: Q243

网

- Dönme konumu: Q224
- Güvenlik mesafesi: Q200
- Koord. Malzeme yüzeyi: Q203
- 2. Güvenlik mesafesi: Q204
- Güvenli yüksekliğe hareket edin: Q301

TNC aleti alet ekseninde ve çalışma düzleminde otomatik olarak ileri pozisyonluyor.

71

SL döngüleri

Genel bakış

Kullanılabilir döngüler		Sayfa
14	KONTUR	74
20	KONTUR VERİLERİ	75
21	ÖN DELME	76
22	BOŞALTMA	76
23	DERİNLİK PERDAHLAMA	77
24	YAN PERDAHLAMA	77
25	KONTUR CEKM.	78
27	SİLİNDİR KILIFI	79
28	YİV SİLİNDİR KILIFI	80
29	SILIN. MUHAF. CUBUGU	81
39	SİLİNDİR KILIFI KONTURU	82

Genel

Konturlar birden fazla kısmi konturu bir araya getiriyorsa SL döngüleri avantajlıdır (maksimum 12 ada veya cep).

Kısmi konturlar alt programlarda tanımlanır.

Kısmi konturlar için dikkat edilmesi gereken:

- Cep'te kontur içeride çalışır, Ada'da ise dışarıda çalışır!
- Kalkış ve çıkış hareketleri gibi kesmeler alet ekseninde programlanamaz!
- 14 KONTUR döngüsünde listelenen kısmi konturlar daima kapalı konturlar vermelidir!
- Bir SL döngüsü için hafıza sınırlıdır. Böylece bir SL döngüsünde örn. yakl. 2048 doğru tümcesi programlayabilirsiniz.

SL döngüleri

25 KONTUR ÇEKME döngüsü için kontur kapalı olmamalıdır!

Program akışından önce grafik bir simülasyon uygulayın. Konturların doğru şekilde tanımlandığını gösterir!

KONTUR (döngü 14)

14 KONTUR döngüsünde kapalı bir toplam kontura aktarılan alt programlar listelenir.

- CYCL DEF: 14 KONTUR döngüsünü seçin
 - Kontur için label numaraları: Kapalı bir toplam kontura aktarılacak alt programların LABEL numaralarını listeleyin.

....

14 KONTUR döngüsü tanımdan itibaren etki eder!

4 CYCL DEF 14.0 KONTUR 5 CYCL DEF 14.1 KONTURLABEL 1/2/3

36 L Z+200 R0 FMAX M2

37 LBL1

38 L X+0 Y+10 RR

39 L X+20 Y+10

40 CC X+50 Y+50

•••

45 LBL0

46 LBL2

. . . .

i

KONTÜR VERİLERİ (döngü 20)

20 KONTUR VERİLERİ döngüsünde çalışma bilgileri, 21 ila 24 arasındaki döngüler için belirlenir.

- CYCL DEF: 20 KONTUR VERİLERİ döngüsünü seçin
 - Freze derinliği: Malzeme yüzeyi cep tabanı mesafesi: Q1
 - Hattın üst üste binme faktörü: Q2
 - Yan perdahlama ölçüsü: Q3
 - Yan perdahlama derinliği Q4

ᇞ

- Koord. Malzeme yüzeyi: Malzemeye ait koordinatlar, güncel sıfır noktasını baz alır: Q5
- Güvenlik mesafesi: Alet malzeme yüzeyi mesafesi: Q6
- Güvenli yükseklik: Malzeme ile hiçbir çarpışma olmayacak seviyede yükseklik: Q7
- İç yuvarlama yarıçapı: İç köşelerdeki alet orta nokta hattı yuvarlama yarıçapı: Q8
- ▶ Dönüş yönü: **Q9**: Saat yönünde Q9 = -1, Saat yönü tersinde Q9 = +1

20 KONTUR VERİLERİ döngüsü tanımdan itibaren etki eder!

SL döngüleri

ÖN DELME (döngü 21)

- CYCL DEF: 21 ÖN DELME döngüsünü seçin
 - Kesme derinliği: Q10 artan
 - Derin kesme beslemesi: Q11
 - Boşaltma aleti numarası: Q13

BOŞALTMA (döngü 22)

Boşaltma işlemi her kesme derinliği için kontura paralel yapılır.

- CYCL DEF: 22 BOŞALTMA döngüsünü seçin
 - Kesme derinliği: Q10
 - Derin kesme beslemesi: Q11
 - Boşaltma beslemesi: Q12
 - Boşaltma aleti numarası: Q18
 - Sallanma beslemesi: Q19
 - Geri çekme beslemesi: Q208
 - % olarak besleme faktörü: Alet tam müdahaledeyken, besleme azaltma: Q401
 - Boşaltma stratejisi: TNC'nin aleti, boşaltma sırasında nasıl hareket ettireceğinin belirlenmesi: Q404

DERİNLİK PERDAHLAMA (döngü 23)

İşlenecek düzlem, derinlik perdahlama ölçüsü kadar kontura paralel perdahlanır.

- CYCL DEF: 23 DERİNLİK PERDAHLAMA döngüsünü seçin
 - Derin kesme beslemesi: Q11
 - Boşaltma beslemesi: Q12
 - Geri çekme beslemesi: Q208

哟

ᇞ

22 BOŞALTMA döngüsünü döngü 23'ten önce çağırın!

YAN PERDAHLAMA (döngü 24)

Tekil kısmi konturların perdahlanması.

- CYCL DEF: 24 YAN PERDAHLAMA döngüsünü seçin
 - Dönüş yönü: Q9. Saat yönünde Q9 = -1, Saat yönü tersinde Q9 = +1
 - Kesme derinliği: Q10
 - Derin kesme beslemesi: Q11
 - Boşaltma beslemesi: Q12
 - Yan perdahlama ölçüsü: Q14: Birden fazla perdahlama için ölçü

22 BOŞALT	MA döngüsünü	döngü 24'ten	önce çağırın!

SL döngüleri

KONTUR ÇEKME (döngü 25)

Bu döngü ile veriler, bir kontur alt programında tanımlanan açık bir konturun işlenmesi için belirlenir.

- CYCL DEF: 25 KONTUR ÇEKME döngüsünü seçin
 - Freze derinliği: Q1
 - Yan perdahlama ölçüsü: Q3. İşleme düzlemindeki perdahlama ölçüsü
 - Koord. Malzeme yüzeyi: Q5. Malzeme yüzeyi koordinatları
 - Güvenli yükseklik: Q7: Alet ile malzeme için aynı olamayacak yükseklik
 - Kesme derinliği: Q10
 - Derin kesme beslemesi: Q11
 - Freze beslemesi: Q12
 - Freze tipi: Q15. Senkronize frezeleme: Q15 = +1, Senkronize olmayan frezeleme: Q15 = -1, Sallanarak, birden fazla kesmede: Q15 = 0
- 呐

14 KONTUR döngüsü sadece tek bir Label numarası içerebilir!

- Alt program yakl. 2048 doğru parçası içermelidir!
- Döngü çağırmadan sonra hiçbir zincir ölçü programlamayın, çarpışma tehlikesi.
- Döngü çağırmadan sonra tanımlanan bir mutlak pozisyonu hareket ettirin.

SİLİNDİR KILIFI (döngü 27, yazılım seçeneği 1)

	Ŷ	
T		7

Makine ve TNC'nin üreticisi tarafından **27 SİLİNDİR KILIFI** döngüsü hazırlanmalıdır!

27 SİLİNDİR KILIFI döngüsü ile önceden işlemede tanımlı kontur üzerinde bir silindir kılıfına aktarılır.

- Konturu bir alt programda tanımlayın ve 14 KONTUR döngüsü üzerinden belirleyin
- CYCL DEF: 27 SILINDIR KILIFI döngüsünü seçin
 - Freze derinliği: Q1
 - Yan perdahlama ölçüsü: Q3
 - Güvenlik mesafesi: Q6. Alet ve malzeme yüzeyi arasındaki mesafe
 - Kesme derinliği: Q10
 - Derin kesme beslemesi: Q11
 - Freze beslemesi: Q12
 - Silindir yarıçapı: Q16. Silindirin yarıçapı
 - Ölçülendirme türü: Q17. Derece = 0, mm/inç = 1

- Malzeme merkezi olarak gerili olmalıdır!
- Alet ekseni, yuvarlak tezgah eksenine dik olmalıdır!
- 14 KONTUR döngüsü sadece tek bir Label numarası içerebilir!
- Alt program yakl. 1024 doğru parçası içermelidir!

SİLİNDİR KILIFI (döngü 28, yazılım seçeneği 1)

		Γ	Ų	1	
(1				٢

Makine ve TNC, üreticisi tarafından **28 SİLİNDİR KILIFI** döngüsü için hazırlanmalıdır!

28 SİLİNDİR KILIFI döngüsü ile önceden işlemede tanımlı kontur üzerinde, kenar duvarı parçalanmadan bir silindir kılıfına aktarılır.

- Konturu bir alt programda tanımlayın ve 14 KONTUR döngüsü üzerinden belirleyin
- CYCL DEF: 28 SILINDIR KILIFI döngüsünü seçin
 - Freze derinliği: Q1
 - Yan perdahlama ölçüsü: Q3
 - Güvenlik mesafesi: Q6. Alet ve malzeme yüzeyi arasındaki mesafe
 - Kesme derinliği: Q10
 - Derin kesme beslemesi: Q11
 - Freze beslemesi: Q12
 - Silindir yarıçapı: Q16. Silindirin yarıçapı
 - Ölçülendirme türü: Q17. Derece = 0, mm/inç = 1
 - Yiv genişliği: Q20
 - Tolerans: Q21

ᇞ

- Malzeme merkezi olarak gerili olmalıdır!
- Alet ekseni, yuvarlak tezgah eksenine dik olmalıdır!
 - 14 KONTUR döngüsü sadece tek bir Label numarası içerebilir!
 - Alt program yakl. 2048 doğru parçası içermelidir!

SİLİNDİR KILIFI (döngü 29, yazılım seçeneği 1)

	Ŷ	
7		Γ

Makine ve TNC, üreticisi tarafından **29 SİLİNDİR KILIFI** döngüsü için hazırlanmalıdır!

29 SİLİNDİR KILIFI döngüsü ile önceden işlemede tanımlı çubuk üzerinde, kenar duvarı parçalanmadan bir silindir kılıfına aktarılır.

- Konturu bir alt programda tanımlayın ve 14 KONTUR döngüsü üzerinden belirleyin
- CYCL DEF: 29 SILINDIR KILIFI ÇUBUĞU döngüsünü seçin
 - Freze derinliği: Q1
 - Yan perdahlama ölçüsü: Q3
 - Güvenlik mesafesi: Q6. Alet ve malzeme yüzeyi arasındaki mesafe
 - Kesme derinliği: Q10
 - Derin kesme beslemesi: Q11
 - Boşaltma beslemesi: Q12
 - Silindir yarıçapı: Q16. Silindirin yarıçapı
 - Ölçülendirme türü: Q17. Derece = 0, mm/inç = 1
 - Çubuk genişliği: Q20

- Malzeme merkezi olarak gerili olmalıdır!
- Alet ekseni, yuvarlak tezgah eksenine dik olmalıdır!
- 14 KONTUR döngüsü sadece tek bir Label numarası içerebilir!
- Alt program yakl. 2048 doğru parçası içermelidir!

SL döngüleri

SİLİNDİR KILIFI (döngü 39, yazılım seçeneği 1)

_	P	
	_	_

Makine ve TNC, üreticisi tarafından **39 SİLİNDİR KILIFI KONTURU** döngüsü için hazırlanmalıdır!

39 SİLİNDİR KILIFI KONTURU döngüsü ile önceden işlemede tanımlı açık kontur üzerinde bir silindir kılıfına aktarılır.

- Konturu bir alt programda tanımlayın ve 14 KONTUR döngüsü üzerinden belirleyin
- CYCL DEF: 39 SILINDIR KILIFI KONTURU döngüsünü seçin
 - Freze derinliği: Q1
 - Yan perdahlama ölçüsü: Q3
 - Güvenlik mesafesi: Q6. Alet ve malzeme yüzeyi arasındaki mesafe
 - Kesme derinliği: Q10
 - Derin kesme beslemesi: Q11
 - Freze beslemesi: Q12
 - Silindir yarıçapı: Q16. Silindirin yarıçapı
 - Ölçülendirme türü: Q17. Derece = 0, mm/inç = 1
- 吵
- Malzeme merkezi olarak gerili olmalıdır!
- Alet ekseni, yuvarlak tezgah eksenine dik olmalıdır!
- 14 KONTUR döngüsü sadece tek bir Label numarası içerebilir!
- Alt program yakl. 2048 doğru parçası içermelidir!

İşlemek için döngüler

Genel bakış

Kullanılabilir döngüler		Sayfa
30	3D VERİLERİ İŞLEME	83
230	SATIR DUSURMESI	84
231	AYAR YUZEYI	85
232	PLANLI FREZELEME	86

3D-VERİLERİN İŞLENMESİ (döngü 14)

Döngü, yıldız dişli bir frezenin ortadan kesilmesine neden olur (DIN 844)!

- CYCL DEF: 30 3D VERİLERİ İŞLEME döngüsünü seçin
 - PGM ismi dijital verileri
 - MIN nokta alanı
 - MAKS nokta alanı
 - Güvenlik mesafesi: 1
 - Kesme derinliği: 2
 - Derin kesme beslemesi: 3
 - Besleme: 4
 - Ek fonksiyon M.

i

İŞLEME (döngü 230)

TNC, aleti güncel pozisyondan — öncelikle çalışma düzleminde konumlandırır — ve daha sonra alet eksenindeki başlangıç noktasına konumlandırır. Aleti, malzeme veya gergi gereçleri ile çarpışma gerçekleşmeyecek şekilde ön pozisyonlandırın!

- CYCL DEF: 230 SATIR OLUŞTURMA döngüsünü seçin
 - Başlangıç noktası 1. eksen: Q225
 - Başlangıç noktası 2. eksen: Q226
 - Başlangıç noktası 3. eksen: Q227
 - ▶ 1. Yan uzunluk: Q218
 - > 2. Yan uzunluk: Q219
 - Kesim sayısı: Q240
 - Derin kesme beslemesi: Q206
 - Freze beslemesi: Q207
 - Çapraz besleme: Q209
 - Güvenlik mesafesi: Q200

AYAR YÜZEYİ (döngü 231)

TNC, aleti güncel pozisyondan — öncelikle çalışma düzleminde konumlandırır — ve daha sonra alet eksenindeki başlangıç noktasına konumlandırır (nokta 1). Aleti, malzeme veya gergi gereçleri ile çarpışma gerçekleşmeyecek şekilde ön pozisyonlandırın!

- CYCL DEF: 231 KURAL YÜZEYİ döngüsünü seçin
 - Başlangıç noktası 1. eksen: Q225
 - Başlangıç noktası 2. eksen: Q226
 - Başlangıç noktası 3. eksen: Q227
 - 2. Nokta 1. eksen: Q228
 - 2. Nokta 2. eksen: Q229
 - 2. Nokta 3. eksen: Q230
 - 3. Nokta 1. eksen: Q232
 - 3. Nokta 2. eksen: Q232
 - 3. Nokta 3. eksen: Q233
 - 4. Nokta 1. eksen: Q234
 - 4. Nokta 2. eksen: Q235
 - 4. Nokta 3. eksen: Q236
 - Kesim sayısı: Q240
 - Freze beslemesi: Q207

i

SATIH FREZELEME (döngü 232)

2. Q204 güvenlik mesafesini, malzeme veya gergi gereçleri ile çarpışma gerçekleşmeyecek şekilde girin!

- CYCL DEF: 232 PLAN FREZELEME döngüsünü seçin
 Çalışma stratejisi: Q389
 - Başlangıç noktası 1. eksen: Q225
 - Başlangıç noktası 2. eksen: Q226
 - Başlangıç noktası 3. eksen: Q227
 - Son nokta 3. eksen: Q386
 - 1. Yan uzunluk: Q218
 - 2. Yan uzunluk: Q219
 - Maksimum kesme derinliği: Q202
 - Yan perdahlama derinliği: Q369
 - Maks. hattın üst üste binme faktörü: Q370
 - Freze beslemesi: Q207
 - Perdahlama beslemesi: Q385
 - Ön pozisyonlama beslemesi: Q253
 - Güvenlik mesafesi: Q200
 - Güvenlik mesafesi tarafı: Q357
 - 2. güvenlik mesafesi: Q204

Koordinat hesap dönüşümü ile ilgili döngüler

Genel bakış

Koordinat dönüştürme döngüleriyle konturlar kaydırılabilir, yansıtılabilir, döndürülebilir (düzlemde), çevrilebilir (düzlemden dışarıya), küçültülebilir ve büyütülebilir.

Kulla	Kullanılabilir döngüler			
7	SIFIR NOK	88		
247	REFERANS NOKT AYARI	89		
8	YANSITMA	90		
10	DÖNME	91		
11	ÖLÇÜM FAKTÖRÜ	92		
26	ÖLÇÜM FAKTÖRÜ EKSEN SP.	93		
19	ÇALIŞMA DÜZLEMİ (yazılım seçeneği)	94		

Koordinat dönüştürme döngüleri tanımınıza göre sıfırlanana kadar veya yeniden tanımlanana kadar etkilidir. Orijinal kontur bir alt programda belirlenmelidir. Giriş değerleri, mutlak veya artan olarak girilebilir.

SIFIR NOKTASI KAYDIRMASI (döngü 7)

CYCL DEF: 7 SIFIR NOKTASI KAYDIRMASI döngüsünü seçin

> Yeni sıfır noktası koordinatları veya sıfır noktası numarasını sıfır noktası tablosundan girin

Sıfır noktası kaydırmayı sıfırlayın: Giriş değerleri 0 ile yenilenmiş döngü tanımı.

13 CYCL DEF 7.0 SIFIR NOKTASI
14 CYCL DEF 7.1 X+60
16 CYCL DEF 7.3 Z-5
15 CYCL DEF 7.2 Y+40
Diğer koordinat hesaplarından önce sıfır noktası kaydırma uygulayın!

Diger koordinat hesaplarından önce sifir noktası kaydırmayı uygulayın!

Koordinat hesap dönüşümü ile ilgili döngüler

REFERANS NOKTASI AYARI (Döngü 247)

CYCL DEF: 247 REFERANS NOKTASI AYARI döngüsünü seçin

Referans noktası için numara: Q339. Yeni referans noktası numarasını Preset tablosundan girin

13 CYCL DEF 247 REFERANS NOKTASİ AYARİ

Q339=4 ;REFERANS NOKTASİ NUMARASİ

Preset tablosundan alınan bir referans noktasını etkinleştirmede TNC, aşağıdaki döngülerle etkinleştirilen tüm aktif koordinat dönüştürmelerini sıfırlar:

- Döngü 7, sıfır noktası kaydırması
- Döngü 8, yansıtma
- Döngü 10, dönme
- Döngü 11, ölçüm faktörü
- Döngü 26, eksene özel ölçüm faktörü

Döngü 19'dan koordinat dönüştürme, çalışma düzlemi kaydırma buna karşın aktif kalır.

Eğer Preset numarası 0 (satır 0) aktifleştirirseniz, o zaman son olarak bir manuel işletim türünde elle konulan referans noktasını aktifleştirirsiniz.

PGM test işletim türünde döngü 247 etkin değildir.

YANSITMA (döngü 8)

CYCL DEF: 8 YANSITMA döngüsünü seçin

Yansıtılan ekseni girin: X veya Y veya X ve Y

YANSITMA'yı sıfırlayın: NO ENT girişi ile yenilenmiş döngü tanımı.

15 CALL LBL1

16 CYCL DEF 7.0 SIFIR NOKTASI

17 CYCL DEF 7.1 X+60

18 CYCL DEF 7.2 Y+40

19 CYCL DEF 8.0 YANSITMA

20 CYCL DEF 8.1 Y

21 CALL LBL1

- Alet ekse
 - Alet ekseni yansıtılamaz!
 - Döngü daima orijinal konturu yansıtır (buradaki örnekte
 - LBL 1 alt programında belirlenir)!

Ť

DÖNME (döngü 10)

CYCL DEF: 10 DÖNME döngüsünü seçin

 Dönme açısını girin: Girdi alanı -360° ila +360°
 Dönme açısı için referans ekseni

Çalışma düzlemi	Referans ekseni ve 0° yönü
X/Y	X
Y/Z	Y
Z/X	Z

DEVRİ sıfırlayın: Devir açısı 0 ile yenilenmiş döngü tanımı.

		2			,	0	
12	CALL	LBL1	I				
13	CYCL	DEF	7.0 SI	FIR NOK	TASI		
14	CYCL	DEF	7.1 X+	60			
15	CYCL	DEF	7.2 Y+	40			
16	CYCL	DEF	10.0 D	ÖNME			
17	CYCL	DEF	10.1 R	OT+35			

18 CALL LBL1

ÖLÇÜ FAKTÖRÜ (döngü 11)

- CYCL DEF: 11 ÖLÇÜM FAKTÖRÜ döngüsünü seçin
- Ölçüm faktörü SCL (İng: scale = Ölçü çubuğu) girin: Girdi alanı 0,000001 ila 99,999999 Küçültme ... SCL<1</p>
 - Büyütme ... SCL>1
- ÖLÇÜM FAKTÖRÜ'nü sıfırlayın: SCL1 ile yenilenmiş döngü tanımı.

11 CALL LBL1

- 12 CYCL DEF 7.0 SIFIR NOKTASI
- 13 CYCL DEF 7.1 X+60
- 14 CYCL DEF 7.2 Y+40
- 15 CYCL DEF 11.0 ÖLÇÜM FAKTÖRÜ
- 16 CYCL DEF 11.1 SCL 0.75

17 CALL LBL1

ÖLÇÜM FAKTÖRÜ çalışma düzleminde veya ana eksenlerde etki eder (makine parametresi 7410'a bağlıdır)!

Koordinat hesap dönüşümü ile ilgili döngüler

EKSENE ÖZEL ÖLÇÜM FAKTÖRÜ (döngü 26)

CYCL DEF: 26 EKSENE ÖZEL ÖLÇÜM FAKTÖRÜ döngüsünü seçin

- Eksen ve faktör: Eksene özel uzatma veya şişirme koordinat eksenleri ve faktörleri
- Merkezi koordinatlar: Uzatma veya şişirme merkezi

EKSENE ÖZEL ÖLÇÜM FAKTÖRÜ'nü sıfırlayın: Değiştirilen eksenler için 1 faktörü ile yenilenmiş döngü tanımı.

Çemberler için pozisyonlara sahip koordinat eksenlerinin, farklı faktörlerle uzatılmış veya şişirilmiş olmaları gerekir!

25 CALL LBL1

26 CYCL DEF 26.0 EKSENE ÖZEL ÖLÇÜM FAKTÖRÜ

27 CYCL DEF 26.1 X 1.4 Y 0.6 CCX+15 CCY+20

28 CALL LBL1

Koordinat hesap dönüşümü ile ilgili döngüler

ÇALIŞMA DÜZLEMİ (döngü 19, yazılım opsiyonu)

Makine ve TNC'nin üreticisi tarafından ÇALIŞMA DÜZLEMİ çevrilmesi için hazırlanmış olması gerekir.

19 ÇALIŞMA DÜZLEMİ döngüsü döner kafalar ve/veya döner tezgahlarla çalışmayı destekler.

- Aleti çağırma
- Aleti, alet ekseninde serbest bırakın (çarpışmayı önler)
- Gerekirse devir eksenlerini L tümcesi ile istenen açıya konumlandırın
- CYCL DEF: 19 ÇALIŞMA DÜZLEMİ döngüsünü seçin
 - İlgili eksenin veya mekan açısının çevirme açısını girin
 - Gerekirse devir eksenleri beslemesini otomatik konumlandırmada girin
- Gerekirse güvenlik mesafesini girin

Düzeltmeyi etkinleştirin: Tüm eksenleri hareket ettirin

Düzlem çevrilmeyecek şekilde çalışmayı programlayın ÇALIŞMA DÜZLEMİ döngüsü hareketini sıfırlayın: Çevirme açısı 0 ile yenilenmiş döngü tanımı.

4 TOOL CALL 1 Z S2500

- 5 L Z+350 R0 FMAX
- 6 L B+10 C+90 R0 FMAX

7 CYCL DEF 19.0 ÇALIŞMA DÜZLEMİ

8 CYCL DEF 19.1 B+10 C+90 F1000 MESF 50

Özel döngüler

Genel bakış

Kullanılabilir döngüler		Sayfa
9	BEKLEME SURESI	96
12	PGM CALL	96
13	ORYANTASYON	97
32	TOLERANS	98

BEKLEME SÜRESİ (döngü 9)

Program akışı BEKLEME SÜRESİ boyunca durdurulur.

- CYCL DEF: 9 BEKLEME SÜRESİ döngüsünü seçin
 - Saniye cinsinden bekleme süresi girin

48 CYCL DEF 9.0 BEKLEME SÜRESİ

49 CYCL DEF 9.1 BEKL. SÜRESİ 0.5

呣

PGM CALL (Döngü 12)

CYCL DEF: 12 PGM CALL döngüsünü seçin
 Çağrılan program ismini girin

12 PGM CALL döngüsü çağrılmalıdır!

7 CYCL DEF 12.0 PGM CALL

8 CYCL DEF 12.1 LOT31

9 L X+37.5 Y-12 R0 FMAX M99

Mil ORYANTASYONU (döngü 13)

Makine ve TNC'nin üreticisi tarafından mil ORYANTASYONU için hazırlanmış olması gerekir!

- CYCL DEF: 13 ORYANTASYON döngüsünü seçin
 - Yönlendirme açısını, çalışma düzlemi açı referans eksenini baz alarak girin:

Girdi alanı 0 ila 360°

Giriş ince ayarı 0,1°

M19 veya M20 ile döngüyü çağırın

12 CYCL DEF 13.0 ORYANTASYON

13 CYCL DEF 13.1 AÇİ 90

TOLERANS (döngü 32)

Makine ve TNC'nin makine üreticisi tarafından hızlı kontur frezeleme için hazırlanmış olması gerekir!

32 TOLERANS döngüsü tanımından itibaren etki eder!

TNC otomatik olarak istenildiği kadar (düzeltilmiş ve düzeltilmemiş) kontur elemanları arasındaki konturu parlatır. Bu nedenle alet, sürekli olarak malzeme yüzeyine hareket eder. Eğer gerekirse, TNC programlanan beslemeyi otomatik azaltır, böylece program daima "sarsıntısız" **en büyük** hızla işlenir.

Parlatma ile bir kontur sapması oluşur: Bu kontur sapmasının büyüklüğü (TOLERANS DEĞERİ) bir makine parametresinde makine üreticiniz tarafından belirlenmiştir. Döngü 32 ile önceden ayarlı tolerans değerini değiştirin (bakınız sağ üstteki resim).

- CYCL DEF: 32 TOLERANS döngüsünü seçin
 - Tolerans T: İzin verilen mm olarak kontur sapması
 - Kumlama/perdahlama: (yazılım seçeneği)
 Filtre ayarını seçin
 - 0: Daha yüksek kontur hassasiyeti ile frezeleme
 - 1: Daha yüksek besleme ile frezeleme
 - Devir eksenleri için tolerans: (Yazılım seçeneği) Devir eksenlerinin, aktif M128'deki derece olarak izin verilen pozisyon sapması

98

Özel döngüler

PLANE fonksiyonu (Yazılım seçeneği 1)

Genel bakış

Makine ve TNC'nin üreticisi tarafından **PLANE** fonksiyonu ile çevirme için hazırlanması gerekir.

PLANE fonksiyonuyla (İng. plane = Düzlem) performanslı bir fonksiyona sahip olursunuz, bununla da farklı biçimlerde döndürülmüş çalışma düzlemlerini tanımlayabilirsiniz.

TNC içinde kullanılabilen tüm **PLANE** fonksiyonları, istediğiniz çalışma düzlemini devir eksenlerinden bağımsız, gerçekten makinenizde olanı tarif eder. Aşağıdaki olanaklar kullanıma sunulur:

Kullanılabilir düzlem tanımları		Sayfa
Hacimsel açı tanımı	100	
Projeksiyon açısı tanımı	101	
Euler açısı tanımlaması	102	
Vektör tanımlaması	103	
Nokta tanımı	104	
Artan hacimsel açı	105	
Eksen açısı	106	
Düzlem tanımını sıfırlayın	107	

Hacimsel açı tanımı (PLANE SPATIAL)

- ÖZEL TNC FONKSİYONLARI'nı seçin
- ÇALIŞMA DÜZLEMİNİ DÖNDÜR, PLANE SPATIAL seçin
 - Hacimsel açı A?: SPA dönme açısı, makineye sabit X ekseni etrafındadır (bakınız sağ üst resim)
- Hacimsel açı B?: SPB dönme açısı, makineye sabit Y ekseni etrafındadır (bakınız sağ üst resim)
- Hacimsel açı C?: SPC dönme açısı, makineye sabit Z ekseni etrafındadır (bakınız sağ alt resim)
- Pozisyon özellikleriyle devam (bakınız "Otomatik dönme (MOVE/ STAY/TURN)" Sayfa 108)

5 PLANE SPATIAL SPA+27 SPB+0 SPC+45 MOVE ABST10 F500 SEQ-

Programlamaya geçilmeden önce dikkat edilecek hususlar

Her zaman için tüm üç **SPA**, **SPB** ve **SPC** hacimsel açıyı, açı 0 olsa dahi tanımlamalısınız.

Daha tanımlı olan sıra dizilimi, etkin alet ekseninden bağımsız geçerlidir.

ф.

Projeksiyon açısı tanımı (PLANE PROJECTED)

- ÖZEL TNC FONKSİYONLARI'nı seçin
- ÇALIŞMA DÜZLEMİNİ DÖNDÜR, PLANE PROJECTED seçin
 - Proj. açısı 1. koordinat düzlemi?: Makineye sabit koordinat sisteminin 1. koordinat düzlemindeki çevrilmiş çalışma düzlemine ait proje bazlı açı (bakınız sağ üst resim)
 - Proj. açısı 2. koordinat düzlemi?: Makineye sabit koordinat sisteminin 2. koordinat düzlemine ait proje bazlı açı (bakınız sağ üst resim)
 - ROT açısı döndürülmüş düzlemde?: Döndürülmüş koordinat sistemlerinin çevrilmiş alet ekseninde döndürülmesi (mantıken 10 TUR döngülü rotasyon bazlıdır, bakınız sağ alttaki resim)
 - Pozisyon özellikleriyle devam (bakınız "Otomatik dönme (MOVE/ STAY/TURN)" Sayfa 108)

5 PLANE PROJECTED PROPR+24 PROMIN+24 PROROT+30 MO VE ABST10 F500

Programlamaya geçilmeden önce dikkat edilecek hususlar

Projeksiyon açısını, sadece eğer dik açılı bir kare işlenecekse kullanın. Aksi takdirde malzemede gerilmeler görülür.

PLANE fonksiyonı (Yazılım seçeneği

Euler açısı tanımı (PLANE EULER)

- ÖZEL TNC FONKSİYONLARI'nı seçin
- ÇALIŞMA DÜZLEMİNİ DÖNDÜR, PLANE EULER seçin
 - Dön aç. Ana koordinat düzlemi?: EULPR dönme açısı, Z-ekseni etrafındadır (bakınız sağ üst resim)
- Alet ekseni çevirme açısı?: EULNUT çevirme açısı, koordinat sisteminden eksen sapması açısından geçen çevrilmiş X-ekseni (bkz. sağ alttaki resim)
- ROT açısı döndürülmüş düzlemde?: Döndürülmüş EULROT koordinat sistemlerinin çevrilmiş Z ekseninde döndürülmesi (mantıken 10 TUR döngülü rotasyon bazlıdır). Rotasyon açısıyla kolay bir şekilde X-ekseninin çevrilmiş çalışma düzleminden tayin edebilirsiniz
- Pozisyon özellikleriyle devam (bakınız "Otomatik dönme (MOVE/ STAY/TURN)" Sayfa 108)

5 PLANE EULER EULPR+45 EULNU20 EULROT22 MOVE ABST 10 F500

Programlamaya geçilmeden önce dikkat edilecek hususlar

Devir sıra dizilimi, etkin alet ekseninden bağımsız geçerlidir.

Vektör tanımı (PLANE VECTOR)

- ÖZEL TNC FONKSİYONLARI'nı seçin
- ÇALIŞMA DÜZLEMİNİ DÖNDÜR, PLANE VECTOR seçin
 - X bileşeni temel vektörü?: B temel vektörü BX X bileşeni (bkz. sağ üst resim)
 - Y bileşeni temel vektörü?: B temel vektörü BY Y bileşeni (bkz. sağ üst resim)
 - Z bileşeni temel vektörü?: B temel vektörü BZ Z bileşeni (bkz. sağ üst resim)
 - X bileşeni normal vektörü?: N normal vektörü NX X bileşeni (bkz. sağ ortadaki resim)
 - Y bileşeni normal vektörü?: N normal vektörü NY Y bileşeni (bkz. sağ alttaki resim)
 - Z bileşeni normal vektörü?: N normal vektörü NZ Z bileşeni
 - Pozisyon özellikleriyle devam (bakınız "Otomatik dönme (MOVE/ STAY/TURN)" Sayfa 108)

5 PLANE VECTOR BX0.8 BY-0.4 BZ-0.4472 NX0.2 NY0.2 NZ0.9592 MOVE ABST10 F500

Programlamaya geçilmeden önce dikkat edilecek hususlar

TNC girilen değerlerden, kendiliğinden her bir normlu vektörü hesaplar.

PLANE fonksiyonu (Yazılım seçeneği '

i

Nokta tanımı (PLANE POINTS)

- ÖZEL TNC FONKSİYONLARI'nı seçin
- ÇALIŞMA DÜZLEMİNİ DÖNDÜR, PLANE POINTS seçin
 - X koordinati 1. düzlem noktası?: X koordinati P1X
 - > Y koordinati 1. düzlem noktası?: Y koordinati P1Y
 - Z koordinati 1. düzlem noktası?: Z koordinati P1Z
- X koordinati 2. düzlem noktası?: X koordinati P2X
- Y koordinati 2. düzlem noktası?: Y koordinati P2Y
- Z koordinati 2. düzlem noktası?: Z koordinati P2Z
- X koordinati 3. düzlem noktası?: X koordinati P3X
- Y koordinati 3. düzlem noktası?: Y koordinati P3Y
- Z koordinati 3. düzlem noktası?: Z koordinati P3Z
- Pozisyon özellikleriyle devam (bakınız "Otomatik dönme (MOVE/ STAY/TURN)" Sayfa 108)

5 POINTS P1X+0 P1Y+0 P1Z+20 P2X+30 P2Y+31 P2Z+20 P3X+0 P3Y+41 P3Z+32.5 MOVE ABST10 F500

ᇝ

Programlamaya geçilmeden önce dikkat edilecek hususlar

Nokta 1'den nokta 2'ye bağlantısı çevrilen ana eksen yönünü belirler (X'i alet ekseni Z'de).

Üç nokta düzlemdeki eğimi tanımlar. Etkin sıfır noktasının konumu TNC tarafından değiştirilmez.

Artan hacimsel açı (PLANE RELATIVE)

- ÖZEL TNC FONKSİYONLARI'nı seçin
- ÇALIŞMA DÜZLEMİNİ DÖNDÜR, PLANE RELATIVE seçin
 - Artan açı?: Aktif çalışma düzlemi etrafında çevrilecek olan hacimsel açı (sağ üstteki resme bakınız). Çevrilecek olan eksen yazılım tuşuyla seçilmelidir
 - Pozisyon özellikleriyle devam (bakınız "Otomatik dönme (MOVE/ STAY/TURN)" Sayfa 108)

5 PLANE RELATIV SPB-45 MOVE ABST10 F500 SEQ-

Programlamaya geçilmeden önce dikkat edilecek hususlar

Tanımlanan açı, aktif çalışma düzlemine dayalı olarak hangi fonksiyonda etkinleştirilmiş olursa olsun etki eder.

PLANE RELATIVE fonksiyonlarıyla istediğiniz kadar çok art arda programlayabilirsiniz.

Tekrar çalışma düzlemine geri gelmek istiyorsanız **PLANE RELATIVE** fonksiyonu aktif duruma, o zaman tanımlamanızı **PLANE RELATIVE** şekilde aynı açıyla belirleyin, ancak ön işaretini tam tersine zıt tanımlayın.

Eğer **PLANE RELATIVE**'i çevrilmemiş çalışma düzleminde uygulayacaksanız, o zaman çevrilmemiş düzlemi kolayca **PLANE** fonksiyonunda tanımlanmış hacimsel açıda döndürün.

PLANE fonksiyonu (Yazılım seçeneği 1

Eksen açısı tanımı (PLANE AXIAL)

- ÖZEL TNC FONKSİYONLARI'nı seçin
- ÇALIŞMA DÜZLEMİNİ DÖNDÜR, PLANE AXIAL seçin
 - Eksen açısı A?: TNC üzerinde konumlanması gereken A ekseni pozisyonu
 - Eksen açısı B?: TNC üzerinde konumlanması gereken B ekseni pozisyonu
 - Eksen açısı C?: TNC üzerinde konumlanması gereken C ekseni pozisyonu
- Pozisyon özellikleriyle devam (bakınız "Otomatik dönme (MOVE/ STAY/TURN)" Sayfa 108)

5 PLANE AXIAL B+90 MOVE ABST10 F500 SEQ+

Programlamaya geçilmeden önce dikkat edilecek hususlar

Sadece makinenizde de mevcut olan devir eksenlerini tanımlayabilirsiniz.

PLANE fonksiyonu (Yazılım seçeneği 1

Düzlem tanımını sıfırlayın (PLANE RESET)

- ÖZEL TNC FONKSİYONLARI'nı seçin
- ÇALIŞMA DÜZLEMİNİ DÖNDÜR, PLANE RESET seçin
 - Pozisyon özellikleriyle devam (bakınız "Otomatik dönme (MOVE/ STAY/TURN)" Sayfa 108)

5 PLANE RESET MOVE ABST10 F500 SEQ-

Programlamaya geçilmeden önce dikkat edilecek hususlar

PLANE RESET fonksiyonu, etkin **PLANE** fonksiyonunu – veya aktif döngü 19 – tamamen geri çeker (Açı = 0 ve fonksiyon etkin değildir). Çoklu tanımlama gerekli değildir.

Otomatik dönme (MOVE/STAY/TURN)

Düzlem tanımı için tüm parametreleri girdikten sonra, devir eksenlerinin hesaplanılan eksen değerine nasıl döneceğini tespit etmelisiniz:

- PLANE fonksiyonu, devir eksenlerini otomatik olarak hesaplanan eksen değerine döndürmeli, malzeme ve alet arasında rölatif pozisyon değişmemelidir. TNC, doğrusal eksenlerde dengeleme hareketi uygular
- PLANE fonksiyonu, devir eksenlerini otomatik olarak hesaplanan eksen değerine döndürmelidir, bu sırada sadece devir eksenleri pozisyona getirilir. TNC hiçbir dengeleme hareketini doğrusal eksenlerde uygulamaz
- Devir eksenlerini ardarda giden ayrı pozisyon tümcesine döndürürsünüz

Eğer **MOVE** veya **TURN** (**PLANE** fonksiyonu otomatik çevrilmelidir) seçeneklerinden birini seçtiyseniz, aşağıdaki iki parametreyi de tanımlamanız gerekir:

- WZ ucundan dönme noktası mesafesi (artan): TNC aleti (tezgahı) alet ucunun etrafında döndürür. ABST parametresi üzerinden döndürme hareketinin dönme noktasını alet ucundaki geçerli pozisyona dayanarak yerini değiştirirsiniz.
- Besleme? F=: Alet döndüğü sıradaki hat hızı

PLANE fonksiyonu (Yazılım seçeneği 1 MOVE

STAY

TURN

PLANE fonksiyonu (Yazılım seçeneği ′

Mümkün olan çözümü seçin (SEQ +/-)

Tarafınızdan tanımlanan çalışma düzlemi konumundan, TNC en uygun konumu makinenizdeki mevcut devir eksenleri tanımlamalıdır. Genel olarak her zaman iki çözüm olanağı sunulur.

SEQ şalteri üzerinden TNC'nin hangi çözüm olanağını kullanacağını ayarlarsınız:

SEQ+ master eksen pozisyonudur, pozitif açı girmenizi sağlar. Master ekseni, 2. devir ekseni baz alarak tezgahtan veya 1. devir ekseni baz alarak aletten hareketle (makine konfigürasyonuna bağlı işler, sağ üst taraftaki resme bakınız).

▶ SEQ- master eksen pozisyonudur, negatif açı girmenizi sağlar Önünüzde SEQ tarafından seçilen çözüm makinenizin işlem alanında değilse, TNC açıya izin verilmez hata mesajını verir.

Transformasyon türünün seçilmesi

C yuvarlak tezgahlı makinede, transformasyon türünü tespit edebileceğiniz fonksiyon kullanıma sunlur:

COORD ROT tespitinde, PLANE fonksiyonu sadece koordinat sistemini tanımlı döndürme açısına çevireceğini tespit eder. Yuvarlak tezgah hareket etmez, döngü oluşumu hesaplanarak yapılır.

 TABLE ROT tespitinde, PLANE fonksiyonu yuvarlak tezgahı tanımlı döndürme açısına pozisyona getirmesini belirler. Oluşum malzeme dönmesiyle gerçekleşir

Döndürülmüş düzlemde kamber frezeleri

Yeni **PLANE** fonksiyonuyla birleştirerek ve M128 ile döndürülmüş çalışma düzlemlerinde **kamber frezeleri** yapabilirsiniz. Bunlar için iki tanımlama olanağı kullanıma sunulur:

Tek bir devir eksenin artan uygulamasıyla kamber frezelerin alınması
 Normal vektörler üzerinden kamber frezelerin alınması

Çevrilmiş düzlemde kamber frezelerin alınması sadece yarıçap frezesiyle fonksiyon görür.

45° döner başlıklarda/döner tezgahlarda kamber açısını, hacimsel açı olarak da tanımlayabilirsiniz. Burada **FUNCTION TCPM** fonksiyonu kullanıma sunulur.

PLANE fonksiyonu (Yazılım seçeneği '

DXF verilerini işleme (yazılım seçeneği)

Konturları veya çalışma pozisyonlarını çıkarmak ve bunları Açık metin diyalog programı veya nokta dosyalası olarak kaydetmek için bir CAD sisteminde oluşturulan DXF dosyalarını direkt TNC'de açabilirsiniz.

Kontur seçiminde kazanılan açık metin diyalog programı, eski TNC kumandaları tarafından işlenebilir, burada kontur programları sadece L ve **CC/CP** tümceleri içerir.

- DXF katmanını, sadece bazı çizim verilerini göstermek için ekrana getirin veya kapatın
- DXF dosyası çizim sıfır noktasını, malzemedeki yararlı bir pozisyona kaydırın
- Bir kontur seçimi modunu etkinleştirin. Konturların bölünmesi, kısalması ve uzaltılması mümkündür
- Çalışma pozisyonları seçimi modunu etkinleştirin.
 Pozisyonları fare tıklaması ile alın
- Seçilmiş olan konturları veya pozisyonları tekrar kaldırın
- Seçilmiş olan konturları veya pozisyonları ayrı bir dosyada kaydedin

PLANE fonksiyonu (Yazılım seçeneği 1

SECİLİ ELEMAN KALDIR SECİLİ ELEMAN KAYDET

KATMAN

AYARLAMA

REFERANS TESPIT ET

٠

KONTUR

SEC

POZİSYON SEC

Grafik ve durum göstergeleri

B

Bakınız "Grafik ve durum göstergeleri"

Grafik penceresinde malzeme belirleme

Eğer yeni bir program açılacaksa, BLK formu diyaloğu otomatik ekrana gelir.

- Yeni program açın veya açılmış programda BLK FORM yazılım tuşuna basın
 - Mil ekseni
 - MIN ve MAKS nokta

Daha sonra sıkça kullanılan fonksiyonların seçimi.

Programlama grafiği

哟

PROGRAM+GRAFİK ekran taksimini seçin!

Program girişi sırasında TNC programlanan konturu iki boyutlu grafikle gösterebilir:

Otomatik çizim

Grafiği manuel başlatın

Grafiği tümceye bağlı başlatın

Test grafiği ve program akışı grafiği

Prog

GRAFİK veya PROGRAM+ GRAFİK ekran taksimini seçin!

Program testi işletim türünde ve program akışı işletim türlerinde TNC bir çalışmayı grafik olarak simüle edebilir. Yazılım tuşu ile aşağıdaki görünümler seçilebilir:

Grafik ve durum göstergeleri

Üstten görünüş

3 düzlemde gösterim

Yüksek çözünürlüklü 3D gösterimi

Manuel işletim	Program Tes	ti	
Ø BEGIN PGM 170	00 MM		M D
1 BLK FORM 0.1	Z X-20 Y-32 Z-53		
2 BLK FORM 0.2	IX+40 IY+64 IZ+53		_
3 TOOL CALL 61	Z 51000		s 📙
4 L X+0 Y+0 F	0 F9999		A
5 L Z+1 R0 F99	199 M3		• 0 0
6 CYCL DEF 5.0	CIRCULAR POCKET		' 닅↔닅
7 CYCL DEF 5.1	MESF1		<u>n</u> <u>1</u>
8 CYCL DEF 5.2	DERINL-3.6		Python
9 CYCL DEF 5.3	PERDH4 F4000		2
10 CYCL DEF 5.4	Y.CAP16.05		Demos
11 CYCL DEF 5.5	F5000 DR-		DIAGNOSIS
12 CYCL CALL			
13 CYCL DEF 5.0	CTRCIII OR POCKET		
	MERE1		Info 1/3
14 0102 DEF 5.1	near 1		
		4095.00 * T 0:00:37	_
		DURDUR BASLAT	RESET
		BASLAT TEK	+ BASLAT

Durum göstergeleri

哟

PROGRAM+DURUM veya POZISYON+DURUM ekran taksimini secin!

Ekranın alttaki kesitinde, program akışı işletim türlerinde şu bilgiler yer alır

- Alet pozisyonu
- Besleme
- Aktif ek fonksiyonlar

Yazılım tuşları ile diğer durum bilgileri bir ekran penceresinde ekrana getirilebilir:

Genel bakış seçeneğini etkinleştirin: En önemli durum bilgileri göstergesi

- DURUM POZ. GÖS. DURUM
- ► TOOL seçeneğini etkinleştirin: Alet verileri göstergesi

▶ POS seceneğini etkinleştirin: Pozisyon göstergeşi

- ALET DURUM KOORD. HESAP DÖN
- TRANS seçeneğini etkinleştirin: Aktif koordinat dönüşümleri göstergesi

Soldaki seçeneği tekrar açın

Sağdaki seçeneği tekrar açın

Program akışı tümce	takibi	Program- kaydetme
19 L IX-1 RØ FMAX	Genl bakis PGM LBL C	YC M POS
20 CYCL DEF 11.0 SCALING	X +0.000 #a Y +0.000 #A	+0.000
21 CYCL DEF 11.1 SCL 0.9995	Z +0.000	K YOL
	T : 5 AWT	5
23 L Z+50 R0 FMAX	DL-TAB DR-TAB DL-P6M +0.2500 DR-P6M	+9.1999
24 L X-20 Y+20 R0 FMAX	M110	
25 CALL LBL 15 REP5	X +25.0000 PH 1 P Y +333.0000 P X Y	
26 PLANE RESET STAY	A	
27 LBL 0	5 LBL 99	Python
AH 0 707	PRM CALL STAT1	(P) 00:04
0% 5-151 9% FINe1 1 79-40	Aktif PGM: STAT	Demos
		DIAGNOSIS
X -2.787 Y -	340.071 Z +	100.250
*a +0.000 *A	+0.000 + B	+76.700
+C +0.000		Info 1/3
	S1 0.	000
GERC 10:20 T 5	2 5 2500 2 0	m 5 × 8
DURUM DURUM DURUM DURUM KO GENEL BAKŞ POZ. GÖS. ALET HESP	RUM JRD. P DÖN	

DIN/ISO Programlaması

Alet hareketlerini programlayın, ile dik açılı koordinatlar		
G00	Hızlı harekette doğru harek	

G07*	Eksene paralel konumlama tümcesi
G06	Teğetsel kontur bağlantısı ile daire hareketi
G05	Devir yönü girişsiz daire hareketi
G03	Saat yönü tersinde daire hareketi
G02	Saat yönünde daire hareketi
G01	Doğru hareketi
G00	Hızlı harekette doğru hareketi

Alet hareketlerini programlayın, ile
Kutupsal koordinatlarG10Hızlı harekette doğru hareketiG11Doğru hareketiG12Saat yönünde daire hareketiG13Saat yönü tersinde daire hareketiG15Devir yönü girişsiz daire hareketi

G16 Teğetsel kontur bağlantısı ile daire hareketi

*) tümceye göre etkili fonksiyon

Delme döngüleri		
G240	Merkezleme	
G200	Delik	
G201	Sürtünme	
G202	Tornalama	
G203	Evrensel delik	
G204	Geri havşalama	
G205	Evrensel delme derinliği	
G208	Delme frezesi	
G206	YENI vida dişi delme	
G207	YENİ vida dişi delme (düzenli mil)	
G209	Germe kırılması vida dişi delme	
G240	Merkezleme	
G262	Dişli frezesi	
G263	Havşa dişli frezesi	
G264	Delme dişli frezesi	
G265	Helez. delme dişli frezesi	
G267	Dış vida dişi frezeleme	

ması
amla
Progr
DIN/

Cepler, pimler ve yivler		
G251	Tam dikdörtgen cep	
G252	Tam dairesel cep	
G253	Tam yiv	
G254	Tam yuvarlak yiv	
G256	Dikdörtgen pimi işleyin	
G257	Dairesel pimi işleyin	

Nokta numunesi		
G220	Daire üzerinde nokta örneği	
G221	Çizgi üzerinde nokta numunesi	

SL donguleri grup li			
G37	Kontur alt programlarını belirleme		
G120	Kontur verileri		
G121	Ön delme		
G122	Boşaltma		
G123	Perdahlama derinlik		
G124	Perdahlama yanal		
G125	Kontur çekme		
G127	Silindir kılıfı (Yazılım seçeneği)		
G128	Yiv frezeleme silindir kılıfı(Yazılım seçeneği)		
G129	Çubuk frezeleme silindir kılıfı (Yazılım seçeneği)		
G139	Kontur frezeleme silindir kılıfı (Yazılım seçeneği)		
G270	Kontur çizimi verileri		

Satır oluşturma

G60	3D verileri işleyin
G230	Satır oluşturma
G231	Kural alanı
G232	Planlı freze

Tarama sistemi döngüleri		Tarama sistemi döngüleri	
G55*	Koordinatların ölçümü	G420*	Açı ölçümü
G400*	Temel devir 2 nokta	G421*	Delik ölçümü
G401*	Temel devir 2 delik	G422*	Daire tıpası ölçümü
G402*	Temel devir 2 pim	G423*	Dikdörtgen cep ölçümü
G403*	Döner tezgah ile temel devir	G424*	Dikdörtgen pim ölçümü
G404*	Temel devri belirleme	G425*	İç yiv ölçümü
G405*	Döner tezgah ile temel devir,	G426*	Dış yol ölçümü
	Delik orta noktası	G427*	İstenen koordinatların ölçülmesi
G408*	Yiv ortası referans noktası	G430*	Delik çapı ölçümü
G409*	Çubuk ortası referans noktası	G431*	Düzlem ölçümü
G410*	Dikdörtgen cep ortası referans noktası	G440*	Isı telafisi
G411*	Dikdörtgen pim ortası referans noktası	G450*	Kinematik güvenlik (Opsiyonel)
G412*	Delik ortası referans noktası	G451*	Kinematik ölçüm (Opsiyonel)
G413*	Dairesel pim ortası referans noktası	G480*	TT kalibre etme
G414*	Dış köşe referans noktası	G481*	Alet uzunluğu ölçümü
G415*	İç köşe referans noktası	G482*	Alet yarıçapı ölçümü
G416*	Daire çemberi ortası referans noktası	G483*	Alet uzunluğu ve yarıçapı ölçümü
G417*	Tarama sistemi ekseni referans noktası		
G418*	4 deliğin ortası referans noktası		
G419*	Her bir eksenin referans noktası		

DIN/ISO Programlamasi

*) tümceye göre etkili fonksiyon

Koordinat hesap dönüşümü ile ilgili döngüler

G53	Sıfır noktası tablolarından sıfır noktası kaydırması	
G54	Sıfır noktası kaydırmasını doğrudan girin	
G247	Referans noktası ayarı	
G28	Konturların yansıtılması	
G73	Koordinat sistemini çevir	
G72	Ölçüm faktörü; Konturları büyüt/küçült	
G80	Çalışma düzlemi (yazılım seçeneği)	

Özel döngüler

G04*	Bekleme süresi
G36	Mil yönlendirme
G39	Döngü için programı ilan edin
G79*	Döngü çağırma
G62	Tolerans (yazılım seçeneği)

G17	X/Y düzlemi, Z alet ekseni
G18	Z/X düzlemi, Y alet ekseni
G19	Y/Z düzlemi, X alet ekseni
G20	Dördüncü eksen alet eksenidir
Şev, yuv	varlama, kontur geçişi/çıkışı
G24*	R şev uzunluğuyla şevler
G25*	R yarıçaplı köşeleri yuvarlayın
G26*	Konturu daireye R yarıçapı ile teğetsel hareket ettirin
G27*	Konturu daireye R yarıçapı ile teğetsel bırakın
Alet tan	m
G99*	L uzunluğu ve R yarıçapı ile programdaki alet tanımı
Alet yarı	çap düzeltmeleri
G40	Yarıçap düzeltmesiz
G41	Alet yarıçap düzeltme, konturun solunda
G42	Alet yarıçap düzeltme, konturun sağında
G43	Eksene paralel yarıçap düzeltmesi; hareket yolunu uzatın
G44	Eksene paralel yarıçap düzeltmesi; hareket yolunu kısaltın

Ölçüm bilgileri			
G90	Kesin ölçüm bilgileri		
G91	Ölçü girişleri artan (zincir ölçüsü)		

Ölçü birimini belirleyin (program başlangıcı)		
G70	Ölçü birimi İnç	
G71	Ölçü birimi mm	

Grafik için ham parça tanımlayın		
G30	Düzlemi belirleyin, MIN noktası koordinatları	
G31	Ölçü girişi (G90, G91 ile), MAKS noktanın koordinatları	

Diğer G fonksiyonları		
G29	En son pozisyonu kutup olarak alın	
G38	Program akışını durdurun	
G51*	Sonraki alet numarasını çağırın (sadece merkezi alet hafızasında)	
G98*	Etiket (Label numarası) ayarlama	

DIN/ISO Programlamasi

i

Çalışma düzlemini belirleme

Q parametresi fonksiyonları

D00	Değeri doğrudan atayın
D01	Toplamını iki değerden oluşturun ve atayın
D02	Farkı iki değerden oluşturun ve atayın
D03	Ürünü iki değerden oluşturun ve atayın
D04	Bölümü iki değerden oluşturun ve atayın
D05	Kökü bir sayıdan çıkartın ve atayın
D06	Açının sinüsünü derece cinsinden belirleyin ve atayın
D07	Açnını kosinüsünü derece cinsinden belirleyin ve atayın
D08	İki sayının karesinin toplamının kökünü çekin ve atayın (Pisagor)
D09	Eğer eşitse, girilen Label'e atlayın
D10	Eğer eşit değilse, girilen Label'e atlayın
D11	Eğer daha büyükse, girilen Label'e atlayın
D12	Eğer daha küçükse, girilen Label'e atlayın
D13	Açıyı arctan ile iki kenardan veya açının sin ve cos tayin edin ve atayın
D14	Ekrandaki metni girin
D15	Veri arayüzü ile ilgili metni veya parametre içeriğini girin
D19	Sayı değerlerini veya Q paramatresini PLC'ye aktarın

121

Adresi	er		
%	Program başlangıcı	R	G10/G11/G12/G13/G15/G16'daki kutup
Α	X çevresindeki çevirme ekseni	Б	
В	Y çevresindeki çevirme ekseni	ĸ	
С	Z çevresindeki devir ekseni	R	G25/G26/G27 deki yuvanama yariçapi
D	Q parametresi fonksiyonlarını tanımlayın	ĸ	
Е	M112 ile yuvarlama dairesi için tolerans	R	
F	Konumlama tümcelerinde mm/dak cinsinden	S	U/dak olarak mil devri
	besleme	S	G36'daki mil oryantasyon açısı
F	G04'te sec olarak bekleme süresi	Т	G99'daki alet numarası
F	G72'deki ölçüm faktörü	т	Aletin çağrılması
G	G fonksiyonları (G fonksiyonları listesine bakın)	т	Sonraki aleti G51'de çağırın
н	Kutupsal koordinat açısı	U	X'e paralel eksen
н	G73'deki dönme açısı	V	Y'ye paralel eksen
I	Daire merkezinin/kutbunun X koordinatı	W	Z'ye paralel eksen
J	Daire merkezinin/kutbunun Y koordinati	Х	X ekseni
κ	Daire merkezinin/kutbunun Z koordinatı	Y	Y ekseni
L	G98'deki etiket (Label numarası) ayarlama	Z	Z ekseni
L	Bir işarete (Label numarası) atlayın	*	Tümce sonu için işaret
L	G99'daki alet uzunluğu		
М	Ek fonksiyon		
Ν	Tümce numarası		
Р	Çalışma döngüsündeki döngü parametresi		
Ρ	Q parametresi tanımlarındaki değer veya Q parametresi		
Q	Paremetre (yer tutucu) tanımı		

122

Ek fonksiyon M

M00	Program akışı durdurma/Mil durdurma/Soğutucu madde kapalı		
M01	İsteğe göre program akışı duraklatma		
M02	Program akışı/Mil tutucu/Soğutma kapalı/ Tümce1'e geri atlama/gerekirse Durum göstergesini silin		
M03	Mil açık, saat yönünde		
M04	Mil açık, saat yönü tersinde		
M05	Mil durdurma		
M06	Alet değiştirme serbest bırakma/Program akışı tutucu (makine parametresine bağlı)/Mil tutucu		
M08	Soğutucu madde açık		
M09	Soğutucu madde kapalı		
M13	Mil açık, saat yönünde/Soğutucu madde açık		
M14	Mil açık, saat yönü tersinde/Soğutucu madde açık		
M30	M02 ile aynı fonksiyon		
M89	Serbest ek fonksiyon veya döngü çağırma, model etkili (makine parametresine bağlı)		
M90	Köşelerdeki sabit hat hızı (sadece dişli işletimde etkilidir)		
M91	Konumlama tümcesinde: Koordinatlar makine sıfır noktasını baz alır		

M92	Konumlama tümcesinde: Koordinatlar, makine üreticisi tarafından belirlenen pozisyonu baz alır	
M93	Rezerve	
M94	Devir ekseni göstergesini 360 derece altındaki değere küçültün	
M95	Rezerve	
M96	Rezerve	
M97	Küçük kontur kademelerini işleyin	
M98	Hat düzeltmenin sonu	
M99	Döngü çağırma, tümceye bağlı etkilidir	
M101	Durma süresinden sonra otomatik alet değişimi	
M102	M101'i sıfırlayın	
M103	Giriş beslemesini F faktörü kadar azaltın	
M104	En son belirlenen referans noktasını tekrar etkinleştirin	
M105	Çalışmayı ikinci k _V faktörüyle uygulayın	
M106	Çalışmayı ilk k _V faktörüyle uygulayın	
M107	Bakınız Kullanıcı El Kitabı	
M108	M107'yi sıfırlayın	

M109	Alet kesimindeki yarıçaplarda sabit hat hızı (Besleme artırma ve azaltma)	M130	Konumlama tümcesinde: Noktalar, hareketsiz koordinat sistemini baz alır
M110	Alet kesimindeki yarıçaplarda sabit hat hızı	M134	Devir eksenleri ile konumlandırmada doğru tutuş
	(sadece besleme azaltma)	M135	M134'ü sıfırlayın
M111	M109/M110'u sıfırlayın	M136	Her mil devri başına milimetre olarak F beslemesi
M114	Otom. Hareketli eksenlerde çalışırken makine	M137	Her dakika başına milimetre olarak F beslemesi
	geometrisinin düzeltilmesi (yazılım seçeneği)	M138	M114, M128 için çevirme eksenleri seçimi ve
M115	M114'ü sıfırlayın		çalışma düzlemi döngüsünü çevirin
M116	Açı eksenlerindeki besleme mm/dak (yazılım seçeneği)	M140	Konturdan geri çekme alet ekseni yönünde
		M141	Tarama sistemi denetimine basın
M117	M116'yı sıfırlayın	M142	Model program bilgisini silin
M118	Program akışı sırasında el çarkı konumlandırmayı	M143	Temel devri silin
	gruplandirin	M144	Tümce sonundaki GERÇEK/NOMİNAL
M120	Yarıçapı düzeltilen pozisyonu hesaplayın LOOK AHEAD		pozisyonlarında yer alan makine kinematiğinin dikkate alınması (Yazılım seceneği)
M124	Düzeltilmeyen doğru tümceleri ile çalışırken	M145	M144'ü sıfırlavın
		M148	Aleti NC Durdur sırasında otomatik olarak
M126	Devir eksenlerini yol standartında hareket ettirin	11140	konturdan kaldırın
M127	M126'yı sıfırlayın	M149	M148'i sıfırlavın
M128	Hareketli eksenlerin konumlanmasında alet ucu	M150	Nihavet salteri hata mesaiına basın
	(Yazılım Seçeneği)	M200	Lazerli kesim makineleri için ek fonksiyonlar
M129	M128'i sıfırlayın	•	
	Tool Conter Deint Management		
/ TOPIN:	roor Center Point Management	M204	Bakınız Kullanıcı El Kitabı

HEIDENHAIN

DR. JOHANNES HEIDENHAIN GmbH Dr.-Johannes-Heidenhain-Straße 5 83301 Traunreut, Germany 2 +49 (8669) 31-0 FAX +49 (8669) 5061 E-Mail: info@heidenhain.de **Technical support** FAX +49 (8669) 32-1000 Measuring systems 2 +49 (8669) 31-3104 E-Mail: service.ms-support@heidenhain.de TNC support E-Mail: service.nc-support@heidenhain.de **NC programming** 2 +49 (86 69) 31-31 03 E-Mail: service.nc-pgm@heidenhain.de **PLC programming** 2 +49 (8669) 31-3102 E-Mail: service.plc@heidenhain.de Lathe controls E-Mail: service.lathe-support@heidenhain.de

www.heidenhain.de