

TNC 410

NC-Software 286 060 xx 286 080 xx

Bruger-håndbog HEIDENHAIN-klartext-dialog

Betjeningstaster på billedskærmen

Programmering af banebevægelser

- Fri kontur-programmering FK
- Cirkelcentrum/Pol for polarkoordinater
- Cirkelbane om cirkelcentrum
- Cirkelbane med tangential tilslutning
 - Værktøjs-længde og -radius, indlæsning og kald

Cykler, Underprogrammer og Programdel-

- Definering og kald af cykler
- Underprogrammer og programdelgentagelser, indlæsning og kald
- Indlæsning af program-stop i et program
- Indlæsning af tastsystem-funktioner i et

Indlæsning af koordinatakser og cifre,

- Indlæsning af polarkoordinater
- Overskrive dialogspørgsmål og sletning af

Afslutte indlæsning og fortsætte

- TNC feilmeldinger
- Afbryde dialog, slette programdel

TNC-Type, Software og Funktioner

Denne håndbog beskriver funktioner, som er til rådighed i TNC'er med følgende NC-software-numre.

TNC-Type	NC-software-nr.
TNC 410	286 060 xx
TNC 410	286 080 xx

Maskinfabrikanten tilpasser det anvendelige brugsomfang af TNC'en med maskin-parametrene på de enkelte maskiner. Derfor er der i denne håndbog også beskrevet funktioner, som ikke er til rådighed i alle TNC'er.

TNC-funktioner, som ikke er til rådighed i alle maskiner, er eksempelvis:

- Tastfunktion for 3D-tastsystem
- Digitaliserings-option
- Værktøjs-opmåling med TT 120
- Gevindboring uden kompenserende patron

Sæt Dem venligst i forbindelse med maskinfabrikanten, for individuel hjælp til at lære Deres styrede maskine at kende.

Mange maskinfabrikanter og HEIDENHAIN tilbyder TNC programmerings-kurser. Deltagelse i et sådant kursus er anbefalelsesværdigt, for intensivt at blive fortrolig med TNCfunktionerne.

Forudset anvendelsesområde

TNC'en svarer til klasse A ifølge EN 55022 og er hovedsageligt forudset for brug i industrielle områder.

Inhold

Introduktion

Manuel drift og opretning

Positionering med manuel indlæsning

Programmering Grundlaget, Fil-styring, Programmeringshjælp

Programmering: Værktøjer

Programmering: Kontur programmering

Programmering: Hjælpe-funktioner

Programmering: Cykler

Programmering: Underprogrammer og programdel-gentagelser

Programmering: Q-parametre

Program-test og programafvikling

3D-tastsystemer

Digitalisering

MOD-funktioner

Tabeller og oversigter

1 INTRODUKTION 1

- 1.1 TNC 410 2
- 1.2 Billedskærm og betjeningsfelt 3
- 1.3 Driftsarter 5
- 1.4 Status-display 9
- 1.5 Tilbehør: 3D-tastsystemer og elektroniske håndhjul fra HEIDENHAIN 12

2 MANUEL DRIFT OG OPRETNING 13

- 2.1 Indkobling 14
- 2.2 Kørsel med maskinakserne 15
- 2.3 Spindelomdrejningstal S, Tilspænding F og Hjælpefunktion M 18
- 2.4 Henføringspunkt-fastlæggelse (uden 3D-tastsystem) 19

3 POSITIONERING MED MANUEL INDLÆSNING 21

3.1 Programmering og afvikling af enkle positioneringsblokke 22

4 PROGRAMMERING: GRUNDLAGET, FIL-STYRING, PROGRAMMERINGSHJÆLP 25

- 4.1 Grundlaget 26
- 4.2 Fil-styring 31
- 4.3 Åbning og indlæsning af programmer 34
- 4.4 Programmerings-grafik 39
- 4.5 Indføj kommentarer 40
- 4.6 Hjælpe-funktion 41

5 PROGRAMMERING: VÆRKTØJER 43

- 5.1 Værktøjshenførte indlæsninger 44
- 5.2 Værktøjs-data 45
- 5.3 Værktøjs-korrektur 52
- 5.4 Værktøjs-opmåling medTT 120 56

Inhold

6 PROGRAMMERING: KONTUR PROGRAMMERING 63

6.1 Oversigt: Værktøjs-bevægelser 64

6.2 Grundlaget for banefunktioner 65

6.3 Kontur tilkørsel og frakørsel 68

Oversigt: Baneformer for tilkørsel og frakørsel af kontur 68

Vigtige positioner ved til- og frakørsel 68

Tilkørsel ad en retlinie med tangential tilslutning: APPR LT 70

Kørsel ad en retlinie vinkelret på første konturpunkt: APPR LN 70

Kørsel ad en cirkelbane med tangential tilslutning: APPR CT 71

Kørsel ad en cirkelbane med tangential tilslutning af konturen og retlinie-stykke: APPR LCT 72

Frakørsel ad en retlinie med tangential tilslutning: DEP LT 73

Frakørsel ad en retlinie vinkelret på sidste konturpunkt: DEP LN 73

Frakørsel ad en cirkelbane med tangential tilslutning: DEP CT 74

Frakørsel ad en cirkelbane med tangential tilslutning til konturen og ret-linistykke: DEP LCT 75

6.4 Banebevægelser – retvinklede koordinater 76

Oversigt over banefunktioner 76

Retlinie L 77

Indføj affasning CHF mellem to retlinier 77

Cirkelcentrum CC 78

Cirkelbane C om cirkelcentrum CC 79

Cirkelbane CR med fastlagt radius 80

Cirkelbane CT med tangential tilslutning 81

Hjørne-runding RND 82

Eksempel: Retliniebevægelse og affasning kartesisk 83

Eksempel: Helcirkel kartesisk 84

Eksempel: Cirkelbevægelse kartesisk 85

6.5 Banebevægelser – polarkoordinater 86

Polarkoordinat-udspring: Pol CC 86

Retlinie LP 87

Cirkelbane CP om Pol CC 87

Cirkelbane CTP med tangential tilslutning 88

Skruelinie (Helix) 88

Eksempel: Retliniebevægelse polar 90

Eksempel: Helix 91

- 6.6 Banebevægelser Fri kontur-programmering FK 92
 - Grundlaget 92 Grafik ved FK-programmering 92 Åbning af FK-dialog 93 Retlinie frit programmeret 94 Cirkelbane frit programmeret 94 Hjælpepunkter 96 Relativ-henføring 97 Lukkede konturer 97 Eksempel: FK-programmering 1 98 Eksempel: FK-programmering 2 99 Eksempel: FK-programmering 3 100

7 PROGRAMMERING: HJÆLPE-FUNKTIONER 103

- 7.1 Indlæsning af hjælpe-funktioner M og STOP 104
- 7.2 Hjælpe-funktioner for Programafvik-lings-kontrol, spindel og kølemiddel 105
- 7.3 Hjælpe-funktioner for koordinatangivelser 105
- 7.4 Hjælpe-funktioner for baneforhold 107

Hjørne overgange: M90 107

Indføjelse af konturovergange mellem vilkårlige konturelementer: M112 108

Konturfilter: M124 110

Bearbejdning af små konturtrin: M97 112

Komplet bearbejdning af åbne konturhjørner : M98 113

Tilspændingsfaktor for indstiksbevægelser: M103 114

Konstant tilspændingshastighed på værktøjs-skæret: M109/M110/M111 115

Forudberegning af radiuskorrigeret kontur (LOOK AHEAD): M120 115

7.5 Hjælpe-funktioner for rundakser 117

Køre med rundakser vej-optimeret: M126 117

Reducering af visning af rundakse til en værdi under 360°: M94 117

8 PROGRAMMERING: CYKLER 119

8.1 Generelt om cykler 120 8.2 Punkt-tabeller 122 Indlæsning af punkt-tabeller 122 Vælg punkt-tabeller i program 122 Kald af cyklus i forbindelse med punkt-tabeller 123 8.3 Borecykler 124 DYBDEBORING (cyklus 1) 124 BORING (cyklus 200) 126 REIFNING (cyklus 201) 127 UDDREJNING (cyklus 202) 128 UNIVERSAL-BORING (cyklus 203) 129 UNDERSÆNKNING-BAGFRA (cyklus 204) 131 GEVINDBORING med komp.patron (cyklus 2) 133 GEVINDBORING uden kompenserende patron GS (cyklus 17) 134 Eksempel: Borecykler 135 Eksempel: Borecykler 136 Eksempel: Borecykler i forbindelse med punkt-tabeller 137 8.4 Cykler for fræsning af lommer, tappe og noter 139 LOMMEFRÆSNING (cyklus 4) 140 LOMME SLETNING (cyklus 212) 141 SLETFRÆSNING AFTAP (cyklus 213) 143 CIRKULÆR LOMME (cyklus 5) 144 SLETFRÆSNING AF RUND LOMME (cyklus 214) 146 SLETFRÆSNING AF RUNDETAPPE (cyklus 215) 147 NOTFRÆSNING (cyklus 3) 149 NUT (Langt hul) med pendlende indstikning (cyklus 210) 150 RUND NOT (Langt hul) med pendlende indstikning (cyklus 211) 152 Eksempel: Fræsning af lomme, tappe og noter 154 Eksempel: Firkant-lomme skrubbe og slette i forbindelse med punkt-tabeller 156 8.5 Cykler for fremstilling af punkt-mønster 158 PUNKTMØNSTER PÅ CIRKEL (cyklus 220) 159 PUNKTMØNSTER PÅ LINIER (cyklus 221) 160 Eksempel: Hulkreds 162

Inhold

8.6 SL-cykler 164

KONTUR (cyklus 14) 165 Overlappede konturer 166 FORBORING (cyklus 15) 168 SKRUBNING (Zyklus 6) 169 KONTURFRÆSNING (cyklus 16) 171 Eksempel: Lomme skrubning 172 Eksempel: Forboring af overlappede konturer, skrubning, sletfræsning 174 8.7 Cykler for planfræsning 176 PLANFRÆSNING (cyklus 230) 176 SKRÅ OVERFLADE (cyklus 231) 178 Eksempel: Nedfræsning 180 8.8 Cykler for koordinat-omregning 181 NULPUNKT-forskydnin (cyklus 7) 182 NULPUNKT-forskydning med nulpunkt-tabeller (cyklus 7) 182 SPEJLING (cyklus 8) 184 DREJNING (cyklus 10) 185 DIM.FAKTOR (cyklus 11) 186 Eksempel: Koordinat-omregningscykler 188 8.9 Special-cykler 190 DVÆLETID (cyklus 9) 190 SPINDEL-ORIENTERING (cyklus 13) 191 9 PROGRAMMERING: UNDERPROGRAMMER OG PROGRAMDEL-GENTAGELSER 193 9.1 Kendetegn for underprogrammer og programdel-gentagelser 194 9.2 Underprogrammer 194

- 9.3 Programdel-gentagelser 195
- 9.4 Vilkårligt program som underprogram 196
- 9.5 Sammenkædninger 197
 - Underprogram i underprogram 197
 - Gentage programdel-gentagelser 198
 - Underprogram gentagelse 199
- 9.6 Programmerings-eksempler 200
 - Eksempel: Konturfræsning med flere fremrykninger 200
 - Eksempel: Hulgrupper 201
 - Eksempel: Hulgruppe med flere værktøjer 202

10 PROGRAMMERING: Q-PARAMETRE 205

10.1 Princip og funktionsoversigt 206

- 10.2 Familieemne Q-Parametre istedet for talværdier 207
- 10.3 Beskrivelse af konturer med matmatiske funktioner 208
- 10.4 Vinkelfunktioner (Trigonometri) 210
- 10.5 Betingede spring med Q-parametre 211
- 10.6 Kontrol og ændring af Q-parametre 212
- 10.6 Kontrol og ændring af Q-parametre 212
- 10.7 Øvrige funktioner 213
- 10.8 Direkte indlæsning af formler 219
- 10.9 Reserverede Q-parametre 222
- 10.10 Programmerings-eksempler 224 Eksempel: Ellipse 224 Eksempel: Konkav cylinder med radiusfræser 226 Eksempel: Konveks kugle med skaftfræser 228

11 PROGRAM-TEST OG PROGRAMAFVIKLING 231

- 11.1 Grafik 232
- 11.2 Program-test 236
- 11.3 Programafvikling 238
- 11.4 Blokvis overførsel: Udførelse af lange programmer 245
- 11.5 Overspringe blokke 246
- 11.6 Valgfrit programmerings-stop 246

12 3D-TASTSYSTEMER 247

- 12.1 Tastcykler i driftart manuel drift og El. Håndhjul 248
- 12.2 Henføringspunkt-fastlæggelse med 3D-tastsystemer 251
- 12.3 Emne opmåling med 3D-tastsystemer 254

13 DIGITALISERING 259

- 13.1 Digitalisering med kontakt tastsystem (option) 260
- 13.2 Programmering af digitaliserings-cykler 261
- 13.3 Digitalisering af bugtet kurve 262
- 13.4 Digitalisering af højdekurver 263
- 13.5 Anvendelse af digitaliseringsdata i et bear-bejdnings-program 265

14 MOD-FUNKTIONER 267

- 14.1 Valg, ændre og forlade MOD-funktioner 268
- 14.2 System-Informationen 268
- 14.3 Indlæs nøgle-tal 269
- 14.4 Indretning af datainterface 269
- 14.5 Maskinspecifikke bruger-parametre 271
- 14.6Valg af positions-visning 272
- 14.7 Valg af målesystem 272
- 14.8 Valg af programmeringssprog 273
- 14.9 Indlæsning af kørselsområde- begrænsninger 274
- 14.10 Udføre HJÆLP-funktion 275

15 TABELLER OG OVERSIGTER 277

- 15.1 Generelle bruger-parametre 278
 - Indlæsemuligheder for maskinparametre 278
 - Valg af generelle brugerparametre 278
 - Extern dataoverførsel 279
 - 3D-tastsystem og digitalisering 280
 - TNC-displays,TNC-editor 282
 - Bearbejdning og programafvikling 287
 - Elektroniske håndhjul 289
- 15.2 Stikforbindelser og tilslutningskabel for datainterface 290
- 15.3 Tekniske informationer 292
 - TNC-karakteristik 292
 - Programmerbare funktioner 293
 - TNC-data 294
- 15.4TNC-fejlmeldinger 295
 - TNC-fejlmeldinger ved programmering 295
 - TNC-fejlmeldinger ved program-test og programafvikling 296
 - TNC-fejlmeldinger ved digitalisering 299
- 15.5 Udskiftning af buffer-batteri 300

Introduktion

1.1 TNC 410

HEIDENHAIN TNC'ere er værkstedsorienterede bane-styringer, med hvilke De kan programmere sædvanelige fræse- og bore-arbejder på maskinen i en let forstålig klartext-dilog. De er beregnet til brug på fræse- og boremaskiner såvel som bearbejdningscentre med indtil 4 akser. Yderligere kan De programmere en vinkelposition for spindelen.

Tastatur og billedskærms-fremstillinger er udlagt meget overskueligt, således at De hurtigt og let kan få fat i alle funktioner.

Programmering: HEIDENHAIN klartext-dialog og DIN/ISO

Program-fremstillingen er særdeles enkel i den brugervenlige HEIDENHAIN-klartext-dialog. En programmerings-grafik viser de enkelte bearbejdnings-skridt under programindlæsningen. Herudover er den frie kontur-programmering FK til stor hjælp, hvis der ikke foreligger en NC-korrekt tegning. En grafisk simulering Den grafiske simulation af emnebearbejdningen er mulig under en program-test. programmere en TNC efter DIN/ISO eller i DNC-drift.

Et program kan også indlæses, samtidig med at et andet program udfører en emnebearbejdning.

Kompatibilitet

TNC[']en kan udføre alle bearbejdningsprogrammer, som er fremstillet på HEIDENHAIN-banestyringer fra og med TNC 150B.

1.2 Billedskærm og betjenin<mark>gfel</mark>t

1.2 Billedskærm og betjeningsfelt

Billedskærmen

TNC en kan leveres enten med farve-billedskærmen BC 120 (CRT) eller med farve-fladbilledskærm BF 120 (TFT). Billedet for oven til højre viser betjeningselementerne på BC 120, billedet til Abbildung højre i midten viser betjeningselementerne på BF 120:

1 Hovedlinie

Ved indkoblet TNC viser billedskærmen i hovedlinien den valgte driftsart.

2 Softkeys

I den nederste linie viser TNC en yderligere funktioner i en Softkey-liste. Disse funktioner vælger De med de underliggende taster 3. Til orientering viser den smalle bjælke direkte over softkey-listen antallet af softkey-lister, som kan vælges med de sorte piltaster i hver side. Den aktive softkey-liste vises som en oplyst bjælke.

- 3 Softkey-taster, funktion vises på skærmen
- 4 Skift mellem softkey-lister
- 5 Fastlæggelse af billedskærms-opdeling
- 6 Billedskærm-omskiftertaste for maskin- og programmeringsdriftsarter

Yderligere taster på BC 120

- 7 Afmagnetisering af billedskærm; Forlade hovedmenuen for billedskærm-indstilling
- 8 Valg af hovedmenu for billedskærm-indstilling
 I hovedmenuen: Forskydning af det lyse felt nedad
 I undermenuen: Værdien formindskes
 Forskydning af billede til venstre eller nedad
- I hovedmenuen: Forskydning af det lyse felt opad
 I undermenuen: Værdien forstørres
 Forskydning af billedet til højre eller opad
- 10 I hovedmenuen: Vælg undermenu I undermenu: Forlad undermenu

Billedskærm-indstillinger: Se næste side

Hovedmenu-dialog	Funktion
LYSSTYRKE	Ændring af lysstyrke
KONTRAST	Ændring af kontrast
H-POSITION	Ændring af horisontal billedposition
H-STØRRELSE	Ændring af billedbredde
V-POSITION	Ændring af vertikal billedposition
V-STØRRELSE	Ændring af billedhøjde
SIDE-PIN	Korrektion af tøndeformet fejl
TRAPEZOID	Korrektion af trapezformet fejl
ROTATION	Korrektion af skråt billede
FARVETEMP	Ændring af farvetemperatur
R-GAIN	Ændring af den røde farvestyrke
B-GAIN	Ændring af den blå farvestyrke
RECALL	Ingen funktion

BC 120 er følsom overfor magnetiske eller elektromagnetisk indstråling. Placering og geometri af billedet kan herved forstyrres betragtligt. Vekselstrøms felter kan føre til et periodisk billedskift eller til en billedforstyrrelse.

Billedskærms-opdeling

Brugeren vælger opdelingen af billedskærmen: Således kan TNC'en f.eks. i driftsart PROGRAM INDLAGRING/EDITERING vise programmet i venstre vindue, medens det højre vindue samtidig viser f.eks. en programmerings-grafik. Alternativt lader sig i højre vindue også vise et hjælpebillede med cyklus-definition eller udelukkende programmet i et stort vindue. Hvilke vinduer TNC'en kan vise, er afhængig af den valgte driftsart.

Ændring af en billedskærms-opdeling:

Tryk på billedskærms-omskifter-tasten: Softkeylisten viser de mulige billedskærms-opdelinger

Vælg billedskærm-opdeling med softkey

Betjeningsfelt

Billedet til højre viser tasterne på betjeningsfeltet, grupperet efter deres funktion:

- 1 Alfa-tastatur for indlæsning af tekst, filnavne og DIN/ISO-programmeringer
- 2 Fil-styrinng, MOD-Funktion, HELP-Funktion
- 3 Programmerings-driftsarter
- 4 Maskin-driftsarter
- 5 Åbning af programmerings-dialog
- 6 Pil-taster og springanvising GOTO
- 7 Talindlæsning og aksevalg

Funktionerne af de enkelte taster er sammenfattet på den første folde-ud-side. Externe taster, som f.eks. NC-START, er beskrevet i maskinhåndbogen.

1.3 Driftsarter

For de forskellige funktioner og arbejdsskridt, som er nødvendige for emnets fremstilling, tilbyder TNC'en følgende driftsarter:

Manuel drift og el.håndhjul HÅNDHJUL

Indretningen af maskinen sker i MANUEL DRIFT. I denne driftsart lader maskinakserne sig positionere manuelt eller skridtvis og henføringspunkter fastlægge.

Driftsart EL. Driftsarten el. håndhjul understøtter den manuelle kørsel med maskinakserne med et elektronisk håndhjul HR.

Softkeys til billedskærm-opdeling

Her er ingen valgmuligheder til rådighed. TNC'en viser altid positions-visning.

.3 Driftsarter

MANUE	L DRI	FT					
KALK	. Х Ү Z		- 1 : + 1 : + 1 :	39. 35. 63.	56) 60) 36)	0 0 0	
акт. Х Ү Z	: – 1 ' + 1 ! + 1	39.56 35.60 63.36	50 10 50	T 1 F Ø S 4	Z 000	M3/	9
м	s	KANT- TASTER		MÂLE- SKRIDT DFF/ ON	DA TUM SE T		

Positionering med manuel indlæsning

l denne driftsart kan man programmere enkle kørselsbevægelser, f.eks. for planfræsning eller forpositionering.

Softkeys til billedskærm-opdeling

Vindue	Softkey
Program	PGM
Til venstre: Program, til højre: Generelle program- informationer	PGM + PGM STATUS
Til venstre: Program, til højre: Positioner og koordinater	PGM + POS. STATUS
Til venstre: Program, til højre: Informationer om værktøjer	PGM + TOOL STATUS
Til venstre: Program, til højre: Koordinat- omregninger	PGM + C.TRANS. STATUS

Program-indlagring/editering

Deres bearbejdnings-programmer fremstiller De i denne driftsart. Alsidig understøttelse og udvidelse ved programmering tilbyder den fri kontur-programmering, de forskellige cykler og Q-parameterfunktioner. Efter ønske viser programmerings-grafik´en de enkelte skridt.

Softkeys til billedskærm-opdeling

Vindue	Softkey
Program	PGM
Til venstre: Program, til højre: Hjælpebillede ved cyklus- programmering	PGM + FIGUR
til venstre: Program, til højre: Programgrafik	PGM + GRAFIK
Programmerings-grafik	GRAPHICS

PROGR	PROGRAM-INDLÆSNING						
0 BE 1 BL 2 BL 3 TO 4 TO 6 L 7 L 9 CC 10 LP 11 RN	GIN F K FOR OL DE OL DE OL CF Z+50 Z+50 Z+50 Z+50 R PR+ D R1	PGM 35 RM 0.1 F 1 L F 2 L D R0 F R0 F R0 F R0 F Y + 6 - 14 F	507 MM 2 X+2 +0 R+ +0 R+ Z S10 MAX M1 50 R0 1AX M1 PA+45	1 20 20 4 54 500 13 FMAX FMAX	Y-20 20 Z M8	Z-20 2+0)
KALK. X Y Z	+ 1 + 2	50.00 25.00 50.00	10 10 10	T FØ S		M5/	9
SIDE Î	SIDE Û		BEGYND	SLUT		FIND	INSERT NC BLOCK

Program-test

TNC en simulerer programmer og programdele i driftsart programtest, for at finde ud af f.eks. geometriske uforeneligheder, manglende eller forkerte angivelser i programmet og beskadigelser af arbejdsområdet. Simuleringen bliver understøttet grafisk med forskellige billeder.

Softkeys til billedskærm-opdeling

Vindue	Softkey
Program	PGM
Test-grafik	GRAPHICS
Til venstre: Program, tilhøjre: Test-grafik	PROGRAM + GRAFIK
Til venstre: Program, til højre: Generelle program- informationer	PGM + PGM STATUS
Til venstre: Program, til højre: Positioner og koordinater	PGM + POS. STATUS
Til venstre: Program, til højre: Informationer om værktøjer	PGM + TOOL STATUS
Til venstre: Program, til højre: Koordinat- omregninger	PGM + C.TRANS. STATUS

PROGRAMTEST	
0 BEGIN PGM 3507 MM 1 BLK FORM 0.1 Z X-20 Y-20 Z-20 2 BLK FORM 0.2 X+20 Y+20 Z+0 3 TOOL DEF 1 L+0 R+6 4 TOOL DEF 2 L+0 R+4 5 TOOL CALL 1 Z S1000 6 L Z+50 R0 FMAX M3 7 L X+50 Y+50 R0 FMAX M8 8 L Z-5 R0 FMAX M1 9 CC X+0 Y+0 10 LP RR14 PR+45 RR F500	
11 RND R1	0° 00:01:17
KRLK. X +150.000 Y −25.000 Z +250.000	Т F 0 S M5/9
RESET BLK FORM	STOP VED START START + NI □ START

Programafvikling blokfølge og programafvikling enkeltblok

I programafvikling blokfølge udfører TNC'en et program til programenden eller til en manuel hhv. programmeret afbrydelse. Efter en afbrydelse kan De genoptage programafviklingen.

I programafvikling enkeltblok starter De hver blok med den externe START-taste enkelt.

Softkeys til billedskærm-opdeling

Vindue	Softkey
Program	PGM
Til venstre: Program, til højre: Generelle program- informationer	PGM + PGM STATUS
Til venstre: Program, til højre: Positioner og koordinater	PGM + POS. STATUS
Til venstre: Program, til højre: Informationer om værktøjer	PGM + TOOL STATUS
Til venstre: Program, til højre: Koordinat- omregninger	PGM + C.TRANS. STATUS
Til venstre: Program, til højre: Værktøjs-opmåling	PGM + T.PROBE STATUS

PROGRAMLØB BLOKFØLGE

ø	BEGIN PGM 3507 M	1		PGM-	NAVN	I 3507	/	1
1 2 3 4 5 6 7 8 9 10	BLK FORM 0.1 2 : BLK FORM 0.2 X+ TOOL DEF 1 L+0 R TOOL CALL 1 2 S11 L X+50 R0 FMAX L X+50 X+50 R0 L Z-5 R0 FMAX M CC X+0 Y+0 LP PR+14 PR+45 RND R1	-20 Y-20 20 Y+20 3 +6 +4 2000 13 FMAX M8 1 RR F500	Z-20 Z+0	AKT.	X Y Z	+150.000 -25.000 +250.000		
ĸF	цк. X +1 Y - Z +2	50.00 25.00 50.00	10 10 10	T F Ø S	9		M5/	' 9
BI OVI	_OKVIS ERFØRE.			GENSKAE POS. VE]

1.4 Status-display

"Generelt" om status-display

Status-displayet informerer Dem om den aktuelle tilstand af maskinen. Det vises automatisk i alle driftsarter.

I driftsarten manuel drift og el. og positionering med manuel indlæsn ses positions-visningen i det store vindue.

Informationer i positions-display

Symbol	Betydning
AKT .	Akt eller Soll-koordinater til den aktuelle position
X Y Z	Maskinakser
SFM	Omdr.tal S, tilspænding F og virksom hjælpefunktion M
*	Programafvikling er igang
•	Akse er låst
	Aksen bliver kørt under hensyntagen til grund- drejningen.

Andre status-displays

Andre status-display giver detaljerede informationer om programafviklingen. De lader sig kalde i alle driftsarter, med undtagelse af program-indlagring/editering.

Indkobling af andre status-displays

PROGRAMLØB BLOKFØLGE	
Ø BEGIN PGM STATUS 1 BLK FORM Ø.1 2 2 BLK FORM Ø.2 X+1 3 TOOL CALL 1 2 X+4 4 L 2+100 RØ FMAX 5 L X-20 Y+50 RØ 6 L 2-2 RØ FMAX 7 LBL 12 8 CYCL DEF 7.0 NULF 9 CYCL DEF 7.1 X+2 10 CYCL DEF 7.3 Z+2	MM (+0 Y+0 Z-40 100 Y+100 Z+0 300 DL+0.05 DR+0.04 FMAX 3 PUNKT 25.5 10 12
кяцк. X +172.685 Y -9.240 Z +238.225	T 1 Z F 0 R01 S M5/9
BLOKVIS OVERFØRE.	GENSKAB POS. VED ON ON VÆRKTØJS NUED OFF TABEL

Efterfølgende er beskrevet forskellige yderligere status-visninger, som De kan vælge som tidligere beskrevet:

Generelle program-informationer

- 1 Hovedprogram-navn
- 2 Kaldte programmer
- 3 Aktive bearbejdnings-cyklus
- 4 Cirkelcentrum CC (Pol)
- 5 Tæller for dvæletid
- Nummeret på det aktiv underprogram, hhv. aktive programdel-gentagelse/ tæller for den aktuelle programdel-gentagelse
 (5/3: 5 gentagelser programmeret, endnu 3 skal udføres)
- 7 Bearbejdningstid

Positioner og koordinater

- 1 Positionsvisning
- 2 Art af positionsvisning, f.eks. Akt.-positioner
- 3 Vinkel for grunddrejning

Informationer om værktøjer

- Display T: Værktøjs-nummer og -navn Display RT: Nummer og navn på et tvilling-værktøj
- 2 Værktøjsakse
- 3 Værktøjs-længde og -radier
- 4 Sletspån (delta-værdier) fra TOOL CALL (PGM) og værktøjs-tabel (TAB)
- 5 Aktuel- og maximal standtid (TIME 1) Maximal standtid ved TOOL CALL (TIME 2)
- 6 Display af det aktive værktøj og dets (næste) tvilling-værktøj.

PGM + C.TRANS. STATUS

Koordinat-omregninger

- 1 Hovedprogram-navn
- 2 Aktiv nulpunkt-forskydning (cyklus 7)
- 3 Aktive drejevinkel (cyklus 10)
- 4 Spejlede akser (cyklus 8)
- 5 Aktiv dimfaktor (cyklus 11 eller cyklus 26)
- Se "8.8 cykler for koordinat-omregning"

- 1 Nummeret på værktøjet, der skal opmåles
- 2 Display af, at værktøjs-radius eller -længde bliver opmålt
- 3 MIN- og MAX-værdier enkeltskær-opmåling og resultat af måling med roterende værktøj (DYN).
- 4 Nummer af værktøjs-skæret med tilhørende måleværdi. Stjernen efter måleværdien viser, at tolerancen fra værktøjstabellen er blevet overskredet.

1.5 Tilbehør: 3D-tastsystemer og elektroniske håndhjul fra HEIDENHAIN

3D-tastsystemer

Med de forskellige 3D-tastsystemer fra HEIDENHAIN kan De

- Oprette emner automatisk
- Hurtigt og nøjagtigt fastlægge henføringspunkter
- Udføre målinger på emnet under programafviklingen
- Digitalisere 3D-former (option) såvel som
- Opmåle og kontrollere værktøjer

Kontakt tastsystemerne TS 220 og TS 630

Dette tastsystem egner sig særdeles godt til automatisk emneopretning, henføringspunkt-fastlæggelse, til målinger på emnet og for digitalisering. TS 220 overfører kontaktsignalet med et kabel og er derfor et prisgunsigt alternativ, hvis De lejlighedsvis skal digitalisere.

Specielt for maskiner med værktøjsveksler egner TS 630 sig, da den overfører kontaktsignalet via en infrarød-sender trådløst.

Funktionsprincipet: I tastesystemet fra HEIDENHAIN registrerer en optisk kontakt som er slidfri udbøjningen af taststiften. Det registrerede signal foranlediger at Akt.-værdien af den aktuelle taste-position bliver lagret.

Ved digitalisering fremstiller TNC'en fra en serie af således fremskaffede positionsværdier et program med lineære-blokke i HEIDENHAIN-format. Disse programmer lader sig så viderbearbejde i en PC'er med softwaren SUSA, for at kunne korrigere for bestemte værktøjs-former og -radier eller for at kunne udregne positive-/negative-former. Hvis tastkuglen er lig med fræser-radius, er disse programmer med det samme klar til afvikling.

Værktøjs-tastsystemet TT 120 for værktøjs-opmåling

TT 120 er et 3D-tastsystem for opmåling og kontrol af værktøjer. TNC en stiller 3 cykler til rådighed, med hvilke man kan fremskaffe værktøjs-radius og -længde ved stillestående eller roterende spindel.

Den specielle robuste konstruktion og høje beskyttelsesgrad gør TT 120 ufølsom overfor kølemiddel og spåner. Kontaktsignalet bliver genereret med en slidfri optisk kontakt, der er kendetegnet ved sin meget høje pålidelighed.

De elektroniske håndhjul HR

De elektroniske håndhjul forenkler den præcise manuelle kørsel med akseslæderne. Den kørte strækning pr. håndhjuls-omdrejning er valgbar indenfor et bredt område. Udover indbygningshåndhjulene HR 130 og HR 150 tilbyder HEIDENHAIN det bærbare håndhjul HR 410.

Manuel drift og opretning

2.1 Indkobling

Indkoblingen og kørsel til referencepunkterne er maskinafhængige funktioner. Vær opmærksom på Deres maskinhåndbog.

▶ Tænd for forsyningsspændingen til TNC og maskine.

Herefter viser TNC'en følgende dialog an:

Hukommelsestest

TNC'ens hukommelse bliver automatisk kontrolleret

Netudfald

TNC-melding, at der var en strømafbrydelse – slet meldingen

PLC-program oversætte

TNC'ens PLC-program bliver automatisk oversat

Styrespænding til relæ mangler

Indkobling af styrespænding TNC'en kontrollerer nød-stop funktionen

MANUEL [DRIFT
0verkør	referencpunkter

Overkør referencepunkter i vilkårlig række-følge: For hver akse trykkes og holdes den externe retningstaste, indtil reference-punktet er overkørt, eller

Ved flere akser samtidig overkørsel af referencepunkter: Vælg akser med softkey (akserne bliver da vist omvendt på billedskærmen) og tryk derefter extern STARTtaste

TNC'en er nu funktionsklar og befinder sig i driftsarten manuel drift.

2.2 Kørsel med maskinakserne

Kørsel med de externe retningstaster er maskinafhængig. Vær opmærksom på maskinhåndbogen!

Kørsel af akse med extern retningstaste

Vælg driftsart manuel drift

Tryk og hold den externe retningstaste, sålænge aksen skal køres

...eller kør aksen kontinuerligt:

Hold den externe retningstaste trykket og tryk den externe START-taste kort. Aksen kører, indtil den bliver standset.

Standse: Tryk extern STOP-taste

Med begge metoder kan De også køre flere akser samtidigt.

Kørsel med det elektroniske håndhjul HR 410

Det bærbare håndhjul HR 410 er udrustet med to dødmandstaster. Tasterne befinder sig nedenfor grebet. De kan kun køre med maskinakserne, hvis een af dødmands-

tasterne er trykket (maskinafhængig funktion).

Håndhjulet HR 410 råder over følgende betjeningselementer:

- 1 NØD-STOP
- 2 Håndhjul
- 3 Dødmandstaster
- 4 Taster for aksevalg
- 5 Taste for overføring af Akt.-position
- 6 Taster til fastlæggelse af tilspænding (langsom, middel, hurtig; tilspændingerne bliver fastlagt af maskinfabrikanten)
- 7 Retningen, i hvilken TNC'en kører den valgte akse
- 8 Maskin-funktioner
 (bliver fastlagt af maskinfabrikanten)

De røde lamper signaliserer, hvilke akser og hvilken tilspænding De har valgt.

Det er også muligt at køre med håndhjulet under en programafvikling.

Kørsel

Skridtvis positionering

Ved skridtvis positionering bliver en fremrykning fastlagt, med hvilken en maskinakse bliver kørt ved tryk på en extern retningstaste.

2.3 Spindelomdrejningstal S, Tilspænding F og Hjælpefunktion M

I driftsarterne MANUEL DRIFT og EI. HÅNDHJUL indlæser De spindelomdrejningstal S, tilspænding F og hjælpefunktion M med softkeys. Hjælpefunktionerne er beskrevet i "7. Programmering: Hjælpeunktioner". Tilspændingen er fastlagt med en maskinparameter og lader sig kun ændre med overridedrejeknappen (se neden under).

Indlæsning af værdier

Eksempel: Indlæs spindelomdrejnings S

Spindelomdrejningstal S=		
Indlæs spindelomdrejningstal og overfør med den externe START-taste		

Spindelomdrejningen med det indlæste omdr.tal S bliver startet med en hjælpefunktion M.

Hjælpefunktionen M indlæser De på samme måde.

Ændring af spindelomdrejningstal og tilspænding

Med override-drejeknapperne for spindelomdr.tal S og tilspænding F lader de indstillede værdier sig ændre fra 0% til 150%.

Override-drejeknappen for spindelomdr.tallet virker kun ved maskiner med trinløst spindeldrev.

Maskinfabrikanten fastlægger, hvilke hjælpefunktioner M De kan udnytte og hvilken funktion de har.

2.4 Henføringspunkt-fastlæggelse (uden 3D-tastsystem)

Ved henføringspunkt-fastlæggelse bliver TNC'ens display sat på koordinaterne til en kendt emne-position.

Forberedelse

- Emnet opspændes og oprettes
- Nulværktøj med kendt radius isættes
- ▶ Vær sikker på, at TNC'en viser Akt.-positioner.

Henføringspunkt fastlæggelse

Beskyttelsesmåling: Hvis emne-overfladen ikke må berøres, lægges på emnet et stykke blik med kendt tykkelse d. For henføringspunktet indlæser De så en værdi som er d større. .

Nulværktøj, spindelakse: Sæt displayet på en kendt emne-position (F.eks. 0) eller indlæs tykkelsen d af blikket. I bearbejdningsplanet: Tag hensyn til værktøjs-radius

Henføringspunkterne for de resterende akser fastlægger De på samme måde.

Hvis De i fremrykningsaksen anvender et forindstillet værktøj, så sætter De displayet for fremrykaksen på længden L af værktøjet hhv. på summen Z=L+d.

Positionering med manuel indlæsning

3.1 Programmering og afvikling af enkle positioneringsblokke

Ved enkle bearbejdninger eller ved forpositionering af værktøjet er driftsart positionering med manuel indlæsning velegnet. Her kan De indlæse et kort program i HEIDENHAIN-klartext-format eller efter DIN/ISO og direkte lade det udføre. Også cykler i TNC'en lader sig kalde. Programmet bliver lagret i filen \$MDI. Ved positionering med manuel indlæsning lader de yderligere status-display sig aktivere.

Vælg driftsart positionering med manuel indlæsning. Filen \$MDI programmeres vilkårligt

 (\mathbf{I})

Start programafvikling: Extern START-taste

Begrænsninger:

Følgende funktioner er ikke til rådighed:

- Værktøjs-radiuskorrektur
- den fri kontur-programmering FK
- programmerings- og programafviklings-grafik
- programmérbare tastfunktioner
- underprogrammer, programdel-gentagelser
- bahnfunktionerne CT, CR, RND og CHF
- PGM CALL

Eksempel 1

Et enkelt emne skal forsynes med en 20 mm dyb boring. Efter opspændingen af emnet, opretning og henføringspunktfastæggelse lader boringen sig programmere og udføre med få programlinier.

Først bliver værktøjet forpositioneret med L-blokken (retlinie) over emnet og positioneret på en sikkerhedsafstand på 5 mm over borestedet. Herefter bliver boringen udført med cyklus 1 DYBDEBORING.

0	BEGIN PGM \$MDI MM	
1	TOOL DEF 1 L+O R+5	Va
2	TOOL CALL 1 Z S2000	Va
		Sp
3	L Z+200 RO FMAX	Va
4	L X+50 Y+50 RO FMAX M3	Va
		sp
5	L Z+5 F2000	Va
6	CYCL DEF 1.0 DYBDEBORING	Cy

Værkt. definieres: Nulværktøj, radius 5
Værkt. kald: Værktøjsakse Z,
Spindelomdr.tal 2000 U/min
Værkt. frikøres (FMAX = ilgang)
Værkt. med FMAX positioneres over boring,
spindel inde
Værkt. positioneres 5 mm over boring
Cyklus DYBDEBORING definieres:

Værkt = værktøj

gsblokke
erin
position
enkle
af
afvikling
og
Programmering
-

3

7 CYCL DEF 1.1 AFST 5	Sikkerhedsafstand af værkt. over boring
8 CYCL DEF 1.2 DYBDE -20	Dybde af boringen (fortegn=arbejdsretning)
9 CYCL DEF 1.3 UDSP 10	Dybde af hver spån før udspåning
10 CYCL DEF 1.4 DV.TID 0,5	Dvæletid på bunden af boringen i sekunder
11 CYCL DEF 1.5 F250	Boretilspænding
12 CYCL CALL	Kald af cyklus DYBDEBORING
13 L Z+200 RO FMAX M2	Værkt. frikøres
14 END PGM \$MDI MM	Program-slut

Retlinie-funktionen er beskrevet i "6.4 Banebevægelser – retvinklede koordinater", for cyklus DYBDEBORING under "8.3 borecykler".

Eksempel 2

Opretning af emne på rundbord

Grunddrejning med 3D-tastsystem gennemføres. Se "12.1 Tastcykler i driftsart manuel drift og el. håndhjul", afsnit "kompensering for skævt liggende emne".

Notér drejevinkel og ophæv grunddrejning igen

	Vælg driftsart: Positionering med manuel indlæsning
50 IV	Vælg rundbordsakse , indlæs noterede dreje- vinkel og tilspænding f.eks. L C+2.561 F50
	Afslut indlæsning
	Tryk extern START-taste: Der tages hensyn til et skævt liggende emne ved drejning af af rundbordet, det lyse felt bliver efter NC-start forskudt til den næste blok
Sikring eller sletning af programmer fra \$MDI

Filen \$MDI bliver normalt anvendt til korte og midlertidige programmer. Skal et program trods det lagres, går De frem som følger:

\$	Vælg driftsart: Program- indlagring/editering
PGM MGT	Kald fil-styring: Taste PGM MGT (Program styring)
	Markér filen \$MDI
	"Kopiér filen" vælg: Softkey KOPIERING
Mål-fil =	
BORING	Indlæs et navn, under hvilket det aktuelle indhold af filen \$MDI skal lagres
ENT	Udfør kopiering
SLUT	Forlade fil-styring: Tryk softkey SLUT

For sletning af indholdet i filen %\$MDI går De frem således: Istedet for at kopiere, sletter De indholdet med softkey SLET. Ved næste skift i driftsart manuel positionering viser TNC'en en tom fil %\$MDI.

Hvis De med MOD-funktionen vil skifte mellem klartextog DIN/ISO- programmering, skal De slette den aktuelle fil \$MDI.* og herefter igen vælge driftsart positionering med manuel indlæsning.

Yderligere informationer i "4.2 Fil-styring".

Programmering:

Grundlaget, Fil-styring, Programmeringshjælp

4.1 Grundlaget

Længdemålesystemer og referencemærker

På maskinens akser befinder sig længdemålesystemer, som registrerer positionerne af maskinbordet hhv. værktøjet. Når De bevæger en maskinakse, fremstiller det detilhørende længdemålesystem et elektrisk signal, med hvilket TNC'en udregner den nøjagtige Akt.-position for maskinaksen.

Ved en strømafbrydelse går samordningen mellem maskinslædepositionen og den beregnede Akt-position tabt. For at kunne genskabe denne samordning igen, disponerer målestaven i længdemålesystemet over referencemærker. Ved overkørsel af et referencemærke får TNC'en et signal, som kendetegner et maskinfast henfóringspunkt. Herved kan TNC'en igen fremstille samordningen af Akt.-positionen til den aktuelle maskinslæde-position.

Normalt er der monteret længdemålesystemer på lieære akser. På rundborde og svinghoveder er der monteret vinkelmålesystemer. For at kunne genskabe samordningen mellem Akt.-positionen og den aktuelle maskinslæde-positionen, skal De ved længdemålesystemer med afstandskoderede referencemærker kun køre maskinaksen maximalt 20 mm, ved vinkelmålesystemer kun maximalt 20°.

4.1 Grundlaget

Henføringssystem

Med et henføringssystem fastlægger De entydigt positioner i et plan eller i rummet. Angivelsen af en position henfører sig altid til et fastlagt punkt og bliver beskrevet med koordinater.

I et retvinklet system (kartesisk system) er tre retninger fastlagt som akser X, Y og Z . Akserne står altid vinkelret på hinanden og skærer sig i eet punkt, nulpunktet. En koordinat giver afstanden til nulpunktet i en af disse retninger. Således lader en position sig beskrive i planet ved to koordinater og i rummet ved tre koordinater.

Koordinater, der henfører sig til nulpunktet, bliver betegnet som absolutte koordinater. Relative koordinater henfører sig til den Akt.position før bevægelsen. Relative koordinat-værdier bliver også betegnet som inkrementale koordinat-værdier.

Henføringssystem på fræsemaskiner

Ved emnebearbejdning på en fræsemaskine benyttes normalt det retvinklede koordinatsystem. Billedet til højre viser hvordan aksenavne og retninger bør være udlagt på en maskine. Højre hånds trefinger regel hjælper med at huske den korrekte udlægning: Langfingeren vendes så den peger fra emnet mod værktøjet. Langfingeren peger da i retning Z+, tommelfingeren i retning X+ og pegefingeren i retning Y+.

TNC 410 kan styre maximalt 4 akser. Foruden hovedakserne X, Y og Z kan der forekomme parallelle akser til disse, benævnt U, V og W. Drejeakser benævnes A, B eller C. Nederste billede viser hvordan ekstra-akser benævnes i forhold til hovedakserne.

Polarkoordinater

Når arbejdstegningen er målsat retvinklet, fremstiller De også bearbejdnings-programmet med retvinklede koordinater. Ved emner med cirkel-buer eller ved vinkelangivelser er det ofte lettere, at fastlægge positionerne med polarkoordinater.

l modsætning til de retvinklede koordinater X, Y og Z beskriver polarkoordinater kun positionen i eet plan. Polarkoordinater har deres omdrejningspunkt i en pol CC (CC = circle centre; eng. cirkelcenter). En position i et plan er således entydigt fastlagt ved

- Polarkoordinat-radius: Afstanden fra Pol CC til positionen
- Polarkoordinat-vinkel: Vinklen mellem vinkel-henføringsaksen og strækningen, der forbinder polen CC med positionen.

Se billedet til højre forneden.

Fastlæggelse af pol og vinkel-henføringsakse

Polen fastlægger De med to koordinater i et retvinklet koordinatsystem i en af de tre planer. Herved er også vinkel-henføringsaksen for polarkoordinat-vinklen PA entydigt samordnet.

Pol-koordinater (plan)	Vinkel-henføringsakse
XY	+X
YZ	+Y
ZX	+Z

Absolutte og relative emne-positioner

Absolutte emne-positioner

Hvis koordinaterne til en position henfører sig til koordinatnulpunktet (det oprindelige), bliver disse betegnet som absolutte koordinater. Alle positioner på et emne er ved deres absolutte koordinater entydigt fastlagt.

Eksempel 1: Boringer med absolutte koordinater

Boring I	Boring Z	boning 3
X=10 mm	X=30 mm	X=50 mm
Y=10 mm	Y=20 mm	Y=30 mm

Relative emne-positioner

Relative koordinater henfører sig til den sidst programmerede position af værktøjet, der tjener som relativt (ovennævnte) nulpunkt. Inkrementale koordinater angiver ved programfremstillingen altså målet mellem den sidste og den dermed følgende Soll-position, hvortil værktøjet skal køre. Derfor bliver det også betegnet som kædemål.

Et inkremental-mål kendetegner De med et "I" før aksebetegnelsen.

Eksempel 2: Boringer med inkrementale koordinater

Absolutte koordinater til boringen 4:

X= 10 mm Y= 10 mm	
Boring <mark>5</mark> henført til <mark>4</mark>	Boring <mark>6</mark> henført til <mark>5</mark>
IX= 20 mm IY= 10 mm	IX= 20 mm IY= 10 mm

Absolutte oginkrementale polarkoordinater

Absolutte koordinater henfører sig altid til pol og vinkelhenføringsakse.

Inkrementale koordinater henfører sig altid til den sidst programmerede position af værktøjet.

Valg af henføringspunkt

En emne-tegning angiver et bestemt formelement på emnet som absolut henføringspunkt (nulpunkt), normalt et hjørne af emnet. Ved henføringspunkt-fastlæggelsen opretter De først emnet på maskinaksen og bringer værktøjet for hver akse i en kendt position i forhold til emnet. For denne position fastlægger De displayet på TNC'en enten på nul eller en forud given positionsværdi. Herved indordner De emnet til henføringssystemet, som gælder for TNCdisplayet hhv. Deres bearbejdnings-program.

Angiver emne-tegningen forskellige henføringspunkter, så udnytter De ganske enkelt cyklen for koordinat-omregning. Se "8.8 cykler for koordinat-omregning".

Hvis emne-tegningen ikke er målsat NC-korrekt, så vælger De en position eller et emne-hjørne som henføringspunkt, fra hvilket målene for de øvrige emnepositione nemmest muligt lader sig fremskaffe.

Særlig komfortabelt fastlægger De henføringspunkter med et 3Dtastsystem fra HEIDENHAIN. Se "12.2 Henføringspunkt-fastlæggelse med 3D-tastsystemer".

Eksempel

Emne-skitsen til højre viser boringer (1 til 4), hvis målsætning henfører sig til et absolut henføringspunkt med koordinaterne X=0 Y=0. Boringen (5 til 7) henfører sig til et relativt henføringspunkt med de absolutte koordinater X=450 Y=750. Med cyklus NULL-PUNKT-FORSKYDNING kan De midlertidigt forskyde nullpunktet til position X=450, Y=750, for uden videre at kunne programmere boringerne (5 til 7) uden yderligere beregninger.

4.2 Fil-styring

Filer og fil-styring

Når De indlæser et bearbejdnings-program i TNC'en, giver De først dette program et navn. TNC'en lagrer programmet på harddisken som en fil med det samme navn. Også tekster og tabeller lagrer TNC'en som filer.

Navne på filer

Navnet på en fil må maximalt være på 8 karakterer. Specialtegnene @, \$, _, %, # og & er tilladte. Ved programmer, tabeller og tekster tilføjer TNC'en en udvidelse, som er adskilt fra fil-navnet med et punkt. Denne udvidelse kendetegner fil-typen: Se tabellen til højre.

PROG20	.H			
Fil-navn	Fil-type			
TN fil-	C styrer fil-n navn til forsk	avne entydigt, «ellige fil-typer.	dvs. De kan ik	ke henføre e

De kan med TNC'en styre indtil 64 filer, totalstørrelsen af alle filer må dog ikke overskride 128 Kbyte.

Arbejde med fil-styring

Dette afsnit informerer Dem om betydningen af de enkelte billedskærm-informationer og hvorledes De kan udvælge filer og biblioteker. Hvis De endnu ikke er fortrolig med TNC 410's filstyring, bør De gennemlæse dette afsnit fuldstændigt og teste de enkelte funktioner på TNC'en.

Kald af fil-styring

PGM MGT Tryk tasten PGM MGT: TNC en viser vinduet for fil-styring

Vinduet <u>1</u> viser alle de filer, som er lagret i TNC'en. Til hver fil bliver flere informationer vist, som er ordnet i tabellen til højre.

Filer iTNC'en	Туре
Programmer i HEIDENHAIN-klartext-dialog ifølge DIN/ISO	.H .I
Tabeller for	
værktøjer	.Т
Værktøjs-pladser	.TCH
Nulpunkter	.D
Punkter	.PNT

PROGRAMVALG	
FIL-NHVN = ALBERT6 .H 256 AS1 .D 226 BOHRB .I 318 C210 .H 1 C210 .H 214 FK .H 588 FK3 .H 304 HE3 .H 324 KIT .H 244	M
KOMMENT .H 320	1
KALK. X -139.560	
Y +135.600 Z +163.360	T F 0 S 4000 M3/9
SIDE SIDE PROTECT/ OMDØBE	SLET COPY BC ⇒ XYZ EXT SLUT

Visning	Betydning
Fil-navn	Navn med maximal 8 karakterer og fil-type
Μ	Filens egenskaber: Programmet er valgt i en programafviklings-driftsart
Ρ	Fil beskyttet (Protected) mod sletning og ændring

Visning af længere fil-oversigter	Softkey
Gennembladning af fil-oversigt side for side fra oven	SIDE Î
Gennembladning af fil-oversigt side for fra neden	SIDE []

HEIDENHAIN TNC 410

Valg af fil

Kald af fil-styring Brug pil-tasten, for at flytte det lyse felt til den ønskede fil:

Flyt det lyse felt i vinduet op og ned

Indlæs et eller flere bogstaver for filen der skal vælges og tryk så tasten GOTO: Det lyse felt springer til den første fil, som stemmer overens med de indlæste bogstaver

Den valgte fil bliver aktiveret i den driftsart, hvor i De har kaldt fil-styringen: Tryk ENT

Kopiering af filer

Flyt det lyse felt til den fil, som skal kopieres

OMDØBE

ABC = XYZ

Tryk softkey KOPIERING: Vælg kopiérfunktion

Indlæs navnet på mål-filen og overfør med tasten ENT: TNC' en kopierer filen i det aktuelle bibliotek. Den oprindelige fil er bibeholdt.

Navneskift på fil

Flyt det lyse felt hen på den fil De skal at skifte navn på

▶ Vælg funktion for navneskift

▶ Indlæs nyt fil-navn; fil-typ kan ikke ændres

Udfør navneskift: Tryk tasten ENT

Sletning af en fil

Flyt det lyse felt hen på den fil, som De skal slette

Vælg slettefunktion: Tryk softkey SLET. TNC'en spørger, om filen virkelig skal slettes.

Overfør sletning: Tryk softkey JA. Fortryd med softkey NEJ, hvis De ikke vil slette filen

Fil beskyttelse/ophævning af fil beskyttelse

▶ flyt det lyse felt til den fil, som De skal beskytte

▶ Aktivering af fil-beskyttelse: Tryk softkey BESKYTTELSE/OPHÆVE filen opnår status P

Fil beskyttelsen ophæver De på samme måde med softkey BESKYTTELSE/OPHÆVE. Indlæs for ophævelse af filbeskyttelsen nøgletallet 86357.

Konvertering af FK-program i KLAR-TEXT-format

Flyt det lyse felt til den fil, som De skal konvertere

- KONVERTER FK->H ► Vælg konverteringsfunktion: Tryk softkey FORVANDLE FK->H (2. softkeyliste)
 - ▶ Indlæs navnet på bestemmelses filen
 - ▶ Udfør konverteringen: Tryk taste ENT

4.2 Fil-styring

Indlæsning af filer/udlæsning af filer

Indlæsning eller udlæsning af filer: Tryk softkey EXT. TNC´en stiller de efterfølgende beskrevne funktioner til rådighed

Hvis De vil indlæse en fil der allerede er lagret i TNC'en, viser TNC'en meldingen "fil xxx allerede tilstede, indlæse fil?" Dialogspørgsmålet besvares i dette tilfælde med softkey JA (filen bliver indlæst) eller NEJ (filen bliver ikke indlæst).

Hvis en fil der skal overføres til et externt udstyr allerede er der, spørger TNC'en ligeledes, om De vil overskrive den externt lagrede fil.

Indlæse alle filer (fil-typer: .H, .I, .T, .TCH, .D, .PNT)

▶ Indlæs alle filer, som er lagret i det externe dataudstyr

Indlæsning af tilbudte filer

► Tilbyde alle filer af en bestemt fil-type

F.eks. tilbyde alle klartext-dialog-programmer. Indlæsning af tilbudt program: Tryk softkey JA, ikke indlæse tilbudt program: Tryk softkey NEJ

Indlæsning af en bestemt fil

▶ Indlæs fil-navn, overfør med tasten ENT

▶ Vælg fil-type, f.eks. klartext-dialog-program

Hvis De vil indlæse værktøjs-tabellen TOOL.T, trykker De softkey VÆRKTØJS-TABEL. Hvis De vil indlæse plads-tabellen TOOLP.TCH, trykker De softkey PLADS-TABEL.

Udlæsning af en bestemt fil

► Vælg funktionen udlæsning af enkelte filer

Forskyd det lyse felt til filen De vil udlæse, med tasten ENT eller softkey OVERFØR. starter De overføringen

Afslut funktionen udlæsning af enkelte filer: Tryk taste END Udlæsning af alle filer (fil-typer: .H, .I, .T, .TCH, .D, .PNT)

Alle filer, som er lagret i TNC´en, overføres til et externt udstyr

Visning af fil-oversigt i det externe udstyr (fil-typer: .H, .I, .T, .TCH, .D, .PNT)

Vis alle filer, som er lagret i det externe dataudstyr Visningen af filerne sker sidevis. Visning af næste side: Tryk softkey JA, tilbage til hovedmenu: Tryk softkey NEJ

4.3 Åbning og indlæsning af programmer

Opbygning af et NC-programm i HEIDENHAINklartext-format

Et bearbejdnings-program består af en række af program-blokke. Billedet til højre viser elementerne i en blok.

TNC' en nummererer blokkene i et bearbejdnings-program i opadgående rækkefølge.

Den første blok i et program er kendetegnet med "BEGIN PGM", program-navnet og den gældende måleenhed.

De efterfølgende blokke indeholder informationer om:

- Råemnet:
- Værktøjs-definitioner og -kald,
- Tilspænding og omdrejningstal
- Banebevægelser, cykler og yderligere funktioner.

Den sidste blok i et program er kendetegnet med "END PGM", program-navn og den gældende måleenhed.

Definering af råemne: BLK FORM

Direkte efter åbningen af et nyt program definerer De et kasseformet, ubearbejdet emne. Denne definition behøver TNC'en for den grafiske simulation. Siderne af kassen må maximalt være 30 000 mm lang og ligge parallelt til akserne X,Y og Z. Dette råemne er fastlagt ved to af dets hjørne-punkter:

- MIN-punkt: Mindste X-,Y- og Z-koordinater af kassen; indlæs absolut-værdier
- MAX-punkt: største X-,Y- og Z-koordinater af kassen; indlæs absolut- eller inkremental-værdier

Åbning af et nyt bearbejdnings-program

Et bearbejdnings-program indlæser De altid i driftsart program indlagring/editering.

Ek

sempel på en p	rogram-åbning									
\Rightarrow	Vælg driftsart PROGRAM INDLAGRING/ EDITERING						1			
		KALK.	X Y	-1: +1:	39.50 35.60	50 30				
PGM MGT	Kald fil-styring: Tryk tasten PGM MGT		Z	+11	63.30	50	F 0 S 41	000	M3/	9
il-navn =		MM INCH			.н	I.		.PNT		
NY ENT	Indlæs nyt program-navn									
.H	Vælg fil-type, f.eks. Klartext-Dialog-Program: Tryk softkey .H									
MM INCH	Evt. skift måleenhed til tommer: Tryk softkey MM/TOMME									
ENT	Overfør med taste ENT.									

PROGRAMVALG FIL-NAVN = PGMNEU.I

Råemne de	finering	PROGRAM-INDLÆSNING DEF BLK FORM: MAX-PUNKT ?
BLK FORM	Åbning af dialog for råemne-definition: Tryk softkey BLK FORM	<pre>0 BEGIN PGM 2J2K MM 1 BLK FORM 0.1 Z X+0 Y+0 Z-40 *2 BLK FORM 0.2 X+100 Y+100 Z+0 2 END PGM 2J2K MM</pre>
Spindelaks	e parallel X/Y/Z ?	1
	Indlæs spindelakse	
Def BLK FO	RM: Min-Punkt?	калк. X +150.000 Y -25.000
		Z +250.000 F 0 S M5/9
0 _{ent}	Indlæs efter hinanden X-, Y- og Z-koordinaterne for MIN-punkter	
0 ^{Ent}		
-40 END	Afslut dialog for MIN-punkt-indlæsning	
Def BLK FO	RM: Max-Punkt?	
100 _{емт}	Indlæs efter hinanden X-, Y- og Z-koordinaterne for MAX-punkter	
100 ^{ENT}		

Program-vinduet viser definitionen af BLK-form:

BEGIN PGM NEU MM	Program-start, navn, måleenhed
1 BLK FORM 0.1 Z X+0 Y+0 Z-40	Spindelakse, MIN-punkt-koordinater
2 BLK FORM 0.2 X+100 Y+100 Z+0	MAX-punkt-koordinater
END PGM NYT MM	Program-slut, navn, måleenhed

TNC'en genererer blok-numre automatisk, såvel BEGIN- og ENDblok.

4.3 Åbning og indlæsnin<mark>g af</mark> programmer

Programmering af værktøjs-bevægelser i klartextdialog

For at programmere en blok, begynder De med en dialogtaste. I hovedlinien på billedskærmen spørger TNC'en efter alle de nødvendige data.

Eksempel på en dialog

Loo	Åbning af dialog
	Koordinater ?
X 10 ENT	Indlæs bestemmelseskoordinater for X-akse
Y 5 ENT 2X	Indlæs bestemmelseskoordinater for Y-akse, m taste ENT til næste spørgsmål
	Radiuskorr.: RL/RR/keine Korr. ?
ENT	Indlæs "ingen radiuskorrektur", med taste ENT til næste spørgsmål
	Tilspænding? F=
100 _{ент}	Tilspænding for denne banebevægelse 100 mm/min, med taste ENT til næste spørgsmål
	Hjælpe-funktion M ?
	Indlæs vilkårlig hjælpefunktion direkte, f.eks M3 "spindel inde", eller
M120	Indlæs hjælpefunktionen, som endnu behøver en yderligere indlæseværdi, f.eks. M120: Tryk softkey M120 og indlæs værdi
	Med tasten END afslutter TNC´en denne dialog og lagrer den indlæste blok
Programvinduet viser	linien:

3	L	X+10	Y+5	RO	F100	МЗ	

PROGRAM-I Hjælpefun	NDLÆSNING KTION M ?		
0 BEGIN 1 BLK FO 2 BLK FO 3 TOOL C *4 L X+ 4 END PG	PGM 2J2K MN RM 0.1 Z > RM 0.2 X+1 ALL 1 Z S2E 10 Y+5 R0 M 2J2K MM	1 (+0 Y+0 [00 Y+100 500 F100 M3 ∎	Z-40 Z+0
кашк. X + Y Z +	150.000 -25.000 250.000	T F Ø S	M5/9
M M103	M112 M120	M124	

Funktioner under programmering	Taste
Undlade besvarelse	-
Afslutte dialog for tidlig, blok lagres	
Afbryde dialog, blok slettes	DEL

Editering af programlinier

Under fremstilling eller ændring af et bearbejdnings-program, kan De med pil-tasterne vælge hver linie i et program og enkelte ord i en blok: Se tabellen til højre. Hvis De indlæser en ny blok, kendetegner TNC'en denne blok med en * sålænge blokken endnu ikke er lagret.

Søge ens ord i forskellige blokke

Vælg et ord i en blok: Tryk pil-tasten så ofte, at det ønskede ord er markeret

Vælg blok med piltasten

Markeringen befinder sig i den nyvalgte blok med det samme ord, som i den først valgte blok.

Find vilkårlig tekst

- Vælg søgefunktion: Tryk softkey SØG TNC´en viser dialogen SØG TEKST :
- ▶ Indlæs den søgte tekst
- ▶ Søg tekst: Tryk softkey UDFØR

Indføjelse af blokke på et vilkårligt sted

Vælg den blok, efter hvilken De vil indføje en ny blok og åben dialogen.

Indføjelse af sidst editerede (slettede) blok på et vilkårligt sted

Vælg den blok, efter hvilken De vil indføje den sidst editerede (slettede) blok

Ændring og indføjelse af ord

- Vælg et ord i en blok og overskriv det med den nye værdi. Medens De har valgt ordet, står klartext-dialog til rådighed.
- Äfslutte ændring og indlagre den: Tryk taste END
- ▶ Fortryde ændring: Tryk taste DEL

Hvis de vil indføje et ord, tryk på pil-tasten (til højre eller venstre), indtil den ønskede dialog vises og indlæs den ønskede værdi.

Visning af blok

Hvis en blok er så lang, at TNC´en ikke mere kan vise den i en programlinie – f.eks. ved bearbejdningscykler –, bliver blokken markeret med ">>" ved kanten i højre side af billedskærmen.

Funktioner	Softkeys/taster
Sidevis bladning opad	SIDE Î
Sidevis bladning nedad	SIDE J
Spring til program-Start	
Spring til program-Slut	
Spring fra blok til blok	
Vælg enkelte ord i en blok	
Søg vilkårlig tegnfølge	FIND

Slette blokke og ord	Taste
Sæt værdien af et valgt ord på nul	CE
Slet forkerte værdier	CE
Slet fejlmelding (ikke blinkende)	CE
Slet det valgte ord	NO ENT
l en blok: Genfremstil sidste indlagrede tilstand	
Slet den valgte blok (cyklus)	DEL
Sletning af programdele: Vælg den sidste blok i programdelen der skal slettes og slet med tasten DEL	DEL

4.4 Progra<mark>mmi</mark>erings-grafik

4.4 Programmerings-grafik

Medens De fremstiller et program, kan TNC'en vise programmerede konturer med en grafik. Bevægelser i retning af den negativ spindelakse fremstiller TNC'en med med en cirkel(cirkel-diameter = værktøjs-diameter).

Aktivering af programmerings-grafik

▶ For at skifte til en billedskærm-opdeling program til venstre og grafik til høire: Tryk taste SPLIT SCREEN og softkey PROGRAM + **GRAFIK**

Sæt softkey AUTO. DRAW på INDE. medens De indlæser programlinier, viser TNC'en hver programmeret banebevægelse i grafik-vinduet til højre.

Hvis De ikke vil køre med grafk, sætter De softkey AUTOM TEGN på UDE. AUTOM. TEGN INDE tegner ingen programdel-gentagelser med

Fremstilling af programmerings-grafik for et bestående program

▶ Vælg med pil-tasten den blok, til hvilken De vil have fremstillet grafisk eller tryk GOTO og indlæs det ønskede blok-nummer direkte

Fremstilling af grafik: Tryk softkey RESET + START RESET START

For yderligere funktioner se tabellen til højre.

Sletning af grafik

Skift softkey-liste: Se billedet til højre

FJERN GRAFIK

 \triangleright

▶ Sletning af grafik: Tryk softkey SLET GRAFIK

1 BLK FORM 0.1 Z X-20 Y-20 Z-20 2 BLK FORM 0.2 X+20 Y+20 Z+0 3 TOOL DEF 1 L+0 R+6 4 TOOL DEF 2 L+0 R+4 5 TOOL CHL1 1 Z 51000 6 L Z+50 R0 FMAX M3 7 L X+50 Y+50 R0 FMAX M8 8 L Z+5 R0 FMAX M1 9 CC X+0 Y+0 10 LP PR+14 PH+45 RR F500 11 KND R1 11 KND R1			_)€
KALK. X +150.000 Y -25.000 Z +250.000	T FØ S	 M5/	9
	<u> </u>	ENKEL	RESET

Funktioner f. programmerings-grafik	Softkey
Fremst. af programmerings-grafik blokvis	ENKEL START
Fremstilling af komplet programmerings- grafik eller komplettere efter RESET + START	START
Standse programmerings-grafik. Denne softkey vises kun, medens TNC'en fremstil. en programmerings-grafik	STOP

Udsnitsforstørrelse eller -formindskelse

De kan selv fastlægge billedet for en grafik. Med en ramme vælger De udsnittet for forstørrelsen eller formindskelsen.

Vælg softkey-liste for en udsnits-forstørrelse/formindskelse (anden liste, se billedet til højre) Hermed står følgende funktioner til rådighed:

Funktion	Softkey
Formindske rammen – for formindskelse hold softkey trykket	< <
Forstørre rammen – for forstørrelse hold softkey	>>
Forskyde ramme	+ + + -

0 BEGIN PGM 3507 MM 1 BLK FORM 0.1 Z X-20 Y-20 Z-20 2 BLK FORM 0.2 X+20 Y+20 Z+0 3 TOOL DEF 1 L+0 R+6 4 TOOL DEF 2 L+0 R+4 5 TOOL CALL 1 Z 51000 C L Z-250 G YUN Y2				
C L 2-50 Y-50 R0 FMAK M9 8 L 2-5 R0 FMAX M1 9 CC X+0 Y+0 10 LP PR:14 PA+45 RR F500 11 RND R1				
KALK. X +150.000 Y -25.000 Z +250.000	T F Ø S		M5/	9
	>>	< <	EMNE SOM BLOKFORM	WINDOW DETAIL

Med softkey RÅEMNE UDSNIT. overfør det udvalgte område

Med softkey RÅEMNE SOM BLK FORM stiller De tilbage til det oprindelige udsnit.

4.5 Indføj kommentarer

For at kunne belyse programskridt eller give anvisninger kan De indføje kommentar-blokke:

- ▶ Vælg blokken, efter hvilken De vil indføje kommentaren
- Åben programmerings-dialogen med tasten ";" (semikolon) på alpha-tastaturet
- ▶ Indlæs kommentar og afslut blokken med tasten END

PROGRAM-INDLÆSNING Kommentar ?	
0 BEGIN PGM 3507 MM 1 BLK FORM 0.1 Z > 2 BLK FORM 0.2 X+2 *3	1 (-20 Y-20 Z-20 20 Y+20 Z+0
SCHRUPP-WERKZEL 3 TOOL DEF 1 L+0 R+ 4 TOOL DEF 2 L+0 R+ 5 TOOL CALL 1 Z S10 6 Z+50 R0 FMAX N 7 L X+50 Y+50 R0 8 Z-5 R0 FMAX M 9 CC X+0 Y+0	JG +6 +4 900 13 FMAX M8 L
KRLK. X +150.000 Y -25.000 Z +250.000	Т F Ø S M5/9

4.6 Hjælpe-funktion

I hjælpe-funktionen i TNC'en er nogle programmerings-funktioner sammenfattet. Med softkey udvælger De et tema, til hvilket De så får yderligere informationer.

Valg af hjælpe-funktion

HELP

▶ Tryk tasten HJÆLP

▶ Vælg tema: Tryk på en af de tilbudte softkeys

Hjælpe-tema / funktion	Softkey
DIN/ISO-programmering: G-funktioner	G
DIN/ISO-programmering: D-funktioner	D
DIN/ISO-programmering: M-funktioner	М
DIN/ISO-programmering: Adresse-bogstaver	ADDER BOGSTAV
Cyklus-parameter	Q
Hjælp, de som bliver indlæst af maskinfabrikanten (optional, kan ikke udføres)	PLC
Vælg næste side	SIDE []
Vælg forrige side	SIDE Û
Vælg fil-start	
Vælg fil-ende	SLUT I
Vælg søgefunktion; Indlæs tekst, Start søge med tasten ENT	FIND

PROGR	AM-IN	IDLÆSN	IING			
G	D	М	ADDER BOGSTAV	Q	PLC	SLUT

PROGRAM-INDLÆSNING

			0/0					
	Hjæ:	lpetekster	f. M-funk	tioner				
M00 -	Prog	aram-stop,	Spindel-s	top, Kølem	iddel-ud			
M01 -	Bet:	inget stop						
MØ2 -	Prog	∦ram-slut,	tilbagesp	ring til b	lok 1			
MØ3 -	Spir	ndel-inde h	n≠jreoml≉b					
M04 -	Spir	ndel-inde v	/enstreoml/	۶b				
M05 -	Spir	ndel-stop						
M06 -	Værk	∶t≠jsvæksle	er					
M08 -	K≉1∈	emiddel ind	de					
MØ9 -	K≉1€	emiddel ude	9					
M13 -	Spir	ndel-inde H	n≠jreoml≉b.	, k≠lemidde	el-inde			
M14 -	Spir	ndel-inde,	venstreom	l≠b, k≠lem	iddel inde			
M30 -	Prog	aram-slut,	tilbagespi	ring til b	lok 1			
M89 -	Cyk:	lus-kald, r	nodal aktiv	/				
M90 -	Bløc	it hj≉rne						
M91 -	Prog	grammerede	koordinate	er henf≢rei	r sig			
	<u>t 11</u>	maskin-nu	lpunktet					
M92 -	Programmerede koordinater henfører sig							
	til en defineret position							
M93 -	- I positionsvisning: Koordinaten henfører sig							
	111	den aktue	IIE Værktø.	sposition				
M94 -	Disk	olay at dre	ejeakse ku	n værdier (under 360°			
M97 -	Bear	pelaning s	∋I S≋a Kon	turtrin				
M98 -	Rad	uskorrekt	ion opnæves	5 SKridtvis	5			
M99 -	CYK.	lus-kald,	(FINVIS VI)	rksom				
101	M101 – Automatisk værktøjsveksler med søsterværktøj, når							
	illa>	. Standti	J					
STD)F	SIDE		BEGYND	SLUT			
	-	П		~	П		E TND	CI IIT
1 1		Û		11	U Ü		1 1100	3201
L								

Afslut Hjælp-funktion

Tryk softkey ENDE to gange.

Programmering: Værktøjer

5.1 Værktøjshenførte indlæsninger

Tilspænding F

Tilspændingen F er hastigheden i mm/min (tommer/min), som værktøjsmidtpunktet bevæger sig i sin bane. Den maximale tilspænding kan være forskellig for hver maskinakse og er fastlagt med en maskin-parameter.

Indlæsning

Tilspændingen kan De indlæse i enhver positioneringsblok. Se "6.2 grundlaget for banefunktioner".

llgang

For ilgang indlæser De F MAX . For indlæsning af F MAX trykker De på dialogspørgsmålet "tilspænding F = ?" tasten ENT eller softkey FMAX.

Varighed af virkning

Den med en talværdi programmeret tilspænding gælder indtil den blok, i hvilken en ny tilspænding bliver programmeret. F MAX gælder kun for den blok, i hvilken den blev programmeret. Efter blokken med F MAX gælder igen den sidst med en talværdi programmeret tilspænding.

Ændring under programafviklingen

Under programafviklingen ændrer De tilspændingen med overridedrejeknappen F for tilspænding.

Spindelomdrejningstal S

Spindelomdrejningstallet S indlæser De i omdrejninger pr. minut (omdr./min) i en TOOL CALL-blok (Værktøjs-kald).

Programmeret ændring

TOOL CALL

I et bearbejdnings-program kan De ændre spindelomdrejningstallet med en TOOL CALL-blok, idet De udelukkende indlæser det nye spindelomdrejningstal:

- Programmering af værktøjs-kald: Tryk taste TOOL CALL
 - Dialog "værktøjs nummer ?" forbigå med tasten NO ENT
 - Dialog "spindelakse parallel X/Y/Z ?" forbigå med tasten NO ENT
 - I dialog "spindelomdrejningstal S= ?" indlæs nyt spindelomdrejningstal, overfør med tasten END

Ændring under programafviklingen

Under programafviklingen ændrer De spindelomdrejningstallet med override-drejeknappen S.

5.2 Værktøjs-data

5.2 Værktøjs-data

Normalt programmerer De koordinaterne til banebevægelserne således, som emnet er målsat i tegningen. For at TNC'en kan beregne banen for værktøjs-midtpunktet, altså gennem- føre en værktøjs-korrektur, skal De indlæse længde og radius for hvert værktøj der skal benyttes.

Værktøjs-data kan De indlæse enten med funktionen TOOL direkte i programmet eller (og) separat i værktøjs-tabellen. Hvis De indlæser værktøjs-data i tabellen, står flere værktøjsspecifikke informationer til rådighed. TNC'en tager hensyn til alle indlæste informationer, når bearbejdnings-programmet afvikles.

Værktøjs-nummer

Hvert værktøj er kendetegnet med et nummer mellem 0 og 254.

Værktøjet med nummeret 0 er fastlagt som nul-værktøj og har længden L=0 og radius R=0. I værktøjs-tabellen skal De ligeledes definere værktøjet T0 med L=0 og R=0.

Værktøjs-længde L

Værktøjs-længden L kan De bestemme på to måder:

1 Længden L er forskellen på værktøjets længde og længden af et nul-værktøj $L_{0}. \label{eq:lambda}$

Fortegn:

Værktøjet er læ	engere end nul-værktøjet:	L>L ₀
Værktøjet er ko	ortere end nul-værktøjet:	L <l<sub>0</l<sub>

Bestemmelse af længde:

- ▶ Kør nul-værktøjet til henføringspositionen i værktøjsaksen (f.eks. emne-overfladen med Z=0)
- Visning af værktøjsaksen sættes på nul (henføringspunkt fastlæggelse)
- ▶ Indskift næste værktøj
- Kør værktøjet på samme henførings-position som nul-værktøjet
- Displayet for værktøjsaksen viser længdeforskellen fra værktøjet til nul-værktøjet
- Overfør værdien med tasten "Overfør Akt.-position" i TOOL DEFblokken hhv. i værktøjs-tabellen
- 2 Hvis De bestemmer længden L med et forindstillings-udstyr, så indlæser De den registrerede værdi direkte i værktøjs-definiton TOOL DEF hhv. i værktøjs-tabellen.

Værktøjs-radius R

Værktøjs-radius R indlæser De direkte.

Delta-værdier for længde og radier

Delta-værdier betegner afvigelser fra længden og radius på værktøjer.

En positiv delta-værdi står for en sletspån (DR>0). Ved en bearbejdning med sletspån indlæser De værdien for sletspånen ved programmering af værktøjs-kald med TOOL CALL.

En negativ delta-værdi betyder et undermål (DR<0). Et undermål bliver indført i værktøjs-tabellen for slitagen af et værktøj.

Delta-værdier indlæser De som talværdier, i en TOOL CALL-blok kan De også overføre værdien med en Q-parameter.

Indlæseområde: Delta-værdier må maximalt være ± 99,999 mm.

Indlæsning af værktøjs-data i et program

Nummer, længde og radius for et bestemt værktøj fastlægger De i bearbejdnings-programmet een gang i en TOOL DEF-blok:

- ▶ Vælg værktøjs-definition: Tryk tasten TOOL DEF
 - Indlæs værktøjs-nummer: Med værktøjs-nummeret kendetegner De entydigt et værktøj.
 - Indlæs værktøjs-længde: Korrekturværdi for længden
 - Indlæs værktøjs-radius: Korrekturværdi for værktøjsradius
- Under dialogen kan De overføre værdierne for længde og radius med softkeys "ACT.POS. X, ACT.POS. Y eller ACT.POS. Z" direkte fra positions-displayet.

Når De benytter den sorte taste for Akt.-positionsoverføring, så overtager TNC'en som værktøjs-længde værdien for den aktive værktøjs-akse. Er ingen værktøjsakse aktiv, så overtager TNC'en værdien for aksen, som er fastlagt i kalibreringsmenuen for tastfunktionen som tastsystemakse.

Eksempel på NC-blok

TOOL DEF

4 TOOL DEF 5 L+10 R+5

Indlæsning af værktøjs-data i tabel

Værktøjs-tabel: Muligheder for indlæsning

l en værktøjs-tabel kan De definere indtil 254 værktøjer og lagre deres værktøjs-data. (antallet af værktøjer kan De begrænse med maskinparameter 7260). Vær opmærksom også på editeringsfunktionen længere fremme i dette kapitel.

De skal anvende værktøjs-tabellen, når

- Deres maskine er udrustet med en automatisk værktøjs-veksler
- De med TT 120 automatisk vil opmåle værktøjer, se "5.4 Værktøjs-opmåling"

Fork.	Indlæsning	Dialog
Т	Nummeret, som værktøjet bliver kaldt med i programmet	_
NAVN	Nummeret, som værktøjet bliver kaldt med i programmet	Værktøjs-navn?
L	Korrekturværdi for værktøjs-længde	Værktøjs-længde?
R	Korrekturværdi for værktøjs-radius R	Værktøjs-radius?
DL	Delta-værdi værktøjs-længde	Sletspån værktøjs-længde?
DR	Delta-værdi værktøjs-radius R	Sletspån værktøjs-radius?
TL	Værktøjs-spærre fastlæggelse (TL: for Tool Locked = engl. værktøj spærret)	VRKT. spærret?
RT	Nummer på et tvilling-værktøj – hvis det findes – som erstatnings-værktøj (RT : for R eplacement T ool = engl. Erstatnings-værktøj); se også TIME2	Tvilling-værktøj?
TIME1	Maximal brugstid for værktøj i minutter. Denne funktion er maskinafhængig og er beskrevet i maskinhåndbogen	Maximal brugstid?
TIME2	Maximal brugstid for værktøjer ved et TOOL CALL i minutter: Når eller overskrides den aktuelle brugstid denne værdi, så indsætter TNC´en ved næste TOOL CALL tvilling-værktøjet (se også CUR.TIME)	Max. brugstid ved TOOL CALL?
CUR.TIME	Aktuel brugstid for værktøjet i minutter: TNC'en tæller den aktuelle brugstid (CUR.TIME : for CUR rent TIME = engl. aktuel/løbende tid). For brugte værktøjer kan De indlæse en startværdi	Aktuel brugstid?
DOC	Kommentarer til værktøj (maximal 16 karakterer)	Værktøjs-kommentar?
PLC	Information om dette værktøj, som skal overføres til PLC'en	PLC-status?

Værktøjs-tabel: Nødvendige værktøjs-data ved automatisk værktøjs-opmåling

Fork.	Indlæsning	Dialog
CUT.	Antal værktøjs-skær (max. 20 skær)	Antal skær?
LTOL	Tilladelig afvigelse af værktøjs-længde L for slitage-registrering. Bliver den indlæste værdi overskredet, spærrer TNC'en for værktøjet (Status L). Indlæseområde: 0 til 0,9999 mm	Slitage-tolerance: Længde?
RTOL	Tilladelig afvigelse fra værktøjs-radius R for slitage-registrering. Bliver den indlæste værdi overskredet, spærrer TNC'en for værktøjet (Status L). Indlæseområde: 0 til 0,9999 mm	Slitage-tolerance: Radius?
DIRECT.	Skær-retning af værktøjet ved opmåling med roterende værktøj	Skær-retning (M3 = –)?
TT:L-OFFS	Længdeopmåling: Forskydning af værktøjet mellem Stylus-midte og værktøjs-midte. Forindstilling: R = Værktøjs-radius R	Værktøjs-forskydning: Radius?
TT:R-OFFS	Radiusopmåling: Yderligere forskydning af værktøjet mod MP6530 (Se "15.1 Generelle bruger-parametre") mellem stift-overkant og værktøjs-underkant. Forindstilling: 0	Værktøjs-forskydning: Længde?
LBREAK	Tilladelig afvigelse af værktøjs-længde L for brud-registrering. Bliver den indlæste værdi overskredet, spærrer TNC'en værktøjet (status L). Indlæseområde: 0 til 0,9999 mm	Brud-tolerance: Længde?
RBREAK	Tilladelig afvigelse af værktøjs-radius R for brud- konstatering. Bliver den indlæste værdi overskredet, spærrer TNC'en værktøjet (status L). Indlæseområde: 0 til 0,9999 mm	Brud-tolerance: Radius?

5.2 Værktøjs-data

Editering af værktøjs-tabeller

Den for programafviklingen gyldige værktøjs-tabel har fil-navnet TOOL.T. TOOL.T er automatisk aktiv i en programafviklings-driftsart. In der Betriebsart Programm Einspeichern/Editieren können Sie auch Werkzeug-Tabellen mit anderen Dateinamen verwalten.

Åbning af værktøjs-tabel TOOL.T :

▶ Vælg en vilkårlig maskin-driftsart

▶ Vælg værktøjs-tabel: Tryk softkey VÆRKTØJS TABEL

ER ►Sæt softkey EDITERING på "INDE"

Åbning af vilkårlig anden værktøjs-tabel:

▶ Vælg driftsart program-indlagring/editering

► Kald af fil-styring

De vælger en forhåndenværende fil med endelsen .T og trykker på softkey KOPIERING. Indlæs et nyt filnavn og overfør med tasten ENT

Når De har åbnet en værktøjs-tabel for editering, så kan De flytte det lyse felt i tabellen med piltasten til enhver ønsket position(se billedet for oven til højre). På en vilkårlig position kan De overskrive indlagrede værdier eller indlæse nye værdier. Yderligere editeringsfunktioner kan De se i tabellen ved siden af.

Hvis TNC'en ikke samtidig kan vise alle positioner i værktøjstabellen, viser bjælkerne foroven i tabellen symbolet ">>" hhv. "<<".

Forlade værktøjs-tabellen:

- Afslutte editering af værktøjs-tabel: Tryk softkey slut eller tasten END
- ▶ Kald fil-styring og vælg en fil af en anden type, F.eks. et bearbejdnings-program

Hvis De parallelt med et automatisk værktøjs-veksel editerer værktøjs-tabellen, afbryder TNC'en ikke programafviklingen. Ændrede data overtager TNC'en dog først ved næste værktøjs-kald.

Med bruger-parameter MP7266 fastlægger De, hvilke oplysninger der kan indføres i en værktøjs-tabel og i og hvilken rækkefølge de skal stå opført.

Editeringsfunktioner for Værkttabeller	Softkey
Vælg forrige tabel-side	SIDE ℃
Vælg næste tabel-side	SIDE J
Forskyd det lyse felt mod venstre	ORD Ţ
Forskyd det lyse felt mod højre	
Værktøj spærret i spalte TL	JA
Værktøj ikke spærret i spalte TL	NEJ
Overfør Aktposition, f.eks. for Z-akse	AKT.POS. Z
Overfør indlæste værdi, Vælg næste spalte i tabellen. Hvis det lyse felt står ved enden af en linie, så spring til første spalte i den næste linie	ent
Slette forkerte talværdier, genfrem- stilling af forindstillede værdier	CE
Genfremstilling af sidst indlagrede værdi	

Plads-tabel for værktøjs-veksler

For den automatiske værktøjs-veksler programmerer De i en maskin-driftsart tabellen TOOLP.TCH (**TOOL P**ocket eng. værktøjsplads).

Vælg plads-tabel

▶ I driftsart program-indlagring/editering

- ► Kald af fil-styring
- Forskyd det lyse felt til TOOLP.TCH. Overfør med tasten ENT

I en maskin-driftsart

VÆRKTØJS TABEL	Vælg værktøjs-tabel: Tryk softkey VÆRKTØJS TABEL
PLADS TABEL	Vælg plads-tabel: Tryk softkey PLADS TABEL
REDIGERER OFF / ON	▶ Sæt softkey EDITERING på INDE

Når De har åbnet en værktøjs-tabel for editering, så kan De flytte det lyse felt i tabellen med piltasten til enhver ønsket position(se billedet for oven til højre). På en vilkårlig position kan De overskrive indlagrede værdier eller indlæse nye værdier.

Et værktøjs-nummer må De ikke anvende dobbelt i plads-tabellen. Evt.afgiver TNC´en en fejl, når De forlader plads-tabellen.

De kan indlæse følgende informationer om et værktøj i pladstabellen:

ΕC	EDITERE PLADSTABEL PROGRAM-					GRAM-			
FF	ЗSТ	ΡL	AD	S JA=	ENT/NI	E J = N O E	ENT	IND	LÆSNING
F	IL: TO	OL_P.	тсн						
Р	ĩ	ST	F	L PLC					
ø	Ø			%000000	90				
1				L %1					
2	2	S		%000000	00				
з				L %1					
4	4			%000000	90				
6	5		F	%000000	00				
6	6			%000000	90				
X		+	5,	1499*	γ.	+7,349	95 + Z	+0	,7252
+ B		+	8.	0121+	r	+8.850	28	-	
1.2			• /		•	0,000			
AK.	r.			т			F 962		M 5⁄9
BE		SL	.ut]	SIDE Û	SIDE Ĵ	RESET PLADS TABEL	REDIGERER OFF / ON	NÆSTE LINIE	VÆRK TØJS TABEL

Editeringsfunktioner for pladstabeller	Softkey
Vælg forrige tabel-side	SIDE Î
Vælg næste tabel-side	SIDE J
Forskyd det lyse felt en spalte til venstre	ORD (IIII)
Forskyd det lyse felt en spalte til højre	ORD
Tilbagestil plads-tabel	SIDE I

Fork.	Indlæsning	Dialog
Р	Plads-nummer for værktøjet i værktøjs-magasinet	-
Т	Værktøjs-nummer	Værktøjsnummer?
ST	Værktøjet er et specialværktøj (ST : står for S pecial T ool = eng. Specialværktøj); Når specialværktøjet blokerer for pladser før og efter sin plads, så spærrer De den til- svarende plads (Status L)	Specialværktøj?
F	Værktøjet skiftes altid tilbage til samme plads i magasinet (F : for F ixed = engl. fastlagt)	Fast plads?
L	Spærre plads (L: for Locked = eng. spærret)	Plads spærret?
PLC	Information, om denne værktøjs-plads som skal overføres til PLC´en	PLC-status?

Kald af værktøjs-data

Et værktøjs-kald TOOL CALL i et bearbejdnings-program programmerer De med følgende oplysninger:

- ▶ Vælg værktøjs-kald med tasten TOOL CALL
- Værktøjs-nummer: Indlæs nummeret på værktøjet. Værktøjet har De først fastlagt i en TOOL DEF-blok eller i værktøjs-tabellen.
- Sindelakse parallel X/Y/Z: Indlæs værktøjsakse Parallelakserne U, V og W er tilladt
- ▶ Spindelomdrejningstal S
- Sletspån værktøjs-længde: Delta-værdi for værktøjslængden
- Sletspån værktøjs-radius: Delta-værdi for værktøjsradius

Eksempel på et værktøjs-kald

Kaldt bliver værktøj nummer 5 i værktøjsaksen Z med spindelomdrejningstal 2500 U/min. Sletspånen for værktøjs-længden er 0,2 mm, under målet for værktøjs-radius 1 mm.

20 TOOL CALL 5 Z S2500 DL+0,2 DR-1

"D" før "L" og "R" står for delta-værdi.

Forhåndsvalg ved værktøjs-tabeller

Når De indsætter værktøjs-tabellen, så træffer De et forhåndsvalg med en TOOL DEF-blok for det næste værktøj der skal indsættes. Hertil indlæser De værktøjs-nummeret hhv. en Q-parameter og afslutter så dialogen med tasten END.

Værktøjsveksel

Værktøjsveksling er en maskinafhængig funktion. Vær opmærksom på maskinhåndbogen!

Værktøjsveksler-position

Man skal kunne køre til værktøjsveksler-positionen uden kollisionsfare. Med hjælpefunktionerne M91 og M92 kan De indlæse en maskinfast vekselposition. Hvis De før det første værktøjs-kald programmerer TOOL CALL 0, så kører TNC en opspændingshovedet i spindelaksen til en position, som er uafhængig af værktøjs-længden.

Manuel værktøjsveksling

Før et manuelt værktøjsskift bliver spindelen stoppet og værktøjet kørt til værktøjsskiftpositionen:

- Programmeret kørsel til værktøjsskift-position
- Afbryde programafviklingen, se "11.3 programafvikling"
- Skift værktøj
- Fortsæt programafvikling, se "11.3 Programafvikling"

Automatisk værktøjsveksel

Ved automatisk værktøjsveksel bliver programafviklingen ikke afbrudt. Ved et værktøjs-kald med TOOL CALL skifter TNC en værktøjet fra værktøjsmagasinet.

Automatisk værktøjsveksling ved overskridelse af brugstiden: M101

M101 er en maskinafhængig funktion. Vær opmærksom på maskinhåndbogen!

Når brugstiden for et værktøj TIME1 er nået, udskifter TNC´en automatisk med et tvilling-værktøj. Herfor aktivierer De ved program-start hjælpefunktionen M101. Virkningen af M101 kan De ophæve med M102.

Den automatiske værktøjsveksling sker ikke altid umiddelbart efter udløbet af brugstiden, måske nogle program-blokke senere, alt efter styringens belastning.

Forudsætninger for standard-NC-blokke med radiuskorrektur R0, RR, RL

Radius af tvilling-værktøjet skal være lig med radius for det oprindeligt indsatte værktøj. Er radierne ikke ens, viser TNC'en en meldetekst og omskifter ikke værktøjet.

5.3 Værktøjs-korrektur

TNC'en korrigerer værktøjsbanen med korrekturværdien for værktøjs-længden i spindelaksen og med værktøjs-radius i bearbejdnings-planet.

Hvis De vil fremstille et bearbejdnings-program direkte på TNC'en, er værktøjs-radiuskorrekturen kun virksom i bearbejdningsplanet. TNC'en tager herved hensyn indtil fire akser incl.

Værktøjs-Længdekorrektur

Værktøjs-korrekturen for længden virker, så snart De kalder et værktøj og køre det i spindelaksen. Den bliver ophævet, så snart et værktøj med længden L=0 bliver kaldt.

 Hvis De ophæver en længdekorrektur med positiv værdi med TOOL CALL 0, formindsker afstanden sig fra værktøj til emne ved positionering af værktøjsakse.

Efter et værktøjs-kald TOOL CALL ændrer den programmerede vej sig for værktøjet i spindelaksen med længde-forskellen mellem det gamle og det nye værktøj.

Ved længdekorrekturen bliver der taget hensyn til delta-værdier såvel fra TOOL CALL-blokken som også fra værktójstabellen.

 $Korrekturværdi = L + DL_{TOOL CALL} + DL_{TAB} med$

L	Værktøjs-længde L fra TOOL DEF-blok eller værktøjs- tabel
DL _{TOOL CALL}	Sletspån DL for længde fra TOOL CALL-blok (der tages ikke hensyn ved positionsvisning)
DL _{TAB}	Sletspån DL for længde fra værktøjs-tabel

Værktøjs-radiuskorrektur

Program-blokken for en værktøjs-bevægelse indeholder

- RL eller RR for en radiuskorrektur
- R+ eller R-, for en radiuskorrektur ved en akseparallel kørselsbevægelse
- R0, hvis ingen radiuskorrektur skal udføres

Radiuskorrekturen virker, så snart et værktøj kaldes og bliver kørt i bearbejdningsplanet med RL eller RR. De bliver ophævet, når en positioneringsblok bliver programmeret med R0.

Ved radiuskorrekturen bliver der taget hensyn til delta-værdier såvel fra TOOL CALL-blokken som også fra værktøjs-tabellen:

Korrekturværdi = $R + DR_{TOOL CALL} + DR_{TAB}$ med

- R Værktøjs-radius R fra TOOL DEF-Sats eller værktøjstabel
- DR_{TOOL CALL} Sletspån DR for radius fra TOOL CALL-blok (der tages ikke hensyn ved positionsvisning)
- DR_{TAB} Sletspån DR for radius fra værktøjs-tabel

Banebevægelser uden radiuskorrektur: R0

Værktøjet kører i bearbejdningsplanet med sit midtpunkt på den programmerede bane, hhv. til de programmerede koordinater.

Anvendelse: Boring, forpositionering Se billedet til højre i midten.

Banebevægelser med radiuskorrektur: RR og RL

RR Værktøjet kører til højre for konturen set i kørselsretning

RL Værktøjet kører til venstre for konturen set i kørselsretning

Værktøjs-midtpunktet har derved afstanden af værktøjs-radius fra den programmerede kontur. "Højre" og "venstre" betegner beliggenheden af værktøjet i kørselsretningen langs emne-konturen. Se billederne på den næste side.

Mellem to program-blokke med forskellig radiuskorrektur RR og RL må der stå mindst en blok uden radiuskorrektur med R0.

En radiuskorrektur bliver aktiv til slut i blokken, i den den første gang blev programmeret.

De kan også aktivere radiuskorrekturen for hjælpeakser i bearbejdningsplanet. De skal også programmere hjælpeaksen i enhver efterfølgende blok, da TNC´en ellers gennemfører radiuskorrekturen igen i hovedaksen.

Ved første blok med radiuskorrektur RR/RL og ved ophævelse med R0 positionerer TNC en altid værktøjet vinkelret på det programmerede start- eller slutpunkt. Vær opmærksom på at værktøjet skal positioneres til hjælpepunkter før start og efter afslutning af konturer. Disse punkter skal vælges så konturen ikke beskadiges.

Indlæsning af radiuskorrektur Ved programmering af en banebevægelse vises efter at De har indlæst koordinaterne følgende spørgsmål:

Radiuskorr.:	RL/RR/ingen korr. ?
RL	Værktøjsbevægelse til venstre for den programmerede kontur: Tryk softkey RL eller
RR	Værktøjsbevægelse til højre for den programmerede kontur: Tryk softkey RR eller
ENT	Værktøjsbevægelse uden radiuskorrektur hhv. ophævelse af radiuskorrektur: Tryk tasten ENT eller tryk softkey R0
	Afslut dialog: Tryk tasten END

5.3 Værktøjs-korrektur

Radiuskorrektur: Hjørne bearbejdning

Udvendige hjørner

Når De har programmeret en radiuskorrektur, så fører TNC en værktøjet til det udvendige hjørne på en overgangsbue og ruller værktøjet om hjørnepunktet. Om nødvendigt, reducerer TNC en tilspændingen ved det udvendige hjørne, for eksempel ved store retningsskift.

Indvendige hjørner

På indvendige hjørner udregner TNC'en skæringspunktet af banen, på hvilken værktøjs-midtpunktet skal køre korrigeret. fra dette punkt kører værktøjet langs med konturelementet. Herved bliver emnet ikke beskadiget ved det indvendige hjørne. Heraf giver det sig, at værktøjs-radius for en bestemt kontur ikke må vælges vilkårligt stor.

Læg ikke start- eller endepunktet ved en indvendig bearbejdning på et kontur-hjørnepunkt, da konturen ellers kan blive beskadiget.

Bearbejdning af hjørner uden radiuskorrektur

Uden radiuskorrektur kan De påvirke værktøjsbane og tilspænding på et emne-hjørne med hjælpefunktionerne M90 og M112. Se "7.4 Hjælpefunktioner for baneforhold".

5.4 Værktøjs-opmåling med TT 120

Maskinen og TNC´en skal af maskinfabrikanten være forberedt for tastsystemet TT 120.

Evt.. står alle de her beskrevne cykler og funktioner ikke til rådighed på Deres maskine. Vær opmærksom på Deres maskinhåndbog.

Med TT 120 og værktøjs-opmålingscykler i TNC'en opmåler De automatisk værktøjer: Korrekturværdier for længde og radius bliver af TNC'en lagt i det centrale værktøjslager TOOL.T og ved næste værktøjs-kald omregnet. Følgende opmålingsarter står til rådighed:

- Værktøjs-opmåling med stillestående værktøj
- Værktøjs-opmåling med roterende værktøj
- Enkeltskær-opmåling

Cykler for værktøjs-opmåling programmerer De i driftsart PRO-GRAM-INDLAGRING/EDITERING. Følgende cykler står til rådighed:

- TCH PROBE 30.0 TT KALIBRERING
- TCH PROBE 31.0 VÆRKTØJS–LÆNGDE
- TCH PROBE 32.0VÆRKTØJS-RADIUS
 - Opmålingscyklerne arbejder kun med aktiv central værktøjslager TOOL.T

Før De arbejder med opmålingscyklerne, skal De indføre alle de nødvendige data for opmålingen i det centrale værktøjslager og have kaldt værktøjet der skal op-måles med TOOL CALL.

Indstilling af maskin-parameter

 TNC'en bruger tast-tilspændingen fra MP6520 for opmåling med stående spindel.

Ved opmåling med roterende værktøj beregner TNC'en automatisk spindelomdrejningstal og tast-tilspændingen.

Spindelomdrejningstallet beregnes som følger:

 $\begin{array}{ll} n = \frac{MP6570}{r \bullet 0,0063} \\ \mbox{hvor:} & & \\ n & = \mbox{omdr.tal [omdr./min]} \\ MP6570 & = \mbox{maximal tilladelig pereferihastighed [m/min]} \\ r & = \mbox{aktiv værktøjs-radius [mm]} \end{array}$

Tast-tilspænding beregnes ud fra:

v = Måletolerance • n med

V	= Tast-tilspænding [mm/min]
Måletolerance	= Måletolerance [mm], afhængig af MP6507
n	= Omdr.tal [1/min]

Med MP6507 indstiller De beregningen af tast-tilspændingen:

MP6507=0:

Måletolerancen forbliver konstant – uafhængig af værktøjs-radius. Ved meget store værktøjer reduceres tast-tilspændingen dog til nul. Denne effekt gør sig bemærket jo tidligere, jo mindre De har valgt den maximale pereferihastighed (MP6570) og den tilladelige tolerance (MP6510).

MP6507=1:

Måletolerancen ændrer sig med tiltagende værktøjs-radius. Det sikrer en tilstrækkelig sikker tast-tilspænding ved store værktøjsradier. TNC'en ændrer måletolerancen efter følgende tabel:

Værktøjs-radius	Måletolerance
indtil 30 mm	MP6510
30 til 60 mm	2 • MP6510
60 til 90 mm	3 • MP6510
90 til 120 mm	4 • MP6510

MP6507=2:

Tast-tilspændingen forbliver konstant, målefejlen vokser dog lineært med større anvendt værktøjs-radius:

 $M a letolerance = \frac{r \bullet MP6510}{5 mm}$

hvor:

r	= Værktøjs-radius [mm]
MP6510	= Maximal tilladelig målefej

Visning af måleresultat

Med billedskærm-opdeling PGM + T PROBE STATUS kan De indblænde resultatet daf værktøjs-opmålingen i det yderligere status-display (i maskin-driftsarter). TNC'en viser så til venstre programmet og til højre måleresultatet. Måleværdier, som har overskredet de tilladelige slitagetolerancer, kendetegner TNC'en et "*"- måleværdier, der har overskredet de tilladelige brudtolerancer, med et "B".

Kalibrering af TT 120

Før De kalibrerer, skal De indføre den nøjagtige radius og den nøjagtige længde af kalibrerings-værktøjet i værktøjstabellen TOOL.T.

I maskinparametrene 6580.0 til 6580.2 skal stedet for TT 120 fastlægges i maskinens arbejdsrum.

Hvis De skal ændre en maskin-parameter 6580.0 til 6580.2, skal De kalibrere påny.

TT 120 kalibrerer De med målecyklus TCH PROBE 30. Kalibrerings-forløbet sker automatisk. TNC'en fremskaffer også automatisk midt-offset for kalibreringsværktøjet. Herfor drejer TNC'en spindelen efter halvdelen af kalibrerings-cyklus med 180°. Som kalibrerings-værktøj anvender De en eksakt cylindrisk del, f.eks. en cylinderstift. De kalibrerede-værdier lagrer TNC'en og tager hensyn til dem ved efterfølgende værktøjs-opmålinger.

Programmering af kalibreringscyklus: I driftsart program indlagring/editering Tryk tasten TOUCH PROBE.

Vælg måle-cyklus 30 TT KALIBRERING: Tryk softkey TT KALIBR.

Sikker højde: Indlæs position i spindelakse, i hvilken en kollision med emne eller spændejern er udelukket. Den sikre højde henfører sig til det aktive emnehenføringspunkt. Hvis den sikre højde er indlæst så lille, at værktøjsspidsen ligger neden for skiveoverkanten, positionerer TNC'en kalibreringsværktøjet automatisk over skiven (sikkerhedszone fra MP6540)

PROGRAMLØB BLOKFØLGE

0	BEGIN PGM TT MM	VÆRKTØJ T
- 1 2 3 4 5 6 7 8 9	TCH PROBE 31.0 VAERKTOEJSLAENGDE TCH PROBE 31.1 AFPROEVE:1 TCH PROBE 31.1 AFPROEVE:1 TCH PROBE 31.3 MAALING AF SKAER:1 TCH PROBE 32.0 VAERKTOEJS-RADIUS TCH PROBE 32.1 AFPROEVE:1 TCH PROBE 32.2 HOEJDE:+250 TCH PROBE 32.3 MAALING AF SKAER:1 END PGM TT MM	Image: Minequark Minequark 2 +1.9664 MXX 3 +2.0035 Image: Minequark 3 +2.0035 Image: Minequark 3 +2.0035 Image: Minequark 3 +1.9986
KRLK. X +150.300 Y −24.725 Z +250.225		
		5 15/9

NC-blok eksempel

6	TOOL CALL	1 Z	
7	TCH PROBE	30.0	TT KALIBRERING
8	TCH PROBE	30.1	højde: +90

Opmåling af værktøjs-længde

Før De opmåler værktøjer for første gang,indfører De den omtrentlige radius, den omtrentlige længde, antallet af skær og skærretningen for de til enhver tid værende værktøjer i værktøjstabellen TOOL.T.

For opmåling af værktøjs-længden programmerer De måle-cyklus TCH PROBE 31 VRKTØJS-LÆNGDE. Med indlæse-parametre kan De bestemme værktøjs-længden på tre forskellige måder:

- Hvis værktøjs-diameteren er større end diameteren af målefladen på TT 120, så opmåler De med roterende værktøj (TT:R-OFFS = R fastlægges i TOOL.T)
- Hvis værktøjs-diameteren er mindre end diameteren på målefladen af TT 120 eller hvis De bestemmer længde af boret eller radiusfræseren, så opmåler De med stillestående værktøj (TT:R-OFFS = 0 fastlæg i TOOL.T)
- Hvis værktøjs-diameteren er større end diameteren på målefladen af TT 120, så gennemfører De en enkelt-skærsopmåling med stillestående væektøj.

Måleforløb "Opmåling med roterende værktøj"

For at finde det længste skær bliver værktøjet der skal måles forskudt (offset) i forhold til tastsystem-midtpunktet og med roterende måleflade kørt til TT 120. Forskydningen programmerer De i værktøjs-tabellen under værktøjs-forskydning: Radius (TT: R-OFFS; forindstillede værdi: R = værktøjs-radius).

Måleforløb "Opmåling med stillestående værktøj" (f.eks. for et bor)

Værktøjet der skal opmåles bliver kørt hen midt over målefladen. I tilslutning hertil kører det med stående spindel til målefladen på TT 120. For denne måling indfører De værktøjs-forskydning: Radius (TT: R-OFFS) i værktøjs-tabellen med "0"

Måleforløb "Enkelt-skær-opmåling"

TNC'en positionerer værktøjet der skal måles sideværts mod tasthovedet. Værktøjs-plan-fladen befinder sig herved nedenfor tasthoved-overkanten som fastlagt i MP6530. I værktøjs-tabellen kan De under værktøjs-forskydning: Længde (TT: L-OFFS) fastlægge en yderligere forskydning. TNC'en taster med roterende værktøj radialt, for at bestemme startvinklen for enkelt-skær-opmålingen. I tilslutning hertil opmåler den længden på alle skærene ved ændring af spindel-orienteringen. For denne måling programmerer De skæropmåling i CYKLUS TCH PROBE 31 = 1.
- Programmering af kalibreringscyklus: I driftsart program indlagring/editering Tryk tasten TOUCH PROBE.
- Måle-cyklus 31 TT VÆRKTØJS-LÆNGDE vælges: Tryk softkey VÆRKTØJS-LÆNGDE
- Værktøjs måling=0 / afprøve = 1: Fastlæg, om De opmåler værktøjet for første gang eller om det er et allerede opmålt værktøj der skal kontrolleres. Ved en første gangs opmåling overfører TNC'en værktøjslængden L i det centrale værktøjslager TOOL.T og sætter delta-værdien DL = 0.

Ifald De skal kontrollere et værktøj, bliver den opmålte længde sammenlignet med værktøjs-længden L fra TOOL.T. TNC'en beregner afvigelsen fortegnsrigtigt og indfører disse delta-værdier DL i TOOL.T. Yderligere står afvigelsen også til rådighed i Q-parameter Q115. Hvis delta-værdien er større end den tilladelige slitageeller brud-tolerance for værktøjs-længden, så spærrer TNC'en for værktøjet (status L i TOOL.T)

- Parameter-Nr. for resultat ?: Parameter-nummer, i hvilket TNC´en lagrer status for målingen:
 - 0.0: Værktøjet er indenfor tolerancen
 - 1.0: Værktøjet er slidt (LTOL overskredet)

2.0: Værktøjet er knækket (LBREAK overskredet) Hvis De ikke vil viderebearbejde måleresultatet indenfor programmet, så bekræft dialogspørgsmålet med tasten NO ENT

- Sikker højde: Indlæs position i spindelakse, i hvilken en kollision med emne eller spændejern er udelukket. Den sikre højde henfører sig til det aktive emnehenføringspunkt. Hvis den sikre højde er indlæst så lille, at værktøjsspidsen ligger neden for skiveoverkanten, positionerer TNC'en kalibreringsværktøjet automatisk over skiven (sikkerhedszone fra MP6540)
- Skæropmåling ? 0=NEJ / 1=Ja: Fastlæg, om en enkelt-skær-opmåling skal gennemføres

NC-Blok eksempel "Første opmåling med roterende værktøj, Status gemmes i Q1"

6	TOOL CALL	12 Z	
7	TCH PROBE	31.0 VÆRKTØJSLÆNGDE	
8	TCH PROBE	31.1 KONTROLLERE:0 Q1	
9	TCH PROBE	31.2 HØJDE: +120	
10	TCH PROB	E 31.3 SKÆROPMÅLING:0	

NC-Blok eksempel "Kontrol med enkelt-skæropmåling, status gemmes ikke"

6	T00L	. CALL	12 Z	
7	TCH	PROBE	31.0	VÆRKTØJSLÆNGDE
8	TCH	PROBE	31.1	KONTROLLERE:1
9	TCH	PROBE	31.2	HØJDE: +120
1() TCF	I PROBI	31.3	3 SKÆROPMÅLING:1

TOUCH PROBE

Opmåling af værktøjs-radius

Før De opmåler værktøjer for første gang,indfører De den omtrentlige radius, den omtrentlige længde, antallet af skær og skærretningen for de til enhver tid værende værktøjer i værktøjstabellen TOOL.T.

For opmåling af værktøjs-radius programmerer De måle-cyklus TCH PROBE 32 VRKTØJS-RADIUS. Med indlæse-parametre kan De bestemme værktøjs-radius på to måder:

- Opmåling med roterende værktøj
- Opmåling med roterende værktøj og og i tilslutning hertil en enkelt-skær-opmåling

Måleforløb

TNC'en positionerer værktøjet der skal måles sideværts mod tasthovedet. Fræserplan-fladen befinder sig herved nedenfor tasthoved-overkanten, som fastlagt i MP6530. TNC'en taster med roterende værktøj radialt. Ifald yderligere en enkelt-skær-opmåling skal gennemføres, bliver radierne til alle skærerne opmålt ved hjælp af spindel-orienteringen.

- Programmering af målecyklus: I driftsart program indlagring/editering Tryk tasten TOUCH PROBE.
- Måle-cyklus 32 TT VÆRKTØJS-RADIUS vælges: Tryk softkey VÆRKTØJS-RADIUS
- Værktøjs måling=0 / afprøve = 1: Fastlæg, om De opmåler værktøjet for første gang eller om det er et allerede opmålt værktøj der skal kontrolleres. Ved en første gangs opmåling overfører TNC en værktøjsradius R i det centrale værktøjslager TOOL.T og sætter delta-værdien DR = 0. Ifald De vil kontrollere et værktøj, bliver den opmålte radius sammenlignet med værktøjs-radius R fra TOOL.T. TNC en beregner afvigelsen fortegnsrigtigt og indfører denne som en deltaværdi DR i TOOL.T. Yderligere står afvigelsen også til rådighed i Q-parameter Q116. Hvis delta-værdien er større end den tilladelige slitage- eller brud-tolerance for værktøjs-radius, så spærrer TNC en for værktøjet (status L in TOOL.T)

NC-Blok eksempel "Første måling med roterende værktøj, status gemmes i Q1"

7	TOOL	CALL	12 Z	
8	TCH	PROBE	32.0	VÆRKTØJS-RADIUS
9	TCH	PROBE	32.1	KONTROLLERE:0 Q1
10) ТСН	PROBE	32.2	HØJDE:+120
11	ТСН	PRORE	32 3	

NC-Blok eksempel "Afprøve med enkelt-skæropmåling, status gemmes ikke"

7	TOOL	CALL	12 Z		
8	TCH	PROBE	32.0	VÆRKTØJS-RADIUS	
9	TCH	PROBE	32.1	KONTROLLERE:1	
10) TCH	PROBE	32.2	HØJDE: +120	
11	L TCH	PROBE	32.3	SKÆROPMÅLING:1	

- Parameter-Nr. for resultat ?: Parameter-nummer, i hvilket TNC'en lagrer status for målingen:
 - 0.0: Værktøjet er indenfor tolerancen
 - 1.0: Værktøjet er slidt op (RTOL overskredet)
 - 2.0: Værktøjet er knækket (RBREAK overskredet) Hvis De ikke vil viderebearbejde måleresultatet indenfor programmet, så bekræft dialogspørgsmålet med tasten NO ENT
- Sikker højde: Indlæs position i spindelakse, i hvilken en kollision med emne eller spændejern er udelukket. Den sikre højde henfører sig til det aktive emnehenføringspunkt. Hvis den sikre højde er indlæst så lille, at værktøjsspidsen ligger neden for skiveoverkanten, positionerer TNC'en kalibreringsværktøjet automatisk over skiven (sikkerhedszone fra MP6540)
- Skæropmåling 0=NEJ / 1=Ja: Fastlæg, om yderligere en enkeltskær-opmåling skal gennemføres eller ikke

Programmering: Kontur programmering

6.1 Oversigt: Værktøjs-bevægelser

Banefunktioner

En emne-kontur er sædvaneligvis sammensat af flere konturelementer som rette linier og cirkelbuer. Med banefunktionen programmerer De værktøjsbevægelser for **rette linier** og **cirkelbuer**.

Fri kontur-programmering FK

Hvis der ikke foreligger en NC-korrekt målsat tegning og målangivelserne for NC-programmet er ufuldstændige, så programmerer De emne-konturen med den fri konturprogrammering. TNC'en udregner de manglende oplysninger.

Også med FK-programmering programmerer De værktøjsbevægelser for **rette linier** og **cirkelbuer**.

Hjælpefunktioner M

Med hjælpefunktionerne i TNC'en styrer De

- Programafviklingen, f.eks. en afbrydelse af programafviklingen
- Maskinfunktioner, som ind- og udkobling af spindelomdrejning og kølemiddel
- Baneforholdene for værktøjet

Underprogrammer og programdel-gentagelser

Bearbejdninger, som gentager sig, indlæser De kun een gang i et underprogram eller programdel-gentagelse. Hvis en del af programmet kun skal udføres under bestemte betingelser, så lægges denne del ligeledes i et underprogram. Yderligere kan et bearbejdnings-program kalde et yderligere program og lade det udføre.

Programmering med underprogrammer og programdel-gentagelser er beskrevet i kapitel 9.

Programmering med Q-parametre

l et bearbejdnings-program står Q-parametre istedet for talværdier: En Q-parameter bliver med andre ord tilordnet en talværdi. Med Qparametre kan De programmere matematiske funktioner, som styrer programafviklingen eller beskriver en kontur.

Yderligere kan De ved hjælp af Q-parameter-programmering udføre målinger med 3D-tastsystemet under programafviklingen.

Programmeringen med Q-parametre er beskrevet i kapitel 10.

6.2 Grundlaget for banefunktioner

6.2 Grundlaget for banefunktioner

Programmering af værktøjsbevægelse for en bearbejdning

Når De skal fremstille et bearbejdnings-program, programmerer De banefunktionerne efter hinanden for De enkelte elementer af emnekonturen. Hertil indlæser De sædvanligvis **koordinaterne for endepunktet af konturelementet** fra måltegningen. Af disse koordinat-angivelser, udregner TNC'en den virkelige kørselsstrækning for værktøjet med hensyntagen til værktøjsdata og radiuskorrektur.

TNC'en kører samtidig alle maskinakserne, som De har programmeret i program-blokken for en banefunktion.

Bevægelser parallelt med maskinaksen

Program-blokken indeholder en koordinat-angivelse: TNC'en kører værktøjet parallelt med den programmerede maskinakse.

Alt efter konstruktionen af Deres maskine bevæges enten værktøjet eller maskinbordet med det opspændte emne. Ved programmering af banebevægelser handler De grundlæggende som om det er værktøjet der bevæger sig.

Eksempel:

L X+100

L Banefunktion "ret linie"

X+100 Koordinater til endepunktet

Værktøjet beholder Y- og Z-koordinaterne og kører til position X=100. Se billerdet til højre for oven.

Bevægelser i hovedplanet

Program-blokken indeholder to koordinat-angivelser: TNC'en kører værktøjet i det programmerede plan.

Eksempel:

L X+70 Y+50

Værktøjet beholder Z-koordinaten og kører i XY-planet til positionen X=70, Y=50. Se billedet i midten til højre

Tredimensional bevægelse

Program-blokken indeholder tre koordinat-angivelser: TNC'en kører værktøjet rumligt til den programmerede position.

Eksempel:

L X+80 Y+0 Z-10

Se billedet til højre forneden.

Cirkler og cirkelbuer

Ved cirkelbevægelser kører TNC'en to maskinakser samtidig: Værktøjet bevæger sig relativt til emnet på en cirkelbane. For cirkelbevægelser kan De indlæse et cirkelcentrum CC.

Med banefunktionen for cirkelbuer programmerer De cirkler i hoved- planet: Hovedplanet skal ved værktøjs-kald TOOL CALL defineres med fastlæggelsen af spindelaksen:

Spindelakse	Hovedplan
Z	XY, også
Y	CV, ∧V, OT ZX, også
X	WU, ZU, WX YZ, også
	VW, YW, VZ

Cirkler, der ikke ligger parallelt med hovedplanet, programmerer De med Q-parametre (se kapitel 10).

Drejeretning DR ved cirkelbevægelser

For cirkelbevægelser uden tangential overgang til andre konturelementer indlæser De drejeretningen DR:

Drejeretning med uret (medurs): DR-Drejeretning mod uret (modurs): DR+

Radiuskorrektur

Radiuskorrekturen skal stå i blokken, med hvilke De kører til det første konturelement. Radiuskorrekturen må ikke begyndes i en blok for en cirkelbane. Programmér denne i forvejen i en retlinieblok eller i en tilkørsels-blok (APPR-blok).

Forpositionering

I starten af et bearbejdningsprogram bør De positionere maskinakserne således, at en beskadigelse af værktøj og emne er udelukket.

Fremstilling af program-blokke med banefunktionstasterne Med de grå banefunktionstaster åbner De klartext-dialogen. TNC'en spørger om alle nødvendige informationer og indføjer program- blokken i bearbejdnings-programmet.			GRA ELPE BEG BLK BLK TOO	M-IN FUNK IN P FOR FOR L CA	IDLÆSI TION 2GM 2. 2M 0.2 2M 0.2	NING M ? J2K MM L Z X 2 X+1 Z S25	1 (+0 Y 100 Y 500	+0 Z +100	-40 Z+0	
Eksempel – programmering af en retlinie:			END	X + 1 P G M	0 Y4 2J2k	⊧5 RØ < MM	F100	<u>M3</u>		
L P	Åben programmerings-dialogen: f.eks. retlinie									
Koordinater?	Indlæs koordinater for retlinie-endepunktet	KALK.	X Y Z	+ 1 + 2	50.00 25.00 50.00	30 30 30	T FØ S		M5/	9
ENT		М	1	1103	M112	M120	M124			
Y 5										
Radiuskorr.:	RL/RR/ingen korr. ?									
RL	Vælg radiuskorrektur: f.eks tryk softkey RL, værktøjet kører venstre om konturen									
Tilspænding?	F=									
100 ENT	Indlæs tilspænding og overfør med tasten ENT: f.eks 100 mm/min									
Hjælpe-funkti	ion M ?									
	Hjælpefunktion f.eks M3 indlæses og dialogen afsluttes med tasten END									
M120	Indlæs hjælpefunktionen med parameter: f.eks. tryk softkey M120 og indlæs den krævede parameter									

Bearbejdnings-programmet viser linien:

L X+10 Y+5 RL F100 M3

6 Programmering: Kontur programmering

6.3 Kontur tilkørsel og frakørsel

Oversigt: Baneformer for tilkørsel og frakørsel af kontur

Funktionerne APPR (eng. approach = tilkørsel) og DEP (eng. departure = frakøre) bliver aktiveret med APPR/DEP-tasten. Herefter kan De vælge følgende baneformer med softkeys:

Funktion Softkeys:	Tilkørsel	Frakørsel
Retlinie med tangential tilslutning	APPR LT	DEP LT
Retlinie vinkelret på konturpunktet	APPR LN	DEP LN
Cirkelbane med tangential tilslutning	APPR CT	DEP CT
Cirkelbane med tangential tilslutning til konturen, til- og frakørsel til et	APPR LCT	

til konturen, til- og frakørsel til et hjælpepunkt udenfor konturen på et tangentialt tilsluttende retlinie stykke

Skruelinie tilkørsel og frakørsel

Ved tilkørsel og frakørsel af en skruelinie (Helix) kører værktøjet i forlængelse af skruelinien og tilslutter sig så med en tangential cirkelbane til konturen. Anvend hertil funktionen APPR CT hhv. DEP CT.

Vigtige positioner ved til- og frakørsel

■ Startpunkt P_s

Denne position programmerer De umiddelbart før APPR-blokken. P_{S} ligger udenfor konturen og bliver tilkørt uden radiuskorrektur (R0).

■ Hjælpepunkt P_H

Til- og frakørslen fører ved nogle baneformer over et hjælpepunkt P_{H} , som TNC'en udregner fra angivelser i APPR- og DEP-blokke.

- Første konturpunkt P_A og sidste konturpunkt P_E Det første konturpunkt P_A programmerer De i en APPR-blok , det sidste konturpunkt P_E med ein vilkårlig banefunktion.
- Indeholder APPR-blokken også Z-koordinaten, kører TNC'en først værktøjet i bearbejdningsplanet til P_H og så i værktøjs-aksen til den indlæste dybde.
- Endepunkt P_N

Positionen $P_N^{'}$ ligger udenfor konturen og fremkommer ved Deres angivelser i DEP-blokken. Indeholder DEP-blokken også Z-koordinaten, kører TNC'en værktøjet først i bearbejdningseplanet til P_H og så i værktøjs-aksen til den indlæste højde.

PROGRAM-INDLÆSNING

1 BLK FORM 0.1 Z X 2 BLK FORM 0.2 X+1 3 TOOL DEF 1 L+0 R+ 4 TOOL CALL 1 Z S25 5 L X+10 Y+5 F500 6 END PGM 1568T MM	+0 Y+0 Z-40 00 Y+100 Z+0 5 00 M3
КАLК. X +150.000 Y -25.000 Z +250.000	T F Ø S M5/9
APPR LT APPR LN APPR CT APPR LCT	DEP LT DEP LN DEP CT DEP LCT

6.3 Ko<mark>ntur</mark> tilkørsel og frakørsel

Koordinaterne lader sig indlæse absolut eller inkrementalt i retvinklede koordinater.

Ved positionering af en Akt.-position til hjælpepunkt P_H kontrollerer TNC'en ikke, om den programmerede kontur bliver beskadiget. Kontrollér selv med test-grafikken!

Ved tilkørsel skal afstanden mellem startpunkt P_{S} og første konturpunkt P_{A} være stort nok, så den programmerede radius kan realiseres.

Fra Akt.-positionen til hjælpepunkt P_H kører TNC'en med den sidst programmerede tilspænding.

Radiuskorrektur

For at TNC'en kan tolke en APPR-blok som en tilkørselsblok, skal De programmere et korrekturskift fra R0 til RL/RR. I en DEP-Satz ophæver TNC'en radiuskorrekturen automatisk. Når De vil programmere et konturelement med en DEP-blok (ingen korrekturskift), så skal De påny programmere den aktive radiuskorrektur (2. softkeyliste, når F-elementet er på lys baggrund).

Er i en APPR- hhv. DEP-blok ingen korrekturskift programmeret, så udfører TNC'en konturtilslutningen som følger:

Funktion	Konturtilslutning		
	Tangential tilslutning til det følgende	Funktion	Konturtilslutning
	Konturelement	DEP LT	Tangential tilslutning til det følgende
APPR LN	Vinkelret tilslutning til det følgende		sidste konturelement
	Konturelement	DEP LN	Vinkelret tilslutning til det
APPR CT	uden kørselsvinkel/uden radius:		sidste konturelement
	Tangential tilslutningskreds mellem det sidste og	DEP CT	uden kørselsvinkel/uden radius:
	det følgende konturelement		Tangential tilslutningskreds mellem
	uden kørselsvinkel/med radius:		det sidste og det følgende
	Tangential tilslutningskreds med indlæste		Konturelement
	radius til det følgende konturelement		uden kørselsvinkel/med radius:
	med kørselsvinkel/uden radius:		Tangential tilslutningskreds med
	Tangential tilslutningskreds med tilkørselsvinkel til det		indlæste radius til det
	følgende konturelement		sidste konturelement
	med kørselsvinkel/med Radius:		med kørselsvinkel/uden radius:
	Tangential tilslutningskreds med forbindelses-retlinie		Tangential tilslutningskreds med
	og kørselsvinkel til det følgende konturelement		kørselsvinkel til det sidste kontur-
APPR LCT	Tangent med tilsluttende tangential		element
	tilslutningskreds til det følgende konturelement		med kørselsvinkel/med Radius:
			langential tilslutningskreds med
			forbindelses-retlinie og kørselsvinkel
			til det sidste konturelement
		DEP LCT	Tangent med tilsluttende
			tangential tilslutningskreds til det

sidste konturelement

Tilkørsel ad en retlinie med tangential tilslutning: APPR LT

TNC'en kører værktøjet ad en retlinie fra startpunkt $P_{\rm S}$ til et hjælpepunkt $P_{\rm H}.$ Derfra kører det til første konturpunkt ad en retlinie tangentialt. Hjælpepunktet $P_{\rm H}$ har afstanden LEN til første konturpunkt $P_{\rm A}.$

► Vilkårlig banefunktion: Kør til startpunkt Ps

8 APPR LT X+20 Y+20 Z-10 LEN15 RR F100

Åben dialogen med tasten APPR/DEP og softkey APPR LT:

- ▶ Koordinater til det første konturpunkt P_A
- \blacktriangleright LEN: Afstand fra hjælpepunkt P_{H} til første konturpunkt P_{A}
- Radiuskorrektur for bearbejdningen

NC-blok eksempel

9 L X+35 Y+35 10 L ...

7 L X+40 Y+10 R0 FMAX M3

Kør til P_S uden radiuskorrektur P_A med radiuskorr. RR endepunkt for første konturelement Næste konturelement

Kørsel ad en retlinie vinkelret på første konturpunkt: APPR LN

TNC'en kører værktøjet ad en retlinie fra startpunkt P_{S} til et hjælpepunkt $\mathsf{P}_{\mathsf{H}}.$ Derfra kører den vinkelret til første konturpunkt P_{A} ad en retlinie. Hjælpepunktet P_{H} har afstanden LEN til første konturpunkt $\mathsf{P}_{\mathsf{A}}.$

- ▶ Vilkårlig banefunktion: Kør til startpunkt P_S
- Åben dialogen med tasten APPR/DEP og softkey APPR LN:

🔊 🕨 Koordinater til det første konturpunkt P_A

Længde: Afstand fra hjælpepunkt P_H til det første konturpunkt P_A LEN indlæses altid positivt!

▶ Radiuskorrektur RR/RL for bearbejdningen

NC-blok eksempel

7 L X+40 Y+10 RO FMAX M3	Kør til P _s uden radiuskorrektur
8 APPR LN X+10 Y+20 Z-10 LEN+15 RR F100	P _A med radiuskorr. RR, afstand P _H til P _A : LEN=15
9 L X+20 Y+35	endepunkt for første konturelement
10 L	Næste konturelement

35 PA PA RR PA RR PA PA RR PA RR RO

20

10

Х

40

Kørsel ad en cirkelbane med tangential tilslutning: APPR CT

TNC'en kører værktøjet på en retlinie fra startpunkt P_S til et hjælpepunkt P_H. Derfra kører det ad en cirkelbane, som overgår tangentialt til det første konturelement, til det første konturpunkt P_A.

Cirkelbanen fra P_H til P_A er givet af radius R og vinklen CCA. Drejeretningen af cirkelbanen er givet af forløbet af det første konturelement.

- ▶ Vilkårlig banefunktion: Kør til startpunkt Ps
- ▶ Åben dialogen med tasten APPR/DEP og softkey APPR CT:
 - ▶ Koordinater til det første konturpunkt P_A
 - Centrumsvinkel CCA for cirkelbane
 - CCA indlæses kun positiv
 - Maximal indlæseværdi 360ó
 - ▶ Radius R for cirkelbane
 - Kør til den side af emnet, som er defineret med radiuskorrektur:
 R Indlæses positivt
 - Fra emne-siden til tilkørsel: R indlæses negativt
 - ▶ Radiuskorrektur RR/RL for bearbejdningen

NC-blok eksempel

APPR CT

7 L X+40 Y+10 RO FMAX M3	Kør til P _s uden radiuskorrektur
8 APPR CT X+10 Y+20 Z-10 CCA180 R+10 RR F100	P _A med radiuskorr. RR, radius R=10
9 L X+20 Y+35	endepunkt for første konturelement
10 L	Næste konturelement

Kørsel ad en cirkelbane med tangential tilslutning af konturen og retlinie-stykke: APPR LCT

TNC'en kører værktøjet ad en retlinie fra startpunkt P_{S} til et hjælpepunkt $P_{H}.$ Derfra kører det på en cirkelbane til det første konturpunkt $P_{A}.$

Cirkelbanen tilslutter sig tangentialt såvel til retlinierne $P_{S}-P_{H}$ som også til det første konturelement. Herved er de med radius R entydigt fastlagt.

- ▶ Vilkårlig banefunktion: Kør til startpunkt Ps
- ▶ Åben dialogen med tasten APPR/DEP og softkey APPR LCT:
 - APPR LCT Koordinater til det første konturpunkt PA
 - Radius R for cirkelbanen R angives positivt
 - ▶ Radiuskorrektur for bearbejdningen

7 L X+40 Y+10 RO FMAX M3	Kør til P _s uden radiuskorrektur
8 APPR LCT X+10 Y+20 Z-10 R10 RR F100	P _A mit Radiuskorrektur RR, Radius R=10
9 L X+20 Y+35	endepunkt for første konturelement
10 L	Næste konturelement

Frakørsel ad en retlinie med tangential tilslutning: DEP LT

TNC'en kører værktøjet ad en retlinie fra sidste konturpunkt P_E til endepunkt P_N. Retlinien ligger i forlængelse af det sidste konturelement. P_N befinder sig i afstanden LEN fra P_E.

- Programmer sidste konturelement med endpunktet P_E og radiuskorrektur
- Åben dialogen med tasten APPR/DEP og softkey DEP LT:

 \blacktriangleright LEN: Indlæs afstanden til endepunktet P_{N} fra sidste konturelement P_{E}

NC-blok eksempel

23 L Y+20 RR F100	Sidste konturelement: P _E med radiuskorrektur
24 DEP LT LEN12,5 RO F100	For LEN = 12,5 mm køres væk
25 L Z+100 FMAX M2	Z frikøres, Tilbagepring, Program-slut

Frakørsel ad en retlinie vinkelret på sidste konturpunkt: DEP LN

TNC'en kører værktøjet ad en retlinie fra sidste konturpunkt P_E til endepunkt P_N. Retlinien fører vinkelret væk fra sidste konturpunkt P_E. P_N befinder sig fra P_E i afstanden LEN + værktøjs-radius.

- Programmer sidste konturelement med endpunktet P_E og radiuskorrektur
- ▶ Åben dialogen med tasten APPR/DEP og softkey DEP LN:

LEN: Indlæs afstand til endepunktet P_N Vigtigt: LEN indlæses positivt!

23 L Y+20 RR F100	Sidste konturelement: P _E med radiuskorrektur
24 DEP LN LEN+20 R0 F100	For LEN = 20 mm vinkelret frakørsel fra konturen
25 L Z+100 FMAX M2	Z frikøres, Tilbagepring, Program-slut

Frakørsel ad en cirkelbane med tangential tilslutning: DEP CT

TNC'en kører værktøjet på en cirkelbane fra sidste konturpunkt P_E til endepunkt $\mathsf{P}_\mathsf{N}.$ Cirkelbanen tilslutter sig tangentialt til det sidste konturelement.

- Programmer sidste konturelement med endpunktet P_E og radiuskorrektur
- ▶ Åben dialogen med tasten APPR/DEP og softkey DEP CT:

▶ Radius R for cirkelbane

- Værktøjet skal forlade den side af emnet, som er fastlagt med radiuskorrektur:
 R indlæses positivt
- Værktøjet skal forlade emnet modsat den fastlagte side, som er fastlagt med radiuskorrektur: R indlæses negativt

23 L Y+20 RR F100	Sidste konturelement: P _E med radiuskorrektur
24 DEP CT CCA 180 R+8 R0 F100	C-vinkel =180°, Cirkelbane-radius=10 mm
25 L Z+100 FMAX M2	Z frikøres, Tilbagepring, Program-slut

Frakørsel ad en cirkelbane med tangential tilslutning til konturen og ret-linistykke: DEP LCT

TNC'en kører værktøjet ad en cirkelbane fra sidste konturpunkt P_E til et hjælpepunkt P_H. Derfra kører det på en retlinie til endpunktet P_N. Det sidste konturelement og retlinien fra P_H – P_N har tangentiale overgange med cirkel-banen. Herved er cirkelbanen med radius R entydigt fastlagt.

- Programmer sidste konturelement med endpunktet P_E og radiuskorrektur
- ▶ Åben dialogen med tasten APPR/DEP og softkey DEP LCT:

DEP LCT Koordinater for endepunktet P_N indlæses

Radius R for cirkelbanen R angives positivt

NC-blok eksempel

23 L Y+20 RR F100	Sidste konturelement: P _E med radiuskorrektur
24 DEP LCT X+10 Y+12 R8 R0 F100	Koordinater til P_N , cirkelbane-radius = 10 mm
25 L Z+100 FMAX M2	Z frikøres, Tilbagepring, Program-slut

HEIDENHAIN TNC 410

6.4 Banebevægelser – retvinklede koordinater

Oversigt over banefunktioner

Funktion	Banefunktionstaste	Værktøjs-bevægelse	Nødvendige indlæsninger
Retlinie L eng.: Line	لي	Retlinie	Koordinater til retlinie- endepunktet
Affasning CHF eng.: CH am F er	CHE o:Lo	Affasning mellem to retlinier	Affaselængde
Cirkelcentrum CC; eng.: C ircle C enter	СС Ф	Ingen	Koordinater til cirkelcentrum hhv. poler
Cirkelbue C eng.: C ircle	Jc	Cirkelbane om cirkelcentrum CC til cirkelbue-endepunkt	Koordinate til cirkel-endepunkt, drejeretning
Cirkelbue CR eng.: C ircle by R adius	CR o	Cirkelbane med bestemt radius	Koordinater til cirkel- endepunkt, cirkelradius. Drejeretning
Cirkelbue CT eng.: C ircle T angential	CTS	Cirkelbane med tangential tilslutning til forrige konturelement	Koordinater til cirkel-slutpunkt
Hjørne-runding RND engl.: R ou ND ing of Corner	RND o:Co	Cirkelbane med tangential tilslutning til forrige og efterfølgende kontur- element	Hjørneradius R
Fri kontur- programmering FK	FK	Retlinie eller cirkelbane med fri tilslutning til forrige konturelement	Se kapitel 6.6

6.4 Banebevægelser – retvinklede koordinater

Retlinie L

TNC'en kører værktøjet på en retlinie fra sin aktuelle position til endpunktet for retlinien. Startpunktet er endepunktet for den forudgående blok.

► Indlæs koordinater til slutpunktet for retlinien

- Om nødvendigt:
- ▶ Radiuskorrektur RL/RR/R0
- ► Tilspænding F
- ► Hjælpe-funktion M

NC-blok eksempel

7	L	X+10	Y+40	RL	F200	Μ3	
8	L	IX+20) IY-1	L 5			
9	L	X+60	IY-10)			

Overfør Akt.-Position

Koordinaterne for værktøjs-Akt.-position kan De overføre indenfor en positioneringsblok:

- ▶ Vælg driftsart program-indlagring/editering
- Åben en ny blok eller forskyd det lyse felt til en koordinat indenfor en bestående blok

Tryk tasten "overføre Akt.-position-": TNC´en overtager koordinaten for aksen, som det lyse felt står på

Indføj affasning CHF mellem to retlinier

Konturhjørne, som opstår ved skæring af to retlinier, kan De forsyne med en affasning.

- I retlinieblokken før og efter CHF-blokken skal begge koordinater i bearbejdningsplanet programmeres.
- Radiuskorrekturen før og efter CHF-blokken skal være ens
- Affasningen skal kunne udføres med det aktuelle værktøj

► Affase-afsnit: Indlæs længde af affasningen

Om nødvendigt:

▶ Tilspænding F (virker kun i CHF-Satz)

Bemærk anvisningerne på næste side!

NC-blok eksempel

7 L X+0 Y+30 RL F300 M3 8 L X+40 IY+5 9 CHF 12 10 L IX+5 Y+0 En kontur må ikke begyndes med en CHF-blok! En affasning må kun udføres i bearbejdningsplanet.

Tilspændingen ved affasning skal svare til den før programmerede tilspænding.

Der må ikke køres til det ved affasningen afskårne hjørnepunkt.

Cirkelcentrum CC

Cirkelcentrum fastlægges hvis en cirkelbane skal programmeres med C-tasten. Herudover

- indlæser De de retvinklede koordinater for cirkelcentrum eller
- overfører den sidst programmerede position eller
- overfører koordinaterne med tasten "Overfør Akt.-position"
 - ¢cc

► Koordinater CC: Indlæs koordinaterne til cirkelcentrum eller

ved at overføre den sidst programmerede position: Indlæs ingen koordinater

NC-blok eksempel

5 CC X+25 Y+25

eller

10 L X+25 Y+25

11 CC

Programlinierne 10 og 11 henfører sig ikke billedet.

Gyldighed

Cirkelcentrum forbliver fastlagt, indtil De programmerer et nyt cirkelcentrum. Et cirkelcentrum kan De også fastlægge for hjælpeakserne U, V og W.

Indlæsning af cirkelcentrum CC inkrementalt

En inkrementalt indlæst koordinat for cirkelcentrum henfører sig altid til den sidst programmerede værktøjs-position.

6 Programmering: Kontur programmering

Х

Med CC kendetegner De en position som cirkelcentrum: Værktøjet kører ikke til denne position.

Cirkelcentrum er samtidigt pol for polarkoordinater.

Cirkelbane C om cirkelcentrum CC

Fastlæg cirkelcentrum CC, før De programmerer cirkelbanen C. Den sidst programmerede værktøjs-position før C-blokken er startpunkt for cirkelbanen. Den sidst programmerede værktøjs-position før C-blokken er startpunktet for cirkelbanen.

▶ Kør værktøjet til startpunktet for cirkelbanen

► Indlæs koordinaterne til cirkelcentrum

- ► Koordinater til cirkelbue-endepunkt
- ► Drejeretning DR
- Om nødvendigt:
- ► Tilspænding F
- ► Hjælpe-funktion M

NC-blok eksempel

5	C	C X+2!	5 Y+2	5	
6	L	X+45	Y+25	RR F200	D M3
7	С	X+45	Y+25	DR+	

Fuldkreds

De programmerer de samme koordinater for endepunkt såvel som for startpunkt.

Start- og endepunkt af en cirkelbevægelse skal ligge på cirkelbanen.

Indlæse-tolerance: indtil 0,016 mm.

Y

(F

CC 4

9

Cirkelbane CR med fastlagt radius

Værktøjet kører på en cirkelbane med radius R.

- ► Indlæs koordinaterne til cirkelbue-slutpunktet
- Radius R Pas på: Fortegnet fastlægger størrelsen af cirkelbuen!
- Drejeretning DR Pas på: Fortegnet fastlægger konkave eller konvekse hvælvninger!
- Om nødvendigt:
- ► Tilspænding F
- ► Hjælpe-funktion M

Fuldkreds

For en helcirkel programmerer De to CR-blokke efter hinanden:

Slutpunktet for første halvcirkel er startpunkt for den anden. Slutpunktet for den anden halvcirkel er startpunkt for den første. Se billerdet til højre for oven.

Centrumvinkel CCA og cirkelbue-radius R

Startpunkt og endepunkt på kontur lader sig teoretisk forbinde med hinanden med fire forskellige cirkelbuer med samme radius:

Den lille cirkelbue: CCA<1806 Radius har positiv fortegn R>0

: CCA>180ó Radius har negativ fortegn R<0

Med drejeretningen fastlægger De, om cirkelbuen hvælver sig udad (konveks) eller indad (konkav):

Konveks: Drejeretning DR- (med radiuskorrektur RL)

Konkav: Drejeretning DR+ (med radiuskorrektur RL)

NC-blok eksempel

Se billeder til højre midt i og forneden.

10 L X+40 Y+40 RL F200 M3					
11 CR X+70 Y+40 R+20 DR- (Bogen 1)					
eller					
11 CR X+70 Y+40 R+20 DR+ (Bogen 2)					
eller					
11 CR X+70 Y+40 R-20 DR- (Bogen 3)					
eller					
11 CD V+70 V+40 D 20 DD+ (Pagan 4)					
11 CK XT/O 1740 K-20 DKT (BOYEII 4)					
Bemærk anvisningerne på næste side!					

Afstanden fra start- og endepunktet for cirkeldiameteren må ikke være større end cirkeldiameteren.

Den maximale radius er 9 999,999 mm.

Vinkelakserne A, B og C bliver understøttet.

Cirkelbane CT med tangential tilslutning

Værktøjet kører på en cirkelbue, der tilslutter sig tangentialt til det førud programmerede konturelement.

En overgang er "tangential", når der ved skæringspunktet for konturelementer ingen knæk- eller hjørnepunkt opstår, Konturelementerne kører glat over i hinanden.

Konturelementet, på hvilket cirkelbuen tangentialt tilsluttes, programmerer De direkte før CT-blokken. Hertil kræves mindst to positionerings-blokke

▶ Indlæs koordinaterne til cirkelbue-slutpunktet

Om nødvendigt:

- ► Tilspænding F
- ► Hjælpe-funktion M

NC-blok eksempel

СТР

7	L	X+0	Y+25	RL	F300	Μ3				
8	L	X+25	5 Y+3	0						
9	C 1	Γ X+4	15 Y+:	20						
10)	Y+()							
_										

CT-blokken og det forud programmerede konturelement skal indeholde begge koordinaterne for planet, i hvilken cirkelbuen bliver udført!

Hjørne-runding RND

Funktionen RND afrunde kontur-hjørner.

Værktøjet kører på en cirkelbane, som tilsluttes tangentialt såvel til det foregående som også til det efterfølgende konturelement.

Rundingscirklen skal kunne udføres med det kaldte værktøj.

▶ Rundings-radius: Radius for cirkelbuen indlæses

▶ Tilspænding for hjørne-runding

NC-blok eksempel

5	L	Х+	10	Y+40	RL	F300	Μ3							
6	L	χ+	40	Y+25										
7	R	۱D	R5	F100										
8	L	χ+	10	Y+5										
		F	De ine ru	et foru deholo nding	udgå de b en s	ende egge kal uc	og e koor føre	efterfø dinate s.	ølgeno er for	de ko plane	onture et, i	elem hvilk	ent s et hjø	skal ørne-
	Der bliver ikke kørt til hjørnepunktet.													
			Er de m	n prog enne f erede	ram RND- tils	meret -blok. pændi	tilsp Here ng ig	oændi efter e gen g	ng i F er der lyldig.	ND-I א før	olok RND	virke -blok	r kun prog	i gram-

En RND-blok lader sig også udnytte for blød tilkørsel til konturen, ifald APPR-funktionen ikke skal indsættes.

Eksempel: Retliniebevægelse og affasning kartesisk

O BEGIN PGM LINEAR MM	
1 BLK FORM 0.1 Z X+0 Y+0 Z-20	Råemne-definition for grafisk simulation af bearbejdning
2 BLK FORM 0.2 X+100 Y+100 Z+0	
3 TOOL DEF 1 L+0 R+10	Værktøjs-definition i program
4 TOOL CALL 1 Z S4000	Værktøjs-kald med spindelakse og spindelomdrejningstal
5 L Z+250 RO F MAX	Værktøj frikøres i spindelakse med ilgang FMAX
6 L X-10 Y-10 R0 F MAX	Værktøj forpositioneres
7 L Z-5 RO F1000 M3	Kør til bearbejdningsdybde med tilspænding F = 1000 mm/min
8 APPR LT X+5 Y+5 LEN10 RL F300	Kør til konturen på punkt 1 på en retlinie med tangential tilslutning
9 L Y+95	Kør til punkt 2
10 L X+95	Punkt 3: første retlinie for hjørne 3
11 CHF 10	Programmering af affasning med længde 10 mm
12 L Y+5	Punkt 4: anden retlinie for hjørne 3, første retlinie for hjørne 4
13 CHF 20	Programmering af affasning med længde 20 mm
14 L X+5	Kør til sidste konturpunkt 1, anden retlinie for hjørne 4
15 DEP LT LEN10 RO F1000	Kontur frakøres på en retlinie med tangential tilslutning
16 L Z+250 RO FMAX M2	Værktøj frikøres, program-slut
17 END PGM LINEAR MM	

Eksempel: Cirkelbevægelse kartesisk

O BEGIN PGM CIRCULAR MM	
1 BLK FORM 0.1 Z X+0 Y+0 Z-20	Råemne-definition for grafisk simulation af bearbejdning
2 BLK FORM 0.2 X+100 Y+100 Z+0	
3 TOOL DEF 1 L+0 R+10	Værktøjs-definition i program
4 TOOL CALL 1 Z S4000	Værktøjs-kald med spindelakse og spindelomdrejningstal
5 L Z+250 RO F MAX	Værktøj frikøres i spindelakse med ilgang FMAX
6 L X-10 Y-10 R0 F MAX	Værktøj forpositioneres
7 L Z-5 RO F1000 M3	Kør til bearbejdningsdybde med tilspænding F = 1000 mm/min
8 APPR LCT X+5 Y+5 R5 RL F300	Kør til kontur på punkt 1 på en cirkelbane med
	tangential tilslutning
9 L X+5 Y+85	Punkt 2: første retlinie for hjørne 2
10 RND R10 F150	Indføj radius med R = 10 mm, tilspænding: 150 mm/min
11 L X+30 Y+85	Kør til punkt 3: Startpunkt cirklen med CR
12 CR X+70 Y+95 R+30 DR-	Kør til punkt 4: Endepunkt for cirklen med CR, radius 30 mm
13 L X+95	Kør til punkt 5
14 L X+95 Y+40	Kør til punkt 6
15 CT X+40 Y+5	Kør til punkt 7: Endepunkt cirklen, cirkelbue med tangential-
	tilslutning på punkt 6, TNC'en beregner selv radius
16 L X+5	Kør til sidste konturpunkt 1
17 DEP LCT X-20 Y-20 R5 R0 F1000	Konturen frakøres på en cirkelbane med tangential tilslutning
18 L Z+250 RO FMAX M2	Værktøj frikøres, program-slut
19 END PGM CIRCULAR MM	

O BEGIN PGM C-CC MM	
1 BLK FORM 0.1 Z X+0 Y+0 Z-20	Råemne-definition
2 BLK FORM 0.2 X+100 Y+100 Z+0	
3 TOOL DEF 1 L+0 R+12,5	Værktøjs-definition
4 TOOL CALL 1 Z S3150	Værktøjs-kald
5 CC X+50 Y+50	Definer cirkelcentrum
6 L Z+250 R0 FMAX	Værktøj frikøres
7 L X-40 Y+50 RO F MAX	Værktøj forpositioneres
8 L Z-5 RO F1000 M3	Kør til bearbejdningsdybde
9 APPR LCT X+0 Y+50 R5 RL F300	Kør til cirkelstartpunkt på en cirkelbane med tangential
	tilslutning
10 C X+O DR-	Kør til cirkelendepunkt (=cirkelstartpunkt)
11 DEP LCT X-40 Y+50 R5 R0 F1000	Konturen frakøres på en cirkelbane med tangential
	tilslutning
12 L Z+250 RO FMAX M2	Værktøj frikøres, program-slut
13 END DEM CCC MM	

6.5 Banebevægelser – polarkoordinater

Med polarkoordinater fastlægger De en position med en vinkel PA og en afstand PR til en i forvejen defineret pol CC. Se "4.1 Grundlaget".

Polarkoordinater fastsætter De med fordel ved:

Positioner på cirkelbuer

Emne-tegninger med vinkelangivelser, f.eks. ved hulkredse

Oversigt over banefunktior med polarkoordinater

Funktion	Banefunktionstaster	Værktøjs-bevægelse	Nødvendige indlæsninger
Retlinie LP	۶ + P	Retlinie	Polarradius, polarvinkel for retlinie-endepunkt
Cirkelbuer CP	(℃) + (P)	Cirkelbane om cirkelcentrum/ Pol CC til cirkelbue-endepunkt	Polarvinkel for cirkelendepunkt, drejeretning
Cirkelbuer CTP	••••••••••••••••••••••••••••••••••••••	Cirkelbane med tangential tilslutning til forrige konturelement	Polarradius, Polarvinkel til cirkelendepunkt
Skruelinie (Helix)	<u>्र</u> ि + P	Overlejring af en cirkelbane med en retlinie	Polarradius, Polarvinkel til cirkelendepunkt, koordinater til endepunkt i værktøjsakse

Polarkoordinat-udspring: Pol CC

Pol CC kan De fastlægge på et vilkårligt sted i bearbejdningsprogrammet, før De angiver positioner med polarkoordinater. Gå frem ved fastlæggelse af poler, som ved programmering af en cirkelcentrum CC.

Koordinater CC: Indlæs retvinklede koordinater for polen eller

ved at overføre den sidst programmerede position: Indlæs ingen koordinater

6.5 Banebevægelser – polarkoordinater

Retlinie LP

Værktøjet kører på en retlinie fra sin aktuelle position til endepunktet for retlinien. Startpunktet er endepunktet for den forudgående blok.

Polarkoordinat-RADIUS PR: Afstanden fra retlinieendepunkt til pol CC indlæses

Polarkoordinat-vinkel PA: Vinkelpositionen for retlinieslutpunktet mellem -360° og +360°

Fortegnet for PA er fastlagt med vinkel-henføringsaksen:

Vinkel fra vinkel-henføringsakse til PR modurs : PA>0 Vinkel fra vinkel-henføringsakse til PR medurs: PA<0

NC-blok eksempel

12	00	X+45 Y+25
13	LP	PR+30 PA+0 RR F300 M3
14	LP	PA+60
15	LP	IPA+60
16	LP	PA+180

Cirkelbane CP om Pol CC

Polarkoordinat-radius PR er samtidig radius for cirkelbuen. PR er fastlagt med afstanden fra startpunkt til Pol CC. Den sidst programmerede værktøjs-position fór CP-Satz er startpunktet for cirkelbanen.

Polarkoordinat-vinkel PA: Vinkelpositionen for cirkelbane-endepunkt mellem -5400° og +5400°

▶ Drejeretning DR

NC-blok eksempel

18	00	X+25 Y+25				
19	LP	PR+20 PA+0	RR	F250	МЗ	
20	СР	PA+180 DR+				

Ved inkrementale koordinater indlæs samme fortegn for DR og PA.

Værktøjet kører på en cirkelbane, som tilslutter sig tangentialt til et forudgående konturelement.

- Polarkoordinat-radius PR: Afstand fra cirkelbaneendepunkt til Pol CC
 - Polarkoordinat-vinkel PA: Vinkelposition for cirkelbaneslutpunkt

NC-blok eksempel

12 CC X+40 Y+35 13 L X+0 Y+35 RL F250 M3 14 LP PR+25 PA+120 15 CTP PR+30 PA+30 16 L Y+0

Skruelinie (Helix)

En skruelinie opstår ved overlejringen af en cirkelbevægelse og en retliniebevægelse vinkelret på den. Cirkelbanen programmerer De i et hovedplan.

Banebevægelsen for skruelinien kan De kun programmere i polarkoordinater.

Anvendelse

Indvendige og udvendige gevind med større diametre

Smørenoter

Beregning af skruelinie

For programmering behøver De inkrementale angivelse af totalvinklen, på hvilken værktøjet kører på skruelinien og totalhøjden af skruelinien.

For beregningen i fræsretningen fra neden og opefter gælder:

Antal gevind n	Gevind + gevindoverløb ved Gevindstart og -slut
Totalhøjde h	Stigning P x antal gevind n
Inkremental	Antal gevind x 360° + vinkel for
totalvinkel IPA	Gevind-start + vinkel for gevind- overløb
Startkoordinat Z	Stigning P x (gevind + gevindoverløb ved gevind-start)

Form af skruelinie

Tabellen viser sammenhængen mellem arbejdsretning, drejeretning og radiuskorrektur for bestemte baneformer.

Indv. gevind	arbejdsretn.	Drejeretn.	Radiuskorrektur
højregevind	Z+	DR+	RL
venstregevind	Z+	DR–	RR
højregevind	Z–	DR–	RR
venstregevind	Z–	DR+	RL
Udv. gevind			
højregevind	Z+	DR+	RR
venstregevind	Z+	DR–	RL
højregevind	Z–	DR–	RL
venstregevind	Z–	DR+	RR

Programmering af skruelinie

De indlæser drejeretning DR og den inkrementale totalvinkel IPA med samme fortegn, ellers kan værktøjet køre i en forkert bane.

> For totalvinklen IPA kan De indlæse en værdit fra -5400° til +5400°. Hvis gevindet har mere end 15 gevind, så programmerer De skruelinien i en programdel-gentagelse (se "9.3 Programdel-gentagelser" og "eksempl: HELIX"

længere fremme i dette kapitel).

[°] (**P**]

▶ Polarkoordinat-vinkel: Indlæs den inkrementale totalvinke, som værktøjet skal køre på skruelinien. Efter indlæsningen af vinklen vælger De værktøjsakse med en aksevalgstaste.

- ▶ Koordint for højden af skruelinien indlæses inkrementalt
- ▶ Drejeretning DR Skruelinie medurs: DR-Skruelinie modurs: DR+
- ▶ Radiuskorrektur RL/RR/R0 Radiuskorrektur indlæses efter tabellen

12	CC X+40 Y+25
13	Z+0 F100 M3
14	LP PR+3 PA+270 RL
15	CP IPA-1800 IZ+5 DR- RL F50

Eksempel: Retliniebevægelse polar

O BEGIN PGM LINEARPO MM	
1 BLK FORM 0.1 Z X+0 Y+0 Z-20	Råemne-definition
2 BLK FORM 0.2 X+100 Y+100 Z+0	
3 TOOL DEF 1 L+0 R+7,5	Værktøjs-definition
4 TOOL CALL 1 Z S4000	Værktøjs-kald
5 CC X+50 Y+50	Henføringspunkt for polarkoordinater defineres
6 L Z+250 RO FMAX	Værktøj frikøres
7 LP PR+60 PA+180 RO FMAX	Værktøj forpositioneres
8 L Z-5 RO F1000 M3	Kør til bearbejdningsdybde
9 APPR LCT X+5 Y+50 R5 RL F250	Kør til kontur ad punkt 1 på en cirkel med
	tangential tilslutning
10 LP PA+120	Kør til punkt 2
11 LP PA+60	Kør til punkt 3
12 LP PA+0	Kør til punkt 4
13 LP PA-60	Kør til punkt 5
14 LP PA-120	Kør til punkt 6
15 LP PA+180	Kør til punkt 1
16 DEP LCT X-15 Y+50 R5 R0 F1000	Kontur frakøres ad en cirkel med tangential tilslutning
17 L Z+250 RO FMAX M2	Værktøj frikøres, program-slut
18 END PGM LINEARPO MM	

olarkoordinater
I
С Г
gelse
Banebevæ
.5
G

0	BEGIN PGM HELIX MM	
1	BLK FORM 0.1 Z X+0 Y+0 Z-20	Råemne-definition
2	BLK FORM 0.2 X+100 Y+100 Z+0	
3	TOOL DEF 1 L+O R+5	Værktøjs-definition
4	TOOL CALL 1 Z S1400	Værktøjs-kald
5	L Z+250 RO F MAX	Værktøj frikøres
6	L X+50 Y+50 RO FMAX	Værktøj forpositioneres
7	CC	Overfør sidst programmerede position som pol
8	L Z-12,75 RO F1000 M3	Kør til bearbejdningsdybde
9	APPR CT X+18 Y+50 CCA180 R+2	Kør til kontur ad en cirkel med tangential
	RL F100	tilslutning
10	CP IPA+3240 IZ+13,5 DR+ F200	Kør Helix
11	DEP CT CCA180 R+2 RO	Kontur frakøres ad en cirkel med tangential tilslutning
12	L Z+250 RO FMAX M2	Værktøj frikøres, program-slut
13	END PGM HELIX MM	

Hvis De skal lave flere end 16 gevind:

8 L Z-12.75 R0 F1000	
9 APPR CT X+18 Y+50 CCA180 R+2 RL F100	
10 LBL 1	Start programdel-gentagelse
11 CP IPA+360 IZ+1,5 DR+ F200	Stigning indlæses direkte som IZ-værdi
12 CALL LBL 1 REP 24	Antal gentagelser (gevind)
13 DEP CT CCA180 R+2 R0	

6.6 Banebevægelser – Fri kontur-programmering FK

Grundlaget

Emnetegninger, som ikke er NC-korrekt målsat, indeholder ofte koordinat-angivelser, som De ikke kan indlæse med de grå dialogtaster. Således kan f.eks.

- være kendte koordinater på konturelementet eller i nærheden af det,
- koordinat-angivelser der henfører sig til et andet konturelement eller
- retningsangivelser og angivelser til konturverforløbet være kendte.

Sådanne angivelser programmerer De direkte med den fri konturprogrammering FK. TNC'en udregner konturen fra de kendte koordinat-angivelser og understøtter programmerings-dialogen med den interaktive FK-grafik. Billedet til højre for oven viser en målsætning, som De indlæser ganske enkelt med FK-programmeringen.

For at afvikle FK-programmer på ældre TNC-styringer, bruger De konverteringsfunktionen (se "4.2 Standard fil-styring, Forvandle et FK-program til klartext-program").

Grafik ved FK-programmering

Med ufuldstændige koordinat-angivelser kan man ofte ikke entydigt fastlægge en emne-kontur. I disse tilfælde viser TNC'en de forskellige løsninger i FK-grafikken og De udvælger den rigtige. FK-grafik gengiver emne-konturer med forskellige farver:

- hvid Konturelementet er entydigt bestemt
- grøn

De indlæste data giver flere løsninger; De udvælger den rigtige

rød De indlæste dat fastlægger endnu ikke konturelementet tilstrækkeligt; De indlæser yderligere angivelser

Hvis dataerne fører til flere løsninger og konturelementet bliver vist grønt, så vælger De den rigtige kontur som følger:

 Tryk softkey VISE LØSNING så ofte, til den viser konturelementet rigtigt

VÆLG OPL⊘SNING Det viste konturelement svarer til tegningen: Fastlæg med softkey VÆLG LØSNING

De med grønt fremstilede konturelementer skal De så tidligt som muligt fastlægge med VÆLG LØSNING, for at indskrænke flertydigheden for efterfølgende konturelementer.

Hvis De endnu ikke vil fastlægge en med grønt fremstillet kontur, så trykker De softkey AFSLUT UDVALG, for at fortsætte FK-dialogen.

Maskinfabrikanten kan for FK-grafikken fastlægge andre farver.

NC-blokke fra et program, som er kaldt med PGM CALL, viser TNC'en med en yderligere farve.

Bevægelser i retning af den negativ spindelakse fremstiller TNC'en med med en cirkel(cirkel-diameter = værktøjs-diameter).

Åbning af FK-dialog

Når De trykker de grå banefunktionstaster FK, viser TNC'en softkeys, med hvilke De åbner FK-dialogen: Se tabellen til højre. For igen at fravælge softkeys, trykker De påny tasten FK erneut.

Hvis De åbner FK-dialogen med en af disse softkeys, så viser TNC'en yderligere softkey-lister, med hvilke De indlæser kendte koordinater, retningsangivelser og angivelser for at kunne lave konturforløb.

Bemærk følgende forudsætninger for FKprogrammering

Konturelementer kan De med fri kontur-programmering kun programmere i bearbejdningsplanet. Bearbejdningsplanet fastlægger De i den første BLK-FORM-blok for bearbejdnings-programmet.

Indlæs for hvert konturelement alle oplyste emnemål. Selv emnemål der gentager sig fra tidligere blokke kan med fordel indlæses. Mål der ikke er indlæst anses af TNC'en som ubekendte!

Q-parametre er tilladt i alle FK-elementer, de må dog ikke ændres under programafviklingen.

Hvis De i blander konventionelle programmer og fri kontur-programmering, så skal hvert FK-afsnit være entydigt bestemt.

TNC'en behøver et fast punkt, fra hvilket beregningen kan gennemføres. Programmer en position direkte før FK-afsnittet med de grå dialogtaster, som indeholder begge koordinaterne for bearbejdningsplanet. I denne blok må ingen Q-parametre programmeres.

Hvis den første blok i FK-afsnittet er en FCT- eller FLTblok, skal De først programmere mindst to NC-blokke med de grå dialog-taster, herved bliver kørselsretningen entydigt bestemt.

Et FK-afsnit må ikke begynde direkte efter en mærke LBL.

Konturelement	Softkey
Retlinie med tangential tilslutning	FLT
Retlinie uden tangential tilslutning	FL
Cirkelbue med tangential tilslutning	FCT
Cirkelbue uden tangential tilslutning	FC

Retlinie frit programmeret

FΚ

Ϋ́

- ▶ Visning af softkeys for fri kontur-programmering: Tryk tasten FK
 - Åbning af dialog for fri retlinie: Tryk softkey FL. TNC'en viser vderligere softkeys - Se tabellen til højre
 - ▶ Med disse softkeys indlæses alle kendte angivelser i blokken. FK-grafikken viser de programmerde konturer rødt, indtil angivelserner er tilstrækkelige. Flere mulige løsninger viser grafikken grønt. Se "Grafik for fri kontur-programmering".

NC-blok eksempel se næste side.

Retlinie med tangential tilslutning

Hvis en retlinie tilsluttes tangentialt til et andet konturelement, åbner De dialogen med softkey FLT:

FLT .

- ▶ Visning af softkeys for fri kontur-programmering: Tryk tasten FK
- Åbning af dialog: Tryk softkey FLT

- Indlæs med softkeys (se tabellen til højre for oven) alle kendte angivelser i blokken

Cirkelbane frit programmeret

FC

- ▶ Visning af softkeys for fri kontur-programmering: Tryk tasten FK
- Åben dialogen for fri cirkelbue: Tryk softkey FC; TNC'en viser softkeys for direkte angivelser til cirkelbane eller angivelser for cirkelcentrum; se tabellen til højre
 - Indlæs med disse softkeys alle kendte angivelser i blokken: FK-grafikken viser den programmerede kontur rødt, indtil angivelserne er tilstrækkelige; flere muliae løsninger viser grafikken grønt: se "Grafik for fri kontur-programmering".

Cirkelbane med tangential tilslutning

Hvis cirkelbanen tilslutter sig tangentialt til et andet konturelement, åbner De dialogen med softkey FCT:

▶ Visning af softkeys for fri kontur-programmering: Tryk tasten FK

- Åbning af dialog: Tryk softkey FCT
- Indlæs med softkeys (tabellen til højre) alle kendte angivelser i blokken

Kendte angivelser	Softkey
X-koordinat til retlinie-endepunkt	<u>х</u>
Y-koordinat til retlinie-endepunkt	↓ v
Polarkoordinat-radius	PR •
Polarkoordinat-vinkel	PA
Længde af retlinie	LEN
Indstiksvinkel for retlinie	AN
Start/ende af en lukket kontur	+ CLSD

Henførsel til andre blokke se afsnit "Relativhenføring"; Hjælpepunkter se afsnit "Hjælpepunkter" i dette underkapitel.

Direkte angivelser for cirkelbane	Softkey
X-koordinat til cirkelbane-endepunkt	× ×
Y-koordinat til cirkelbane-endepunkt	↓ ^v
Polarkoordinat-radius	PR •
Polarkoordinat-vinkel	PA
Drejeretning for cirkelbane	DR (- +)
Radius for cirkelbane	R
Vinkel fra førende akse til cirkel-endepunkt	

Centrum for frit programmerede cirkler

For frit programmerede cirkelbaner beregner TNC'en ud fra Deres angivelser et cirkelcentrum. Herved kan De også med FK-programmeringen programmere en helcirkel i en blok.

Hvis De vil definere et cirkelcentrum i polarkoordinater, skal De definere polen istedet for med CC med funktionen FPOL. FPOL forbliver virksom indtil næste blok med FPOL og bliver fastlagt i retvinklede koordinater.

En konventionelt programmeret eller en udregnet cirkelcentrum er i et ny FK-afsnit ikke mere virksom som pol eller cirkelcentrum: Når konventionelt programmerede polarkoordinater henfører sig til en pol, hvilken De forud har fastlagt i en CC-blok, så fastlægger De denne pol efter FK-afsnittet påny med en CC-blok.

NC-blok eksempel for FL, FPOL og FCT

7	FPOL X+20 Y+30	
8	FL IX+10 Y+20 RR FI	00
9	FCT PR+15 IPA+30 DI	+ R15
Se	billedet i midten til høj	e

Angivelser til cirkelcentrum	Softkey
X-koordinat til cirkelcentrum	ссх
Y-koordinat til cirkelcentrum	ccv +
Polarkoordinat-radius for cirkelcentrum (henført til FPOL)	CC ₽R ₩
Polarkoordinat-vinkel til cirkelcentrum	

Hjælpepunkter

Såvel for frie retlinier som også for frie cirkelbaner kan De indlæse koordinater for hjælpepunkter på eller ved siden af konturen. Softkeys står til rådighed, såsnart De har åbnet FK-dialogen med softkey FL, FLT, FC eller FCT.

Hjælpepunkter for en retlinie

Hjælpepunkterne befinder sig på retlinien eller på forlængelsen af en retlinie: Se tabellen til højre foroven.

Hjælpepunkterne befinder sig i afstanden D ved siden af retlinien: Se tabellen til højre i midten.

Hjælpepunkter for en cirkelbane

For en cirkelbane kan De angive 1 hjælpepunkt på konturen: Se tabellen til højre forneden.

NC-blok eksempel

13	FC I	DR—	R10	P1X+42	2.929	P1Y+60.071
14	FLT	AN-	70	PDX+50	PDY+5	3 D10

Se billedet til højre forneden.

Hjælpepunkter på en retlinie	Softkey
X-koordinat hjælpepunkt P1	P1X
Y-koordinat hjælpepunkt P1	PIV

Hjælpepunkter ved siden af retlinie	Softkey
X-koordinat til hjælpepunkt	
Y-koordinat til hjælpepunkt	PDV
Afstand til hjælpepunkt for retlinie	P →

Hjælpepunkter på/ved siden af cirkelbane Softkey

X-koordinat til et hjælpepunkt	PIX
Y-koordinat til et hjælpepunkt	PIV
Koordinater til et hjælpepunkt ved siden af cirkelbane	PDX,
Afstand af hjælpepunkt ved siden af cirkelbane	° (

Relativ-henføring

Relativ-henføring er angivelser, som henfører sig til et andet konturelement. Softkeys står til rådighed, såsnart De har åbnet FKdialogen med softkey FL, FLT, FC.

Konturelementet, hvis blok-nummer De angiver, må ikke stå mere end 64 positionerings-blokke før blokken, i hvilken De programmerer henføringen.

Hvis De sletter en blok, til hvilken De har henført sig, så giver TNC'en en fejlmelding . De skal ændre programmet, før De sletter denne blok.

Relativ-henføring for en fri retlinie	Softkey
Retlinie parallelt med andet konturelement	PARALLEL
Afstand af retlinie til parallelt konturelement	

NC-blok eksempel

Kendt retning og afstand for konturelementet henført til blok N. Se billedet til højre for oven.

17	FL LEN20 AN+15
18	FL AN+105 LEN12.5
19	FL PAR17 DP12.5
20	FSELECT 2
21	FL LEN20 IAN+95

Lukkede konturer

Med softkey CLSD kendetegner De starten og enden af en lukket kontur. Herved reduceres antallet af mulige løsninger for det sidste konturelement.

CLSD indlæser De yderligere til en anden konturangivelse i første og sidste blok i et FK-afsnit.

O BEGIN PGM FK1 MM	
1 BLK FORM 0.1 Z X+0 Y+0 Z-20	Råemne-definition
2 BLK FORM 0.2 X+100 Y+100 Z+0	
3 TOOL DEF 1 L+0 R+10	Værktøjs-definition
4 TOOL CALL 1 Z S500	Værktøjs-kald
5 L Z+250 RO F MAX	Værktøj frikøres
6 L X-20 Y+30 R0 F MAX	Værktøj forpositioneres
7 L Z-10 RO F1000 M3	Kør til bearbejdningsdybde
8 APPR CT X+2 Y+30 CCA90 R+5 RL F250	Kør til kontur ad en cirkel med tangential tilslutning
9 FC DR- R18 CLSD+ CCX+20 CCY+30	FK- afsnit:
10 FLT	Til hvert konturelement programmeres kendte angivelser
11 FCT DR- R15 CCX+50 CCY+75	
12 FLT	
13 FCT DR- R15 CCX+75 CCY+20	
14 FLT	
15 FCT DR- R18 CLSD- CCX+20 CCY+30	
16 DEP CT CCA90 R+5 R0 F1000	Kontur frakøres ad en cirkel med tangential tilslutning
17 L X-30 Y+0 R0 FMAX	
18 L Z+250 RO FMAX M2	Værktøj frikøres, program-slut
19 END PGM FK1 MM	

O BEGIN PGM FK2 MM	
1 BLK FORM 0.1 Z X+0 Y+0 Z-20	Råemne-definition
2 BLK FORM 0.2 X+100 Y+100 Z+0	
3 TOOL DEF 1 L+0 R+2	Værktøjs-definition
4 TOOL CALL 1 Z S4000	Værktøjs-kald
5 L Z+250 RO F MAX	Værktøj frikøres
6 L X+30 Y+30 R0 FMAX	Værktøj forpositioneres
7 L Z+5 RO FMAX M3	Værktøjs-akse forpositioneres
8 L Z-5 RO F100	Kør til bearbejdningsdybde
9 APPR LCT X+0 Y+30 R5 RR F350	Kør til kontur ad en cirkel med tangential tilslutning
10 FPOL X+30 Y+30	FK- afsnit:
11 FC DR- R30 CCX+30 CCY+30	Til hvert konturelement programmeres kendte angivelser
12 FL AN+60 PDX+30 PDY+30 D10	
13 FSELECT 3	
14 FC DR- R20 CCPR+55 CCPA+60	
15 FSELECT 2	
16 FL AN-120 PDX+30 PDY+30 D10	
17 FSELECT 3	
18 FC X+0 DR- R30 CCX+30 CCY+30	
19 FSELECT 2	
20 DEP LCT X+30 Y+30 R5 R0	Kontur frakøres ad en cirkel med tangential tilslutning
21 L Z+250 RO FMAX M2	Værktøj frikøres, program-slut
22 END PGM FK2 MM	

Eksempel: FK-programmering 3

O BEGIN PGM FK3 MM	
1 BLK FORM 0.1 Z X-45 Y-45 Z-20	Råemne-definition
2 BLK FORM 0.2 X+120 Y+70 Z+0	
3 TOOL DEF 1 L+0 R+3	Værktøjs-definition
4 TOOL CALL 1 Z S4500	Værktøjs-kald
5 L Z+250 RO F MAX	Værktøj frikøres
6 L X-70 Y+0 R0 F MAX	Værktøj forpositioneres
7 L Z-5 RO F1000 M3	Kør til bearbejdningsdybde
8 APPR CT X-40 Y+0 CCA90 R+5 RL F250	Kør til kontur ad en cirkel med tangential tilslutning
9 FC DR- R40 CCX+0 CCY+0	FK- afsnit:
10 FLT	Til hvert konturelement programmeres kendte angivelser
11 FCT DR- R10 CCX+0 CCY+50	
12 FLT	
13 FCT DR+ R6 CCX+0 CCY+0	
14 FCT DR+ R24	
15 FCT DR+ R6 CCX+12 CCY+0	
16 FSELECT 2	
17 FCT DR- R1,5	
18 FCT DR- R36 CCX+44 CCY-10	
19 FSELECT 2	
20 FCT DR+ R5	
21 FLT X+110 Y+15 AN+0	
22 FL AN-90	

Η̈́
imering
program
ontur-
Fri k
Banebevægelser –
9

23	FL X+65 AN+180 PAR21 DP30	
24	RND R5	
25	FL X+65 Y-25 AN-90	
26	FC DR+ R50 CCX+65 CCY-75	
27	FCT DR- R65	
28	FSELECT 1	
29	FCT Y+O DR- R4O CCX+O CCY+O	
30	FSELECT 4	
31	DEP CT CCA90 R+5 RO F1000	Kontur frakøres ad en cirkel med tangential tilslutning
32	L X-70 RO FMAX	
33	L Z+250 RO FMAX M2	Værktøj frikøres, program-slut
34	END PGM FK3 MM	

Programmering: Hjælpe-funktioner

7.1 Indlæsning af hjælpe-funktioner M og STOP

Med hjælpe-funktionerne i TNC'en – også kaldet M-funktioner – styrer De

- Programafviklingen, f.eks. en afbrydelse af programafviklingen
- Maskinfunktioner, som ind- og udkobling af spindelomdrejning og kølemiddel
- Baneforholdene for værktøjet

Maskinfabrikanten kan have frigivet hjælpe-funktioner, som ikke er beskrevet i denne håndbog. Vær opmærksom på Deres maskinhåndbog.

En hjælpe-funktion M indlæser De enden af en positionerings-blok eller med softkey M. TNC'en viser så dialogen:

Hjælpe-funktion M ?

Normalt skal De blot indlæse nummeret på hjælpe-funktionen. Med den hjælpe-funktion, som De kan vælge direkte med softkey, bliver dialogen gennemført, dermed kan De indlæse parameteren til denne funktion.

I driftsarten manuel drift og el. håndhjul indlæser De hjælpefunktionen med softkey M . Med tasten NC-start udfører TNC'en direkte den indlæste M-funktion.

Vær opmærksom på, at nogle hjælpe-funktioner bliver virksomme ved begyndelsen af en positionerings-blok, andre i slutningen.

Hjælpe-funktioner virker fra den blok, i hvilken de blev kaldt. Såfremt hjælpe-funktionen ikke kun er virksom blokvis, bliver de ophævet igen i en efterfølgende blok eller ved program-slut. Nogle hjælpe-funktioner gælder kun i den blok, i hvilken de blev kaldt.

Indlæsning af hjælpe-funktion i en STOP-blok

En programmeret STOP-blok afbryder programafviklingen hhv. program-test, f.eks for en værktøjs-kontrol. I en STOP-blok kan De programmere en hjælpe-funktion M:

Programmer en programafviklings-afbrydelse: Tryk tasten STOP

▶ Indlæs-hjælpe-funktion M

NC-Blok eksempel

87 STOP M5

PROGF Hjfelf	RAM-IN Pefunk	IDLÆSN TION	IING M ?				
0 BE 1 BL 2 BL 3 TC *4 L 4 EN	EGIN F K FOR K FOR OL CF X+1 ID PGM	PGM 2J M 0.1 M 0.2 ILL 1 0 Y+ I 2J2K	2K MM 2 X+1 Z S25 5 R0 MM	1 (+0 Y 500 Y F100	(+0 Z (+100 M3 ■	2-40 2+0	
KALK. X Y Z	(+1 / +2	50.00 25.00 50.00	10 10 10	T F Ø S		M5/	9
м	M103	M112	M120	M124			

7.2 Hjælpe-funktioner for Programafvik-lings-kontrol, spindel og kølemiddel

Μ	Virkemåde	Virkning ved
M00	Programafvikling STOP	Blok-slut
	Spindel STOP	
	Kølemiddel STOP	
M01	Programafvikling STOP	Blok-slut
M02	Programafvikling STOP	Blok-slut
	Spindel STOP	
	Kølemiddel ude	
	Tilbagespring til blok 1	
	Sletning af status-visning (afhængig af	
	Maskin-parameter 7300)	
M03	Spindel START medurs	Blok-start
M04	Spindel START modurs	Blok-start
M05	Spindel STOP	Blok-slut
M06	Værktøjsveksel	Blok-slut
	Spindel STOP	
	Programafvikling STOP (afhængig af	
	Maskin-parameter 7440)	
M08	Kølemiddel START	Blok-start
M09	Kølemiddel STOP	Blok-slut
M13	Spindel START medurs	Blok-start
	Kølemiddel START	
M14	Spindel START modurs	Blok-start
	Kølemiddel inde	
M30	som M02	Blok-slut

7.3 Hjælpe-funktioner for koordinatangivelser

Programmering af maskinhenførte koordinater M91/ M92

Målstav-nulpunkt

På målestaven fastlægger et referencemærke fast hvis position er målestavs-nulpunktet.

Maskin-nulpunkt

Maskin-nulpunktet behøver De, for

- at fastlægge akse-begrænsninger (software-endestop)
- at køre til maskinfaste positioner (f.eks. værktøjsveksel-position)
- at fastlægge et emne-henføringspunkt

Maskinfabrikanten indlæser for hver akse afstanden for maskinnulpunktet fra målestavs-nulpunktet i en maskin-parameter.

Standardforhold

Koordinater henfører TNC'en til emne-nulpunktet (se "Henføringspunkt-fastlæggelse").

Forhold med M91 – maskin-nulpunktet

Når koordinater i positionerings-blokke skal henføre sig til maskinnulpunktet, så indlæser De M91 i blokken.

TNC'en kan vise koordinatværdierne henført til maskin-nulpunktet. I status-visning skifter De koordinat-visningen til REF (se "1.4 status-visning").

Forhold med M92 – maskin-henføringspunkt

Udover maskin-nulpunktet kan maskinfabrikanten fastlægge nok en yderligere maskinfast position (Maskinhenføringspunkt).

Maskinfabrikanten fastlægger for hver akse afstanden til maskin-henføringspunktet fra maskin-nulpunktet (se maskinhåndbogen).

Hvis koordinaterne i positionerings-blokke skal henføre sig til maskin-henføringspunktet, så indlæser De disse i blokken M92.

 Også med M91 eller M92 udfører TNC'en radiuskorrekturen korrekt. Værktøjs-længden bliver der dog **ikke** taget hensyn til.

Virkemåde

M91 og M92 virker kun i de programblokke, i hvilke M91 eller M92 er programmeret.

M91 og M92 bliver virksomme ved blok-start.

Emne-henføringspunkt

Billedet til højre viser koordinatensystemer med maskin- og emnenulpunkt.

7.4 Hjælpe-funktioner for baneforhold

Hjørne overgange: M90

Istedet for funktionen M90 skal De anvende funktionen M112 (se længere fremme i dette kapitel). Gammelt program kan De dog også lade afvikle kombineret med M112 og M90.

Standardforhold

TNC'en stopper kort ved positionerings-blokke uden værktøjsradius-korrektur værktøjet ved et hjørne (nøjagtig-stop).

Ved programblokke med radiuskorrektur (RR/RL) indfójer TNC'en automatisk en overgangscirkel ved udvendige hjørner.

Forhold med M90

Værktøjet bliver kørt med konstant banehastighed ved hjørne overgange: Hjørne overgangen og emne-overfladen bliver glattere. Samtidig forkortes bearbeidningstiden. Se billedet i midten til høire

Anvendelseseksempel: Flader af korte retlinie-stykker.

Virkemåde

M90 virker kun i programblokke, i hvilke M90 er programmeret.

M90 bliver virksom ved blok-start. Drift med slæb skal være valgt (maskinparameter).

Uafhængig af M90 kan med MP7460 fastlægges en grænseværdi, indtil hvilken TNC`en endnu kører med konstant banehastighed (ved drift med slæb og hastigheds-forstyring).

Indføjelse af konturovergange mellem vilkårlige konturelementer: M112

Standardforhold

TNC'en stopper kortvarigt maskinen ved alle retningsændringer, der er større end den forud givne grænsevinkel (MP7460) (nøjagtigt stop).

Ved programblokke med radiuskorrektur (RR/RL) indfójer TNC'en automatisk en overgangscirkel ved udvendige hjørner.

Forhold med M112

Forholdene for M112 kan De tilpasse med maskinparametre.

M112 virker såvel i slæbedrift som også i drift med hastigheds-forstyring.

TNC'en indføjer mellem **vilkårlige konturelementer (korrigerede og ukorrigerede),** som kan ligge i planet eller i rummet, en valgbar konturovergang:

- Tangentialcirkel: MP7415.0 = 0 På tilslutningsstedet kommer ved ændringen af krumningen et hastigheds-spring
- Polynom 3. orden (kubisk Spline): MP7415.0 = 1 På tilslutningsstedet opstår ingen hastigheds-spring
- Polynom 5. orden: MP7415.0 = 2 På tilslutningsstedet opstår ingen hastigheds-spring
- Polynom 7. orden: MP7415.0 = 3 (standard-indstilling) På tilslutningsstedet opstår ingen spring i ryk

Tilladelig konturafvigelseT

Med toleranceværdien T fastlægger De, hvor meget den fræste kontur må afvige fra den forud givne kontur. Indlæser De ingen toleranceværdi, så beregner TNC en konturovergangen således, at retlinier endnu bliver kørt med den programmerede banetilspænding.

Grænsevinkel A

Hvis De indlæser en grænsevinkel A, så udglatter TNC´en kun de konturovergange, ved hvilke vinklen for retningsændringen er større end den programmerede grænsevinkel. Indlæser De grænsevinklen = 0, så kører TNC´en også over et tangentielt tilsluttende konturelement med konstant hastighed. Indlæseområde: 0° til 90°

Indlæsning af M112 i en positionerings-blok

Hvi De i en positionerings-blok (ved dialog hjælpe-funktion) trykker softkey M112, så fører TNC en dialogen væk og spørger efter den tilladelige afvigelse T og grænsevinkel A.

T og A kan De også fastlægge med Q-parametre. Se "10 Programmering: Q-parametre"

Virkemåde

M112 virker i drift med hastigheds-forstyring og i drift med slæb.

M112 bliver virksom ved blok-start.

Ophæve virkning: Indlæs M113

NC-Blok eksempel

L X+123.723 Y+25.491 R0 F800 M112 T0.01 A10

Konturfilter: M124

Standardforhold

For beregning af en konturovergang mellem vilkårlige konturelementer, tager TNC´en hensyn til alle forhåndenværende punkter.

Forhold med M124

Forholdene for M124 kan De tilpasse med maskinparametre.

TNC'en filtrerer konturelementer med små punktafstande væk og indføjer en konturovergang.

Formen af konturovergange

- Tangentialcirkel: MP7415.0 = 0 På tilslutningsstedet kommer ved ændringen af krumningen et hastigheds-spring
- Polynom 3. orden (kubisk Spline): MP7415.0 = 1 På tilslutningsstedet opstår ingen hastigheds-spring
- Polynom 5. orden: MP7415.0 = 2 På tilslutningsstedet opstår ingen hastigheds-spring
- Polynom 7. orden: MP7415.0 = 3 (standard-indstilling) På tilslutningsstedet opstår ingen spring i ryk

Sløjfe konturovergang

- Ikke sløjfe konturovergang: MP7415.1 = 0 Gennemfør konturovergang således, som med er fastlagt med MP7415.0 (standard-konturovergang: Polynom 7. Grad)
- Sløjfe konturovergang: MP7415.1 = 1 Gennemføre konturovergangen således, at de mellem konturovergangene endnu værende retliniestykker også bliver afrundet

Minimal længdeT af et konturelement

Med parameter T fastlægger De, ned til hvilken længde TNC'en skal filtrere konturelementer væk. Hvis De med M112 har fastlagt en tilladelig konturafvigelse, så tager TNC'en hensyn til denne. Hvis De ingen maximal konturafvigelse har indlæst, så beregner TNC'en konturovergangen således, at retlinier endnu bliver kørt med den programmerede banestilspæding.

Indlæsning af M124

Hvis De i en positionerings-blok (ved dialog hjælpe-funktion) trykker softkey M124 , så fører TNC´en dialogen for denne blok væk og spørger efter den minimale punktafstand T.

T kan De også fastlægge med Q-parametre. Se "10 programmering: Q-parametre".

Virkemåde

M124 bliver virksom ved blok-start. M124 sætter De – som M112 – tilbage med M113 .

NC-Blok eksempel

L X+123.723 Y+25.491 R0 F800 M124 T0.01

Bearbejdning af små konturtrin: M97

Standardforhold

TNC'en indføjer ved udvendige hjørner en overgangscirkel. Ved meget små konturtrin vil værktøjet beskadige konturen. Se billedet til højre for oven.

TNC'en afbryder på sådanne steder programafviklingen og afgiver fejlmeldingen "værktøjs-radius for stor".

Forhold med M97

TNC'en fremskaffer et baneskæringspunkt for konturelementer – som ved indvendige hjørner – og kører værktøjet over dette punkt. Se billedet i midten til højre

Programmer M97 i den blok, i hvilken det udvendige hjørnepunkt er fastlagt.

Virkemåde

M97 virker kun i den programblok, i hvilken M97 er programmeret.

Konturhjørner bliver med M97 kun ufuldstændigt bearbejdet. Eventuelt må De efterbearbejde konturhjørner med et mindre værktøj.

NC-blok eksempel

5	TOOL DEF L R+20	Større værktøjs-radius
13	L X Y R F M97	Kør til konturpunkt 13
14	L IY-0,5 R F	Bearbejd små konturtrin 13 og 14
15	L IX+100	Kør til konturpunkt 15
16	L IY+0,5 R F M97	Bearbejd små konturtrin 15 og 16
17	L X Y	Kør til konturpunkt 17

Komplet bearbejdning af åbne konturhjørner : M98

Standardforhold

TNC'en fremskaffer ved indvendige hjørner skæringspunktet for fræsebanen og kører værktøjet fra dette punkt i den nye retning.

Hvis konturen på hjørnet er åben, så fører det til en ufuldstændig bearbejdning: Se billedet til højre foroven.

Forhold med M98

Med hjælpe-funktion M98 kører TNC'en værktøjet så vidt, at alle konturpunkter virkeligt bliver bearbejdet: Se billdet til højre forneden.

Virkemåde

M98 virker kun i de programblokke, i hvilke M98 er programmeret.

M98 er virksom ved blok-slut.

NC-blok eksempel

Kør efter hinanden til konturpunkterne 10, 11 og 12:

10	L	Х		Υ	RL F

11 L X... IY... M98

12 L IX+ ...

Tilspændingsfaktor for indstiksbevægelser: M103

Standardforhold

TNC'en kører værktøjet uafhængig af bevægelsesretningen med den sidst programmerede tilspænding.

Forhold med M103

TNC'en reducerer banetilspændingen, hvis værktøjet kører i negativ retning af værktøjsaksen. Tilspændingen ved kørsel i værktøjsaksen FZMAX bliver udregnet fra den sidst programmerede tilspænding FPROG og en faktor F%:

 $FZMAX = FPROG \times F\%$

Indlæsning af M103

Hvis De i en positionerings-blok (ved dialog hjælpe-funktion) trykker softkey M103, så fortsætter TNC en dialogen og spørger efter faktor F.

Virkemåde

M103 bliver virksom ved blok-start. M103 ophæves: M103 **uden faktor** programmeres påny

NC-blok eksempel

Tilspænding ved indstikning andrager 20% af plantilspændingen.

····	Virkelige banetilspænding (mm/min):
17 L X+20 Y+20 RL F500 M103 F20	500
18 L Y+50	500
19 L IZ-2,5	100
20 L IY+5 IZ-5	141
21 L IX+50	500
22 L Z+5	500

Konstant tilspændingshastighed på værktøjsskæret: M109/M110/M111

Standardforhold

TNC'en henfører den programmerede tilspændingshastighed til værktøjs-midtpunktsbane.

Forhold ved cirkelbuer med M109

TNC'en holder ved indvendige og udvendige bearbejdninger tilspændingen konstant på værktøjs-skæret.

Forhold ved cirkelbuer med M110

TNC'en holder tilspændingen ved cirkelbuer konstant udelukkende ved en indvendig bearbejdning. Ved en udvendig bearbejdning virker ingen tilspændings-tilpasning.

Virkemåde

M109 og M110 bliver virksomme ved blok-start. M109 og M110 tilbagestiller De med M111.

Forudberegning af radiuskorrigeret kontur (LOOK AHEAD): M120

Standardforhold

Hvis værktøjs-radius er større, end et konturtrin, skal det køres med radiuskorrigering, ellers afbryder TNC'en programafviklingen og viser en fejlmelding. M97 (se "Bearbejdning af små konturtrin: M97") forhindrer fejlmeldingen, men fører til en friskærmarkering og forskyder yderligere hjørnet.

Ved efterskæring beskadiger TNC'en under visse omstændigheder konturen. Se billedet til højre.

Forhold med M120

TNC'en kontrollerer en radiuskorrigeret kontur for efterskæringer og overskæringer og beregner forud værktøjsbanen fra den aktuelle blok. Steder, hvor værktøjet ville beskadige konturen, forbliver ubearbejdet (i billedet til højre vist mørkt). De kan også anvende M120, for at forsyne digitaliseringsdata eller data, som er blevet fremstillet af et externt programmerings-system, med værktøjsradiuskorrektur. Herved kan afvigelser kompenseres for en teoretisk værktøjs-radius.

Antallet af blokke (maximal 99), som TNC forudberegner, fastlægger De med LA (eng. Look Ahead: skue framad) efter M120. Jo større antal blokke De vælger, som TNC'en skal forudberegne, desto langsommere bliver blokbarbejdningen.

Indlæsning

Hvis De i en positionerings-blok (ved dialog hjælpe-funktion) trykker softkey M120, så fortsætter TNC'en dialogen for denne blok og spørger om antallet af forud beregnede blokke LA.

Virkemåde

M120 skal stå i en NC-blok, der også indeholder radiuskorrektur RL eller RR. M120 virker fra denne blok indtil De

- ophæver radiuskorrekturen med R0
- M120 LA0 programmeres
- M120 uden LA programmeres
- med PGM CALL kaldes et andet program

M120 bliver virksom ved blok-start.

7.5 Hjælpe-funktioner for rundakser

Køre med rundakser vej-optimeret: M126

Standardforhold

TNC'en kører en drejeakse, hvis visning er reduceret til værdier under 360°, omkring forskellen Soll-position – Akt.-position. Eksempler se tabellen til højre foroven.

Forhold med M126

Med M126 kører TNC'en en drejeakse den korteste vej, hvis visning er reduceret til værdier under 360°. Eksempler se tabellen til højre forneden.

Virkemåde

M126 bliver virksom ved blok-start. M126 tilbagestiller De med M127; ved program-slut bliver M126 under alle omstændigheder uvirksom.

Reducering af visning af rundakse til en værdi under 360°: M94

Standardforhold

TNC'en kører værktøjet fra den aktuelle vinkelværdi til den programmerede vinkelværdi.

538°
180°
-358°

Forhold med M94

TNC'en reducerer ved blokstart den aktuelle vinkelværdi til en værdi under 360° og kører i tilslutning hertil til den programmerede værdi. Er flere rundakser aktive, reducerer M94 visningen af alle rundakser.

NC-blok eksempel

Reducer displayværdier i alle aktive rundakser:

L M94

Visning af alle aktive rundakser reduceres og i tilslutning hertil køres C-aksen til den programmerede værdi:

L C+180 FMAX M94

Virkemåde

M94 virker kun i den programblok, i hvilken M94 er programmeret.

M94 bliver virksom ved blok-start.

Standardforhold for TNC en

Aktposition	Soll-position	Kørevej
350°	10°	-340°
10°	340°	+330°

Forhold med M126

Aktposition	Soll-position	Kørevej
350°	10°	+20°
10°	340°	-30°

Programmering: Cykler

8.1	Ge	enere	t om cykler	Cyklus-gruppe	Softkey
Bearbej Også ko	dnin oord	ger der o inatomre	ofte skal udføres, er lagret i TNC'en som cykler. Igninger og enkelte specialfunktioner står til	Cykler for dybdeboring, reifning, uddrejning, gevindboring og	BORER
grupper Bearbej	r. dnin	gs-cyklei	r med numre fra 200 anvender Q-parametre	Cykler for fræsning af lommer, tappe og noter	LOMME/ TAP/ NOT
altid samme nummer: f.eks. Q200 er altid sikkerheds-afstand, Q202 altid fremryknings-dybde osv.		arametre. Parametre med samme funktion har er: f.eks. Q200 er altid sikkerheds-afstand, Q202 ybde osv.	Cykler for fremstilling af regel- mæssige punktmønstre, f.eks. hulkreds		
Cyklus	s de	efinitio	n	eller hulflade og nregelmæssige	
CYCL		Softkey	<i>r</i> -listen viser de forskellige cyklus-grupper		
DEF	BORER ► Vælg cyklus-gruppe, f.eks. borecykler			SL-cykler (subkontur-liste), med hvilke komplekse konturer kan bearbejdes, som sammensættes af	SL-CYKLEN
 Vælg cyklus, f.eks. DYBDEBORING. TNC'en åbner en dialog og spørger efter alle indlæseværdier; samtidig indblænder TNC'en i den høire billedskærmshalvdel 			yklus, f.eks. DYBDEBORING. TNC'en åbner en og spørger efter alle indlæseværdier; samtidig nder TNC`en i den højre billedskærmshalvdel	flere overlappende delkonturer	
	en grafik, i hvilken parameteren der skal indlæses vises på en lys baggrund. Vælg hertil billedskærm- opdeling PROGRAM + HJÆLPEBILLEDE		ik, i hvilken parameteren der skal indlæses å en lys baggrund. Vælg hertil billedskærm- ig PROGRAM + HJÆLPEBILLEDE	Cykler for nedfræsning af planer eller i beskadigede flader	PLAN FRAESNING
)	Indlæs og afsl	alle de af TNC'en krævede parametre ut hver indlæsning med tasten ENT.	Cykler til koordinat-omregning,	KOORD. OMREK- NING
)	TNC'er de kræ	n afslutter dialogen, after at De har indlæst alle vede data.	bliver forskudt, drejet, spejlet, forstørret og formindsket	
NC-blo	k ek	sempel			
CYCL D) E F	1.0	DYBDEBORING	Special-cykler dvæletid, program-	SPECIAL- CYKLER
CYCL D) E F	1.1	AFST2		
CYCL D)EF	1.2	DYBDE-30		
CYCL D)EF	1.3	FREMRKG5	PROGRAM-INDLÆSNING	
CYCL D)EF	1.4	DVÆLET1	GEVINDSTIGNING ?	
CYCL	DEF	1.5	F 150	3 IOUL DEF IL L® R+3 4 TOOL CRLL 1 Z S4000 5 L Z+100 R0 FMR/K M103 F1 M124 T5 6 L X+0 Y+0 Z-20 R0 FMR/K M8 7 CYCL DEF 17 SILV GEVINDSK. APST1, 2 DYBDE-15	

STIGN.+2 11 END PGM CYC210 MM

KALK. X Y Z

+150.000 -25.000 +250.000

T F S 0

8 Programmering: Cykler

M5/9

Cyklus kald

Forudsætninger

Før et cyklus-kald skal De i hvert tilfælde programmere:

BLK FORM for grafisk fremstilling (kun nødvendig for testgrafik)

- Værktøjs-kald
- Drejeretning af spindel (hjælpe-funktion M3/M4)
- Cyklus-definition (CYCL DEF).

Bemærk de yderligere forudsætninger, som er angivet i de efterfølgende cyklusbeskrivelser.

Følgende cykler virker på det sted de er defineret i bearbejdningsprogrammet. Disse cykler kan og må De ikke kalde:

- Cykler for punkt- el. hul-billeder på en cirkel el. linie
- SL-cyklus KONTUR
- Cykler for koordinat-omregning
- Cyklus DVÆLETID

Alle øvrige cykler kalder De, som beskrevet efterfølgende.

Skal TNC'en udføre cyklus efter den sidst programmerede blok een gang, programmerer De cyklus-kald med hjælpe-funktion M99 eller med CYCL CALL:

- ▶ Programmering af cyklus-kald: Tryk tasten CYCL CAL
- ▶ Indlæs cyklus-kald: Tryk softkey CYCL CALL M
- Indlæs hjælpe-funktion M eller afslut dialogen med tasten END

Skal TNC'en automatisk udføre cyklus'en efter hver positioneringsblok, programmerer De cyklus-kald med M89 (afhængig af maskinparameter 7440).

For at ophæve virkningen af M89, programmerer De

- M99 eller
- CYCL CALL eller
- CYCL DEF

TNC'en udfører de fremryk-bevægelser i aksen, De har defineret som spindelakse i TOOL CALLblokken. Bevægelser i bearbejdningsplanet udfører TNC'en grundlæggende kun i hovedakserne X, Y eller Z. Undtagelser:

Arbejde med hjælpeakserne U/V/W

- Hvis De i cyklus 3 NOTFRÆSNING og i cyklus 4 LOMMEFRÆSNING for sidelængden direkte programmerer hjælpeaksen
- Hvis De ved SL-cykler programmerer hjælpeaksen i kontur-underprogram

8.2 Punkt-tabeller

Hvis De vil afvikle en cyklus, hhv. flere cykler efter hinanden, på et uregelmæssigt punktmønster, så fremstiller De punkt-tabeller.

Hvis De anvender borecykler, svarer koordinaterne til bearbejdningsplanet i punkt-tabellen sig til koordinaterne til borings-midtpunktet. Bruger De fræsecykler, svarer koordinaterne til bearbejdningsplanet i punkt-tabellen sig til startpunktkoordinaterne til den til enhver tid værende cyklus(f.eks. midtpunkts-koordinaterne til en rund lomme). Koordinaterne i spindelaksen svarer til koordinaterne for emne-overfladen.

Indlæsning af punkt-tabeller

Vælg driftsart program-indlagring/editering

L 1	MUSTPKT	.PNT N	1M				
NR	Х	Y		Z			
0 1	+35	+30		+0			
2	+80	+30		+0			
3	+50	+50		+0			
4	+20	+50		+0			
5	+35	+70		+0			
ь Гели	*65 FT	+70		+0			
KAL	_ĸ. X	-1	39.56	50			
KAL	_к. X Y	-1:+1:	39.50	50		 	
KAL	_ĸ.X Y Z	- 1 ; + 1 ; + 1 ;	39.50 35.60 33.30	50 30 50	T		

PGM MGT	Kald fil-styring: Tryk tasten PGM MGT
Fil-navn =	
NY	Indlæs navnet på punkt-tabellen, overfør med tasten ENT
MM INCH	Evt. skift måleenhed til tommer: Tryk softkey MM/TOMME
.PNT	Vælg fil-type punkt-tabel: Tryk softkey .PNT

Vælg punkt-tabeller i program

Vælg driftsart program-indlagring/editering

Kald funktion for valg af punkt-tabel: Tryk tasten PGM CALL

Tryk softkey PUNKT-TABEL

Indlæs navn på punkt-tabel, overfør med tasten END

8.2 Punkt-tabeller

Kald af cyklus i forbindelse med punkt- tabeller

Pas på før programmeringen

TNC'en afvikler med CYCL CALL PAT punkt-tabellen, som De sidst har defineret (også når De har defineret punkttabellen i et med CALL PGM sammenkædet program).

TNC'en anvender koordinaterne i spindelaksen ved cyklus-kald som sikker højde.

Skal TNC'en kalde den sidst definerede bearbejdningscyklus for punkterne, som er defineret i en punkt-tabel, programmerer De cyklus-kaldet med CYCL CALL PAT:

Programmering af cyklus-kald: Tryk tasten CYCL CAL
 Hjælpe-funktion M indlæses, f.eks. for kølemiddel

- ▶ Kald punkt-tabel: Tryk softkey CYCL CALL PAT
- Indlæs tilspænding, med hvilken TNC´en skal køre mellem punkterne (ingen indlæsning: Der køres med sidst programmerede tilspænding, FMAX ikke gyldig)
- Om fornødent indlæs hjælpe-funktion M, overfør med tasten END

TNC'en trækker værktøjet tilbage mellem startpunkterne til sikker højde (sikker højde = spindelakse-koordinater ved cyklus-kald). For at kunne bruge denne arbejsmåde også ved cykler med nummer 200 og større, skal De definere den 2. sikkerheds-afstand (Q204) med 0.

Hvis De ved forpositionering i spindelaksen vil køre med reduceret tilspænding, anvender De hjælpe-funktion M103 (se "7. 4 Hjælpe-funktioner for baneforhold").

Virkemåde af punkt-tabeller med cyklerne 1 til 5 og 17

TNC'en tolker punkterne i bearbejdningsplanet som koordinaterne til borings-midtelpunktet. Koordinaterne for spindel-aksen fastlægger overkanten af emnet, så TNC'en automatisk kan forpositionere (rækkefølge: bearbejdningsplan, så spindelakse).

Virkemåde af punkt-tabellen med SL-cyklen og cyklus 12

TNC'en tolker punkterne som en yderligere nulpunkt-forskydning.

Virkemåde af punkt-tabellen med cykler 200 til 204

TNC'en tolker punkterne i bearbejdningsplanet som koordinaterne til borings-midtelpunktet. Hvis De vil udnytte de i punkt-tabellen definerede koordinater i spindel-aksen som startpunkt-koordinater, skal De definere emne-overkanten (Q203) med 0 (se "8.3 Borecykler", eksempel).

Virkemåde af punkt-tabellen med cykler 210 til 215

TNC'en tolker punkterne som en yderligere nulpunkt-forskydning. Hvis De vil udnytte de i punkttabellen definerede punkter som startpunkt koordinater, skal De programmere startpunktet og emne-overkanten (Q203) i den til enhver tid værende fræscyklus med 0 (se "8.4 Cykler for fræsning af lommer, tappe og noter", eksempel).

8.3 Borecykler

TNC'en stiller ialt 8 cykler til rådighed for de mest forskellige borebearbejdninger:

cyklus	Softkey
1 DYBDEBORING Uden automatisk forpositionering	
200 BORING Med automatisk forpositionering, 2. Sikkerheds-afstand	200 Ø 25/2
201 REIFNING Med automatisk forpositionering, 2. Sikkerheds-afstand	201
202 UDDREJNING Med automatisk forpositionering, 2. Sikkerheds-afstand	202 [] 2-2
203 UNIVERSAL-BORING Med automatisk forpositionering, 2. Sikkerheds-afstand, Spånbrud, Reduktion	203 0
204 UNDERSÆNKNING BAGFRA Med automatisk forpositionering, 2. Sikkerheds-afstand	204 J 202
2 GEVINDBORING Med kompenserende patron	2 {}
17 GEVINDBORING GS Uden komp. patron (stiv gevindskæring)	17 🕃 RT

8.3 Borecykler

DYBDEBORING (cyklus 1)

- **1** Værktøjet borer med den indlæste tilspænding F fra den aktuelle position til den første fremryknings-dybde
- **2** Herefter kører TNC'en værktøjet i ilgang FMAX tilbage og igen til første fremryk-dybde, formindsket med forstop-afstanden t.
- 3 Styringen fremskaffer selv forstop-afstanden:
 - Boredybde indtil 30 mm: t = 0,6 mm
 - Boredybde over 30 mm: t = boredybde/50

maximal forstop-afstand: 7 mm

- 4 I tilslutning hertil borer værktøjet med den indlæste tilspænding F videre til næste fremryk-dybde
- **5** 5 TNC'en gentager disse forløb (1 til 4), indtil den indlæste boredybde er nået
- **6** Ved bunden af boringen trækker TNC'en værktøjet tilbage, efter DVÆLETID for friskæring, med FMAX til startpositionen.

Pas på før programmeringen

Programmer positionerings-blokken på startpunktet (boringsmidten) af bearbejdningsplanet med radiuskorrektur R0.

Programmér positionerings-blokken til startpunktet i spindelaksen (Sikkerheds- afstand over emne-overfladen).

Fortegnet for cyklusparameter dybde fastlægger arbejdsretningen.

- Sikkerheds-afstand 1 (inkremental): Afstand fra værktøjsspids (startposition) til emne-overflade
- Boredybde 2 (inkremental): Afstanden mellem emneoverflade og bunden af boringen (spidsen af borkegle)
- Fremryknings-dybde 3 (inkremental): Målet, med hvilket værktøjet hver gang rykkes frem. TNC´en kører i en arbejdsgang til dybden når:
 - Fremryk-dybde og boredybde er ens
 - Fremryk-dybden er større end boredybden

Boredybden må ikke være et multiplum af fremryk-dybde

- Dvæletid i sekunder: Tiden, i hvilken værktøjet venter i bunden af boringen, for friskæring
- Tilspænding F: Kørselshastigheden af værktøjet ved boring i mm/min

NC-blok eksempel:

1	CYCL DEF	1.0	DYBDEBORING
2	CYCL DEF	1.1	AFST 2
3	CYCL DEF	1.2	DYBDE -20
4	CYCL DEF	1.3	FREMRYK 5
5	CYCL DEF	1.4	DV.TID O
6	CYCL DEF	1.5	F500

BORING (cyklus 200)

- 1 TNC'en positionerer værktøjet i spindelaksen i ilgang FMAX til sikkerheds-afstand over emne-overfladen
- 2 Værktøjet borer med den programmerede tilspænding F til den første fremryk-dybde
- **3** TNC'en kører værktøjet med FMAX tilbage til sikkerheds-afstand, dvæler der - hvis det er indlæst - og kører derefter igen med FMAX til Sicherheits-Abstand mm over den første fremryk-dybde
- 4 Herefter borer værktøjet med den indlæste tilspænding F videre til næste fremryk-dybde
- **5** TNC'en gentager disse forløb (2 til 4), indtil den indlæste boredybde er nået
- 6 Fra bunden af boringen kører værktøjet med FMAX sikkerhedsafstand eller – hvis det er indlæst – til den
 2. sikkerheds-afstand

8.3 Borecykler

Pas på før programmeringen

Programmér positionerings-bloken til startpunkt (boringsmidten) i bearbejdningsplanet med radiuskorrektur R0.

Fortegnet for parameter dybde fastlægger arbejdsretningen.

Sikkerheds-afstand Q200 (inkremental): Afstand mellem værktøjsspids og emne-overflade

- Dybde Q201 (inkremental): Afstand mellem emneoverflade og bunden af boringen (spidsen af bor-kegle)
- ► Tilspænding fremrykdybde Q206: Kørselshastigheden af værktøjet ved boring i mm/min
- Fremryk-dybde Q202 (inkremental): Målet med hvilket værktøjet rykker frem hver gang TNC´en kører i en arbejdsgang til dybden når:
 - Fremryk-dybde og dybde er ens
 - Fremryk-dybde er større end dybde

Dybden må ikke være et multiplum af fremryk-dybde

- ► Koord. emne-overflade Q203 (absolut): Koordinater til emne-overflade
- 2. sikkerheds-afstand Q204 (inkremental): Koordinater til spindelaksen, i hvilke der ingen kollision kan ske mellem værktøj og emne

NC-blok eksempel:

7	CYCL DEF 200	BORING
	Q200=2	;SIKKERHEDS-AFST.
	Q201=-20	; DYBDE
	Q206=150	;TILSPÆNDING DYBDEFR.
	Q202=5	; FREMRYK-DYBDE
	Q210=0	;DVÆLETID OPPE
	Q203=+0	;OVERFLADE KOORDINAT
	Q204=50	;2. SIKKERHEDS-AFST.

et borer i remryk-d kører væ der - hvis il Sicherh r borer va e fremry

REIFNING (cyklus 201)

- 1 TNC'en positionerer værktøjet i spindelaksen i ilgang FMAX til den indlæste sikkerheds-afstand over emne-overfladen
- 2 Værktøjet reifer med den indlæste tilspænding F til den programmerede dybde
- 3 I bunden af boringen dvæler værktøjet, ifald det er indlæst
- 4 Herefter kører TNC'en værktøjet med tilspænding F tilbage til sikkerheds-afstand og derfra – ifald det er indlæst – med FMAX til den 2. sikkerheds-afstand

Programmér positionerings-bloken til startpunkt (boringsmidten) i bearbejdningsplanet med radiuskorrektur R0.

Fortegnet for parameter dybde fastlægger arbejdsretningen.

201

- Sikkerheds-afstand Q200 (inkremental): Afstand mellem værktøjsspids og emne-overflade
- Dybde Q201 (inkremental): Afstand mellem emneoverflade og bunden af boringen
- Tilspænding fremrykdybde Q206: Kørsels-hastigheden af værktøjet ved reifning i mm/min
- Dvæletid nede Q211: Tiden i sekunder, hvor værktøjet dvæler i bunden af boringen
- Tilspænding udkørsel Q208: Kørselshastigheden af værktøjet ved udkørsel af boringen i mm/min. Hvis De indlæser Q208 = 0, så gælder tilspænding reifning
- Koord. emne-overflade Ω203 (absolut): Koordinater til emne-overflade
- 2. sikkerheds-afstand Q204 (inkremental): Koordinater til spindelaksen, i hvilke der ingen kollision kan ske mellem værktøj og emne

NC-blok eksempel:

8	CYCL DEF 201	REIFNING
	Q200=2	;SIKKERHEDS-AFST.
	Q201=-20	; DYBDE
	Q206=150	;TILSPÆNDING DYBDEFR.
	Q211=0.25	;DVÆLETID NEDE
	Q208=500	;TILSPÆNDING UDKØRSEL
	Q2O3=+0	;OVERFLADE KOORDINAT
	Q204=50	;2. SIKKERHEDS-AFST.

UDDREJNING (cyklus 202)

Maskine og TNC skal af maskinfabrikanten være forberedt for cyklus 202.

- **1** TNC'en positionerer værktøjet i spindelaksen i ilgang FMAX i sikkerheds-afstand over emne-overfladen
- 2 Værktøjet borer med boretilspænding indtil dybde
- **3** I bunden af boringen dvæler værktøjet ifald det er indlæst med kørende spindel for friskæring
- 4 Herefter udfører TNC'en med M19 en spindel-orientering til 0°positionen
- 5 Hvis der er valgt frikørsel, kører TNC'en i den indlæste retning 0,2 mm (fast værdi) fri
- 6 Herefter kører TNC'en værktøjet med tilspænding udkørsel til sikkerheds-afstand og derfra –ifald det er indlæst med FMAX til den 2. sikkerheds-afstand

Pas på før programmeringen

Programmér positionerings-bloken til startpunkt (boringsmidten) i bearbejdningsplanet med radiuskorrektur R0.

Fortegnet for cyklusparameter dybde fastlægger arbejdsretningen.

- Sikkerheds-afstand Q200 (inkremental): Afstand mellem værktøjsspids og emne-overflade
- Dybde Q201 (inkremental): Afstand mellem emneoverflade og bunden af boringen
- ► Tilspænding fremrykdybde Q206: Kørselshastigheden af værktøjet ved uddrejning i mm/min
- Dvæletid nede Q211: Tiden i sekunder, hvor værktøjet dvæler i bunden af boringen
- Tilspænding udkørsel Q208: Kørselshastigheden af værktøjet ved udkørsel af boringen i mm/min. Hvis De indlæser Q208 = 0, så gælder tilspænding dybdefremrykning
- ► Koord. emne-overflade Q203 (absolut): Koordinater til emne-overflade
- 2. sikkerheds-afstand Q204 (inkremental): Koordinater til spindelaksen, i hvilke der ingen kollision kan ske mellem værktøj og emne
- ▶ Frikørsel-retning (0/1/2/3/4) Q214: Fastlæg retningen, i hvilken TNCén frikører værktøjet i bunden af boringen (efter spindel-orientering)

NC-blok eksempel:

9	CYCL DEF 202	UDDREJNING
	Q200=2	;SIKKERHEDS-AFST.
	Q201=-20	; DY BD E
	Q206=150	;TILSPÆNDING DYBDEFR.
	Q211=0.5	;DVÆLETID NEDE
	Q208=500	;TILSPÆNDING UDKØRSEL
	Q2O3=+0	;OVERFLADE KOORDINAT
	Q204=50	;2. SIKKERHEDS-AFST.
	Q214=1	;FRIKØRRETNING

202 <u>|</u>

- 0: Værktøj frikøres ikke
- 1: Værktøj frikøres i minus-retning af hovedakse
- 2: Værktøj frikøres i minus-retning af sideakse
- 3: Værktøj frikøres i plus-retning af hovedakse
- 4: Værktøj frikøres i plus-retning af sideakse

Kollisionsfare!

Kontrollér, hvor værktøjs-spidsen står, når De med M19 programmerer en spindel-orientering (f.eks. i driftsart positionering med manuel indlæsning). Indret værktøjsspidsen således, at den står parallelt med en koordinatakse. Vælg frikørsels-retning således, værktøjet kører væk fra boringskanten.

UNIVERSAL-BORING (cyklus 203)

- 1 TNC'en positionerer værktøjet i spindelaksen i ilgang FMAX til den indlæste sikkerheds-afstand over emne-overfladen
- 2 Værktøjet borer med den indlæste tilspænding F til den første fremryk-dybde
- 3 Hvis der er indlæst spånbrud, kører TNC en værktøjet med sikkerheds-afstanden tilbage. Hvis De arbejder uden spånbrud, så kører TNC en værktøjet tilbage med tilspænding udkørsel til sikkerheds-afstand, dvæler der – hvis det er indlæst – og kører herefter igen med FMAX til sikkerheds-afstand over den første fremryk-dybde
- **4** Herefter borer værktøjet med tilspænding til den næste fremrykdybde. Fremryk-dybde formindsker sig for hver fremrykning med fremrykdybde – hvis det er indlæst
- 5 TNC'en gentager disse forløb (2-4), indtil boredybden er nået
- **6** I bunden af boringen dvæler værktøjet hvis det er indlæst for friskæring og bliver efter dvæletid trukket tilbage med tilspænding udkørsel tilbage til sikkerheds-afstand. Hvis De har indlæst en 2. sikkerheds-afstand, kører TNC'en værktøjet med FMAX derhen.

b	Pas på før programmeringen
	Programmér positionerings-bloken til startpunkt (boringsmidten) i bearbejdningsplanet med radiuskorrektur R0.
	Fortegnet for cyklusparameter dybde fastlægger arbejdsretningen.
2	 Sikkerheds-afstand Q200 (inkremental): Afstand mellem værktøjsspids og emne-overflade
	 Dybde Q201 (inkremental): Afstand mellem emne- overflade og bunden af boringen (spidsen af bor-kegle)
	Tilspænding fremrykdybde Q206: Kørselshastigheden af værktøjet ved boring i mm/min
	 Fremryk-dybde Q202 (inkremental): Målet med hvilket værktøjet rykker frem hver gang TNC´en kører i en arbejdsgang til dybden når: Fremryk-dybde og dybde er ens Fremryk-dybde er større end dybde
	Dybden må ikke være et multiplum af fremryk-dybde
	Dvæletid oppe Q210: Tiden i sekunder, værktøjet venter i sikkerheds-afstand, efter at TNC´en har kørt det ud efter udspåning af boringen
	Koord. emne-overflade Q203 (absolut): Koordinater til emne-overflade
	2. sikkerheds-afstand Q204 (inkremental): Koordinater til spindelaksen, i hvilke der ingen kollision kan ske mellem værktøj og emne

- Reduktion Q212 (inkremental): Værdien, med hvilken TNC'en efter hver fremryk-dybde formindsker fremrykningen
- Ant.spånbrud ved udkørsl Q213: Antal af spånbrud før TNC'en trækker værktøjet ud af boringen for udspåning. Form spånbrud trækker TNC'en altid værktøjet tilbage til sikkerheds- afstand Q200
- Minimal fremryk-dybde Q205 (inkremental): Hvis De har indlæst en fremrykning, begrænser TNC´en fremrykningen til den med Q205 indlæste værdi
- Dvæletid nede Q211: Tiden i sekunder, hvor værktøjet dvæler i bunden af boringen
- Tilspænding udkørsel Q208: kørselshastigheden af værktøjet ved udkørsel af boringen i mm/min. Hvis De indlæser Q208=0, så kører TNC´en ud med tilspænding Q206

NC-blok eksempel:

10	CYCL DEF 203	UNIVERSAL-BORING
	Q200=2	;SIKKERHEDS-AFST.
	Q201=-20	; DYBDE
	Q206=150	;TILSPÆNDING DYBDEFR.
	Q202=5	;FREMRYK-DYBDE
	Q210=0	;DVÆLETID OPPE
	Q2O3=+0	;OVERFLADE KOORDINAT
	Q204=50	;2. SIKKERHEDS-AFST.
	Q212=0.2	; REDUKTION
	Q213=3	; SPÅN BRUD
	Q205=3	;MIN. FREMRYK-DYBDE
	Q211=0.25	;DVÆLETID NEDE
	Q208=500	;TILSPÆNDING UDKØRSEL

UNDERSÆNKNING-BAGFRA (cyklus 204)

Maskine og TNC skal være forberedt af maskinfabrikanten for undersænkning bagfra.

Cyklus'en arbejder kun med såkaldte bagfra-borstang.

Med denne cyklus fremstiller De undersænkninger, som befinder sig på emnets underside.

- 1 TNC'en positionerer værktøjet i spindelaksen i ilgang FMAX i sikkerheds-afstand over emne-overfladen
- 2 Der gennemfører TNC'en med M19 en spindel-orientering på 0°positionen og forskyder værktøjet med excentermålet
- 3 I tilslutning hertil dykker værktøjet med tilspænding forpositionering ind i den forborede boring, indtil skæret står i sikkerheds-afstand nedenfor emne-underkanten
- 4 TNC'en kører nu igen værktøjet til boringsmidten, indkobler spindlen og evt. kølemiddel og kører så med tilspænding sænkning til den indlæste dybde sænkning
- 5 Ifald det er indlæst, dvæler værktøjet i bunden af sænkningen og kører i tilslutning hertil igen ud af boringen, gennemfører en spindelorientering og forskyder påny med excentermålet
- 6 I tilslutning hertil kører TNC'en værktøjet med tilspænding forpositionering i sikkerheds-afstand og derfra - hvis det er indlæst - med FMAX til den 2. sikkerheds-afstand.

Pas på før programmeringen

Programmér positionerings-bloken til startpunkt (boringsmidten) i bearbeidningsplanet med radiuskorrektur R0.

Fortegnet for cyklusparameter dybde fastlægger arbeidsretningen ved undersænkning. Pas på: Positivt fortegn sænker i retning af den positive spindelakse.

Værktøjs-længden indlæses således, at ikke skæret, men derimod underkanten af borstangen er opmålt.

TNC'en tager ved beregningen hensyn til startpunktet for undersænkningen skærlængden af borstangen og materialetykkelsen.

8.3 Borecykler
8.3 Borecykler

²⁰⁴]

- Sikkerheds-afstand Q200 (inkremental): Afstand mellem værktøjsspids og emne-overflade
- Undersænknings dybde Q249 (inkremental): Afstand mellem emne-underkant og bund af undersænkning. Positivt fortegn fremstiller undersænkningen i positiv retning af spindelaksen
- Materialetykkelse Q250 (inkremental): Tykkelse af emnet
- Excentermål Q251 (inkremental): Excentermål for borstang; tages fra værktøjs- databladet
- Skærhøjde Q252 (inkremental): Afstand mellem underkant af borstangen og hovedskæret; Tages fra værktøjs-databladet
- ► Tilspænding forpositioneren Q253: Kørselshastigheden for værktøjet ved indstikning i emnet hhv. ved udkørsel af emnet i mm/min
- Tilspænding undersænkning Q254: Kørselshastighed for værktøjet ved undersænkning i mm/min
- Dvæletid Q255: Dvæletid i sekunder ved bunden af undersænkningen
- ► Koord. emne-overflade Q203 (absolut): Koordinater til emne-overflade
- 2. sikkerheds-afstand Q204 (inkremental): Koordinater til spindelaksen, i hvilke der ingen kollision kan ske mellem værktøj og emne
- Frikørsels-retning (0/1/2/3/4) Q214: Fastlæg retningen, i hvilken TNC´en skal forskyde værktøjet med excentermålet (efter spindel-orientering)
- 0: Indlæsning ikke tilladt
- 1: Værktøjs forskydning i minus-retning af hovedaksen
- 2: Værktøjs forskydning i minus-retning af sideakse
- 3: Værktøjs forskydning i plus-retning af hovedaksen
- 4: Værktøjs forskydning i plus-retning af sideakse

Kollisionsfare!

Kontrollér, hvor værktøjs-spidsen står, når De med M19 programmerer en spindel-orientering (f.eks. i driftsart positionering med manuel indlæsning). Indret værktøjsspidsen således, at den står parallelt med en koordinatakse. Vælg frikørsel-retning således, at værktøjet kollisionsfrit kan indstikkes i boringen.

NC-blok eksempel:

11	CYCL DEF 204	UNDERSÆNKNING-BAGFRA
	Q200=2	;SIKKERHEDS-AFST.
	Q249=+5	; UNDERSÆNK.DYBDE
	Q250=20	;MATERIALETYKKELSE
	Q251=3.5	; EXCENTERMÅL
	Q252=15	; SKÆRHØJDE
	Q253=750	;TILSPÆND. FORPOS.
	Q254=200	;TILSPÆND. UNDERSÆNK.
	Q255=0	; DVÆLETID
	Q203=+0	;OVERFLADE KOORDINAT
	Q204=50	;2. SIKKERHEDS-AFST.
	Q214=1	; FRIKØRRETNING

132

8.3 Borecykler

GEVINDBORING med komp.patron (cyklus 2)

- 1 Værktøjet kører i en arbejdsgang til boredybde
- 2 Herefter bliver spindelomdrejningsretningen vendt og værktøjet trukket tilbage til startpositionen efter en dvæletid
- **3** Ved startpositionen bliver spindelomdrejningsretningen påny vendt

Pas på før programmeringen

Programmér positionerings-bloken til startpunkt (boringsmidten) i bearbejdningsplanet med radiuskorrektur R0.

Programmér positionerings-blokken til startpunktet i spindelaksen (Sikkerheds- afstand over emne-overfladen).

Fortegnet for parameter dybde fastlægger arbejdsretningen.

Værktøjet skal være opspændt i en patron med længdekompensering. Den længdekompenserende patron kompenserer for tolerancen mellem tilspænding og omdrejningstal under bearbejdningen.

Medens cyklus bliver afviklet, er drejeknappen for spindel-override uvirksom. Drejeknappen for tilspændings-override er kun begrænset aktiv (fastlagt af maskinfabrikanten).

For højregevind aktiveres spindelen med M3, for venstre-gevind med M4.

- Sikkerheds-afstand 1 (inkremental): Afstand mellem værktøjsspids (startposition) og emne-overflade; Anbefalet værdi: 4x gevindstigning
 - Boredybde 2 (gevindlængde, inkremental): Afstand mellem emne-overflade og gevindende
 - Dvæletid i sekunder: Værdi mellem 0 og 0,5 sekunder indlæses, for at undgå en fastkiling af værktøjet ved udkørsel
 - Tilspænding F: Kørselshastighed af værktøjet ved gevindboring

Beregning af tilspænding: F = S x p

- F: Tilspænding mm/min)
- S: Spindel-omdrejningstal (omdr./min)
- p: Gevindstigning (mm)

NC-blok eksempel:

13	CYCL D	EF 2.0	GEVINDBORING
14	CYCL D	EF 2.1	AFST 2
15	CYCL D	EF 2.2	DYBDE -20
16	CYCL D	EF 2.3	DVÆ.TID O
17	CYCL D	EF 2.4	F100

8.3 Borecykler

GEVINDBORING uden kompenserende patron GS (cyklus 17)

Maskinen og TNC'en skal af maskinfabrikanten være
 forberedt for gevindboring uden kompenserende patron.

TNC'en skærer gevindet enten i en eller i flere arbejdsgange uden længdekompenserende patron.

Fordele sammenlignet med cyklus gevindboring med kompenserende patron:

- Højere bearbejdningshastighed
- Samme gevind kan gentages, spindelen ved cyklus-kald opretter sig på 0°-positionen (afhængig af maskinparameter 7160)
- Større kørselsområde af spindelakse, da den kompenserende patron bortfalder

Pas på før programmeringen

Programmer positionerings-blokken til startpunkt (boringsmidte) i bearbejdningsplaet med Radiuskorrektur R0

Programmér positionerings-blokken til startpunktet i spindelaksen (Sikkerheds- afstand over emne-overfladen).

Fortegnet for parameter dybde fastlægger arbejdsretningen.

TNC'en beregner tilspændingen i afhængighed af omdrejningstallet. Hvis De under gevindboringen bruger drejeknappen for omdrejningstal-override, tilpasser TNC'en automatisk tilspændingen.

Drejeknappen for tilspændings-override er ikke aktiv.

Ved cyklus-ende står spindelen. Før næste bearbejdning indkobles spindelen med M3 (hhv. M4) igen

Sikkerheds-afstand 1 (inkremental): Afstand fra værktøjsspids (startposition) til emne-overflade

- Boredybde 2 (inkremental): Afstand mellem emneoverflade (gevindstart) og gevindende
- Gevindstigning 3: Stigning af gevindet. Fortegnet fastlægger højre- og venstregevind:
 - + = Højregevind
 - = Venstregevind

18 CYCL DEF 17.	O GEVBORING GS
-----------------	----------------

- 19 CYCL DEF 17.1 AFST 2
- 20 CYCL DEF 17.2 DYBDE -20
- 21 CYCL DEF 17.3 STIG +1

O BEGIN PGM C200 MM	
1 BLK FORM 0.1 Z X+0 Y+0 Z-20	Råemne-definition
2 BLK FORM 0.2 X+100 Y+100 Z+0	
3 TOOL DEF 1 L+0 R+3	Værktøjs-definition
4 TOOL CALL 1 Z S4500	Værktøjs-kald
5 L Z+250 R0 F MAX	Værktøj frikøres
6 CYCL DEF 200 BORING	Cyklus-definition
Q200=2 ;SIKKERHEDS-AFSTAND	
Q201=-15 ;DYBDE	
Q206=250 ;TILSP. DYBD.FRÆS.	
Q2O2=5; INDSTILLINGS-DYBDE	
Q210=0 ;DVÆLETID OPPE	
Q2O3=-10 ;OVERFLADE KOORDINAT	
Q2O4=2O ;2. SIKKERHEDS-AFST.	
7 L X+10 Y+10 R0 FMAX M3	Kør til boring 1, spindel indkobles
8 CYCL CALL	Cyklus-kald
9 L Y+90 RO FMAX M99	Kør til boring 2, cyklus-kald
10 L X+90 RO FMAX M99	Kør til boring 3, cyklus-kald
11 L Y+10 RO FMAX M99	Kør til boring 4, cyklus-kald
12 L Z+250 RO FMAX M2	Værktøj frikøres, program-slut
13 FND PGM C200 MM	

Eksempel: Borecykler

- **Program-afvikling** Pladen er allerede forboret for M12, tykkelsen af pladen: 20 mm
- Gevindborings-cyklus programmeres
- Af sikkerhedsgrunde forpositioneres først i planet og efterfølgende i spindelaksen

O BEGIN PGM C2 MM	
1 BLK FORM 0.1 Z X+0 Y+0 Z-20	Råemne-definition
2 BLK FORM 0.2 X+100 Y+100 Z+0	
3 TOOL DEF 1 L+0 R+4.5	Værktøjs-definition
4 TOOL CALL 1 Z S100	Værktøjs-kald
5 L Z+250 RO F MAX	Værktøj frikøres
6 CYCL DEF 2 .0 GEVINDBORING	Cyklus-definition gevindboring
7 CYCL DEF 2 .1 AFST 2	
8 CYCL DEF 2 .2 DYBDE -25	
9 CYCL DEF 2 .3 DVÆ.TID 0	
10 CYCL DEF 2 .4 F175	
11 L X+20 Y+20 RO FMAX M3	Kør til boring 1 i bearbejdningsplanet
12 L Z+2 RO FMAX M99	Forpositionering i spindelaksen
13 L X+70 Y+70 RO FMAX M99	Kør til boring 2 i bearbejdningsplanet
14 L Z+250 RO FMAX M2	Værktøj frikøres, program-slut
15 SLUT PGM C2 MM	

Eksempel: Borecykler i forbindelse med punkt-tabeller

Program-afvikling

Centrering

- Boring
- Gevindboring M6

Boringskoordinaterne er lagret i punkt-tabellen TAB1.PNT (se næste side) og bliver derfra kaldt af TNC en med CYCL CALL PAT.

Værktøjs-radien er valgt således, at alle arbejdsskridt kan ses i testgrafikken.

0	BEGIN PGM 1 MM	
1	BLK FORM 0.1 Z X+0 Y+0 Z-20	Råemne-definition
2	BLK FORM 0.2 X+100 Y+100 Z+0	
3	TOOL DEF 1 L+O R+4	Værktøjs-definition centrerer
4	TOOL DEF 2 L+0 R+2.4	Værktøjs-definition bor
5	TOOL DEF 3 L+O R+3	Værktøjs-definition gevindbor
6	TOOL CALL 1 Z S5000	Værktøjs-kald centrerer
7	L Z+10 R0 F5000	Kør værktøj til sikker højde (programmér F med værdi,
		TNC'en positionerer efter hver cyklus til sikker højde)
8	SEL PATTERN "TAB1"	Fastlæg punkt-tabel
9	CYCL DEF 200 BORING	Cyklus-definition centrering
	Q200=2 ;SIKKERHEDS-AFST.	
	Q201=-2 ;DYBDE	
	Q206=150 ;TILSPÆNDING DYBDEFR.	
	Q2O2=2 ;FREMRYK-DYBDE	
	Q210=0 ;DVÆLETID OPPE	
	Q203=+0 ;OVERFLADE KOORDINAT	Koordinater til overflade (her tvingende at indlæse 0)
	Q2O4=O ;2. SIKKERHEDS-AFST.	2. Sikkerheds-afstand (her tvingende at indlæse 0)
10	CYCL CALL PAT F5000 M3	Cyklus-kald i forbindelse med punkt-tabel TAB1.PNT.
		Tilspænding mellem punkterne: 5000 mm/min
11	L Z+100 RO FMAX M6	Værktøj frikøres, værktøjs-veksel

12 TOOL CALL 2 Z S5000	Værktøjs-kald bor
13 L Z+10 R0 F5000	Kør værktøj til sikker højde (F programmeres med en værdi)
14 CYCL DEF 200 BORING	Cyklus-definition boring
Q200=2;SIKKERHEDS-AFST.	Sikkerheds-afstand
Q201=-25 ; DYBDE	Dybde
Q206=150 ;TILSPÆNDING DYBDEFR.	Tilspænding dybdefremrykning
Q2O2=5;FREMRYK-DYBDE	Fremryknings-dybde
Q210=0 ;DVÆLETID OPPE	Dvæletid
Q2O3=+O ;OVERFLADE KOORDINAT	Koordinater til overflade (her tvingende at indlæse 0)
Q2O4=O ;2. SIKKERHEDS-AFST.	2. Sikkerheds-afstand (her tvingende at indlæse 0)
15 CYCL CALL PAT F5000 M3	Cyklus-kald i forbindelse med punkt-tabel TAB1.PNT.
16 L Z+100 R0 FMAX M6	Værktøj frikøres, værktøjs-veksel
17 TOOL CALL 3 Z S200	Værktøjs-kald gevindborer
18 L Z+50 RO FMAX	Kør værktøj til sikker højde
19 CYCL DEF 2 .0 GEVINDBORING	Cyklus-definition gevindboring
20 CYCL DEF 2 .1 AFST+2	Sikkerheds-afstand
21 CYCL DEF 2 .2 DYBDE-15	Dybde
22 CYCL DEF 2 .3 V.TIDOP	Dvæletid
23 CYCL DEF 2 .4 F150	Tilspænding
24 CYCL CALL PAT F5000 M3	Cyklus-kald i forbindelse med punkt-tabel TAB1.PNT.
25 L Z+100 RO FMAX M2	Værktøj frikøres, program-slut
26 END PGM 1 MM	

Punkt-tabelTAB1.PNT

	TAB1	.PNT		MM			
NR	Х		Y		Z		
0	+10		+10		+0		
1	+40		+30		+0		
2	+90		+10		+0		
3	+80		+30		+0		
4	+80		+65		+0		
5	+90		+90		+0		
6	+10		+90		+0		
7	+20		+55		+0		
[END]							

8.4 Cykler for fræsning af lommer, tappe og noter

cyklus	Softkey
4 LOMMEFRÆSNING (firkantet) Skrub-cyklus uden automatisk forpositionering	4
212 LOMME SLETFRÆS (firkantet) Slet-cyklus med automatisk forpositionering, 2. Sikkerheds-afstand	212
213 LOMME SLETFRÆS (firkantet) Slet-cyklus med automatisk forpositionering, 2. Sikkerheds-afstand	213
5 RUND LOMME Skrub-cyklus uden automatisk forpositionering	5
214 SLET RUND LOMME Slet-cyklus med automatisk forpositionering, 2. Sikkerheds-afstand	214
215 SLET RUND TAP Slet-cyklus med automatisk forpositionering, 2. Sikkerheds-afstand	215
3 NOTFRÆSNING Skrub-/slet-cyklus uden automatisk forpositionering, lodret dybde-fremrykning	3
210 NOT PENDLING Skrub-/slet-cyklus med automatisk forpositionering, pendlende indstiksbevægelse	218 😨
211 RUND NOT Skrub-/slet-cyklus med automatisk forpositionering, pendlende indstiksbevægelse	211

LOMMEFRÆSNING (cyklus 4)

- 1 Værktøjet indstikkes på startpositionen (lommemidte) i emnet og kører til den første fremryk-dybde
- 2 Værktøjet kører herefter i den positive retning af den lange side ved kvadratiske lommer i den positive Y-retning - og udfræser så lommen indefra og udefter
- 3 Disse forløb gentager sig (1 til 3), indtil dybde er nået
- 4 Ved enden af cyklus kører TNC'en værktøjet tilbage til startpositionen

Pas på før programmeringen

Programmér positionerings-blokken på startpunktet (lommemidte) i bearbejdningsplanet med radiuskorrektur R0.

Programmér positionerings-blokken til startpunktet i spindelaksen (Sikkerheds- afstand over emne-overfladen).

Fortegnet for parameter dybde fastlægger arbejdsretningen.

Anvend fræser med centrumskær (DIN 844), eller forboring i lommemidten.

For den 2. sidelængde gælder følgende betingelse: 2.sidelængde større end [(2 x rundings-radius) + sideværts fremrykning k].

4

- Sikkerheds-afstand 1 (inkremental): Afstand fra værktøjsspids (startposition) til emne-overflade
- Fræsedybde 2 (inkremental): Afstand mellem emneoverflade og bunden af lommen
- Fremryknings-dybde 3 (inkremental): Målet, med hvilket værktøjet hver gang rykkes frem. TNC´en kører i en arbeidsgang til dybden hvis:
 - fremryk-dybde og dybde er ens
 - fremryk-dybde er større end dybden
- Tilspænding fremrykdybde: Kørselshastighed for værktøjet ved indstikning
- 1. Side-længde 4: Længden af lommen, parallelt med en hovedakse i bearbejdningsplanet
- ▶ 2. Side-længde 5: Bredde af lommen
- Tilspænding F: Kørselshastighed af værktøjet i bearbejdningsplanet

27	CYCL DEF	4.0	LOMMEFRÆSNING
28	CYCL DEF	4.1	AFST 2
29	CYCL DEF	4.2	DYBDE -20
30	CYCL DEF	4.3	FREMRYK 5 F100
31	CYCL DEF	4.4	X80
32	CYCL DEF	4.5	Y60
33	CYCL DEF	4.6	F275 DR+ RADIUS 5

- Drejning medurs DR + : Medløbs-fræsning ved M3 DR – : Modløbs-fræsning ved M3
- Rundings-radius: Radius for lommens hjørne. For radius = 0 er rundings-radius lig med værktøjsradius

Beregning:

Sideværts fremrykning $k = K \times R$

- K: Overlapnings-faktor, fastlægges i maskin-parameter 7430
- R: Radius for fræser

LOMME SLETNING (cyklus 212)

- 1 TNC'en kører automatisk værktøjet i spindelaksen i sikkerhedsafstand, eller – hvis det er indlæst – til 2. sikkerheds-afstand og herefter til lommemidten
- 2 Fra lommemidten kører værktøjet i bearbejdningsplanet til startpunktet for bearbejdningen. TNC'en tager ved beregningen hensyn til startpunktet for sletspån og værktøjs-radius. Evt. indstikker TNC'en i lommemidten
- **3** Hvis værktøjet står på den 2. sikkerheds-afstand, kører TNC'en værktøjet i ilgang FMAX til sikkerheds-afstand og derfra med tilspændingen dybde-fremryk til den første fremryk-dybde
- 4 Herefter kører værktøjet tangentialt til den færdige del og fræser i medløb een omgang.
- **5** Herefter kører værktøjet tangentialt væk fra konturen tilbage til startpunktet i bearbejdningsplanet
- 6 Disse forløb (3 til 5) gentager sig, indtil den programmerede dybde er nået
- 7 Ved enden af cyklus kører TNC'en værktøjet med ilgang til sikkerheds-afstand eller – hvis det er indlæst – til den
 2. sikkerheds-afstand og herefter til midten af lommen (slutposition = startposition).

Pas på før programmeringen

Fortegnet for parameter dybde fastlægger arbejdsretningen.

Hvis De vil sletfræse lommen helt ud, så anvender De en fræser med centrumskær (DIN 844) og indlæser en lille tilspænding fremrykdybde.

Mindste størrelse af lommen: tre gange værktøjs-radius.

- Sikkerheds-afstand Q200 (inkremental): Afstand mellem værktøjsspids og emne-overflade
- Dybde Q201 (inkremental): Afstand mellem emneoverflade og lommens bund
- Tilspænding dybdefremrykning Q206: Kørselshastigheden for værktøjet ved kørsel til dybden i mm/min. Hvis De indstikker i materialet, så indlæser De en mindre værdi end defineret i Q207
- Fremryk-dybde Q202 (inkremental): Målet med hvilket værktøjet bliver fremrykket hver gang; indlæs værdier større end 0
- Tilspænding fræsning Q207: Kørselshastighed af værktøjet ved fræsning i mm/min
- ▶ Koord. emne-overflade Q203 (absolut): Koordinater til emne-overflade
- 2. sikkerheds-afstand Q204 (inkremental): Koordinater til spindelaksen, i hvilke der ingen kollision kan ske mellem værktøj og emne
- Midte 1. akse Q216 (absolut): Midten af lommen i hovedaksen i bearbejdningsplanet
- Midte 2. akse Q217 (absolut): Midte af lommen i sideaksen i bearbejdningsplanet
- I. Sidelængde Q218 (inkremental): Længden af lommen, parallelt med hovedaksen i bearbejdningsplanet
- Sidelængde Q219 (inkremental): Længden af lommen, parallelt med sideaksen i bearbejdningsplanet
- Hjørneradius Q220: Radius af lommens hjørne Hvis ikke indlæst, sætter TNC´en hjørneradius lig værktøjsradius
- Sletspån 1. AKSE Q221 (inkremental): Sletspån i hovedaksen i bearbejdningsplanet, henført til længden af lommen. Er kun nødvendig for TNC´en for beregning af forpositionen

NC-blokeksempel:

34	CYCL DEF 212	LOMME SLETFRÆS
	Q200=2	;SIKKERHEDS-AFST.
	Q201=-20	; DYBDE
	Q206=150	;TILSPÆNDING DYBDEFR.
	Q202=5	; FREMRYK-DYBDE
	Q207=500	;TILSPÆNDING FRÆSE
	Q2O3=+O	;;OVERFLADE KOORDINAT
	Q204=50	;2. SIKKERHEDS-AFST.
	Q216=+50	;MIDTE 1. AKSE
	Q217=+50	;MIDTE 2. AKSE
	Q218=80	;1. SIDE-LÆNGDE
	Q219=60	;2. SIDE-LÆNGDE
	Q220=5	; HJØRNERADIUS
	0221=0	; SLETSPÅN

8.4 Cykler for fr<mark>æsni</mark>ng af lommer, tappe og noter

212

SLETFRÆSNING AF TAP (cyklus 213)

- 1 TNC'en kører værktøjet i spindelaksen til sikkerheds-afstand, eller
 hvis det er indlæst til den 2. sikkerheds-afstnd og derefter til tappens midte
- **2** Fra tappens midte kører værktøjet i bearbejdningsplanet til startpunktet for bearbejdningen. Startpunktet ligger ca 3,5-gang værktøjs-radius til højre for tappen
- **3** Hvis værktøjet står på den 2. sikkerheds-afstand, kører TNC'en værktøjet i ilgang FMAX i sikkerheds-afstand og derfra med tilspændingen dybde-fremryk til den første fremryk-dybde
- **4** Herefter kører værktøjet tangentialt til den færdige del og fræser i medløb een omgang.
- **5** Herefter kører værktøjet tangentialt væk fra konturen tilbage til startpunktet i bearbejdningsplanet
- 6 Disse forløb (3 til 5) gentager sig, indtil den programmerede dybde er nået
- **7** Ved enden af cyklus kører TNC'en værktøjet med FMAX i sikkerheds-afstand eller – hvis det er indlæst – til den 2. sikkerheds-afstand og herefter til midten af tappen (slutposition = startposition).

Pas på før programmeringen

Fortegnet for parameter dybde fastlægger arbejdsretningen.

Hvis De vil fræse tappen helt fra bunden af, så skal De anvende en fræser med centrumskær (DIN 844). Indlæs så en lille værdi for tilspænding fremrykdybde.

213

Sikkerheds-afstand Q200 (inkremental): Afstand mellem værktøjsspids og emne-overflade

- Dybde Q201 (inkremental): Afstand mellem emneoverflade og tappens bund
- Tilspænding fremrykdybde Q206: Kørselshastighed for værktøjet ved kørsel til dybden i mm/min. Når De indstikker i materialet, så indlæses en lille værdi, når De indstikker i det fri, så indlæses en højere tilspænding
- Fremryk-dybde Q202 (inkremental): Målet med hvilket værktøjet rykker frem hver gang Indlæs værdier større end 0.
- Tilspænding fræsning Q207: Kørselshastighed af værktøjet ved fræsning i mm/min

35	CYCL DEF 213	TAP SLETFRÆS
	Q200=2	;SIKKERHEDS-AFST.
	Q201=-20	; DYBDE
	Q206=150	;TILSPÆNDING DYBDEFR.
	Q202=5	;FREMRYK-DYBDE
	Q207=500	;TILSPÆNDING FRÆSE
	Q2O3=+0	;OVERFLADE KOORDINAT
	Q2O4=50	;2. SIKKERHEDS-AFST.
	Q216=+50	;MIDTE 1. AKSE
	Q217=+50	;MIDTE 2. AKSE
	Q218=80	;1. SIDE-LÆNGDE
	Q219=60	;2. SIDE-LÆNGDE
	Q220=5	; HJØRNE RADIUS
	0221=0	; SLETSPÅN

- ▶ Koord. emne-overflade Q203 (absolut): Koordinater til emne-overflade
- 2. sikkerheds-afstand Q204 (inkremental): Koordinater til spindelaksen, i hvilke der ingen kollision kan ske mellem værktøj og emne
- Midte 1. akse Q216 (absolut): Midten af tappen i hovedaksen i bearbejdningsplanet
- Midte 2. akse Q217 (absolut): Midten af tappen i sideaksen i bearbejdningsplanet
- 1. side-længde Q218 (inkremental): Længden af tappen parallelt med hovedaksen i bearbejdningsplanet
- ▶ 2. side-længde Q219 (inkremental): Længden af tappen parallelt med sideaksen i bearbejdningsplanet
- ▶ Hjørneradius Q220: Radius af tappens hjørne
- Sletspån 1. akse Q221 (inkremental værdi): Sletspån i hovedaksen i bearbejdningsplanet, henført til længden af tappen Er kun nødvendig for TNC en for beregning af forpositionen

CIRKULÆR LOMME (cyklus 5)

- 1 Værktøjet indstikkes på startpositionen (lommemidte) i emnet og kører til den første fremryk-dybde
- **2** Herefter beskriver værktøjet med tilspænding F den i billedet til højre viste spiralformede bane; for sideværts fremrykning k se cyklus 4 LOMMEFRÆSNING
- 3 Disse forløb gentager sig, indtil dybde er nået
- 4 Til slut kører TNC'en værktøjet tilbage til startpositionen.

Pas på før programmeringen

Programmér positionerings-blokken på startpunktet (lommemidte) i bearbejdningsplanet med radiuskorrektur R0.

Programmér positionerings-blokken til startpunktet i spindelaksen (Sikkerheds- afstand over emne-overfladen).

Fortegnet for parameter dybde fastlægger arbejdsretningen.

Anvend fræser med centrumskær (DIN 844), eller forboring i lommemidten.

- 0
- Sikkerheds-afstand 1 (inkremental): Afstand fra værktøjsspids (startposition) til emne-overflade
- Fræsedybde 2 (inkremental): Afstand mellem emneoverflade og bunden af lommen
- Fremryknings-dybde 3 (inkremental): Målet, med hvilket værktøjet hver gang rykkes frem. TNC'en kører i en arbejdsgang til dybden hvis:
 - fremryk-dybde og dybde er ens
 - fremryk-dybde er større end dybden
- Tilspænding fremrykdybde: Kørselshastighed for værktøjet ved indstikning
- ▶ CIRKELRADIUS: Radius af cirkellommen
- Tilspænding F: Kørselshastighed af værktøjet i bearbejdningsplanet
- Drejning medurs DR + : Medløbs-fræsning ved M3
 - DR : Modløbs-fræsning ved M3

36	CYCL DEF 5.0	RUND LOMME
37	CYCL DEF 5.1	AFST 2
38	CYCL DEF 5.2	DYBDE -20
39	CYCL DEF 5.3	FREMRYK 5 F100
40	CYCL DEF 5.4	RADIUS 40
41	CYCL DEF 5.5	F250 DR+

SLETFRÆSNING AF RUND LOMME (cyklus 214)

- 1 TNC'en kører automatisk værktøjet i spindelaksen i sikkerhedsafstand, eller – hvis det er indlæst – til 2. sikkerheds-afstand og herefter til lommemidten
- 2 Fra lommemidten kører værktøjet i bearbejdningsplanet til startpunktet for bearbejdningen. TNC'en tager ved beregningen af startpunkt hensyn til råemne-diameteren og værktøjs-radius. Hvis De indlæser råemne-diameteren med 0, indstikker TNC'en i lommemidten
- **3** Hvis værktøjet står på den 2. sikkerheds-afstand, kører TNC'en værktøjet i ilgang FMAX i sikkerheds-afstand og derfra med tilspændingen dybde-fremryk til den første fremryk-dybde
- 4 Herefter kører værktøjet tangentialt til den færdige del og fræser i medløb een omgang.
- **5** Herefter kører værktøjet tangentialt fra konturen tilbage til startpunktet i bearbejdningsplanet.
- 6 Disse forløb (4 til 5) gentager sig, indtil den programmerede dybde er nået
- 7 Ved enden af cyklus kører TNC'en værktøjet med FMAX til sikkerheds-afstand eller – hvis det er indlæst – til den
 2. sikkerheds-afstand og herefter til midten af lommen (slutposition = startposition).

Pas på før programmeringen

Fortegnet for parameter dybde fastlægger arbejdsretningen.

Hvis De vil sletfræse lommen helt ud, så anvender De en fræser med centrumskær (DIN 844) og indlæser en lille tilspænding fremrykdybde.

- 214
- Sikkerheds-afstand Q200 (inkremental): Afstand mellem værktøjsspids og emne-overflade
- Dybde Q201 (inkremental): Afstand mellem emneoverflade og lommens bund
- Tilspænding fremrykdybde Q206: Kørselshastighed for værktøjet ved kørsel til dybden i mm/min. Når De indstikker i materialet, så indlæses en lille værdi; hvis De indstikker i det fri, så indlæses en højere tilspænding
- ► Fremryk-dybde Q202 (inkremental): Målet, med hvilket værktøjet bliver fremrykket hver gang.
- Tilspænding fræsning Q207: Kørselshastighed af værktøjet ved fræsning i mm/min

42	CYCL DEF 214	RUND LOMME. SLETFRÆS
	Q200=2	;SIKKERHEDS-AFST.
	Q201=-20	; DYBDE
	Q206=150	;TILSPÆNDING DYBDEFR.
	Q202=5	; FREMRYK-DYBDE
	Q207=500	;TILSPÆNDING FRÆSE
	Q203=+0	;OVERFLADE KOORDINAT
	Q204=50	;2. SIKKERHEDS-AFST.
	Q216=+50	;MIDTE 1. AKSE
	Q217=+50	;MIDTE 2. AKSE
	Q222=79	;RÅEMNE-DIAMETER
	Q223=80	; FÆRDIGDEL-DIAM.

- ► Koord. emne-overflade Q203 (absolut): Koordinater til emne-overflade
- 2. sikkerheds-afstand Q204 (inkremental): Koordinater til spindelaksen, i hvilke der ingen kollision kan ske mellem værktøj og emne
- Midte 1. akse Q216 (absolut): Midten af lommen i hovedaksen i bearbejdningsplanet
- Midte 2. akse Q217 (absolut): Midte af lommen i sideaksen i bearbejdningsplanet
- Råemne-diameter Q222: Diameteren af den forbearbejdede lomme; råemne-diameteren indlæses mindre end diameteren af det færdige emne. Hvis De indlæser Q222 = 0, så indstikker TNC'en i lommemidten
- Færdig-del-diameter Q223: Diameteren af den færdig bearbejdede lomme; indlæs færdig-del-diameteren større end råemne-diameteren og større end værktøjsdiameteren

SLETFRÆSNING AF RUNDE TAPPE (cyklus 215)

- 1 TNC'en kører automatisk værktøjet i spindelaksen til sikkerhedsafstand, eller – hvis det er indlæst – til den 2. sikkerheds-afstand og herefter til tappens midte
- **2** Fra tappens midte kører værktøjet i bearbejdningsplanet til startpunktet for bearbejdningen. Startpunktet ligger ca 3,5-gang værktøjs-radius til højre for tappen
- **3** Hvis værktøjet står på den 2. sikkerheds-afstand, kører TNC'en værktøjet i ilgang FMAX i sikkerheds-afstand og derfra med tilspændingen dybde-fremryk til den første fremryk-dybde
- 4 Herefter kører værktøjet tangentialt til den færdige del og fræser i medløb een omgang.
- 5 Herefter kører værktøjet tangentialt væk fra konturen tilbage til startpunktet i bearbejdningsplanet
- 6 Disse forløb (4 til 5) gentager sig, indtil den programmerede dybde er nået
- 7 Ved enden af cyklus kører TNC'en værktøjet med FMAX til sikkerheds-afstand eller – hvis det er indlæst – til den
 2. sikkerheds-afstand og herefter til midten af lommen (slutposition = startposition).

Pas på før programmeringen

Fortegnet for parameter dybde fastlægger arbejdsretningen.

Hvis De vil fræse tappen helt fra bunden af, så skal De anvende en fræser med centrumskær (DIN 844). Indlæs så en lille værdi for tilspænding fremrykdybde.

215

Sikkerheds-afstand Q200 (inkremental): Afstand mellem værktøjsspids og emne-overflade

- Dybde Q201 (inkremental): Afstand mellem emneoverflade og tappens bund
- Tilspænding fremrykdybde Q206: Kørselshastighed for værktøjet ved kørsel til dybden i mm/min. Når De indstikker i materialet, så indlæses en lille værdi; hvis De indstikker i det fri, så indlæses en højere tilspænding
- Fremryk-dybde Q202 (inkremental): Målet med hvilket værktøjet bliver fremrykket hver gang; indlæs værdier større end 0
- Tilspænding fræsning Q207: Kørselshastighed af værktøjet ved fræsning i mm/min
- ▶ Koord. emne-overflade Q203 (absolut): Koordinater til emne-overflade
- 2. sikkerheds-afstand Q204 (inkremental): Koordinater til spindelaksen, i hvilke der ingen kollision kan ske mellem værktøj og emne
- Midte 1. akse Q216 (absolut): Midten af tappen i hovedaksen i bearbejdningsplanet
- Midte 2. akse Q217 (absolut): Midten af tappen i sideaksen i bearbejdningsplanet
- Råemne-diameter Q222: Diameteren af den forbearbejdede tap; råemne-diameteren indlæses større end diameteren af det færdige emne
- Færdig-del diameter Q223: Diameteren af den færdig bearbejdede tap; Diameteren af den færdige del indlæses mindre end råemne-diameteren.

43	CYCL DEF 215	RUND TAP SLETFRÆS
	Q200=2	;SIKKERHEDS-AFST.
	Q201=-20	; DYBDE
	Q206=150	;TILSPÆNDING DYBDEFR.
	Q202=5	;FREMRYK-DYBDE
	Q207=500	;TILSPÆNDING FRÆSE
	Q203=+0	;OVERFLADE KOORDINAT
	Q204=50	;2. SIKKERHEDS-AFST.
	Q216=+50	;MIDTE 1. AKSE
	Q217=+50	;MIDTE 2. AKSE
	Q222=81	;RÅEMNE-DIAMETER
	Q223=80	;FÆRDIGDEL-DIAM.

NOTFRÆSNING (cyklus 3)

Skrubning

- 1 TNC'en flytter værktøjet indad med sletmålet (halve differens mellem notbredde og værktøjs-diameter). derfra indstikkes værktøjet i emnet og fræser noten i længderetningen
- **2** Ved enden af noten følger en fremrykdybde hvorefter værktøjet fræser i modsat retning.

Disse forløb gentager sig, indtil den programmerede fræsedybde er nået

Sletfræsning

- **3** Ved bunden af fræsningen kører TNC'en værktøjet til en cirkelbane tangentialt til yderkonturen; herefter bliver kontur sletfræset i medløb (med M3).
- 4 Afslutningsvis kører værktøjet i ilgang FMAX tilbage til sikkerheds-afstand

Ved et ulige antal af fremrykninger kører værktøjet i sikkerhedsafstand til startpositionen

Pas på før programmeringen

Programmer positionerings-blokken til startpunktet i bearbejdningsplanet – midten af noten (2. side-længde) og forskudt med værktøjs-radius i noten – med radiuskorrektur R0.

Programmér positionerings-blokken til startpunktet i spindelaksen (Sikkerheds- afstand over emne-overfladen).

Fortegnet for parameter dybde fastlægger arbejdsretningen.

Anvend fræser med centrumskær (DIN 844), eller forbor ved startpunktet.

Vælg en fræserdiameter ikke større end notbredde og ikke mindre end den halve notbredde.

- Sikkerheds-afstand 1 (inkremental): Afstand fra værktøjsspids (startposition) til emne-overflade
- Fræsedybde 2 (inkremental): Afstand mellem emneoverflade og bunden af lommen
- Fremryknings-dybde 3 (inkremental): Mål med hvilken værktøjet hver gang bliver fremrykket; TNC'en kører i een arbejdsgang til dybde hvis:
 - fremryk-dybde og dybde er ens
 - Ffremryk-dybde er større end dybde

- Tilspænding fremrykdybde: Kørselshastighed for værktøjet ved indstikning
- 1. Side-længde 4: Længde af noten; 1. skære-.retning fastlægges med fortegn
- ▶ 2. Side-længde 5: Bredde af noten
- Tilspænding F: Kørselshastighed af værktøjet i bearbejdningsplanet

NUT (Langt hul) med pendlende indstikning (cyklus 210)

Pas på før programmeringen

Fortegnet for parameter dybde fastlægger arbejdsretningen.

Vælg ikke fræserdiameteren større end notbredden og ikke mindre end en trediedel af notbredden.

Vælg fræserdiameter mindre end den halve notlængde: ellers kan TNC'en ikke indstikke pendlende.

Skrubning

- 1 TNC'en positionerer værktøjet i ilgang i spindelaksen til den 2. sikkerheds-afstand og herefter i centrum af den venstre cirkelbue; derfra positionerer TNC'en værktøjet til sikkerheds-afstand over emne-overfladen
- 2 Værktøjet kører med reduceret tilspænding til emne-overfladen; herfra kører fræseren i notens længderetning – skrå indstikning i materialet – til centrum af den højre cirkelbue
- **3** Herefter kører værktøjet igen med skrå indstikning tilbage til centrum for den venstre cirkel; disse skridt gentager sig, indtil den programmerede fræsedybde er nået
- **4** I fræsedybde kører TNC'en værktøjet for planfræsning til den anden ende af noten og derefter igen til midten af noten.

Sletfræsning

- 5 Fra midten af noten kører TNC'en værktøjet tangentialt til den færdige kontur; herefter sletfræser TNC'en konturen i medløb (med M3)
- 6 Ved konturens ende kører værktøjet tangentialt væk fra konturen til midten af noten
- 7 Afslutningsvis kører værktøjet i ilgang FMAX tilbage til sikkerheds-afstand og – hvis det er indlæst – til den 2.sikkerheds afstand

140	SIOK CR3CIII	pci.	
44	CYCL DEF	3.0	NOTFRÆSNING
45	CYCL DEF	3.1	AFST 2
46	CYCL DEF	3.2	DYBDE -20
47	CYCL DEF	3.3	FREMRYK 5 F100
48	CYCL DEF	3.4	X+80
49	CYCL DEF	3.5	Y12
50	CYCL DEF	3.6	F275

- 210
- ► Sikkerheds-afstand Q200 (inkremental): Afstand mellem værktøjsspids og emne-overflade
- Dybde Q201 (inkremental): Afstand mellem emneoverflade og bunden af noten.
- Tilspænding fræsning Q207: Kørselshastighed af værktøjet ved fræsning i mm/min
- Fremryk-dybde Q202 (inkremental): Målet med hvilken værktøjet ved en pendlende bevægelse i spindelaksen ialt bliver fremrykket.
- Bearbejdnings-omfang (0/1/2) Q215: Fastlæggelse af bearbejdnings-omfanget:
 0: Skrubning og sletning
 - 1: Kun skrubning
 - 2: Kun sletning
- Koord. emne-overflade Q203 (absolut): Koordinater til emne-overflade
- 2. Sikkerheds-afstand Q204 (inkremental):
 Z-koordinater, i hvilke der ingen kollision mellem værktøj og emne kan ske
- Midte 1. akse Q216 (absolut): Midten af noten i hovedaksen i bearbejdningsplanet
- Midte 2. akse Q217 (absolut): Midten af noten i sideaksen i bearbejdningsplanet
- 1. Side-længde Q218 (værdien parallelt med hovedaksen i bearbejdningsplanet): indlæs længste side af noten
- 2. side-længde Q219 (værdien parallelt med sideaksen i bearbejdningsplanet): Indlæs bredde af noten; hvis notbredden er indlæst lig værktøjs-diameteren, så skrubber TNC'en kun. (lang hul fræsning)
- DREJEVINKEL Q224 (absolut): Vinklen, med hvilken hele noten bliver drejet; Drejecentrum ligger i centrum af noten.

	non oncompon	
51	CYCL DEF 210	NOT PENDLENDE
	Q200=2	;SIKKERHEDS-AFST.
	Q201=-20	; DYBDE
	Q207=500	;TILSPÆNDING FRÆSE
	Q202=5	;FREMRYK-DYBDE
	Q215=0	; BEARBEJDNINGS-OMFANG
	Q203=+0	;OVERFLADE KOORDINAT
	Q204=50	;2. SIKKERHEDS-AFST.
	Q216=+50	;MIDTE 1. AKSE
	Q217=+50	;MIDTE 2. AKSE
	Q218=80	;1. SIDE-LÆNGDE
	Q219=12	;2. SIDE-LÆNGDE
	0224=+15	:DREJESTED

RUND NOT (Langt hul) med pendlende indstikning (cyklus 211)

Skrubning

- 1 TNC'en positionerer værktøjet i ilgang i spindelaksen til den 2. sikkerheds-afstand og herefter til centrum i den højre cirkelbue. Derfra positionerer TNC'en værktøjet til den indlæste sikkerhedsafstand over emne-overfladen
- 2 Værktøjet kører med reduceret tilspænding til emne-overfladen; derfra kører fræseren med tilspænding fræsning – skrå indstikning i materialet – til den anden ende af noten
- **3** Herefter kører værktøjet igen med skrå indstikning tilbage til startpunktet; disse forløb (2 til 3) gentager sig, indtil den programmerede fræsedybde er nået
- **4** I fræsedybde kører TNC'en værktøjet for planfræsning til den anden ende af noten

Sletfræsning

- **5** For sletfræsning af noten kører TNC'en værktøjet tangentialt til den færdige kontur. Herefter sletfræser TNC'en konturen i medløb (med M3) Startpunktet for sletfræsningen ligger i centrum af den højre cirkelbue.
- 6 Ved konturens ende kører værktøjet tangentialt væk fra konturen.
- 7 Afslutningsvis kører værktøjet i ilgang FMAX tilbage til sikkerheds-afstand og – hvis det er indlæst – til den 2.sikkerheds afstand

Pas på før programmeringen

Fortegnet for parameter dybde fastlægger arbejdsretningen.

Vælg ikke fræserdiameteren større end notbredden og ikke mindre end en trediedel af notbredden.

Vælg fræserdiameteren mindre end det halve af notbredden. Ellers kan TNC'en ikke indstikke pendlende.

- Sikkerheds-afstand Q200 (inkremental): Afstand mellem værktøjsspids og emne-overflade
- Dybde Q201 (inkremental): Afstand mellem emneoverflade og bunden af noten.
- Tilspænding fræsning Q207: Kørselshastighed af værktøjet ved fræsning i mm/min
- Fremryk-dybde Q202 (inkremental): Målet med hvilken værktøjet ved en pendlende bevægelse i spindelaksen ialt bliver fremrykket.
- Bearbejdnings-omfang (0/1/2) Q215: Fastlæggelse af bearbejdnings-omfanget:
 0: Skrubning og sletning
 - 1: Kun skrubning
 - 2: Kun sletning

٩

- Koord. emne-overflade Q203 (absolut): Koordinater til emne-overflade
- 2. Sikkerheds-afstand Q204 (inkremental):
 Z-koordinater, i hvilke der ingen kollision mellem værktøj og emne kan ske
- Midte 1. akse Q216 (absolut): Midten af noten i hovedaksen i bearbejdningsplanet
- Midte 2. akse Q217 (absolut): Midten af noten i sideaksen i bearbejdningsplanet
- Delkreds-diameter Q244: Diameter for delkreds indlæses
- 2. Side-længde Q219: Indlæs bredde af noten; hvis notbredden er indlæst lig værktøjs-diameteren, så skrubber TNC'en kun (lang hul fræsning)
- Startvinkel Q245 (absolut): Indlæs polarvinkel til startpunktet
- Åbningsvinkel til not Q248 (inkremental): indlæs åbnings-vinkel til not

52	CYCL DEF 211	RUND NOT
	Q200=2	;SIKKERHEDS-AFST.
	Q201=-20	; DYBDE
	Q207=500	;TILSPÆNDING FRÆSE
	Q202=5	;FREMRYK-DYBDE
	Q215=0	; BEARBEJDNINGS-OMFANG
	Q203=+0	;OVERFLADE KOORDINAT
	Q204=50	;2. SIKKERHEDS-AFST.
	Q216=+50	;MIDTE 1. AKSE
	Q217=+50	;MIDTE 2. AKSE
	Q244=80	;DELKREDS-DIAM.
	Q219=12	;2. SIDE-LÆNGDE
	Q245=+45	;STARTVINKEL
	Q248=90	;ÅBNINGSVINKEL

Eksempel: Fræsning af lomme, tappe og noter

0	BEGIN PGM C210 MM	
1	BLK FORM 0.1 Z X+0 Y+0 Z-40	Råemne-definition
2	BLK FORM 0.2 X+100 Y+100 Z+0	
3	TOOL DEF 1 L+O R+6	Værktøjs-definition skrubning/sletfræsning
4	TOOL DEF 2 L+0 R+3	Værktøjs-definition notfræsning
5	TOOL CALL 1 Z S3500	Værktøjs-kald skrubning/sletfræsning
6	L Z+250 RO FMAX	Værktøj frikøres
7	CYCL DEF 213 TAP SLETFRÆS	Cyklus-definition udvendig bearbejdning
	Q200=2;SIKKERHEDS-AFSTAND	
	Q201=-30 ;DYBDE	
	Q2O6=250 ;TILSP. DYBD.FRÆS.	
	Q2O2=5 ;INDSTILLINGS-DYBDE	
	Q207=250 ;TILSPÆNDING FRÆSE	
	Q2O3=+O ;OVERFLADE KOORDINAT	
	Q2O4=2O ;2. SIKKERHEDS-AFST.	
	Q216=+50 ;MIDTE 1. AKSE	
	Q217=+50 ;MIDTE 2. AKSE	
	Q218=90 ;1. SIDELÆNGDE	
	Q219=80 ;2. SIDELÆNGDE	
	Q220=0 ;HJØRNERADIUS	
	Q221=5 ;SLETSPÅN 1. AKSE	
8	CYCL CALL M3	Cyklus-definition cirkulær lomme

9	CYCL DEF 5.0 RUND LOMMEFRÆSNING	
10	CYCL DEF 5.1 AFST. 2	
11	CYCL DEF 5.2 DYBDE -30	
12	CYCL DEF 5.3 UDSP. 5 F250	
13	CYCL DEF 5.4 RADIUS 25	
14	CYCL DEF 5.5 F400 DR+	Cyklus-kald cirkulær lomme
15	L Z+2 RO FMAX M99	Værktøjs-skift
16	L Z+250 RO FMAX M6	Værktøjs-kald notfræser
17	TOOL CALL 2 Z S5000	Cyklus-definition not 1
18	CYCL DEF 211 RUNDINGS NOT	
	Q200=2 ;SIKKERHEDS-AFSTAND	
	Q201=-20 ; DYBDE	
	Q207=250 ;TILSPÆNDING FRÆSE	
	Q2O2=5 ;INDSTILLINGS-DYBDE	
	Q215=0 ;BEARBEJDNINGS-OMFANG	
	Q2O3=+O ;OVERFLADE KOORDINAT	
	Q2O4=100 ;2. SIKKERHEDS-AFST.	
	Q216=+50 ;MIDTE 1. AKSE	
	Q217=+50 ;MIDTE 2. AKSE	
	Q244=70 ;DELKREDS-DIAMETER	
	Q219=8 ;2. SIDELÆNGDE	
	Q245=+45 ;STARTVINKEL	
	Q248=90 ;ÅBNINGSVINKEL	
19	CYCL CALL M3	Cyklus-kald not 1
20	FN 0: Q245 = +225	Ny startvinkel for not 2
21	CYCL CALL	Cyklus-kald not 2
22	L Z+250 RO FMAX M2	Værktøj frikøres, program-slut
23	END PGM C210 MM	

Eksempel: Firkant-lomme skrubbe og slette i forbindelse med punkt-tabeller

Program-afvikling

Firkant-lomme skrubning med cyklus 4

Firkant-lomme sletfræs med cyklus 212

Boringskoordinaterne er lagret i punkt-tabellen MUSTPKT.PNT (se næste side) og bliver derfra kaldt af TNC en med CYCL CALL PAT.

Pas på, at der ved cyklus-definition 212 såvel som for koordinaterne til lommemidten (Q212 og Q213), som også for koordinaterne til emne-overfladen er programmeret 0.

For at fræse lommer i forskellige dybde-niveauer, ændrer De Z-koordinaterne i punkt-tabellen MUSTPKT.PNT

O BEGIN PGM TAKOM MM	
1 BLK FORM 0.1 Z X+0 Y+0 Z-40	Råemne-definition
2 BLK FORM 0.2 X+100 Y+100 Z+0	
3 TOOL DEF 1 L+0 R+3	Værktøjs-definition skrubning
4 TOOL DEF 2 L+0 R+3	Værktøjs-definition sletfræsning
5 TOOL CALL 1 Z S5000	Værktøjs-kald skrubning
6 L Z+10 R0 F5000	Kør værktøj til sikker højde (F programmeres med en værdi)
	(TNC'en positionerer efter hver cyklus til sikker højde)
7 SEL PATTERN "MUSTPKT"	Fastlæg punkt-tabel
8 CYCL DEF 4 .0 LOMMEFRÆSNING	Cyklus-definition lomme skrubning
9 CYCL DEF 4 .1 AFST+2	
10 CYCL DEF 4 .2 DYBDE-10	
11 CYCL DEF 4 .3 FREMRKG+3 F150	
12 CYCL DEF 4 .4 X+25	
13 CYCL DEF 4 .5 Y+15	
14 CYCL DEF 4 .6 F350 DR+ RADIUS4	
15 CYCL CALL PAT F5000 M3	Cyklus-kald i forbindelse med punkt-tabel MUSTPKT.PNT.

noter
0g
tappe
lommer,
af
<mark>esni</mark> ng
fra
for
Cykler
8.4

16	L Z+100 R0	FMAX M6	Værktøj frikøres, værktøjs-veksel
17	TOOL CALL 2	Z S5000	
18	L Z+10 R0	F5000	Kør værktøj til sikker højde (F programmeres med en værdi)
19	CYCL DEF 21	2 LOMME SLETFRÆS	Cyklus-definition lomme sletfræse
	Q200=2	;SIKKERHEDS-AFST.	
	Q201=-10	; D Y BD E	
	Q206=150	;TILSPÆNDING DYBDEFR.	
	Q2O2=5	;FREMRYK-DYBDE	
	Q207=500	;TILSPÆNDING FRÆSE	
	Q2O3=+0	;OVERFLADE KOORDINAT	Koordinater til overflade (her tvingende at indlæse 0)
	Q2O4=0	;2. SIKKERHEDS-AFST.	2. Sikkerheds-afstand (her tvingende at indlæse 0)
	Q216=+0	;MIDTE 1. AKSE	Midte X-akse (her tvingende at indlæse 0)
	Q217=+0	;MIDTE 2. AKSE	Midte Y-akse (her tvingende at indlæse 0)
	Q218=25	;1. SIDE-LÆNGDE	
	Q219=16	;2. SIDE-LÆNGDE	
	Q220=4	;HJØRNERADIUS	
	Q221=0.5	;SLETSPÅN 1.AKSE	
20	CYCL CALL P	AT F5000 M3	Cyklus-kald i forbindelse med punkt-tabel MUSTPKT.PNT.
21	L Z+100 R0	FMAX M2	Værktøj frikøres, program-slut
22	SLUT PGM TA	KOM MM	

Punkt-tabel MUSTPKT.PNT

	MUSTPKT	.PNT	ММ	
NR	Х	Ŷ	Z	
0	+35	+30	+0	
1	+65	+30	+0	
2	+80	+50	+0	
3	+50	+50	+0	
4	+20	+50	+0	
5	+35	+70	+0	
6	+65	+70	+0	
[EN	D]			

8.5 Cykler for fremstilling af punktmønster

TNC'en stiller 2 cykler til rådighed, med hvilke De direkte kan lave regelmæssige punktmønstre:

cyklus		Softkey			
220 PUNKT	²²⁰ • •				
221 PUNKT	221 PUNKTMØNSTER PAA LINIE				
For De	at fremstile uregelmæssige punktmønstre, punkt-tabeller (se "8.2 Punkt-tabeller").	anvender			
Følgende be 220 og 221:	arbejdningscykler kan De kombinere med	cyklerne			
Cyklus 1	DYBDEBORING				
Cyklus 2	GEVINDBORING med kompenserende pa	itron			
Cyklus 3	NOTFRÆSNING				
Cyklus 4	LOMMEFRÆSNING				
Cyklus 5	CIRKELLOMME				
Cyklus 17	GEVINDBORING uden kompenserende pa	atron			
Cyklus 200	BORING				
Cyklus 201	REIFNING				
Cyklus 202	UDDREJNING				
Cyklus 203	UNIVERSAL-BORECYKLUS				
Cyklus 204	UNDERSÆNKNING-BAGFRA				
Cyklus 212	LOMME SLETFRÆS				
Cyklus 213	TAPPE SLETFRÆS				
Cyklus 214	CIRKELLOMME SLETFRÆS				
Cyklus 215	RUNDTAPPE SLETFRÆS				

PUNKTMØNSTER PÅ CIRKEL (cyklus 220)

1 TNC'en positionerer værktøjet i ilgang fra den aktuelle position til startpunktet for den første bearbejdning.

Rækkefølge:

- 2. Kør til sikkerheds-afstand (spindelakse)
- Kør til startpunkt i bearbejdningsplan
- Kør til sikkerheds-afstand over emne-overflade (spindelakse)
- **2** Fra denne position udfører TNC'en den sidst definerede bearbejdningscyklus der kræver kald.
- **3** Herefter positionerer TNC'en værktøjet med en retliniebevægelse til startpunktet for næste bearbejdning; værktøjet står hermed på sikkerheds-afstand (eller 2. sikkerheds-afstand)
- **4** Disse forløb (1 til 3) gentager sig, indtil alle bearbejdninger er udført.

Pas på før programmeringen

Cyklus 220 er DEF-aktiv, det betyder at cyklus 220 kalder automatisk den sidst definerede bearbejdningscyklus.

Hvis De kombinerer en af bearbejdningscyklerne 200 til 204 og 212 til 215 med cyklus 220, virker sikkerhedsafstand, emne-overflade og 2. sikkerheds-afstand fra cyklus 220.

²²⁰ ***

- Midte 1. akse Q216 (absolut): Delkreds-midtpunkt i hovedakse i bearbejdningseplanet
- Midte 2. akse Q217 (absolut): Delkreds-midtpunkt i sideakse i bearbejdningsplanet
- Delkreds-diameter Q244: Diameter for delkredsen
- Startvinkel Q245 (absolut): Vinkel mellem hovedakse i bearbejdningsplanet og startpunktet for første bearbejdning af delkreds.
- Slutvinkel Q246 (absolut): Vinkel mellem hovedakse i bearbejdningsplan og startpunkt for den sidste bearbejning på delkredsen (gælder ikke for fuldkredse); Indlæs slutvinkel ulig startvinkel; hvis slutvinklen indlæses større end startvinklen, så sker bearbejningen modurs, istedet for bearbejdning medurs
- Vinkelskridt Q247 (inkremental): Vinkel mellem to bearbejdninger på delkredsen; hvis vinkelskridtet er lig nul, så beregner TNC'en vinkelskridtet fra startvinkel, slutvinkel og antal bearbejdninger; når et vinkelskridt er indlæst, så tager TNC'en ikke hensyn til slutvinkel; Fortegnet for vinkelskridtet fastlægger bearbejdningsretning (- = medurs)

53	CYCL DEF 220	CIRKEL MØNSTER
	Q216=+50	;MIDTE 1. AKSE
	Q217=+50	;MIDTE 2. AKSE
	Q244=80	;DELKREDS-DIAM.
	Q245=+0	; STARTVINKEL
	Q246=+360	;SLUTVINKEL
	Q247=+0	;VINKELSKRIDT
	Q241=8	;ANTAL BEARBEJDNINGER
	Q200=2	;SIKKERHEDS-AFST.
	Q2O3=+0	;OVERFLADE KOORDINAT
	Q204=50	;2. SIKKERHEDS-AFST.

- Antal bearbejdninger Q241: Antal bearbejdninger på delkredsen
- Sikkerheds-afstand Q200 (inkremental): Afstand mellem værktøjsspids og emne-overflade; Indlæs værdien positiv
- ► Koord. emne-overflade Q203 (absolut): Koordinater til emne-overflade
- 2. Sikkerheds-afstand Q204 (inkremental): Koordinater til spindelakse, i hvilke der ingen kollision kan ske mellem værktøj og emne; indlæs værdi positiv

PUNKTMØNSTER PÅ LINIER (cyklus 221)

Pas på før programmeringen

Cyklus 221 er DEF-aktiv, det betyder at cyklus 221 kalder den sidst definierede bearbejdningscyklus.

Hvis De kombinerer en af bearbejdningscyklerne 200 til 204 og 212 til 215 med cyklus 221, virker sikkerhedsafstanden, emne-overflade og 2. sikkerheds-afstand fra cyklus 221.

1 TNC' en positionerer automatisk værktøjet fra den aktuelle position til startpunktet for den første bearbejdning

Rækkefølge:

- Kør til 2. sikkerheds-afstand (spindelakse)
- Kør til startpunktet i bearbejdningsplanet
- Kør til sikkerheds-afstand over emne-overflade (spindelakse)
- **2** Fra denne position udfører TNC'en den sidst definerede bearbejdningscyklus der kræver kald.
- **3** Herefter positionerer TNC'en værktøjet i positiv retning af hovedaksen til startpunktet for den næste bearbejdning; værktøjet står hermed på sikkerheds-afstand (eller 2. sikkerhedsafstand)
- **4** Disse forløb (1 til 3) gentager sig, indtil alle bearbejdninger på den første linie er udført; værktøjet står på sidste punkt af første linie.
- 5 Herefter kører TNC'en værktøjet til sidste punkt på anden linie og gennemfører der bearbejdningen.
- **6** Herfra positionerer TNC'en værktøjet i negativ retning i hovedaksen til startpunktet for den næste bearbejdning og udfører bearbejdningen derfra.

- **7** Disse forløb (6) gentager sig, indtil alle bearbejdninger i den anden linie er udført.
- 8 Herefter kører TNC'en værktøjet til startpunktet for den næste linie
- 9 I en pendlende bevægelse bliver alle yderligere linier bearbejdet

221 0-0-	\$ \$ \$

- Startpunkt 2. akse Q226 (absolut): Koordinater til startpunktet i sideaksen i bearbejdningsplanet
- AfstandD 1. akse Q237 (inkremental): Afstanden mellem de enkelte punkter på linien
- Afstand 2. akse Q238 (inkremental): Afstanden mellem de enkelte linier
- ► Antal spalter Q242: Antalet af bearbejdninger på linien
- ► Antal linier Q243: Antalet af linier
- Drejevinkel Q224 (absolut): Vinkel, med hvilken hele billedmønsteret bliver drejet; drejecentrum ligger i startpunktet
- Sikkerheds-afstand Q200 (inkremental): Afstand mellem værktøjsspids og emne-overflade
- ▶ Koord. emne-overflade Q203 (absolut): Koordinater til emne-overflade
- 2. sikkerheds-afstand Q204 (inkremental): Koordinater til spindelaksen, i hvilken der ingen kollision kan ske mellem værktøj og emne (opspændingsmiddel)n

1	54 CYCL DEF 22	1 MØNSTER LINIER	
	Q225=+15	;STARTPUNKT 1. AKSE	
	Q226=+15	;STARTPUNKT 2. AKSE	
	Q237=+10	;AFSTAND 1. AKSE	
	Q238=+8	;AFSTAND 2. AKSE	
	Q242=6	;ANTAL SPALTER	
	Q243=4	;ANTAL LINIER	
	Q224=+15	; DREJESTED	
	Q200=2	;SIKKERHEDS-AFST.	
	Q2O3=+0	;OVERFLADE KOORDINAT	
	0204=50	:2. SIKKERHEDS-AFST.	1

Eksempel: Hulkreds

0	BEGIN PGM BOHRB MM	
1	BLK FORM 0.1 Z X+0 Y+0 Z-40	Råemne-definition
2	BLK FORM 0.2 X+100 Y+100 Z+0	
3	T00L DEF 1 L+0 R+3	Værktøjs-definition
4	TOOL CALL 1 Z S3500	Værktøjs-kald
5	L Z+250 RO FMAX M3	Værktøj frikøres
6	CYCL DEF 200 BORING	Cyklus-definition boring
	Q200=2 ;SIKKERHEDS-AFST.	
	Q201=-15 ;DYBDE	
	Q206=250 ;TILSPÆNDING DYBDEFR.	
	Q2O2=4 ;FREMRYK-DYBDE	
	Q210=0 ; DVÆLETID	
	Q2O3=+O ;OVERFLADE KOORDINAT	
	Q2O4=O ;2. SIKKERHEDS-AFST.	

7 CYCL DEF 220 CIRKEL MØNSTER	Cyklus-definition hulkreds 1, CYCL 200 bliver automatisk kaldt,
	Q200, Q203 og Q204 virker fra Zyklus 220
Q216=+30 ;MIDTE 1. AKSE	
Q217=+70 ;MIDTE 2. AKSE	
Q244=50 ;DELKREDS-DIAMETER	
Q245=+0 ;STARTVINKEL	
Q246=+360 ;SLUTVINKEL	
Q247=+30 ;VINKELSKRIDT	
Q241=10 ;ANTAL BEARBEJDNINGER	
Q200=2;SIKKERHEDS-AFSTAND	
Q2O3=+O ;OVERFLADE KOORDINAT	
Q204=100 ;2. SIKKERHEDS-AFST.	
8 CYCL DEF 220 CIRKEL MØNSTER	Cyklus-definition hulkreds 2, CYCL 200 bliver automatisk kaldt,
	Q200, Q203 og Q204 virker fra Zyklus 220
Q216=+90 ;MIDTE 1. AKSE	
Q217=+25 ;MIDTE 2. AKSE	
Q244=70 ;DELKREDS-DIAMETER	
Q245=+90 ;STARTVINKEL	
Q246=+360 ;SLUTVINKEL	
Q247=+30 ;VINKELSKRIDT	
Q241=5 ;ANTAL BEARBEJDNINGER	
Q200=2 ;SIKKERHEDS-AFSTAND	
Q2O3=+O ;OVERFLADE KOORDINAT	
Q204=100 ;2. SIKKERHEDS-AFST.	
9 L Z+250 RO FMAX M2	Værktøj frikøres, program-slut
10 END PGM BOHRB MM	

8.6 SL-cykler

Med SL-cykler lader komplekse sammensatte konturer sig bearbejde.

Egenskaber ved konturen

- En komplet kontur kan være sammensat af overlappende delkonturer (indtil 12 stk.). Vilkårlige lommer og Ø'er opbygger herved delkonturen.
- Listen med delkonturer (underprogram-numre) indlæser De i cyklus 14 KONTUR. TNC' en beregner ud fra delkonturerne den komplette kontur.
- Delkonturerne selv indlæser De som underprogrammer.
- Hukommelsen for en SL-cyklus er begrænset. Alle underprogrammer må tilsammen ikke indeholde mere end f.eks. 128 retlinieblokke ialt.

Egenskaber ved underprogrammer

- Koordinat-omregninger er tilladt
- TNC'en ignorerer tilspænding F og hjælpe-funktioner M
- TNC'en genkender en lomme, hvis De indvendig omløber konturen, f.eks. beskrivelse af en kontur medurs med radiuskorrektur RR
- TNC'en genkender en ø, hvis De udvendig omløber konturen, f.eks. beskrivelse af en kontur medurs med radius-korrektur RL
- Underprogrammer må ikke indeholde koordinater i spindelaksen
- I første koordinatblok for underprogrammer fastlægger De bearbejdningseplanet. Parallelakser er tilladt

Egenskaber ved bearbejdningscykler

- Med MP7420.0 og MP7420.1 fastlægger De, hvorledes TNC'en skal køre værktøjet ved udrømning (se "15.1 Generelle bruger-parametre").
- TNC´en positionerer før hver cyklus automatisk til startpunktet i bearbejdningsplanet. I spindelaksen skal De forpositionere værktøjet på sikkerheds-afstand
- Hvert dybde-niveau bliver udrømmet akseparallelt eller under en vilkårlig vinkel (vinkel defineres i cyklus 6); Ø`er bliver standardmæssigt overkørt med sikkerheds-afstand. I MP7420.1 kan De også fastlægge, at TNC'en skal udrømme konturen således, at de enkelte kamre bliver bearbejdet efter hinanden uden udtræksbevægelser.
- TNC´en tager hensyn til en indlæst sletspån (cyklus 6) i bearbejdningsplanet

Oversigt: SL-cykler

cyklus	Softkey
14 KONTUR (tvingende nødvendig)	14 LBL 1N
15 FORBORING (alternativt anvendelig)	15 0
6 UDRØMNING (tvingende nødvendig)	6
16 KONTURFRÆSNING (alternativ anvendelig)	16

KONTUR (cyklus 14)

I cyklus 14 KONTUR oplister De alle underprogrammer, som skal overlappe en totalkontur (se billedet til højre forneden).

Pas på før programmeringen

Cyklus 14 er DEF-aktiv, det betyder at den er virksom fra sin definition i programmet

I cyklus 14 kan De maximalt opliste 12 underprogrammer (delkonturer)

► Label-nummer for kontur: Indlæs alle Label-numre for LBL 1...N de enkelte underprogrammer, som skal overlappe en kontur. Hvert nummer overføres med tasten ENT og afslut indlæsningen med tasten END.

Skema: Arbejde med SL-cykler

U DEGIN PUM SL MM
12 CYCL DEF 14.0 kontur
16 CYCL DEF 15.0 FORBORING
17 CYCL CALL
•••
18 CYCL DEF 6.0 RØMNING
19 CYCL CALL
•••
26 CYCL DEF 16.0 KONTURFRÆSNING
27 CYCL CALL
•••
50 L Z+250 RO FMAX M2
51 LBL 1
•••
55 LBL 0
56 LBL 2
60 LBL 0
99 SLUT PGM SL MM

NC	-blok e	eksen	npel:	
3	CYCL	DEF	14.0	KONTUR
4	CYCL	DEF	14.1	KONTURLABEL1 /2 /3

Overlappede konturer

Underprogrammer: Overlappede lommer Underprogrammer: Overlappede lommer

Underprogrammer: Overlappede konturer

De efterfølgende programmeringseksempler er konturunderprogrammer, som er blevet kaldt i et hovedprogram af Cyklus 14 KONTUR.

Lommerne A og B er overlappede.

TNC'en beregner skæringspunkterne S_1 og $S_2,\ de$ må ikke blive programmeret.

Lommerne er programmeret som fuldkredse.

Underprogram 1: Venstre lomme

51	LBL 1
52	L X+10 Y+50 RR
53	CC X+35 Y+50
54	C X+10 Y+50 DR-
55	LBL 0

Underprogram 2: højre lomme

56	LBL 2
57	L X+90 Y+50 RR
58	CC X+65 Y+50
59	C X+90 Y+50 DR-
60	LBL O

"Medregnede" -flader

Begge delflader A og B inklusive den fælles overdækkende flade skal bearbejdes:

Fladerne A og B skal være lommer.

Startpositionen i den første lomme (i cyklus 14) må ikke ligge indenfor den anden, og omvendt.

Flade A:

51	LBL 1
52	L X+10 Y+50 RR
53	CC X+35 Y+50
54	C X+10 Y+50 DR-
55	LBL 0

Flade B:

56 LBL 2 57 L X+90 Y+50 RR 58 CC X+65 Y+50 59 C X+90 Y+50 DR-60 LBL 0

"Forskels" -flade

Flade A skal bearbejdes uden den af B overdækkede andel:

Flade A skal være en lomme og B skal være en ó.

■ A skal begynde udenfor B.

Flade A:

51 LBL 1
52 L X+10 Y+50 RR
53 CC X+35 Y+50
54 C X+10 Y+50 DR-
55 LBL 0

Flade B:

56 LBL 2 57 L X+90 Y+50 RL 58 CC X+65 Y+50 59 C X+90 Y+50 DR-

60 LBL 0

"Skærings" -Flade Den af A og B overlappende flade skal bearbejdes. (enkle overlappede flader skal forblive ubearbejdet.)

A og B skal være lommer.

■ A skal begynde indenfor B.

Flade A:

51	LBL 1
52	L X+60 Y+50 RR
53	CC X+35 Y+50
54	C X+60 Y+50 DR-
55	LBL 0

Flade B:

56	LBL 2
57	L X+90 Y+50 RR
58	CC X+65 Y+50
59	C X+90 Y+50 DR-
60	LBL 0

FORBORING (cyklus 15)

Cyklus-afvikling

Som cyklus 1 dybdeboring (se side 8.3 Borecykler).

Anvendelse

Cyklus 15 FORBORING tager hensyn til indstikspunktet for sletfræsning. Indstikspunktet er samtidig startpunkt for udfræsningen.

Pas på før programmeringen

Programmér positionerings-blokken til startpunktet i spindelaksen (Sikkerheds- afstand over emne-overfladen).

- Sikkerheds-afstand 1 (inkremental): Afstand fra værktøjsspids (startposition) til emne-overflade
- Boredybde 2 (inkremental): Afstanden mellem emneoverflade og bunden af boringen (spidsen af borkegle)
- Fremryknings-dybde 3 (inkremental): Målet, med hvilket værktøjet hver gang rykkes frem. TNC´en kører i en arbejdsgang til dybden når:
 - Fremryk-dybde og boredybde er ens
 - Fremryk-dybden er større end boredybden

Boredybden må ikke være et multiplum af fremryk-dybde

- Tilspænding dybdefremrykning: Boretilspænding i mm/min
- ▶ Sletfræsning: Sletspån i bearbejdningsplanet

NC-blok eksempel:

5	CYCL	DEF	15.0	FORBORING
6	CYCL	DEF	15.1	AFST+2 DYBDE-25
7	CYCL	DEF	15.2	FREMRK+3 F250 SLET+0.1

SKRUBNING (Zyklus 6)

Cyklus-afvikling

- 1 TNC'en positionerer værktøjet i bearbejdningsplanet over det første indstikspunkt; herved tager TNC'en hensyn til sletspån
- 2 Med tilspænding fremrykdybde kører TNC'en værktøjet til den første fremryk-dybde

Fræse om kontur (se billedet til højre foroven):

- 1 Værktøjet fræser om den første delkontur med den indlæste tilspænding; der tages hensyn til sletspån i bearbejdningsplanet
- 2 Flere fremrykninger og flere delkonturer omfræser TNC'en på samme måde
- **3** TNC'en kører værktøjet i spindelaksen til sikkerheds-afstand og derefter over det første indstikspunkt i bearbejdningsplanet.

Lommen skrubbes (se billedet til højre i midten):

- 1 I den første fremryk-dybde fræser værktøjet med fræsetilspændingen konturen akseparallelt hhv. under den indlæste skrub-vinkel
- 2 Herved bliver Ø-konturen (her: C/D) overkørt på sikkerhedsafstand
- 3 Disse forløb gentager sig, indtil den indlæste fræsedybde er nået

Pas på før programmeringen

Med MP7420.0 og MP7420.1 fastlægger De, hvorledes TNC'en bearbejder konturen (se "15.1 Generelle brugerparametre").

Programmér positionerings-blokken til startpunktet i spindelaksen (Sikkerheds- afstand over emne-overfladen).

Anvend eventuelt en fræser med cenrumskær (DIN 844), eller forbor med cyklus 15.

۴ E

- Sikkerheds-afstand 1 (inkremental): Afstand fra værktøjsspids (startposition) til emne-overflade
- Fræsedybde 2 (inkremental): Afstanden mellem emneoverflade og bunden af lommen
- Fremryknings-dybde 3 (inkremental): Målet, med hvilket værktøjet hver gang rykkes frem. TNC´en kører i en arbejdsgang til dybden når:
 - Fremryk-dybde og fræsedybde er ens
 - Fremryk-dybden er større end fræsedybden

Fræsedybden må ikke være et multiplum af fremryk-dybden

- Tilspænding dybdefremrykning: Indstikstilspænding i mm/min
- ▶ Sletfræsning: Sletspån i bearbejdningsplanet
- Skrub-vinkel: Retning af skrub-bevægelsen. Skrubvinkel henfører sig til hovedaksen i bearbejdningsplanet. Indlæs vinklen således, at der opstår længst mulige snit
- ▶ Tilspænding: Fræsetilspænding i mm/min

NC-blok eksempel:

8	CYCL	DEF	6.0	SKRUBNING
9	CYCL	DEF	6.1	AFST+2 DYBDE-25
10	CYCL	DEF	6.2	FREMRK+3 F150 SLET+0.1
11	CYCL	DEF	6.3	VINKEL+0 F350

KONTURFRÆSNING (cyklus 16)

Anvendelse

Cyklus 16 KONTURFRÆSNING tjener til sletfræsning af konturlomme.

Pas på før programmeringen

Programmér positionerings-blokken til startpunktet i spindelaksen (Sikkerheds- afstand over emne-overfladen).

TNC'en sletfræser hver delkontur separat, også i flere fremrykninger hvis det er indlæst.

- Sikkerheds-afstand 1 (inkremental): Afstand fra værktøjsspids (startposition) til emne-overflade
- Fræsedybde 2 (inkremental): Afstanden mellem emneoverflade og bunden af lommen
- Fremryknings-dybde 3 (inkremental): Målet, med hvilket værktøjet hver gang rykkes frem. TNC´en kører i en arbejdsgang til dybden når:
 - Fremryk-dybde og fræsedybde er ens

Fremryk-dybden er større end fræsedybden

Fræsedybden må ikke være et multiplum af fremrykdybde

- Tilspænding dybdefremrykning: Indstikstilspænding i mm/min
- Drejning medurs:
 DR + : Medløbsfræsning med M3
 DR : Modløbsfræsning med M3
- ► Tilspænding: Fræsetilspænding i mm/min

8.6 SL-cykler

NC-	blok e	eksen	npel:	
12	CYCL	DEF	16.0	KONTURFRÆSNING
13	CYCL	DEF	16.1	AFST+2 DYBDE-25
1 /	CVCL	DEE	16 2	EDEMDKIE EIEO DDI EEOO

Eksempel: Lomme skrubning

Z-40 Råemne-definition
Z+0
Værktøjs-definition
Værktøjs-kald
Værktøj frikøres
Kontur-underprogram fastlægges
EL 1
Cyklus-definition skrubning
DE -20
F150 SLETSP +0
0 F250
Forpositionering i bearbejdningsplanet
Forpositionering i spindelaksen, cyklus-kald
Værktøj frikøres, program-slut

15 LBL 1	Kontur-underprogram
16 L X+0 Y+30 RR	(Se FK 2. eksempel side 99)
17 FC DR- R30 CCX+30 CCY+30	
18 FL AN+60 PDX+30 PDY+30 D+10	
19 FSELECT 03	
20 FPOL X+30 Y+30	
21 FC DR- R20 CCPR+55 CCPA+60	
22 FSELECT 02	
23 FL AN-120 PDX+30 PDY+30 D+10	
24 FSELECT 03	
25 FC X+0 DR- R30 CCX+30 CCY+30	
26 FSELECT 02	
27 LBL 0	
28 SLUT PGM C20 MM	

Eksempel: Forboring af overlappede konturer, skrubning, sletfræsning

0	BEGIN PGM C21 MM	
1	BLK FORM 0.1 Z X+0 Y+0 Z-40	Råemne-definition
2	BLK FORM 0.2 X+100 Y+100 Z+0	
3	TOOL DEF 1 L+0 R+3	Værktøjs-definition bor
4	TOOL DEF 2 L-12,53 R+3	Værktøjs-definition skrubning/sletfræsning
5	TOOL CALL 1 Z S4500	Værktøjs-kald bor
6	L Z+250 RO FMAX	Værktøj frikøres
7	CYCL DEF 14.0 KONTUR	Kontur-underprogram fastlægges
8	CYCL DEF 14.1 KONTURLABEL 1 /2 /3 /4	
9	CYCL DEF 15.0 FORBORING	Cyklus-definition forboring
10	CYCL DEF 15.1 AFST 2 DYBDE -20	
11	CYCL DEF 15.2 FREMRK 5 F200 SLETSP +1	
12	L X+50 Y+50 RO FMAX M3	Forpositionering i bearbejdningsplanet
13	L Z+2 RO FMAX M99	Forpositionering i spindelaksen, cyklus-kald forboring
14	L Z+250 RO FMAX M6	Værktøjs-skift
15	TOOL CALL 2 Z S4000	Værktøjs-kald skrubning/sletfræsning
16	CYCL DEF 6.0 SKRUBNING	Cyklus-definition skrubning
17	CYCL DEF 6.1 AFST 2 DYBDE -20	
18	CYCL DEF 6.2 FREMRK 5 F150 SLETSP +1	
19	CYCL DEF 6.3 VINKEL +0 F250	
20	L Z+2 RO F1000 M3	Forpositionering i spindelaksen
21	CYCL CALL	Cyklus-kald skrubning

22	CYCL DEF 16.0 KONTURFRÆSNING	Cyklus-definition sletfræs
23	CYCL DEF 16.1 AFST 2 DYBDE -20	
24	CYCL DEF 16.2 FREMRK 5 F100 DR+ F300	
25	L Z+2 RO FMAX M99	Cyklus-kald sletfræs
26	L Z+250 R0 FMAX M2	Værktøj frikøres, program-slut
27	LBL 1	Kontur-underprogram 1: Lomme venstre
28	CC X+35 Y+50	
29	L X+10 Y+50 RR	
30	C X+10 DR-	
31	LBL O	
32	LBL 2	Kontur-underprogram 2: Lomme højre
33	CC X+65 Y+50	
34	L X+90 Y+50 RR	
35	C X+90 DR-	
36	LBL O	
37	LBL 3	Kontur-underprogram 3: Ø firkant venstre
38	L X+27 Y+50 RL	
39	L Y+58	
40	L X+43	
41	L Y+42	
42	L X+27	
43	LBL O	
44	LBL 4	Kontur-underprogram 4: Ø trekant højre
45	L X+65 Y+42 RL	
46	L X+57	
47	L X+65 Y+58	
48	L X+73 Y+42	
49	LBL O	
50	SLUT PGM C21 MM	

8.6 SL-cykler

8.7 Cykler for planfræsning

TNC'en stiller to cykler til rådighed, med hvilke De kan bearbejde flader med følgende egenskaber:

- Flade firkantet
- Flade skråvinklet
- Frit skrånende
- Blandede flader

A

231 STYRET OVERFL. For skråvinklede, fritskrånende og blandede flader

PLANFRÆSNING (cyklus 230)

- TNC'en positionerer værktøjet i ilgang FMAX fra den aktuelle position i bearbejdningsplanet til startpunkt 1; TNC'en forskyder herved værktøjet med værktøjs-radius til venstre og opefter.
- 2 Herefter kører værktøjet med FMAX i spindelaksen til sikkerhedsafstand og derefter med tilspænding fremrykdybde til den programmerede startposition i spindelaksen
- 3 Herefter kører værktøjet med den programmerede tilspænding fræse til endepunktet 2 Herefter kører værktøjet med den programmerede tilspænding fræse til endepunkt 2; endpunktet beregner TNC´en ud fra det programmerede startpunkt, den programme-rede længde og værktøjs-radius.
- **4** TNC'en forskyder værktøjet med tilspænding fræse på tværs til startpunktet for den næste linie; TNC'en beregner forskydningen ud fra den programmerede bredde og antallet af skridt.
- 5 Herefter kører værktøjet tilbage i negativ X-retning
- **6** Affræsningen gentager sig indtil den indlæste flade er fuldstændigt bearbejdet.
- 7 Til slut kører TNC'en værktøjet med FMAX tilbage til sikkerhedsafstand.

Pas på før programmeringen

230 ÷

TNC'en positionerer værktøjet til at begynde med fra den aktuelle position i bearbejdningsplanet og i tilslutning hertil i spindelaksen til startpunkt 1.

Værktøjet forpositioneres således, at der ingen kollision kan ske med emne eller spændejern.

- Startpunkt 1. AKSE Q225 (absolut): Min-punktkoordinater for fladen der skal nedfræses i hovedaksen i bearbejdningsplanet.
- Startpunkt 2. AKSE Q226 (absolut): Min-punktkoordinater for fladen der skal nedfræses i sideaksen i bearbejdningsplanet.
- Startpunkt 3. AKSE Q227 (absolut): Højden i spindelaksen, hvor der skal nedfræses.
- 1. Sidelængde Q218 (inkremental): Længden af fladen der skal nedfræses i hovedaksen i bearbejdningsplanet, henført til startpunkt 1. akse
- 2. Sidelængde Q219 (inkremental): Længden af fladen der skal fræses i sideaksen i bearbejdnings-planet, henført til startpunkt 2. akse.
- Antal snit Q240: Antallet af linier, på hvilke TNC'en skal køre værktøjet i bredden.
- Tilspænding fremrykdybde Q206:Kørselshastigheden af værktøjet ved kørsel fra sikkerheds-afstand til fræsedybden i mm/min.
- Tilspænding fræsning Q207: Kørselshastighed af værktøjet ved fræsning i mm/min
- Tvær tilspænding Q209: Kørselshastigheden af værktøjet ved kørsel til den næste linie i mm/min; hvis De kører på tværs i materialet, så indlæs Q209 mindre end Q207; hvis De kører på tværs i det fri, så må Q209 gerne være større end Q207.
- Sikkerheds-afstand Q200 (inkremental): mellem værktøjsspids og fræsedybde for positionering ved cyklus-start og ved cyklus-ende

NC-blok eksempel:

	-	
71	CYCL DEF 230	PLANFRÆS
	Q225=+10	;STARTPUNKT 1. AKSE
	Q226=+12	;STARTPUNKT 2. AKSE
	Q227=+2.5	;STARTPUNKT 3. AKSE
	Q218=150	;1. SIDE-LÆNGDE
	Q219=75	;2. SIDE-LÆNGDE
	Q240=25	;ANTAL SKÆR
	Q206=150	;TILSPÆNDING DYBDEFR.
	Q207=500	;TILSPÆNDING FRÆSE
	Q209=200	; TVÆR-TILSPÆNDING
	Q200=2	;SIKKERHEDS-AFST.

SKRÅ OVERFLADE (cyklus 231)

- 1 TNC'en positionerer værktøjet fra den aktuelle position med en 3D-retliniebevægelse til startpunkt 1.
- 2 Herefter kører værktøjet med den programmerede tilspænding fræse til endepunktet 2
- 3 Herfra kører TNC'en værktøjet i ilgang FMAX med værktøjsdiameter i positiv spindelakseretning og herefter igen tilbage til startpunkt 1.
- 4 Ved startpunkt 1 kører TNC'en igen værktøjet til den sidst kørte Z-værdi.
- 5 Herefter forskyder TNC'en værktøjet i alle tre akser fra punkt 1 i retning af punkt 4 på den næste linie.
- 6 Herefter kører TNC'en værktøjet til endpunktet for denne linie. Endpunktet beregner TNC'en fra punkt 2 og en forskydning i retning af punkt 3.
- **7** Affræsningen gentager sig indtil den indlæste flade er fuldstændigt bearbejdet.
- 8 Til slut positionerer TNC'en værktøjet med værktøjs-diameteren over det højst indlæste punkt i spindelaksen.

Snit-fræsning

Startpunktet og dermed fræsretningen kan vælges frit, da TNC'en grundlæggende korer de enkelte snit fra punkt 1 til punkt 2 og totalafviklingen forløber fra punkt 1 / 2 til punkt 3 / 4. De kan lægge punkt 1 på enhver kant af fladen der skal bearbejdes.

De kan optimere overfladekvaliteten ved brug af skaftfræsere:

- Med lodrette snit (spindelaksekoordinater punkt 1 er større end spindelaksekoordinater punkt 2) ved lidt skrånende flader.
- Med vandrette snit (spindelaksekoordinater punkt 1 er mindre end spindelaksekoordinater punkt 2) ved stærkt skrånende flader.
- Med kørsel ved vilkårligt skrå flader: hovedbevægelsesretning (fra punkt 1 til punkt 2) i retning af en stærkere skråning. Se billedet til højre i midten. Se billedet i midten til højre

Ved brug af skaftfræsere kan overfladen optimeres:

Med kørsel ved vilkårligt skrå flader: hovedbevægelsesretning (fra punkt 1 til punkt 2) vinkelret på den stærkeste bøjning. Se billedet til højre forneden. Se billedet til højre forneden.

8.7 Cykler for nedfræsning

8.7 Cykler for nedfræsning

Pas på før programmeringen

TNC'en positionerer værktøjet fra den aktuelle position med en 3D-retliniebevægelse til startpunktet 1. Værktøjet forpositioneres således, at der ingen kollision kan ske med emne eller spændejern.

TNC'en kører værktøjet med radiuskorrektur R0 mellem de indlæste positioner

Anvend evt. en fræser med centrumskær (DIN 844).

231

Startpunkt 1. akse Q225 (absolut): Startpunktkoordinater til fladen der skal nedfræses i hovedaksen i bearbejdningsplanet.

- Startpunkt 2. akse Q226 (absolut): Startpunktkoordinater til fladen der skal nedfræses i sideaksen i bearbejdningsplanet.
- Startpunkt 3. akse Q227 (absolut): Startpunktkoordinater til fladen der skal nedfræses i spindelaksen.
- 2. Punkt 1. akse Q228 (absolut): Endepunkt-koordinater til fladen der skal nedfræses i hovedaksen i bearbejdningsplanet.
- 2. Punkt 2. AKSE Q229 (absolut): Endepunktkoordinater til fladen der skal nedfræses i sideaksen i bearbejdningsplanet.
- 2. Punkt 3. akse Q230 (absolut): Endepunktkoordinater til fladen der skal nedfræses i spindelaksen.
- 3. Punkt 1. akse Q231 (absolut): Koordinater til punktet
 i hovedaksen i bearbejdningsplanet
- 3. Punkt 2. akse Q232 (absolut): Koordinater til punktet
 i sideaksen i bearbejdningsplanet
- 3. Punkt 3. akse Q233 (absolut): Koordinater til punktet
 i spindelaksen
- 4. Punkt 1. akse Q234 (absolut): Koordinater til punktet
 i hovedaksen i bearbejdningsplanet
- 4. Punkt 2. akse Q235 (absolut): Koordinater til punktet
 i sideaksen i bearbejdningsplanet
- 4. Punkt 3. akse Q236 (absolut): Koordinater til punktet
 i spindelaksen
- Antal snit Q240: Antallet af linier, som TNC´en skal køre værktøjet mellem punkt 1 og 44, hhv. mellem punkt 2 og 3
- Tilspænding fræsning Q207: Kørselshastighed af værktøjet ved fræsning i mm/ min. TNC'en udfører det første skridt med den halve programmerede værdi.

NC-blok eksempel:

72	CYCL DEF 231	STYRET FLADE
	Q225=+0	;STARTPUNKT 1. AKSE
	Q226=+5	;STARTPUNKT 2. AKSE
	Q227=-2	;STARTPUNKT 3. AKSE
	Q228=+100	;2. PUNKT 1. AKSE
	Q229=+15	;2. PUNKT 2. AKSE
	Q230=+5	;2. PUNKT 3. AKSE
	Q231=+15	;3. PUNKT 1. AKSE
	Q232=+125	;3. PUNKT 2.AKSE
	Q233=+25	;3. PUNKT 3. AKSE
	Q234=+85	;4. PUNKT 1. AKSE
	Q235=+95	;4. PUNKT 2. AKSE
	Q236=+35	;4. PUNKT 3. AKSE
	Q240=40	;ANTAL SKÆR
	Q207=500	;TILSPÆNDING FRÆSE

Eksempel: Nedfræsning

O BEGIN PGM C230 MM	
1 BLK FORM 0.1 Z X+0 Y+0 Z+0	Råemne-definition
2 BLK FORM 0.2 X+100 Y+100 Z+40	
3 TOOL DEF 1 L+0 R+5	Værktøjs-definition
4 TOOL CALL 1 Z S3500	Værktøjs-kald
5 L Z+250 R0 F MAX	Værktøj frikøres
6 CYCL DEF 230 NED-FRÆS	Cyklus-definition planfræsning
Q225=+0 ;STARTPUNKT 1. AKSE	
Q226=+0 ;STARTPUNKT 2. AKSE	
Q227=+35 ;STARTPUNKT 3. AKSE	
Q218=100 ;1. SIDELÆNGDE	
Q219=100 ;2. SIDELÆNGDE	
Q240=25 ;ANTAL SNIT	
Q2O6=250 ;TILSP. DYBD.FRÆS.	
Q207=400 ;TILSP. FRÆSE	
Q2O9=150 ;TILSP. TVÆRS	
Q200=2 ;SIKKERHEDS-AFSTAND	
7 L X-25 Y+0 R0 FMAX M3	Forpositionering i nærheden af startpunktet
8 CYCL CALL	Cyklus-kald
9 L Z+250 RO FMAX M2	Værktøj frikøres, program-slut
10 END PGM C230 MM	

8.8 Cykler for koordinat-omregning

Med koordinat-omregninger kan TNC'en udføre en een gang programmeret kontur på forskellige steder af emnet med ændret position og stórrelse. TNC'en stiller følgende koordinatomregningscykler til rådighed:

cyklus	Softkey
7 NULPUNKT Konturen forskydes direkte i programmet en nulpunkt-tabel	⁷ → →
8 SPEJLING Konturen spejles	8
10 DREJNING Konturen drejes i bearbejdningsplanet	
11 DIM.FAKTOR Konturen formindskes eller forstørres	
26AKSESPECIFIK DIM.FAKTOR Konturen formindskes eller forstørres med aksespecifikke dim.faktorer	26, CC

Virkningen af en koordinat-drejningn

Start af aktiviteten: En koordinat-omregning bliver aktiv fra sin definition - bliver altså ikke kaldt. De virker, indtil de bliver tilbagestillet eller defineret påny.

Tilbagestilling af koordinat-omregning:

- Cyklus med værdier for grundforholdene defineres påny, d.eks. dim.faktor 1,0
- Hjælpe funktionerne M02, M30 eller blokken END PGM udføres (afhængig af maskinparameter 7300)
- Nyt program vælges.

NULPUNKT-forskydnin (cyklus 7)

Med NULPUNKT-FORSKYDNING kan De gentage bearbejdninger på vilkårlige steder på emnet.

Virkemåde

Efter en cyklus-definition NULPUNKT-FORSKYDNING henfører alle koordinat-indlæsninger sig til det nye nulpunkt. Forskydningen i hver akse viser TNC'en i status-displayet.

Forskydning: Indlæs koordinaterne til det nye nulpunkt, overfør hver akse med tasten ENT, Afslut indlæsning: Tryk tasten END; Absolutværdier henfører sig til emne-nulpunktet, der er fastlagt ved henføringspunkt-fastlæggelsen; Inkrementalværdier henfører sig altid til det sidste gyldige nulpunkt – dette kan allerede være forskudt

REF: Tryk softkey REF, så henfører det programmerede nulpunkt sig til maskin-nulpunktet. TNC´en kendetegner i dette tilfælde den første cyklus-blok med REF

NC-blok eksempel:

	51011 01		P 0	
73	CYCL	DEF	7.0	NULPUNKT
74	CYCL	DEF	7.1	X+10
75	CYCL	DEF	7.2	Y+10
76	CYCL	DEF	7.3	Z-5

Tilbagestilling

Nulpunkt-forskydning med koordinatværdierne X=0, Y=0 og Z=0 ophæver igen en nulpunkt-forskydning.

Status-display

- Positions-visningen henfører sig til det aktive (forskudte) nulpunkt
- Nulpunktet vist i status-displayet henfører sig til det manuelt fastlagte henføringspunkt.

NULPUNKT-forskydning med nulpunkt-tabeller (cyklus 7)

Nulpunkter fra nulpunkt-tabellen kan henføre sig til det aktuelle henføringspunkt eller maskin-nulpunktet (afhængig af maskinparameter 7475).

Koordinat-værdier fra nulpunkt-tabellen kan kun virke som absolut mål.

Pas på, at nulpunkt-numrene forskyder sig, når De indføjer linier i en bestående nulpunkt-tabel (evt. ændrer NC-program).

8.8 Cykler for koordinat-omregning

Anvendelse

Nulpunkt-tabellen indsætter De ved

- ofte tilbagevendende bearbejdningsforløb på forskellige emnepositioner eller
- ved ofte anvendelse af den samme nulpunktforskydning

Indenfor et program kan De programmere nulpunkter såvel direkte i cyklus-definitionen som også kald fra en nulpunkt-tabel.

#

Definér cyklus 7

Tryk softkey for indlæsning af nulpunkt-nummer, Indlæs nulpunkt-nummer, overfør med tasten END

NC-blokeksempel:

77 CYCL DEF 7.0 NULPUNKT 11 CYCL DEF 1.5 F250

Tilbagestilling

- Fra nulpunkt-tabellen kaldes forskydning til koordinaterne X=0; Y=0 etc.
- Forskydning til koordinaterne X=0; Y=0 etc. direkte kald med en cyklus-definition.

Vælg nulpunkt-tabel i et NC-program

Med funktionen SEL TABLE vælger De nulpunkt-tabellen, fra hvilken TNC'en skal tage nulpunkterne:

- ▶ Vælg funktionen for program-kald: Tryk tasten PGM CALL
- ▶ Tryk softkey NULPUNKT TABEL
- Indlæs navnet på nulpunkt-tabellen, overfør med tasten END

Editering af nulpunkt-tabel

Nulpunkt-tabeller vælger De i driftsart program indlagring/editering

- Kald fil-styring: Tryk tasten PGM MGT; se også "4.2 Filstyring"
- Forskyd det lysefelt til en vilkårlig nulpunkt-tabel. Overfør med tasten ENT
- ▶ Fil editering: se tabellen editeringsfunktioner

Forlade nulpunkt-tabel

Kald fil-styring og vælg en fil af en anden type, F.eks. et bearbejdnings-program

Editeringsfunktioner	Taste / Softkey
Vælg akse	/ +
Sidevis bladning nedad	
Sidevis bladning opad	t
Sidevis bladning opad	SIDE Î
Sidevis bladning nedad	SIDE J
Spring eet ord til højre	ORD
Spring eet ord til venstre	ORD <
Overfør aktuelle position, f.eks. for Z-aksen	AKT.POS. Z
Indføj indlæsbart antal linier	
Slet aktuelle linie og mellem-lagre	SLET LINIE
Indføj en ny linie, hhv. indføj sidst slettede linie	INDS#T LINIE
Spring til tabel-start	
Spring til tabellens ende	SLUT L

SPEJLING (cyklus 8)

TNC'en kan udføre en bearbejdning i bearbejdningsplanet spejlvendt. Se billedet til højre for oven.

Virkemåde

Spejling virker fra og med sin definition i programmet. Den virker også i driftsart POSITIONERING MED MANUEL INDLÆSN. TNC'en viser aktive spejlingsakser i det status-displayet.

- Hvis De kun spejler en akse, ændrer omløbsretningen for værktøjet. Dette gælder ikke ved bearbejdningscykler.
- Hvis De spejler to akser, bibeholdes omløbsretningen.
- Resultatet af spejlingen afhænger af stedet for nulpunktet:
- Nulpunktet ligger på konturen der spejles: Elementet bliver direkte spejlet om nulpunktet; se billedet til højre i midten.
- Nulpunktet ligger udenfor konturen der skal spejles: Elementet flytter sig yderligere; se billedet til højre forneden

8.8 Cykler for koordinat-omregning

Spejlende akse ?: Indlæs akse, som skal spejles; De kan spejle alle akser – incl. drejeakser – med undtagelse af spindelaksen og den dertilhørende sideakse

NC-blokeksempel:

79 CYCL DEF 8.0 SPEJLNING

80 CYCL DEF 8.1 X Y

Tilbagestilling

Cyklus SPEJLING programmeres påny med indlæsning NO ENT.

8.8 Cykler for koordinat-omregning

DREJNING (cyklus 10)

Indenfor et program kan TNC'en dreje koordinatsystemet i bearbejdningsplanet om det aktive nulpunkt.

Virkemåde

DREJNING virker fra og med sin definition i programmet. Den virker også i driftsart positionering med manuel indlæsning. TNC'en viser den aktive drejevinkel i det status-displayet.

Henføringsakse for drejevinklen:

- X/Y-planet X-akse
- Y/Z-planet Y-akse
- Z/X-planet Spindelakse

Pas på før programmeringen

TNC'en ophæver en aktiv radius-korrektur ved definering af cyklus 10. Programmer evt. radius-korrektur påny.

Efter at De har defineret cyklus 10, kører De begge akser i bearbejdningsplanet, for at aktivere drejningen.

DREJNING: Indlæs drejevinkel i grader (°). Indlæseområde: -360° til +360° (absolut eller inkrementalt)

NC-blok eksempel:

81 CYCL DEF 10.0 DREJNING 82 CYCL DEF 10.1 ROT+12.357

Tilbagestilling

Cyklus DREJNING programmeres med drejevinkel 0° påny.

DIM.FAKTOR (cyklus 11)

TNC'en kan indenfor et program forstørre eller formindske konturer. Således kan De eksempelvis tage hensyn til svind- og sletspånfaktorer.

Virkemåde

DIM.FAKTOR virker fra og med sin definition i programmet. Den virker også i driftsart POSITIONERING MED MANUEL INDLSÆN. TNC'en viser den aktive dim.faktor i status-displayet.

Dim.faktoren virker

- i bearbejdningsplanet, eller i alle tre koordinatakser samtidig (afhængig af maskinparameter 7410)
- ved målangivelser i cykler
- også i parallelakserne U,V,W

Forudsætning

Før forstørrelsen hhv. formindskelsen skal nulpunktet være forskudt til en kant eller et hjørne af konturen.

Faktor ?: Faktor SCL indlæses (eng.: scaling); TNC´en multiplicerer koordinater og radier med SCL (som beskrevet i "Virkning")

Forstørring:	SCL større end	1 til 99,999 999

Formindskelse:	Formindskelse:	SCL	mindre	end
	1 til 0,000 001			

NC-blok eksempel:

			-	
83	CYCL	DEF	11.0	DIM.FAKTOR
8/	0.001	DEE	11 1	SCI0 00537

Tilbagestilling

Cyklus DIM.FAKTOR programmeres påny med Faktor 1.

8.<mark>8 Cy</mark>kler for koordinat-omregning

DIM.FAKTOR AKSESP. (cyklus 26)

Pas på før programmeringen

For hver koordinat-akse kan De indlæse en egen aksespecifik dim.faktor.

Yderligere lader koordinaterne til centrum sig programmere for alle dim.faktorer.

Konturen bliver fra centrum strukket eller klemt, altså ikke ubetinget fra og til det aktuelle nulpunkt – som ved cyklus 11 DIM.FAKTOR

Virkemåde

DIM.FAKTOR virker fra og med sin definition i programmet. Indeholder konturen der skal skaleres cirkelbuer, beregner TNC´en – dimfaktoren tilsvarende – en ellipsebue.

DIMFAKTOR virker også i driftsart positionering med manuel indlæsning. TNC'en viser den aktive dim.faktor i status-displayet.

Akse og faktor: Koordinatakse(n) og faktor(en) for den aksespecifikke strækning eller klemning. Indlæs positiv værdi – maximal 99,999 999 –

Centrum-koordinater: Centrum for den aksespecifikke strækning eller klemning.

Koordinatakserne vælger De med Softkeys.

Tilbagestilling

Cyklus DIM.FAKTOR programmeres påny med faktor 1 for den tilsvarende akse.

Eksempel

Aksespecifikke dim.faktorer i bearbejdningseplanet

Givet: Firkant, se grafikken til højre forneden

Х =	20,0 mm	Y =	2,5 mm
X =	32,5 mm	Y =	15,0 mm
X =	20,0 mm	Y =	27,5 mm
Х =	7,5 mm	Y =	15,0 mm
	X = X = X = X =	X = 20,0 mm X = 32,5 mm X = 20,0 mm X = 7,5 mm	$\begin{array}{llllllllllllllllllllllllllllllllllll$

X-akse strækkes med faktor 1,4

■ Y-akse klemmes med faktor 0,6

Centrum ved CCX = 15 mm CCY = 20 mm

NC-blokke Blokeksempler

CYCL DEF 26.0 MÅLFAKTOR CYCL DEF 26.1 X1,4 Y0,6 CCX+15 CCY+20

Eksempel: Koordinat-omregningscykler

- Koordinat-omregninger i et hovedprogram
- Bearbejdning i et underprogram 1 (se "9 Programmering: Underprogrammer og programmdel-gentagelser")

O BEGIN PGM KOUMR MM	
1 BLK FORM 0.1 Z X+0 Y+0 Z-20	Råemne-definition
2 BLK FORM 0.2 X+130 Y+130 Z+0	
3 TOOL DEF 1 L+0 R+1	Værktøjs-definition
4 TOOL CALL 1 Z S4500	Værktøjs-kald
5 L Z+250 RO F MAX	Værktøj frikøres
6 CYCL DEF 7.0 NULPUNKT	Nulpunkt-forskydning til centrum
7 CYCL DEF 7.1 X+65	
8 CYCL DEF 7.2 Y+65	
9 CALL LBL 1	Kald af fræsebearbejdning
10 LBL 10	Sæt mærke for programdel-gentagelse
11 CYCL DEF 10.0 DREJNING	Drej 45° inkrementalt
12 CYCL DEF 10.1 IROT+45	
13 CALL LBL 1	Kald af fræsebearbejdning
14 CALL LBL 10 REP 6	Tilbagespring til LBL 10; ialt seks gange
15 CYCL DEF 10.0 DREJNING	Tilbagestilling af drejning
16 CYCL DEF 10.1 ROT+0	
17 CYCL DEF 7.0 NULPUNKT	Tilbagestilling af nulpunkt-forskydning
18 CYCL DEF 7.1 X+0	
19 CYCL DEF 7.2 Y+0	
20 L Z+250 RO FMAX M2	Værktøj frikøres, program-slut

21	LBL 1	Underprogram 1:
22	L X+O Y+O RO FMAX	Fastlæggelse af fræsebearbejdning
23	L Z+2 RO FMAX M3	
24	L Z-5 R0 F200	
25	L X+30 RL	
26	L IY+10	
27	RND R5	
28	L IX+20	
29	L IX+10 IY-10	
30	RND R5	
31	L IX-10 IY-10	
32	L IX-20	
33	L IY+10	
34	L X+0 Y+0 R0 F500	
35	L Z+20 RO FMAX	
36	LBL O	
37	END PGM KOUMR MM	

8.9 Special-cykler

DVÆLETID (cyklus 9)

I et løbende program afvikler TNC'en først den efterfølgende blok efter den programmerede dvæletid. En dvæletid kan eksempelvis tjene til en spånbrydning.

Virkemåde

Cyklus virker fra og med sin definition i programmet. Modalt virkende (blivende) tilstande bliver herved ikke influeret, som f.eks. rotationen af spindelen.

Dvæletid i sekunder: Indlæs dvæletid i sekunder.

Indlæseområde 0 til 30 000 s (ca. 8,3 timer) i 0,001 s-skridt.

NC-blok eksempel

89	CYCL	DEF	9.0	DVÆLETI	D
90	CYCL	DEF	9.1	DV.TID	1.5

De kan selv fremstille specielle programmer, f.eks. boreprogrammer eller geometri-moduler.

Disse programmer er selvstændige programmer som med cyklus 12 kan kaldes i et andet program.Herved fungerer disse næsten på samme måde som originale HEIDENHAIN-cykler.

Program-navn: Nummeret på programmet der skal kaldes

Programmet kalder De med

- CYCL CALL (separat blok) eller
- M99 (blokvis) eller
- M89 (bliver udført efter hver positionerings-blok)

Eksempel: Program-kald

Fra et program skal et med cyklus kaldbart program 50 kaldes.

NC-blok eksempel

55 CYCL DEF 12.0 PGM CALL	Fastlæggelse:
56 CYCL DEF 12.1 PGM 50.H	"Program 50 er en cyklus"
57 L X+20 Y+50 FMAX M99	Kald af program 50

SPINDEL-ORIENTERING (cyklus 13)

Maskinen og TNC'en skal af maskinfabrikanten være forberedt for cyklus 13.

TNC'en kan styre hovedspindelen i en værktøjsmaskine som 6. akse og med en vinkel dreje den til en bestemt vinkel position.

Spindel-orienteringen er nødvendig

- ved værktøjsveksel-systemer med bestemte veksel-positioner for værktøjerne.
- for opretning af sende- og modtagevinduerne ved 3D-tastsystemer med infrarød-overførsel.

Virkemåde

Ved efterfølgende M19-kommandoer positioneres spindelen til den i cyklus definerede vinkelposition.

Hvis De programmerer M19, uden først at definere cyklus 13, så positionerer TNC'en hovedspindelen til en vinkelværdi, der er fastlagt i en maskinparameter (se maskinhåndbogen).

Orienteringsvinkel: Indlæs vinkel henført til vinkelhenføringsaksen i arbejdsplanet

Indlæse-område: 0 til 360°

Indlæse-finhed: 0,001°

NC-blok eksempel

- 93 CYCL DEF 13.0 ORIENTERING
- 94 CYCL DEF 13.1 VINKEL 180

Programmering:

Underprogrammer og programdel-gentagelser

9.1 Kendetegn for underprogrammer og programdel-gentagelser

Een gang programmerede bearbejdningsskridt kan De gentage flere gange med underprogrammer og programdel-gentagelser.

Label

Underprogrammer

Underprogrammer og programdel-gentagelser begynder i et bearbejdningsprogram med mærket LBL, en forkortelse for LABEL (eng. for mærke, kendetegn).

En LABEL har et nummer mellem 1 og 254. Hvert LABEL-nummer må De kun bruge een gang i et program og aktiveres med LABEL SET.

LABEL 0 (LBL 0) kendetegner et underprogram-slut og må derfor anvendes så ofte det ønskes.

9.2 Underprogrammer

Arbejdsmåde

- 1 TNC'en udfører et bearbejdnings-program indtil der kommer et underprogram-kald CALL LBL.
- 2 Fra dette sted afvikler TNC'en det kaldte underprogram indtil der kommer en underprogram-slut LBL 0.
- **3** Herefter fortsætter TNC'en bearbejdnings-programmet med blokken, der følger efter underprogram-kald CALL LBL.

Programmerings-anvisninger

- Et hovedprogram kan indeholde indtil 254 underprogrammer.
- De kan kalde underprogrammer i vilkårlig rækkefølge så ofte det ønskes.
- Et underprogram må ikke kalde sig selv.
- Underprogrammer programmeres efter afslutning af hovedprogrammet (efter blokken med M2 hhv. M30).
- Hvis underprogrammer i et bearbejdnings-program står før blokken med M02 eller M30, så bliver det afviklet mindst een gang mere foruden de programmerede kald.

Programmering af et underprogram

- LBL SET
- Start kendetegn: Tryk taste LBL SET og indlæs et labelnummer
- ▶ Indlæs underprogrammet.
- Slut kendetegn: Tryk taste LBL SET og indlæs labelnummer "0"

Kald af et underprogram

- ▶ Kald underprogram: Tryk taste LBL CALL
- Label-nummer: Indlæs label-nummeret på underprogrammet der skal kaldes, overfør med tasten END

LBL

CALL LBL 0 er ikke tilladt, da det svarer til kald af et under-program-slut.

9.3 Programdel-gentagelser

Programdel-gentagelser begynder med mærket LBL (LABEL). En programdel-gentagelse afsluttes med CALL LBL /REP.

Arbejdsmåde

- 1 TNC'en udfører bearbejdnings-programmet til enden af programdelen (CALL LBL REP)
- 2 Herefter gentager TNC'en programdelen mellem den kaldte LABEL og label-kald CALL LBL REP så ofte, som De har angivet under REP.
- **3** Herefter fortsætter TNC'en igen bearbejdnings-programmet.

Programmerings-anvisninger

- De kan gentage en programdel indtil 65 534 gange efter hinanden.
- I det yderligere status-display viser TNC'en, hvor mange gentagelser der endnu skal udføres (se "1.4 Status-display)
- Programdele bliver af TNC altid udført een gang mere, end der er programmeret gentagelser.

Programmering af programdel-gentagelser

- ▶ Start kendetegn: Tryk taste LBL SET og indlæs LABELnummer for den programdel der skal gentages
 - ▶ Indlæs programdel

Kald af programdel-gentagelse

LBL SET

LBL

▶ Tryk tasten LBL CALL, indlæs LABEL-NUMMER for programdelen der skal gentages og antallet af gentagelser REP

9.4 Vilkårligt program som underprogram

- **1** TNC'en udfører bearbejdnings-programmet, indtil De kalder et andet program med CALL PGM.
- 2 Herefter udfører TNC'en det kaldte program indtil dets afslutning.
- 3 Herefter fortsætter TNC'en afviklingen ad det bearbejdningsprogram hvori programkaldet står.

Programmerings-anvisninger

- For at anvende et vilkårligt program som underprogram behøver TNC'en ingen LABELs.
- Det kaldte program må ikke indeholde en hjælpe-funktion M2 eller M30.
- Det kaldte program må ikke indeholde en kald CALL PGM til det kaldende program.

Kald af et vilkårligt program som underprogram

- ▶ Vælg funktionen for program-kald: Tryk tasten PGM CALL
- Tryk softkey PROGRAM
- ▶ Indlæs program-navn på programmet der skal kaldes. Med softkey fastlægger De vderligere, hvilken program-type De vil kalde og hvor programmet er lagret (se tabellen til højre)

De kan også kalde et vilkårligt program med cyklus 12 PGM CALL.

Funktion	Softkey
Externt lagret program kald	EXT
Klartext-dialog-program kald	.н
DIN/ISO-program kald	. I
Blok CALL PGM EXT forvandle efter CALL PGM INT (internt lagret program kald)	INT
Program-type kald, der er fastlagt i MOD-funktion "program- indlæsning"	DEFAULT

9.5 Sammenkædninger

Underprogrammer og programdel-gentagelser kan De sammenkæde som følger:

- Underprogrammer i underprogram
- Programdel-gentagelser i programdel-gentagelse
- Gentage underprogram
- Programdel-gentagelser i underprogram

Sammenkædnings-dybde

Sammenkædnings-dybden fastlægger, hvor ofte programdele eller underprogrammer må indeholde yderligere underprogrammer eller programdel-gentagelser.

- Maximal sammenkædnings-dybde for underprogrammer: 8
- Maximal sammenkædnings-dybde for hovedprogram-kald: 4
- Programdel-gentagelser kan De sammenkæde så ofte det ønskes.

Underprogram i underprogram

NC-blok eksempel

O BEGIN PGM UPGMS MM	
17 CALL LBL 1	Underprogram med LBL1 bliver kaldt
35 L Z+100 RO FMAX M2	Sidste programblok i
	Hovedprogrammet (med M2)
36 LBL 1	Start af underprogram 1
39 CALL LBL 2	Underprogram med LBL2 bliver kaldt
45 LBL 0	Slut på underprogram 1
46 LBL 2	Start på underprogram 2
62 LBL 0	Slut på underprogram 2
63 SLUT PGM UPGMS MM	

Program-afvikling

- 1. skridt: Hovedprogrammet UPGMS bliver udført til blok 17.
- 2. skridt: Underprogram 1 bliver kaldt og udført til blok 39.
- skridt: Underprogram 2 bliver kaldt og udført til blok 62. Slut på underprogram 2 og tilbagespring til underprogrammet, fra hvilket det blev kaldt.
- 4. skridt: Underprogram 1 bliver udført fra blok 40 til blok 45. Slut på underprogram 1 og tilbagespring i hovedprogram UPGMS.
- 5. skridt: Hovedprogram UPGMS bliver udført fra blok 18 til blok 35 Tilbagespring til blok 1 og program-afslutning. Tilbagespring til blok 1 og program-slut.

Gentage programdel-gentagelser

NC-blok eksempel

O BEGIN PGM REPS MM	
•••	
15 LBL 1	Start af programdel-gentagelse 1
20 LBL 2	Start af programdel-gentagelse 2
27 CALL LBL 2 REP 2	Programdel mellem denne blok og LBL 2
	(blok 20) bliver gentaget 2 gange
35 CALL LBL 1 REP 1	Programdel mellem denne blok og LBL 1
	(blok 15) bliver gentaget 1 gang
48 SLUT PGM REPS MM	

- 1. skridt: Hovedprogram REPS bliver udført til blok 27
- 2. skridt: Programdel mellem blok 27 og blok 20 bliver gentaget 2 gange
- 3. skridt: Hovedprogram REPS fortsætter fra blok 28 til blok 35
- 4. skridt: Programdel mellem blok 35 og blok 15 bliver gentaget
 1 gang (indeholder programdel-gentagelse mellem blok 20 og blok 27)
- 5. skridt: Hovedprogram REPS bliver afviklet fra blok 36 til blok 50 (program-afslutning)

Underprogram gentagelse

NC-blok eksempel

O BEGIN PGM UPGREP MM	
•••	
10 LBL 1	Start af programdel
11 CALL LBL 2	Underprogram-kald
12 CALL LBL 1 REP 2	Programdel mellem denne blok og LBL1
	(blok 10) bliver gentaget 2 gange
19 L Z+100 RO FMAX M2	Sidste programblok i hovedprogram med M2
20 LBL 2	Start af underprogram
28 LBL 0	Slut på underprogram
29 END PGM UPGREP MM	

- 1. skridt: Hovedprogram UPGREP bliver afviklet til blok 11
- 2. skridt: Underprogram 2 bliver kaldt og afviklet
- 3. skridt: Programdel mellem blok 12 og blok 10 bliver gentaget 2 gange: Underprogram 2 bliver gentaget 2 gange
- 4. skridt: Hovedprogram UPGREP bliver afviklet fra blok 13 til blok 19; Program-slut

Eksempel: Konturfræsning med flere fremrykninger

- Værktøjet forpositioneres til overkanten af emnet
- Indlæs fremrykning inkrementalt
- Konturfræsning
- Fremrykning og konturfræsning gentages

O BEGIN PGM PGMWDH MM	
1 BLK FORM 0.1 Z X+0 Y+0 Z-40	
2 BLK FORM 0.2 X+100 Y+100 Z+0	
3 TOOL DEF 1 L+0 R+10	Værktøjs-definition
4 TOOL CALL 1 Z S500	Værktøjs-kald
5 L Z+250 RO F MAX	Værktøj frikøres
6 L X-20 Y+30 R0 F MAX	Forpositionering i bearbejdningsplan
7 L Z+O RO FMAX M3	Forpositionering på overkant af emne
8 LBL 1	Mærke for programdel-gentagelse
9 L IZ-4 RO F MAX	Inkremental dybde-fremrykning (i det fri)
10 APPR CT X+2 Y+30 CCA90 R+5 RL F250	Kørsel til kontur
11 FC DR- R18 CLSD+ CCX+20 CCY+30	Kontur
12 FLT	
13 FCT DR- R15 CCX+50 CCY+75	
14 FLT	
15 FCT DR- R15 CCX+75 CCY+20	
16 FLT	
17 FCT DR- R18 CLSD- CCX+20 CCY+30	
18 DEP CT CCA90 R+5 F1000	Forlade kontur
19 L X-20 Y+0 R0 F MAX	Frikørsel
20 CALL LBL 1 REP 4	Tilbagespring til LBL 1; ialt fire gange
21 L Z+250 RO FMAX M2	Værktøj frikøres, program-slut
22 END PGM PGMWDH MM	

Eksempel: Hulgrupper

- Kør til hulgrupper i hovedprogram
- Kald hulgruppe (underprogram 1)
- Programmer hulgruppe kun een gang i underprogram 1

O BEGIN PGM UP1 MM	
1 BLK FORM 0.1 Z X+0 Y+0 Z-20	
2 BLK FORM 0.2 X+100 Y+100 Z+0	
3 TOOL DEF 1 L+0 R+2,5	Værktøjs-definition
4 TOOL CALL 1 Z S5000	Værktøjs-kald
5 L Z+250 RO F MAX	Værktøj frikøres
6 CYCL DEF 200 BORING	
Q200=2;SIKKERHEDS-AFST.	
Q201=-10 ; DYBDE	
;TILSPÆNDING DYBDEFR.	
Q2O2=5 ; INDSTILLINGS-DYBDE	
Q210=0 ;DVÆLETID OPPE	
Q2O3=+O ;OVERFLADE KOORDINAT	
Q2O4=10 ;2. SIKKERHEDS-AFST.	
7 L X+15 Y+10 R0 FMAX M3	Kør til startpunkt hulgruppe 1
8 CALL LBL 1	Kald underprogram for hulgruppe
9 L X+45 Y+60 R0 FMAX	Kør til startpunkt hulgruppe 2
10 CALL LBL 1	Kald underprogram for hulgruppe
11 L X+75 Y+10 RO FMAX	Kør til startpunkt hulgruppe 3
12 CALL LBL 1	Kald underprogram for hulgruppe
13 L Z+250 RO FMAX M2	Slut på hovedprogram

14 LBL 1	Start på underprogram 1: hulgruppe
15 CYCL CALL	1. boring
16 L IX+20 RO FMAX M99	2. Kør til boring, kald cyklus
17 L IY+20 RO FMAX M99	3. Kør til boring, kald cyklus
18 L IX-20 RO FMAX M99	4. Kør til boring, kald cyklus
19 LBL 0	Slut på underprogram 1
20 END PGM UP1 MM	

Eksempel: Hulgruppe med flere værktøjer

- Programmer bearbejdnings-cykler i hovedprogram
- Komplet borebillede kaldes (underprogram 1)
- Kør til hulgruppen i underprogram 1, kald hulgruppe (underprogram 2)
- Programmer hulgruppen kun een gang i underprogram 2

O BEGIN PGM UP2 MM	
1 BLK FORM 0.1 Z X+0 Y+0 Z-20	
2 BLK FORM 0.2 X+100 Y+100 Z+0	
3 TOOL DEF 1 L+0 R+4	Værktøjs-definition centreringsbor
4 TOOL DEF 2 L+0 R+3	Værktøjs-definition bor
5 TOOL DEF 3 L+0 R+3,5	Værktøjs-definition rival
6 TOOL CALL 1 Z S5000	Værktøjs-kald centreringsbor
7 L Z+250 RO FMAX	Værktøj frikøres

e
Q
3
G
Š
×
Ψ
S
<u> </u>
.=
e L
ž
ā
5
Ó
2
9
ດ

8 CYCL DEF 200 BORING	Cyklus-definition centrering
Q2OO=2;SIKKERHEDS-AFST.	
Q201=-3 ; DYBDE	
Q206=250 ;TILSPÆNDING DYBDEFR.	
Q2O2=3 ; TILSPÆNDINGS DYBDE	
Q210=0 ;DVÆLETID OPPE	
Q2O3=+O ;OVERFLADE KOORDINAT	
Q204=10 ;2. SIKKERHEDS-AFST.	
9 CALL LBL 1	Kald underprogram 1 for komplet borebillede
10 L Z+250 RO FMAX M6	Værktøjs-skift
11 TOOL CALL 2 Z S4000	Værktøjs-kald bor
12 FN 0: $Q201 = -25$	Ny dybde for boring
13 FN 0: Q202 = +5	Ny fremrykning for boring
14 CALL LBL 1	Kald underprogram 1 for komplet borebillede
15 L Z+250 RO FMAX M6	Værktøjs-skift
16 TOOL CALL 3 Z S500	Værktøjs-kald rival
17 CYCL DEF 201 REIFNING	Cyklus-definition rival
Q200=2 ;SIKKERHEDS-AFST.	
Q201=-15 ; DYBDE	
Q206=250 ;TILSPÆNDING DYBDEFR.	
Q211=0,5 ;DVÆLETID NEDE	
Q208=400 ;TILSP. TILB.TRÆK	
Q2O3=+O ;OVERFLADE KOORDINAT	
Q2O4=10 ;2. SIKKERHEDS-AFST.	
18 CALL LBL 1	Kald underprogram 1 for komplet borebillede
19 L Z+250 RO FMAX M2	Slut på hovedprogram
20 LBL 1	Start på underprogram 1: Komplet borebillede
21 L X+15 Y+10 RO FMAX M3	Kør til startpunkt hulgruppe 1
22 CALL LBL 2	Kald underprogram 2 for hulgruppe
23 L X+45 Y+60 R0 FMAX	Kør til startpunkt hulgruppe 2
24 CALL LBL 2	Kald underprogram 2 for hulgruppe
25 L X+75 Y+10 R0 FMAX	Kør til startpunkt hulgruppe 3
26 CALL LBL 2	Kald underprogram 2 for hulgruppe
27 LBL 0	Slut på underprogram 1
28 LBL 2	Start på underprogram 2: hulgruppe
29 CYCL CALL	1. Boring med aktiv bearbejdnings-cyklus
30 L IX+20 RO FMAX M99	2. Kør til boring, kald cyklus
31 L IY+20 RO FMAX M99	3. Kør til boring, kald cyklus
32 L IX-20 RO FMAX M99	4. Kør til boring, kald cyklus
33 LBL 0	Slut på underprogram 2
34 END PGM UP2 MM	

Programmering:

Q-parametre

10.1 Princip og funktionsoversigt

Med Q-parametrene kan De fremstille et program for familieemner. Hertil indlæser De istedet for talværdier en erstatning: Qparametrene.

- Q-parametre står eksempelvis for
- Koordinatværdier
- Tilspænding
- Omdrejningstal
- Cyklus-data

Herudover kan De med Q-parametrene programmere konturer, som er bestemt af matematiske funktioner eller gøre udførelsen af bearbejdningsskridt afhængig af logiske betingelsern.

En Q-parameter er kendetegnet med bogstavet Q og et nummer mellem 0 og 299. Q-parametrene er inddelt i tre områder:

Betydning	Område
Frit anvendelige parametre, globalt virksomt alle programmer der befinder sig i TNC'ens hukommelse er virksommme. Hvis De kalder en maskinfabrikant cyklus, virker denne parameter kun lokalt (afhængig af MP7251)	Q0 til Q99
Parametre f. specialfunkt. i TNC	Q100 til Q199
Parametre, der fortrinsvis anvendes for cykler, globalt virksomme for alle programmer der befinder sig i TNC hukommelsen og i maskinfabrikant-cykler	Q200 til Q299

Programmeringsanvisninger

Q-parametre og talværdier må gerne indlæses blandet i et program.

De kan anvise Q-parametre m. talværdier mellem -99999,9999 og +99 999,9999.

Kald af Q-parameter-funktioner

Under indlæsningen af et bearbejdningsprogram, trykker De på tasten "Q" (i feltet for ciffer indlæsning og aksevalg under –/+ -tasten). Så viser TNC en følgende softkeys:

Funktionsgruppe	Softkey
Matematiske grundfunktioner	BASIC ARITHM.
Vinkelfunktioner	TRIGO- NOMETRY
Betingede spring, spring	SPRING
Øvrige funktioner	SPECIEL FUNKTION
Indlæsning af formel	FORMEL

10.2 Familieemne – Q-Parametre istedet for talværdier

Med Q-parameter-funktionen FN0: ANVISNING kan De anvise Q-parametrene talværdier. Så indsætter De i bearbejdningsprogrammet istedet for talværdier en Q-parameter.

NC-blok eksempel

15 FN0: Q10 = 25	Anvisning:
	Q10 indeh. værdien 25
25 L X +Q10	svarer til L X +25

For familieemner programmerer De f.eks. de variable emnemål som Q-parametre.

For bearbejdningen af de enkelte emner anviser De så hver af disse parametre en tilsvarende talværdi.

Eksempel

Cylinder med Q-parametre

Cylinder-radius	R = Q1
Cylinder-højde	H = Q2
Cylinder Z1	$ \begin{array}{rcl} 01 &= +30 \\ 02 &= +10 \end{array} $
Cylinder Z2	Q1 = +10 Q2 = +50

10.3 Beskrivelse af konturer med matmatiske funktioner

Med Q-parametrene kan De programmere matematiske grund-funktioner i et bearbejdningsprogram:

- ▶ Vælg Q-parameter-funktion: Tryk tasten Q (i feltet for talindlæsning til højre). Softkey-listen viser Q-parameter-funktionen.
- Vælg matematiske grundfunktioner: Tryk softkey GRUNDFUNKT. TNC'en viser følgende softkeys:

Funktion	Softkey
FN0: ANVISNING z.B. FN0: Q5 = +60 Anvis værdien direkte	FNO X = V
FN1: ADDITION f.eks. FN1: Q1 = -Q2 + -5 Beregn og anvis summen af de to værdier	FN1 X + Y
FN2: SUBTRAKTION f.eks. FN2: Q1 = +10 - +5 Beregn og anvis differensen af de to værdier	FN2 X - Y
FN3: MULTIPLIKATION f.eks. FN3: Q2 = +3 * +3 Beregn og anvis produktet af de to værdier	FN3 X + V
FN4: DIVISION f.eks. FN4: Q4 = +8 DIV +Q2 Beregn og anvis kvotienten af de to værdier Forbudt: Division med 0!	FN4 X / V
FN5: RODUDDRAGNING f.eks. FN5: Q20 = SQRT 4 Uddrag roden af et tal og anvis dette Forbudt: Roduddragning af negative værdier!	FN5 Sûrt
Til højre for "="-tegnet må De indlæse:	

to tal

■ to Q-parametre

eet tal og een Q-parameter

Q-parametrene og talværdierne i ligningen kan De frit indlæse med plus eller minus fortegn.

Eksempel: Programmering af grundregnearter

Q	Vælg Q-parameter-funktionen: Tryk taste Q
BASIC Arithm.	Vælg matematiske grundfunktioner: Tryk softkey GRUNDFUNKT.
FN0 X = V	Vælg Q-parameter-funktion ANVISNING: Tryk softkey FN0 X = Y
Parameter-Nr	. for resultat?
5 ENT	Indlæs nummeret for Q-parameteren: 5
1. Værdi ell	er parameter?
	Anvis Q5 talværdien 10
Q	Vælg Q-parameter-funktionen: Tryk taste Q
BASIC ARITHM.	Vælg matematiske grundfunktioner: Tryk softkey GRUNDFUNKT.
FN3 X * V	Vælg Q-parameter-funktion MULTIPLIKATION: Tryk softkey FN3 X * Y
Parameter-Nr	. for resultat?
12 _{ENT}	Indlæs nummeret for Q-parameteren: 12
1. Værdi ell	er parameter?
Q5 _{ent}	Indlæs Q5 som første værdi
Multiplikato	r?
	Indlæs 7 som anden værdi

TNC'en viser følgende programblokke:

16 FNO: Q5 = +10 17 FN3: Q12 = +Q5 * +7

10.4 Vinkelfunktioner (Trigonometri)

Sinus, Cosinus og Tangens beskriver sideforholdene i en retvinklet trekant. Herved svarer

Sinus: $\sin \alpha = a/c$

Cosinus: $\cos \alpha = = b / c$

Tangens: tan α = a / b = sin α / cos α

Herved er

c siden overfor den rette vinkel

- \blacksquare a siden overfor vinklen α
- b den tredie side

Med tangens kan TNC'en fremskaffe vinklen:

 α = arctan α = arctan (a / b) = arctan (sin α / cos α)

Eksempel:

- a = 10 mm
- b = 10 mm
- α = arctan (a / b) = arctan 1 = 456

Herudover gælder:

$$a^2 + b^2 = c^2$$
 (med $a^2 = a \times a$)

 $c = \sqrt{(a^2 + b^2)}$

Programmering af vinkelfunktioner

Vinkelfunktionerne vises med et tryk på softkey VINKELFUNKT. TNC'en viser disse softkey i tabellen til højre.

Programmering: Se "Eksempel: Programmering af grundregnearter".

Funktion	Softkey
FN6: SINUS f.eks. FN6: Q20 = SIN–Q5 Bestemmelse og anvisning af sinus til en vinkel i grader (°) anvisning beststemmelse og	FN6 SIN(X)
FN7: COSINUS f.eks. FN7: Q21 = COS–Q5 Bestemmelse og anvisning af kosinus til en vinkel i grader (°)	FN7 COS(X)
FN8: RODEN AF EN KVADRATSUM f.eks. FN8: Q10 = +5 LEN +4 Beregning og anvisning af roden af en kvadratsum	FN8 X LEN Y
FN13: VINKEL f.eks. FN13: Q20 = +10 ANG-Q1 Bestemmelse og anvisning af en vinkel med arctan af to sider eller sin og cos af vinklen (0 < vinkel < 360°)	FN13 X ANG V

10.5 Betingede spring med Q-parametre

Ved betingede spring sammenligner TNC'en en Q-parameter med en anden Q-parameter eller en talværdi. Når betingelserne er opfyldt, så gennemfører TNC'en et spring til det næste LABEL NR, der er programmeret efter betingelserne (LABEL se "9. Hvis betingelserne ikke er opfyldt, så udfører TNC'en den næste blok.

Hvis De skal kalde et andet program som underprogram, så programmerer De efter LABEL'en et PGM KALD

Ubetingede spring

Ubetingede spring er spring, hvis betingelser altid (=ubetinget) skal opfyldes, f.eks.

FN9: IF+10 EQU+10 GOTO LBL1

Programmeringer af betingede spring

Betinget spring-beslutningerne vises med et tryk på softkey SPRING. TNC'en viser følgende softkeys:

Funktion	Softkey
FN9: HVIS LIG MED, SPRING	FN9
f.eks. FN9: IF +Q1 EQU +Q3 GOTO LBL 5	IF X EQ V GDTO
Hvis begge værdier eller parametre er ens,	
så spring til den angivne Label	

FN10: HVIS ULIG MED, SPRING

f.eks. FN10: IF +10 NE -Q5 GOTO LBL 10 Hvis begge værdier eller parametre ikke er ens, så spring til den angivne Label

FN11: HVIS STØRRE END, SPRING

FN11 IF X GT V f.eks. FN11: IF+Q1 GT+10 GOTO LBL 5 Hvis første værdi eller parameter er større end den anden værdi eller parameter, spring til den angivne Label

FN12: HVIS MINDRE END, SPRING

f.eks. FN12: IF+Q5 LT+0 GOTO LBL 1	GOTO
Hvis første værdi eller parameter er mindre end den and	en
værdi eller parameter, spring til den angivne label	

FN10 IF X NE Y GOTO

Anven IF	dte forkortelser og (eng.):	begreber Hvis
EQU	(eng. equal):	Lig med
NE	(eng. not equal):	Ulig med
GT	(engl. greater than):	Større end
LT	(eng. less than):	Mindre end
GOTO	(eng. go to):	Gå til
gt Lt Goto	(engl. greater than): (eng. less than): (eng. go to):	Større end Mindre enc Gå til

10.6 Kontrol og ændring af Q-parametre

De kan kontrollere og også ændre indholdet i Q-parametre under en programafvikling eller program-test.

Afbryde programafvikling (f.eks. extern STOP-taste og tryk softkey STOP) hhv. stands program-test

▶ Kald Q-parameter-tabel: Tryk tasten Q

- ▶ Med piltasten vælger De en Q-parameter på den aktuelle billedskærm-side. Med softkeys SIDE vælger De den næste eller forrige billedskærm-side
- Hvis De skal ændre værdien af en parameter, indlæser De en ny værdi, overfører med tasten ENT og afslutter indlæsningen med tasten END

Hvis De ikke vil ændre værdien, så afslutter De dialogen med tasten END

PROG	RF	MTES	т					
Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11		+0.5 +32 +16 +24 +10 +6 +12 +6 +0.5 +80						
KALK.	X Y Z	+ 1 + 2	50.30 24.72 50.22	10 25 25	T F S	0	M5/	9
SIDE Î		SIDE ∬						

10.7 Øvrige funktioner

Øvrige funktioner vises med et tryk på softkey SPECIAL-FUNKT. TNC'en viser følgende softkeys:

Funktion	Softkey
FN14:ERROR	FN14
Udlæsning af fejlmelding	FEJL=
FN15:PRINT	FN15
Tekst eller Q-parameter-værdier udlæses uformateret	PRINT
FN18:SYS-DATUM READ Læs systemdata	FN18 LÆSE SYS-DATA
FN19:PLC	FN19
Overfør værdier til PLC	PLC=

FN14: ERROR Udlæsning af fejlmeldinger

Med funktionen FN14: ERROR kan De lade programstyrede meldinger udlæse, som er forprogrammerede af maskinfabrikanten hhv. af HEIDENHAIN: Hvis TNC'en ved en programafvikling eller program-test kommer til en blok med FN 14, så afbryder den og giver en melding. I tilslutning hertil må De starte programmet igen. Fejl-numrene ses i tabellen til højre.

NC-Blok eksempel

TNC'en skal udlæse en melding, som er lagret under fejlnummeret 254

180 FN14: ERROR = 254

Fejl-nummer område	Standard-dialog
0 299	FN 14: FEJL-NUMMER 0 299
300 999	Ingen standard-dialog indført
1000 1099	Interne fejlmeldinger (se tabellen til højre)

Fejl-nu	mmer og -tekst
1000	Spindel ?
1001	Værktøjsakse mangler
1002	Notbredde for stor
1003	Værktøjs-radius for stor
1004	Område overskredet
1005	Start-position forkert
1006	Drejning ikke tiladt
1007	Dim.faktor ikke tilladt
1008	Spejlning ikke tilladt
1009	Forskydning ikke tilladt
1010	Tilspænding mangler
1011	Indlæseværdi forkert
1012	Fortegn forkert
1013	Vinkel ikke tilladt
1014	Tastpunkt kan ikke nås
1015	For mange punkter
1016	Indlæsning selvmodsigende
1017	CYCL ukomplet
1018	Plan forkert defineret
1019	Forkert akse programmeret
1020	Forkert omdr.tal
1021	Radius-korrektur udefineret
1022	Runding ikke defineret
1023	Rundungs-radius for stor
1024	Udefineret programstart
1025	For stor sammenkædning
1026	Vinkelhenf. mangler
1027	Ingen bearbcyklus defineret
1028	Notbredde for stor
1029	Lomme for lille
1030	Q202 ikke defineret
1031	Q205 ikke defineret
1032	Q218 indlæs større Q219
1033	CYCL 210 ikke tilladt
1034	CYCL 211 ikke tilladt
1035	Q220 for stor
1036	Q222 indlæs større Q223
1037	Q244 indlæs større 0
1038	Q245 ulig Q246 indlæses
1039	Vinkelområde < 360° indlæses
1040	Q223 indlæses større end Q222
1041	Q214: 0 ikke tilladt

FN15: PRINT Tekst el. Q-parameter-værdi udlæses

Indretning af data-interface: I menupunkt INTERFACE RS232 fastlægger De, hvor TNC'en skal lagre tekster eller Q-parameter-værdier. Se "14.4 MOD-funktioner, indretning af datainterface".

Med funktionen FN15: PRINT kan De udlæse værdier for Qparametre og fejlmeldinger over data-interfacet, for eks. til en printer. Hvis De udlæser værdierne til en computer, lagrer TNC´en dataerne i filen %FN15RUN.A (udlæsning under programafviklingen) eller i filen %FN15SIM.A (udlæsning under program-testen).

Udlæsning af dialog og fejlmelding med FN15: PRINT "Talværdi"

Talværdi 0 til 99: Dialog for maskinfabrikant-cykler

fra 100: PLC-fejlmeldinger

Eksempel: Udlæsning af dialog-nummer 20

67 FN15: PRINT 20

Udlæsning af dialog og Q-parameter med FN15: PRINT "Q-Parameter"

Anvendelseseksempel: Protokollering af en emne-opmåling.

De kan samtidig udlæse indtil seks Q-parametre og tal-værdier. TNC'en adskiller disse med skråstreger.

Eksempel: udlæsning af dialog 1 og talværdi Q1

70 FN15: PRINT 1/Q1

FN18: SYS-DATUM READ

Læse systemdata

Med funktion FN18: SYS-DATUM READ kan De læse systemdata og indlagre i Q-parametre. Valget af systemdata sker over et gruppe-nummer (ID-Nr.), et nummer og herudover over et indeks.

Gruppe-navn, ID-Nr.	Nummer	Index	Systemdata
Program-info, 10	1	_	mm/tomme-tilstand
	2	_	Overlapningsfaktor ved lommefræsning
	3	_	Nummer på aktive bearbejdnings-cyklus
Maskintilstand, 20	1	-	Aktivt værktøjs-nummer
	2	_	Forberedt værktøjs-nummer
	3	_	Aktiv værktøjsakse
			0=X, 1=Y, 2=Z
	4	-	Programmeret spindelomdrejningstal
	5	_	Aktiv spindeltilstand: 0=ude, 1= inde
	6	-	Aktiv orienteringsvinkel af spindel
	7	_	Aktivt drev-trin
	8	-	Kølemiddeltilstand: 0=ude, 1= inde
	9	_	Aktiv tilspænding
	10	_	Aktiv tilspænding i overgangskreds
Data fra værktøjs-tabellen, 50	1	-	Værktøjs-længde
	2	-	Værktøjs-radius
	4	_	Sletspån værktøjs-længde DL
	5	_	Sletspån værktøjs-radius DR
	7	-	Værktøj spærret (0 eller 1)
	8	_	Nummer på tvilling-værktøjer
	9	_	Maximal brugstid TIME1
	10	-	Maximal brugstid TIME2
	11	_	Aktuel brugstid CUR. TIME
	12	-	PLC-status
	13	_	Maximal skærelængde LCUTS
	14	-	Maximal indgangsvinkel ANGLE
	15	_	TT: Antal skær CUT
	16	-	TT: Slid-tolerance længde LTOL
	17	-	TT: Slid-tolerance radius RTOL
	18	-	TT: Drejeretning DIRECT (3 eller 4)
	19	_	TT: Forskudt plan R-OFFS
	20	-	TT: Forskudt længde L-OFFS
	21	-	TT: Brud-tolerance længde LBREAK
	22	_	TT: Brud-tolerance radius RBREAK

Gruppe-navn, ID-Nr.	Nummer	Index	Systemdata
Data fra plads-tabel, 51	1	_	Værktøjs-nummer for plads i magasin
i	2	-	Fast plads: 0=nej, 1=ja
	3	-	Plads spærret: 0=nej, 1= ja
	4	-	Værktøjet er et specialværktøj: 0=nej, 1= ja
	5	-	PLC-status
Plads-nummer for aktivt værktøj, 52	1	_	Plads-nummer i magasin
Korrekturdata, 200	1	_	Programmeret værktøjs-radius
	2	_	Programmeret værktøjs-længde
	3	_	Sletspån værktøjs-radius DR fra TOOL CALL
	4	_	Sletspån værktøjs-længde DL fra TOOL CALL
Aktiv transformation, 210	1	_	Grunddrejning driftsart manuel
	2	-	Programmeret drejning med cyklus 10
	3	_	Aktiv spejlingsakse
			0: Spejling ikke aktiv
			+1: X-akse spejlet
			+2: Y-akse spejlet
			+4: Z-akse spejlet
			IV. akse +8: IV. akse spejlet
			Kombinationen = summen af enkeltakserne
	4	1	Aktiv Dim.faktor X-akse
	4	2	Aktiv Dim.faktor Y-akse
	4	3	Aktiv Dim.faktor Z-akse
	4	4	Aktiv Dim.faktor X-akse V. akse
Aktivt koordinatsystem, 211	1	_	Indlæsesystem
	2	-	M91-system (se "7.3 Hjælpefunktion for koordinatangivelser")
	3	-	M92-system (se "7.3 Hjælpefunktion for
			koordinatangivelser")
Nulpunkter, 220	1	1 til 4	Manuelt fastlagt nulpunkt i M91-system Index 1 til 4: X-akse til IV. V. akse
	2	1 til 4	Programmeret nulpunkt Index 1 til 4: X-akse til IV V akse
	3	1 til 4	Aktivt nulpunkt i M91-system
	J	1 01 7	Index 1 til 4: X-akse til IV V akse
	4	1 til 4	PI C-nulpunkt-forskydning
			. Le maparité foroit jaming

Gruppe-navn, ID-Nr.	Nummer	Index	Systemdata
Endekontakt, 230	1	_	Nummeret på det aktive endekontaktområde
	2	1 til 4	Negative koordinater til endekontakt i M91-system
			Index 1 til 4: X-akse til IV. V. akse
	3	1 til 4	Positive koordinater til endekontakt i M91-system
			Index 1 til 4: X-akse til IV. V. akse
Positioner i M91-system, 240	1	1 til 4	Sollposition; Index 1 til 4: X-akse til IV. V. akse
	2	1 til 4	Sidste tastpunkt
			Index 1 til 4: X-akse til IV. V. akse
	3	1 til 4	Aktiv Pol; Index 1 til 4: X-akse til IV. V. akse
	4	1 til 4	Cirkelcentrum; Index 1 til 4: X-akse til IV. V. akse
	5	1 til 4	Cirkelcentrum for sidste RND-blok
			Index 1 til 4: X-akse til IV. V. akse
Positioner i indlæse-system, 270	1	1 til 4	Sollposition; Index 1 til 4: X-akse til IV. V. akse
	2	1 til 4	Sidste tastpunkt
			Index 1 til 4: X-akse til IV. V. akse
	3	1 til 4	Aktiv Pol; Index 1 til 4: X-akse til IV. V. akse
	4	1 til 4	Cirkelcentrum; Index 1 til 4: X-akse til IV. V. akse
	5	1 til 4	Cirkelcentrum for sidste RND-blok
			Index 1 til 4: X-akse til IV. V. akse
Kalibreringsdata TT 120, 350	20	1	Tastermidtpunkt X-akse
		2	Tastermidtpunkt Y-akse
		3	Tastermidtpunkt Z-akse
	21	_	Skive-radius

Eksempel: Værdien af den aktive dim.faktor for Z-aksen henvises til Q25

55 FN18: SYSREAD Q25 = ID210 NR4 IDX3

FN19:PLC overfør værdier til PLC

Med funktionen FN19: PLC kan De overføre indtil to talværdier eller Q-parametre til PLC'en.

Skridtbredde og enheder: 1 μm hhv. 0,001° eller 0,1 μm hhv. 0,0001°

Eksempel: Overførsel af talværdi 10 (svarer til 10 μm hhv. 0,01°)til PLC

56 FN19:PLC=+10/+Q3

10.8 Direkte indlæsning af formler

Med softkeys kan De indlæse matematiske formler, som indeholder flere regneoperationer, direkte i et bearbejdnings-program:

Indlæsning af formel

Formlerne vises med et tryk på softkey FORMEL. TNC'en viser følgende softkeys i flere lister:

Matematisk-funktion	Softkey
Addition f.eks. Q10 = Q1 + Q5	+
Subtraktion f.eks. $Q25 = Q7 - Q108$	-
Multiplikation f.eks. Q12 = 5 * Q5	*
Division f.eks. Q25 = Q1 / Q2	/
Parantes start f.eks. Q12 = Q1 * (Q2 + Q3)	C
Parantes slut f.eks. Q12 = Q1 * (Q2 + Q3)	
Kvadrere en værdi (engl. square) f.eks. Q15 = SQ 5	SQ
Roduddragning (engl. square root) f.eks. Q22 = SQRT 25	SORT
Sinus til en vinkel f.eks. Q44 = SIN 45	SIN
Kosinus til en vinkel f.eks. Q45 = COS 45	COS
Tangens til en vinkel f.eks. Q46 = TAN 45	TAN

Matematisk-funktion	Softkey	Matematisk-funktion Softkey
Arcus-Sinus Omvendt funktion af Sinus; Vinkel bestemmelse ved forholdet mellem modstående katete og hypotenusen f.eks. Q10 = ASIN 0,75	ASIN	Kontrollér fortegn til et tal f.eks. Q12 = SGN Q50 Hvis tilbageværdi Q12 = 1: Q50 >= 0 hvis tilbageværdi Q12 = 0: Q50 < 0
Arcus-Cosinus Omvendt funktion af kosinus; vinkel bestem- melse ved forholdet mellem nabo-katete og hypotenusen f.eks. Q11 = ACOS Q40	ACOS	Regneregler For programmering af matematiske formler gælder følgende regler:
Arcus-Tangens		Regneart x og ÷ før + og -
Omvendt funktion af tangens; vinkel bestem-	ATAN	$12 \ Q1 = 5 * 3 + 2 * 10 = 35$
nabo-katete f.eks. Q12 = ATAN Q50		1. Regneskridt 5 3 = 15 2. Regneskridt 2 10 = 20 3. Regneskridt 15 + 20 = 35
Opløfte værdier til potens	^	13 Q2 = SQ 10 - 3^3 = 73
Konstant PI (3,14159) f.eks. Q15 = PI	PI	1. Regneskridt 10 kvadrering = 100 2. Regneskridt 3 opløft til 3 potens = 27 3. Regneskridt 100 - 27 = 73
Naturlig logaritme (LN) til et tal Basistal 2,7183 f.eks. Q15 = LN Q11	LN	Fordelingslov (Lov om fordeling) ved parentesregning a * (b + c) = a * b + a * c
Logaritmen til et tal, basistal 10 f.eks. Q33 = LOG Q22	LOG	
Exponentialfunktion, 2,7183 i n f.eks. Q1 = EXP Q12	EXP	
Negation af værdier (Multiplicere med -1) f.eks. Q2 = NEG Q1	NEG	
Afskære cifre efter komma Integer-tal f.eks. Q3 = INT Q42	INT	
Absolut værdi af et tal f.eks. Q4 = ABS Q22	ABS	
Afskære cifre før et komma Opdele f.eks. Q5 = FRAC Q23	FRAC	

Indlæse-eksempel

Vinkel beregning med arctan som modstående katete (Q12) og nabo katete (Q13); Resultat Q25 anvises:

QFORMULA	Vælg formel-indlæsning: Tryk taste Q og softkey FORMEL		
Parameter-Nr.	for resultat?		
25 ^{ent}	Indlæs parameter-nummer		
RTRN	Gå videre i softkey-listen og vælg arcus-tangens funktion		
	Gå videre i softkey-listen og åbn paranteser		
Q 12	Indlæs Q-parameter nummer 12		
/	Vælg division		
Q 13	Indlæs Q-parameter nummer 13		
) END	Luk paranteser og afslut formel-indlæsning		

NC-Blok eksempel

37 Q25 = ATAN (Q12/Q13)

10.9 Reserverede Q-parametre

Q-parametrene Q100 til Q122 er optaget af TNC'en med værdier. Q-parametrene bliver anvist:

- Værdier fra PLC'en
- Angivelser om værktøj og spindel
- Angivelser om drifttilstand osv.

Værdier fra PLC'en: Q100 til Q107

TNC'en bruger parametrene Q100 til Q107, for at overføre værdier i PLC'en til et NC-program

Værktøjs-radius: Q108

Den aktuelle værdi af værktøjs-radius bliver anvist Q108.

Værktøjsakse: Q109

Værdien af parameters Q109 er afhængig af den aktuelle værktøjsakse:

Værktøjsakse	Parameterværdi
Ingen værktøjsakse defineret	Q109 = -1
Z-akse	Q109 = 2
Y-akse	Q109 = 1
X-akse	Q109 = 0

Spindeltilstand: Q110

Værdien af parameter Q110 er afhængig af den sidst programmerede M-funktion for spindelen:

M-funktion	Parameterværdi
Ingen spindeltilstand defineret	Q110 = -1
M03: spindel START, medurs	Q110 = 0
M04: spindel START, modurs	Q110 = 1
M05 til M03	Q110 = 2
M05 til M04	Q110 = 3

Kølemiddelforsyning: Q111

M-funktion	Parameterværdi
M08: Kølemiddel START	Q111 = 1
M09: Kølemiddel STOP	Q111 = 0

Overlapningsfaktor: Q112

TNC'en anviser Q112 overlapningsfaktor ved lommefræsning (MP7430).

Målangivelser i et program: Q113

Værdien af parameter Q113 afhænger ved sammenkædninger med PGM CALL af programmets målangivelser, der som det første kalder andet program.

Målangivelser for hovedprogram	Parameterværdi
Metrisk system (mm)	Q113 = 0
Tomme-system (inch)	Q113 = 1

Værktøjs-længde: Q114

Den aktuelle værdi af værktøjs-længden bliver anvist Q114.

Koordinater efter tastning under programafvikling

Parameter Q115 til Q118 indeholder efter en programmeret måling med 3D-tastsystemet koordinaterne for spindelpositionen på tasttidspunktet.

Der tages ikke hensyn til længden af taststiften og radius af tastkuglen for disse koordinater.

Koordinatakse	parameter
X-akse	Q115
Y-akse	Q116
Z-akse	Q117
IV. akseV. akse	
Q118	

Akt.-Sollværdi-afvigelse ved automatisk værktøjsopmåling medTT 120

AktSoll-afvigelse	parameter
Værktøjs-længde	Q115
Værktøjs-radius	Q116

Aktiv værktøjs-radiuskorrektur

Aktiv radiuskorrektur	Parameterværdi
R0	Q123 = 0
RL	Q123 = 1
RR	Q123 = 2
R+	Q123 = 3
R–	Q123 = 4

Eksempel: Ellipse

Program-afvikling

- Ellipse-konturen bliver nærmet med mange små lige stykker (defineres over Q7). Jo flere beregningsskridet der er defineret, jo glattere bliver konturen
- Fræsretningen bestemmer De med start- og slutvinklen i planet:

Bearbejdningsretning medurs: Startvinkel > slutvinkel Bearbejdningsretning modurs: Startvinkel < slutvinkel

Der tages ikke hensyn til værktøjs-radius

O BEGIN PGM ELLIPSE MM	
1 FN 0: Q1 = +50	Midt X-akse
2 FN 0: Q2 = +50	Midt Y-akse
3 FN 0: Q3 = +50	Halvakse X
4 FN 0: Q4 = $+30$	Halvakse Y
5 FN 0: Q5 = +0	Startvinkel i planet
6 FN 0: Q6 = +360	Slutvinkel i planet
7 FN 0: Q7 = +40	Antal beregnings-skridt
8 FN 0: Q8 = +0	Drejeplan af ellipsen
9 FN 0: Q9 = +10	Fræsedybde
10 FN 0: Q10 = +100	Dybdetilspænding
11 FN 0: Q11 = +350	Fræsetilspænding
12 FN 0: Q12 = +2	Sikkerheds-afstand for forpositionering
13 BLK FORM 0.1 Z X+0 Y+0 Z-20	Råemne-definition
14 BLK FORM 0.2 X+100 Y+100 Z+0	
15 TOOL DEF 1 L+0 R+2,5	Værktøjs-definition
16 TOOL CALL 1 Z S4000	Værktøjs-kald
17 L Z+250 RO FMAX	Værktøj frikøres
18 CALL LBL 10	Kald af bearbejdning
19 L Z+100 R0 FMAX M2	Værktøj frikøres, program-slut

20	LBL 10	Underprogram 10: Bearbejdning
21	CYCL DEF 7.0 NULPUNKT	Forskydning af nulpunkt i centrum af ellipsen
22	CYCL DEF 7.1 X+Q1	
23	CYCL DEF 7.2 Y+Q2	
24	CYCL DEF 10.0 DREJNING	Beregning af drejeposition i planet
25	CYCL DEF 10.1 ROT+Q8	
26	Q35 = (Q6 - Q5) / Q7	Beregning af vinkelskridt
27	Q36 = Q5	Kopiering af startvinkel
28	Q37 = 0	Fastsættelse af tæller af fræsetrin
29	Q21 = Q3 * COS Q36	Beregning af X-koordinat til startpunkt
30	Q22 = Q4 * SIN Q36	Beregning af Y-koordinat til startpunkt
31	L X+Q21 Y+Q22 RO FMAX M3	Kørsel til startpunkt i planet
32	L Z+Q12 RO FMAX	Forpositionering af sikkerheds-afstand i spindelaksen
33	L Z-Q9 R0 FQ10	Kør til bearbejdningsdybde
34	LBL 1	
35	Q36 = Q36 + Q35	Aktualisering af vinkel
36	Q37 = Q37 + 1	Aktualisering af fræsetrin-tæller
37	Q21 = Q3 * COS Q36	Beregning af aktuel X-koordinat
38	Q22 = Q4 * SIN Q36	Beregning af aktuel Y-koordinat
39	L X+Q21 Y+Q22 R0 FQ11	Kørsel til næste punkt
40	FN 12: IF +Q37 LT +Q7 GOTO LBL 1	Spørg om færdig, hvis ja så spring tilbage til LBL 1
41	CYCL DEF 10.0 DREJNING	Lilbagestilling af drejning
42	CYCL DEF 10.1 ROT+0	
43	CYCL DEF 7.0 NULPUNKT	l ilbagestilling af nulpunkt-forskydning
44	CYCL DEF 7.1 X+0	
45		
40	L Z+QIZ KU FMAX	Nørser til sikkerneds-atstand
47		Underprogram-slut
48	END FGM ELLIFSE MM	

Eksempel: Konkav cylinder med radiusfræser

Program-afvikling

- Programmet fungerer kun med en radiusfræser, Værktøjslængden henfører sig til kuglecentrum
- Cylinder-konturen bliver nærmet med mange små lige stykker (definerbar over Q13). Jo flere skridt der er defineret, desto glat-tere bliver konturen
- Cylinderen bliver fræset i længde-fræse- trin (her: Parallelt med Y-aksen)
- Fræsretningen bestemmer De med start- og slutvinklen i rummet:
 - Bearbejdningsretning medurs: Startvinkel > slutvinkel Bearbejdningsretning modurs: Startvinkel < slutvinkel
- Der bliver automatisk korrigeret for værktøjsradius
- Værktøjs-længden henfører sig til kuglecentrum

O BEGIN PGM ZYLIN MM	
1 FN 0: Q1 = +50	Midt X-akse
2 FN 0: Q2 = +0	Midt Y-akse
3 FN 0: Q3 = +0	Midt Z-akse
4 FN 0: $Q4 = +90$	Startvinkel rum (plan Z/X)
5 FN 0: Q5 = +270	Slutvinkel rum (plan Z/X)
6 FN 0: Q6 = +40	Cylinderradius
7 FN 0: Q7 = +100	Længde af cylinderen
8 FN 0: Q8 = +0	Drejeposition i planet X/Y
9 FN 0: Q10 = +5	Sletspån cylinderradius
10 FN 0: Q11 = +250	Tilspænding dybdefremrykning
11 FN 0: Q12 = +400	Tilspænding ved fræsning
12 FN 0: Q13 = +90	Antal fræsetrin
13 BLK FORM 0.1 Z X+0 Y+0 Z-50	Råemne-definition
14 BLK FORM 0.2 X+100 Y+100 Z+0	
15 TOOL DEF 1 L+0 R+3	Værktøjs-definition
16 TOOL CALL 1 Z S4000	Værktøjs-kald
17 L Z+250 RO FMAX	Værktøj frikøres
18 CALL LBL 10	Kald af bearbejdning
19 FN 0: Q10 = +0	Tilbagestilling af sletspån
20 CALL LBL 10	Kald af bearbejdning
21 L Z+100 R0 FMAX M2	Værktøj frikøres, program-slut

22	LBL 10	Underprogram 10: Bearbejdning
23	Q16 = Q6 - Q10 - Q108	Omreg. af sletspån og værktøj henf. til cylinder-radius
24	FN 0: Q20 = +1	Fastsættelse af tæller af fræsetrin
25	FN 0: Q24 = +Q4	Kopiering af startvinkel rum (plan Z/X)
26	Q25 = (Q5 - Q4) / Q13	Beregning af vinkelskridt
27	CYCL DEF 7.0 NULPUNKT	Forskydning af nulpunkt i midten af cylinder (X-akse)
28	CYCL DEF 7.1 X+Q1	
29	CYCL DEF 7.2 Y+Q2	
30	CYCL DEF 7.3 Z-Q3	
31	CYCL DEF 10.0 DREJNING	Beregning af drejeposition i planet
32	CYCL DEF 10.1 ROT+Q8	
33	L X+O Y+O RO FMAX	Forpositionering i planet i midten af cylinderen
34	L Z+5 RO F1000 M3	Forpositionering i spindelaksen
35	CC Z+0 X+0	Pol fastlæggelse i Z/X-planet
36	LP PR+Q16 PA+Q24 FQ11	Kør til startpos. i cylinder, inddyk skråt i materialet
37	LBL 1	
38	L Y+Q7 R0 FQ11	Længdefræsning i retning Y+
39	FN 1: Q20 = +Q20 + +1	Aktualisering af fræsetrin-tæller
40	FN 1: Q24 = +Q24 + +Q25	Aktualisering af rumvinkel
41	FN 11: IF +Q20 GT +Q13 GOTO LBL 99	Spørg om færdig, hvis ja, så spring til slut
42	LP PR+Q16 PA+Q24 FQ12	Tilnærmede "Buer" kør til næste længde-fræsetrin
43	L Y+0 R0 FQ11	Længde-fræsning i retning Y-
44	FN 1: Q24 = +Q24 + +Q25	Aktualisering af fræsetrin-tæller
45	FN 1: Q20 = +Q20 + +1	Aktualisering af rumvinkel
46	FN 12: IF +Q20 LT +Q13 GOTO LBL 1	Spørg om færdig, hvis ja så spring tilbage til LBL 1
47	LBL 99	
48	CYCL DEF 10.0 DREJNING	Tilbagestilling af drejning
49	CYCL DEF 10.1 ROT+0	
50	CYCL DEF 7.0 NULPUNKT	Tilbagestilling af nulpunkt-forskydning
51	CYCL DEF 7.1 X+0	
52	CYCL DEF 7.2 Y+0	
53	CYCL DEF 7.3 Z+0	
54	LBL O	Underprogram-slut
55	SLUT PGM ZYLIN MM	

Eksempel: Konveks kugle med skaftfræser

Program-afvikling

- Programmet fungerer kun med skaftfræser
- Cylinder-konturen bliver nærmet med mange små lige stykker (Z/X-plan, definerbar over Q14). Jo mindre vinkelskridtet er defineret, desto glattere bliver konturen
- Antallet af kontur-skridt bestemmer De med vinkelskridtet i planet (over Q18)
- Kuglen bliver fræset i 3D-fræsning fra neden og opefter
- Der bliver automatisk korrigeret for værktøjsradius

O BEGIN PGM KUGEL MM	
1 FN 0: Q1 = +50	Midt X-akse
2 FN 0: Q2 = +50	Midt Y-akse
3 FN 0: Q4 = +90	Startvinkel rum (plan Z/X)
4 FN 0: Q5 = +0	Slutvinkel rum (plan Z/X)
5 FN 0: Q14 = +5	Vinkelskridt i rum
6 FN 0: Q6 = +50	Kugleradius
7 FN 0: Q8 = +0	Startvinkel drejeposition i plan X/Y
8 FN 0: Q9 = +360	Slutvinkel drejeposition i plan X/Y
9 FN 0: Q18 = +10	Vinkelskridt i plan X/Y for skrupning
10 FN 0: Q10 = +5	Sletspån kugleradius for skrupning
11 FN 0: Q11 = +2	Sikkerheds-afstand for forpositionering i spindelakse
12 FN 0: Q12 = +500	Tilspænding ved fræsning
13 BLK FORM 0.1 Z X+0 Y+0 Z-50	Råemne-definition
14 BLK FORM 0.2 X+100 Y+100 Z+0	
15 TOOL DEF 1 L+0 R+7,5	Værktøjs-definition
16 TOOL CALL 1 Z S4000	Værktøjs-kald
17 L Z+250 RO FMAX	Værktøj frikøres
18 CALL LBL 10	Kald af bearbejdning
19 FN 0: Q10 = +0	Tilbagestilling af sletspån
20 FN 0: Q18 = +5	Vinkelskridt i plan X/Y for sletning
21 CALL LBL 10	Kald af bearbejdning
22 L Z+100 R0 FMAX M2	Værktøj frikøres, program-slut

22		Underprogram 10: Rearbeidning
23	$\frac{1}{10} = 1011 + 106$	Decomposition of 7 keepsting
24	FN 1: $(25 = +(11 + +(0$	Kerie in a fatat islalar a (da 70)
25	FN 0: $\sqrt{24} = \pm \sqrt{4}$	Kopiering at startvinkei rum (pian 2/X)
20	FN 1: $\sqrt{26} = +\sqrt{6} + +\sqrt{108}$	Korrigering at kugleradius for forpositionering
27	FN 0: $Q28 = +Q8$	Kopiering af drejeposition i planet
28	FN 1: Q16 = +Q6 + -Q10	Hensyntagen til sletspån ved kugleradius
29	CYCL DEF 7.0 NULPUNKT	Forskydning af nulpunkt i centrum af kuglen
30	CYCL DEF 7.1 X+Q1	
31	CYCL DEF 7.2 Y+Q2	
32	CYCL DEF 7.3 Z-Q16	
33	CYCL DEF 10.0 DREJNING	Omregning af startvinkel drejeposition i planet
34	CYCL DEF 10.1 ROT+Q8	
35	CC X+0 Y+0	Fastlæggelse af pol i X/Y-plan for forpositionering
36	LP PR+Q26 PA+Q8 RO FQ12	Forpositionering i planet
37	LBL 1	Forpositionering i spindelaksen
38	CC Z+0 X+Q108	Fastlæg.af pol i Z/X-plan, f. forskyd. af værktøjs-radius
39	L Y+0 Z+0 FQ12	Kørsel til dybde
40	LBL 2	
41	LP PR+Q6 PA+Q24 RO FQ12	Tilnærmet "bue" kørsel opad
42	FN 2: $Q24 = +Q24 - +Q14$	Aktualisering af rumvinkel
43	FN 11: IF +Q24 GT +Q5 GOTO LBL 2	Spørg om buen er færdig, hvis ikke, så tilbage til LBL 2
44	LP PR+Q6 PA+Q5	Kørsel til slutvinkel i rum
45	L Z+Q23 R0 F1000	Frikørsel i spindelakse forpositionering for næste bue
46	L X+Q26 RO FMAX	Aktualisering af drejeposition i planet
47	FN 1: Q28 = +Q28 + +Q18	Tilbagestilling af rumvinkel
48	FN 0: Q24 = +Q4	Aktivering af ny drejeposition
49	CYCL DEF 10.0 DREJNING	
50	CYCL DEF 10.1 ROT+Q28	
51	FN 12: IF +Q28 LT +Q9 GOTO LBL 1	
52	FN 9: IF +Q28 EQU +Q9 GOTO LBL 1	Spørg om færdig, hvis ja, så spring tilbage til LBL 1
53	CYCL DEF 10.0 DREJNING	Tilbagestilling af drejning
54	CYCL DEF 10.1 ROT+0	
55	CYCL DEF 7.0 NULPUNKT	Tilbagestilling af nulpunkt-forskydning
56	CYCL DEF 7.1 X+0	
57	CYCL DEF 7.2 Y+0	
58	CYCL DEF 7.3 Z+0	
59	LBL O	Underprogram-slut
60	END PGM KUGEL MM	

Program-test og programafvikling

11.1 Grafik

I driftsart program-test simulerer TNC'en en bearbejdning grafisk. Med softkeys vælger De, om det skal være

- Set fra oven
- Fremstilling i 3 planer
- 3D-fremstilling

TNC-grafikken svarer til fremstillingen af et emne, som bliver bearbejdet med et cylinderformet værktøj.

TNC'en viser ingen grafik, hvis

det aktuelle program ikke har en gyldig råemne-definition.

der ikke er valgt et program

Den grafiske simulation kan De ikke udnytte for programdele hhv. programmer med drejeaksebevægelser: I disse tilfælde afgiver TNC´en en fejlmelding.

Oversigt: visning

Efter at De i driftsart program-test har valgt billedskærm-opdeling GRAFIK eller PROGRAM + GRAFIK, viser TNC´en følgende softkeys:

Visning	Softkey
Set fra oven	
Fremstilling i 3 planer	
3D-fremstilling	

Set fra oven

Funktion

▶ Vælg set fra oven med softkey

Fremstilling i 3 planer

Forskyd lodrette snitplan

Forskyd vandrette snitplan

til højre eller venstre

opad eller nedad

forskydningen.

Fremstillingen viser et billede fra oven med 2 snit, ligesom en teknisk tegning. Et symbol til venstre under grafikken viser, om fremstillingen er projektionsmetode 1 eller projektionsmetode 2 iflg. DIN 6, del 1 (valgbar over MP7310).

Herudover kan De forskyde snitplanet med softkeys:

▶ Vælg fremstilling i 3 planer med softkey

Positionen af snitplanet kan ses på billedskærmen under

Skift softkey-listen, indtil TNC'en viser følgende softkeys:

Softkeys

ф

+⊟-

ф

+----

3D-fremstilling

11.1 Grafik

TNC'en viser emnet rumligt.

3D-fremstillingen kan De dreje om den lodrette akse.

I driftsart program-test står funktionen til udsnit-forstørrelse til rådighed (se "Udsnit-forstørrelse+).

Funktion

▶ Vælg 3-fremstilling med softkey

Drejning af 3D-fremstilling

Skift softkey-liste, indtil følgende softkeys vises:

Fremstilling i 27°-skridt lodret drejning

Udsnit-forstørrelse

Udsnittet kan De ændre i driftsart program-test, for 3D-fremstillingen

Her skal den grafiske simulation være standset. En udsnitforstørrelse er altid virksom i alle fremstillings-måder.

Skift softkey-liste i driftsart program-test , indtil følgende softkeys vises:

Funktion	Softkeys
Vælg den emneside, som skal beskæres: Tryk softkey´en flere gange	Ð
Forskyd. af snitflade for formind- skelse el. forstørrelse af råemne	- +
Overfør udsnit	OVERFØR UDSNIT

Ændring af udsnit-forstørrelse

Softkeys se tabel

- ▶ Om nødvendigt, stop grafisk simulation
- ► Vælg emneside med softkey
- ▶ Formindske eller forstørre råemne: Softkey "-" hhv. "+" holdes trykket
- ▶ Overfør det ønskede udsnit: Tryk softkey OVERFØR UDSNIT
- Start program-test påny med softkey START (RESET + START fremstiller det oprindelige råemne igen)

Gentagelse af grafisk simulation

Et bearbejdnings-program kan simuleres så ofte det ønskes. Hertil kan De tilbagestille grafikken igen til råemnet eller et forstørret udsnit.

Funktion	Softkey
Visning af det ubearbejdede råemne i den sidst valgte udsnit-forstørrelse	RESET BLK FORM
Tilbagestilling af udsnit-forstørrelse, så TNC'en viser det bearbejdede el. ubearbejdede emne svarende til den programmerede BLK-FORM	EMNE SOM BLOKFORM

Med softkey RÅEMNE SOM BLK FORM viser TNC en også efter et udsnit uden OVERFØR ÜDSNIT. – igen råemnet i den programmerede størrelse.

Fremskaffelse af bearbejdningstid

programafvikling-driftsarter

Visning af tiden fra program-start til program-slut. ved afbrydelser bliver tiden standset.

Program-test

Visning af cirka tiden, som TNC'en beregner for varig-heden af værktøjs-bevægelsen, som bliver udført med tilspændingen. Den af TNC'en fremskaffede tid egner sig ikke til kalkulationen af fremstillingstiden, da TNC'en ikke tager hensyn til maskinafhængige tider (f.eks. til værktøjs-skift).

Valg af stopur-funktion

Skift softkey-liste, indtil TNC'en viser følgende softkeys med stopurfunktioner:

Stopur-funktioner	Softkey
Indlagring af den viste tid	GEMME
Visning af summen af den indlagrede og den viste tid	RODITION C +C
Sletning af den viste tid	RESET 00:00:00 0

11.2 Program-test

l driftsart program-test simulerer De afviklingen af programmer og programdele, for at udelukke fejl i programafviklingen. TNC'en hjælper Dem ved at finde

- Geometriske uforeneligheder
- Fejlagtige angivelser
- Spring der ikke kan udføres
- Overkørsel af akse-begrænsninger

Yderligere kan De udnytte følgende funktioner:

- Program-test blokvis
- Testafbrydelse ved vilkårlig blok
- Overspringe blokke
- Funktioner for den grafiske fremstilling
- Status-visning

	-
25 TOOL CALL 2 2 S1000 26 LP PR+25 PA+0 R0 FMAX M3 27 LBL 1 28 CALL LBL 2 29 CYCL DEF 10.0 DREJNING 30 CYCL DEF 10.1 IROT+90 31 CALL LBL 1 REP3 32 CYCL DEF 10.1 REP3 33 CYCL DEF 10.40 DREJNING 33 CYCL DEF 10.40 REJNING 34 TOOL CALL 1 Z 45 L X+20 Y+18 R0 4 36 L X+50	PGM-NRVN 3587 29 Image: Call Image: Call
кацк. X +150.300 Y -24.725 Z +250.225	T 2 Z F 0 Rot S M5/9
GEMME ADDITION RESET 00:00:00	

Udførelse af program-test

- ▶ Vælg driftsart program-test
- Vis Fil-styring med tasten PGM MGT og vælg fil, som De skal teste eller
- Vælg program-start: Med taste vælges GOTO linie "0" og overfør det indlæste m.taste ENT

Funktioner Softkey Test hele programmet START Test hver program-blok enkeltvis ENCL START Afbilled råemne og test hele programmet RESET START Stop program-test STOP

Udførelse af program-test indtil en bestemt blok

Med STOP BÉI N gennemfører TNC'en program-testen kun til blokken med blok-nummer N. Hvis De har valgt billedskærmopdelingen således, at TNC'en viser en grafik, så bliver også grafik'en aktualiseret indtil blok N.

- ▶ I driftsart program-test vælges program-start
- ▶ Vælg program-test indtil en bestemt blok: Tryk på softkey STOP VED N

Til blok-nummer: Indlæs blok-nummeret, der hvor program-testen skal standses

- Program: Hvis De vil gå ind i et program, som De har kaldt med CALL PGM: Indlæs navnet på programmet, i blokken hvor det valgte blok-nummer står
- Gentagelser: Indlæs antallet af gentagelser, som skal gennemføres, såfremt N står indenfor en programdelgentagelse
- Test program-afsnit: Tryk softkey START; TNC'en tester programmet indtil den indlæste blok

PROGRAMTEST				
0 BEGIN PGM 3507 M 1 BLK FORM 0.1 Z 2 BLK FORM 0.2 X+ 3 TOOL DEF 1 L+0 R 4 TOOL DEF 2 L+0 R 5 TOOL CALL 1 Z S1 6 L Z+50 R0 FMAX 7 L X+50 Y+50 R0 8 L Z-5 R0 FMAX 9 CC X+0 10 LP PR+1 10 RND R1	Ч	Y-20 20 2 M8	Z-20 2+0	I
кяцк. X +150.300 Y -24.725 Z +250.225	T FØ S		Rot M5/	9
		START		SLUT

11.3 Programafvikling

l driftsart programafvikling blokfølge udfører TNC'en et bearbejdnigs-program kontinuerligt indtil program-slut eller indtil en afbrydelse.

I driftsart programafvikling enkeltblok udfører TNC'en hver blok enkeltvis efter tryk på den extern START-taste.

Følgende TNC-funktioner kan De udnytte i program-afviklingdriftsarter:

- Afbryde en programafvikling
- Programafvikling fra en bestemt blok
- Overspringe blokke
- Kontrollere og ændre Q-parametre
- Status-visning

Udførelse af et bearbejdnings-program

Forberedelse

- **1** Opspænding af emne på maskinbordet
- 2 Henføringspunkt fastlæggelse
- 3 Vælg bearbejdnings-program (Status M)

Tilspænding og spindelomdrejningstal kan De ændre med Override-drejeknappen.

Programafvikling blokfølge

Start bearbejdnings-program med extern start-taste

Programafvikling enkeltblok

Start hver blok i bearbejdnings-programmet med extern start-taste

PROGRAMLØB BLOKFØLGE										
0 BEGIN PGM 3507 MM 1 BLK FORM 0.1 Z X-20 Y-20 Z-20 2 BLK FORM 0.2 X+20 Y+20 Z+0 3 TOOL DEF 1 L+0 R+6 4 TOOL DEF 2 L+0 R+4 5 TOOL CALL 1 Z S1000 6 L Z+50 R0 FMAX M3 7 L X+50 Y+50 R0 FMAX M8 8 L Z-5 R0 FMAX M1 9 CC X+0 Y+0 10 LP PR+14 PR+45 RR F500 11 RND R1	PGM-NAVN 3507 1 RKT. X *150.000 Y -25.000 2 Z *250.000 2									
KRLK. X +150.000 Y -25.000 Z +250.000	T F Ø S M5/9									
BLOKVIS OVERFØRE.	GENSKAB POS. VED ON ON M									

Udførelse af bearbejdningsprogram, koordinaterne må ikke indeholde styrede akser

TNC'en kan også afvikle programmer, i hvilke De har programmeret ikke styrede akser.

Når TNC en kommer til en blok, i hvilken en ikke styret akse er programmeret, stopper den programafviklingen. Samtidig indblænder TNC en et vindue, i hvilket restvejen til målpositionen er indblændet (se billedet til højre foroven) Gå så frem som følger:

- Kør aksen manuelt til målpositionen. TNC´en aktualiserer stadigt restvejsvinduet og viser altid værdien, som De mangler at køre til målpositionen
- Når De har nået målpositionen, trykker De tasten NC-Start, for at fortsætte programafviklingen. Hvis De trykker NC-START før De har nået målpositionen, afgiver TNC en en fejlmelding.

Hvor nøjagtigt De skal køre til målpositionen, er fastlagt i maskin- parameter 1030.x (mulige indlæseværdier: 0.001 til 2 mm).

Ikke styrede akser skal stå i en separat ositioneringsblok, ellers afgiver TNC'en en fejlmelding.

Pro	ŋgr	am	ru	n,	tι	11	1	se	qu	en	сe	5				
2345 67891011213	BL TO L S C Y C Y C Y	K F IOL IOL X F CCL CCL		MFFLR E	0.21 21 21 21 21 2 2 7 7 4	2 1 2 1 1 5 0 7 5 0 7 5 0 7 5 0 7 5 7 7 7 7 7 7 7		+1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00 R+ 50 FT 71	3 00 KT M 54	" ТІ ау	-10	0 N G 0	Z	+0	
ACTL. *	X Y +Z		- 1 +	+0 25 16	.7:	35 45 35			T F S	2	11 1 261	_ Z 0 0			M5/	9
											Τ					INTERNAL STOP
Afbryde en bearbejdning

De har forskellige muligheder for at afbryde en programafvikling:

- Programmerede afbrydelser
- Extern STOP-taste
- Skift til programafvikling enkeltblok

Registrerer TNC'en under en programafvikling en fejl, så afbryder den automatisk bearbejdningen.

Programmerede afbrydelser

Afbrydelser kan De direkte fastlægge i bearbejdnings-programmet. TNC'en afbryder programafviklingen, så snart bearbejdningsprogrammet har udført den blok, der inde-holder en af følgende indlæsninger:

- STOP (med og uden hjælpefunktion)
- Hjælpefunktionerne M0, M1 (se "11.6 Frit valg af programafviklings-stop"), M2 eller M30
- Hjælpefunktion M6 (bliver fastlagt af maskin-fabrikanten)

Afbrydelse med extern STOP-taste

- Tryk extern STOP-taste: Blokken, som TNC'en på tids-punktet af tastetrykket har bearbejdet, bliver ikke komplet udført; i statusvisningen blinker "*"-symbolet
- Hvis De ikke vil fortsætte bearbejdningen, så tilbage-stilles TNC'en med softkey INTERN STOP: "*"-symbolet i statusvisningen slukker. Programmet skal i dette tilfælde påny startes fra program-start

Afbrydelse af bearbejdning ved skift til driftsart programafvikling enkeltblok

Medens et bearbejdnings-program bliver afviklet i driftsart programafvikling blokfølge, vælges programafvikling enkeltblok. TNC'en afbryder bearbejdningen, efter at have udført det aktuelle bearbejdningstrin.

Kørsel med maskinakserne under en afbrydelse

De kan køre med maskinakserne under en afbrydelse som i driftsart manuel drift.

Anvendelseseksempel:

- Frikørsel af spindelen efter værktøjsbrud
- Afbryd bearbejdningen
- Frigiv extern retningstaste: Tryk softkey MANUEL KØRSEL.
- Kør maskinakserne med extern retningstaster

For igen at køre til afbrydelsesstedet, udnytter De funktionen "Gentilkørsel til konturen" (se længere fremme i dette afsnit).

Fortsæt programafvikling efter en afbrydelse

Hvis De afbryder programafviklingen under en bearbejdnigscyklus, skal De ved genstart fortsætte med cyklusstart. Allerede udførte bearbejdningsskridt skal TNC'en så påny udføre.

TNC'en indlagrer ved en programafvikling-afbrydelse

- dataerne for det sidst kaldte værktøj
- aktive koordinat-omregninger
- koordinaterne til det sidst definerede cirkelcenter
- tællerstanden for programdel-gentagelser
- nummeret på blokken, med hvilket et underprogram eller en programdel-gentagelse sidst blev kaldt

PROGRAMLØB BLOKFØLGE 9 CYCL DEF 6.0 UDFRAESNING 10 CYCL DEF 6.1 AFST.+2 DYBDE-20 11 CYCL DEF 6.2 UDSP.+3 F100 SPAAN+0 12 CYCL DEF 6.3 VINKEL+60 F100 +2 RØ FMAX M99 13 14 LBL 1 FPOL X+30 Y+30 L X+0 Y+30 RR F250 FC DR- R30 CLSD+ CCX+30 CCY+30 FL AN+60 PDX+30 PDY+30 D+10 15 16 17 18 19 FSELECT3 20 FC DR- R20 CCPR+55 CCPA+60 KALK. X Y +3.000 * +30.000 Т 1 Ζ z -0.320 FS 0 4000 M3/9 MANUEL INTERN BETJENING STOP

Fortsættelse af programafvikling med START-taste

Efter en afbrydelse kan De fortsætte programafviklingen med den externe START-taste, hvis De har standset programmet på følgende måder:

- Trykket extern STOP-taste
- Programmeret afbrydelse

Aktiveret NØD-STOP-tasten (maskinafhængig funktion)

 Hvis De har afbrudt programafviklingen med softkey STOP, kan De med tasten GOTO vælge en anden blok og der fortsætte bearbejdningen.

Hvis De vælger blokken BEGIN PGM (blok 0), sætter TNC'en alle informationer (værktøjs-data osv)tilbage.

Hvis De har afbrudt programafviklingen indenfor en programdel- gentagelse, må De kun indenfor programdel-gentagelsen vælge andre blokke med GOTO.

Fortsættelse af programafvikling efter en fejl

- Ved ikke blinkende fejlmelding:
- ▶ Ret fejlårsagen
- ▶ Sletning af fejlmelding på billedskærm: Tryk taste CE
- Nystart el. fortsæt programafvikling på det sted, hvor afbrydelsen skete
- Ved blinkende fejlmelding:
- Hold tasten END trykket i to sekunder, TNC´en udfører en varmstart
- ▶ Ret fejlårsagen
- ▶ Nystart

Ved gentagen optræden af fejlen noter venligst fejlmeldingen og kontaktTPTEKNIK.

Vilkårlig indgang i et program (blokforløb)

Med funktionen FREMLØB TIL BLOK N (blokfremløb) kan De afvikle et bearbejdnings-program fra en frit valgbar blok N.

Begynd altid blokfremløbet ved program-start.

Indeholder programmet indtil slutningen af blokfremløbet en programmeret afbrydelse, bliver blokfremløbet afbrudt der. For at fortsætte blokfremløbet, Tryk endnu engang softkey FREMLØB TIL BLOK N og START.

Efter et blokfremløb kører De værktøjet med funktionen gentilkørsel til konturen på den registrerede position (se næste side).

- Første blok i det aktuelle program vælges som start for forløbet: Indlæs GOTO "0".
- Vælg blokfremløb: Tryk softkey FREMLØB TIL BLOK N, TNC´en indblænder et indlæsevindue:

Fremløb til N: Nummeret N på blokken indlæses, hvor fremløbet skal ende

- Program: Indlæs navnet på programmet, i hvilken blokken N står
- Gentagelser: Indlæs antal gentagelser, som der skal tages hensyn til ved blok-fremløbet, ifald blok N står indenfor en programdel-gentagelse
- PLC INDE/UDE: For at tage hensyn til værktøjs-kald og hjælpe-funktion M: Sæt PLC på INDE (skift med tasten ENT mellem INDE og UDE). PLC på UDE betragter udelukkende geometrien
- Start blokfremløb: Tryk softkey START
- Kør til konturen: Se næste afsnit "Gentilkørsel til konturen"

De kan forskyde indlæsevinduet for blokfremløbet. Herfor trykker De tasten for fastlæggelse af billedskærmopdeling og benytter de der viste softkeys.

PRI	JGF	AM	LØB	BL	. O K	FØLGE					
0 1234567890 11	BL BL TC L L C C F R	GI K OL OL Z Z	N FF D D C 5 5 5 4 R + + - X P R	GM M M F I L C F C C C C C C C C C C C C C C C C C	35 1.1 1.2 1.1 1.1 1.1 1.1 1.1 1.1	0 7 MN 2 X + 2 + 0 R + 2 S 16 MAX N 50 R 0 50 R 0 M M ELSE	1 2 0 5 6 5 4 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0	³ ү+	Y-20 20 z	2-20 2+0	I
KALK	.) Y Z		+ <u>1</u> + 2	50. 24. 50.	30 72 22	10 25 25	TF	0		ME (0
									START	1157	9 SI UT

Gentilkørsel til kontur

Med funktionen KØRSEL TIL POSITION kører TNC'en værktøjet til emne-konturen, efter at De under en afbrydelse har kørt maskinakserne med softkey

MANUEL KØRSEL, eller hvis De med funktion blokfremløb vil gå ind i programmet.

- Vælg gentilkørsel til konturen: Vælg softkey KØRSEL TIL POSITION (bortfalder ved blokfremløb). TNC'en viser i det indblændede vindue 1 positionen, til hvilken TNC'en kører værktøjet
- Kør akserne i den rækkefølge, som TNC´en foreslår 1 i vinduet: Tryk extern START-taste
- Kørsel med akserne i vilkårlig rækkefølge: Softkeys KØR TIL X, KØR TIL Z osv.
- ▶ Fortsæt bearbejdning: Tryk extern START-taste

PROGRAMLØB BLOKFØLGE	
9 CYCL DEF 6.0 UDFR 10 CYCL DEF 6.1 AFST 11 CYCL DEF 6.2 UDSP 12 CYCL DEF 6.3 VINK 13 L Z+2 RØ FMAX M9 14 LBL 1 15 FPOL X+ FORTSATKØRSEL: AM 16 L X+0 17 FC DR-R 18 FL AN+6 19 FSELECT3 20 FC DR-R	RAESNING +2 DYBDE-20 +3 F100 SPAAN+0 EL+60 F100 9 (SEFFULGE: 1 CCY+30 +10 SOFTKEY-INDIRST +60
KRLK. X −139.560	T 1 Z
* Y +135.600	F 0
Z +163.360	S 4000 M3/9
KØRSEL KØRSEL KØRSEL	MANUEL INTERN
X Y Z	BETJENING STOP

11.4 Blokvis overførsel: Udførelse af lange programmer

Bearbejdningsprogrammer, der behøver mere plads i hukommelsen, end der er til rådighed i TNC'en, kan De overføre fra en extern hukommelse "blokvis".

Programblokkene bliver herved indlæst i TNC'en via datainterfacet og umiddelbart efter at de er afviklet bliver slettet igen. PÅ denne måde kan De afvikle ubegrænset lange programmer.

Programmet må maximalt indeholde 20 TOOL-DEF blokke. Hvis De har brug for flere værktøjer, så bruger De værktøjs-tabellen.

Hvis programmet indeholder en blok CALL PGM , skal det kaldte program være til rådighed i TNC`ens hukommelse.

Programmet må ikke indeholde:

- Underprogrammer
- Programdel-gentagelser
- Funktion FN15:PRINT

Overføre et program blokvis

Konfigurér interfacet med MOD-funktionen, fastlæg blokbuffer (se "14.4 Indretning af externt datainterface").

Vælg driftsart programafvikling blokfølge eller programafvikling enkeltblok

- Udfør blokvis overføring: Tryk softkey BLOKVIS OVERFØRING.
- Indlæs program-navn, om fornødent endnu med softkey ændre program-type, overfør med tasten ENT. TNC'en indlæser det valgte program via datainterface'et Hvis De ingen program-typ angiver, indlæser TNC'en den type, som D har definerete under MOD-funktion "program-indlæsning"
- Start bearbejdnings-program med extern start-taste Når De har fastlagt en blokbuffer større end 0, venter TNC´en med program-starten, indtil det definerede antal NC-blokke er indlæst

11.5 Overspringe blokke

Blokke, som De ved programmeringen har kendetegnet med et "/"tegn, kan De overspringe ved en program-test eller programafvikling:

Program-blokke udføres med "/"-tegn eller test: Softkey stilles på UDE

Program-blokke udføres ikke med "/"-tegn eller test: Softkey stilles på INDE

Disse funktioner virker ikke for TOOL DEF-blokke.

11.6 Valgfrit programmerings-stop

TNC'en afbryder valgfrit programafviklingen eller program-test ved blokke i hvilke M01 er programmeret. Hvis De anvender M01 i driftsart programafvikling, så udkobler TNC'en ikke spindel og kølemiddel.

Ingen afbrydelse af programafvikling eller programtest ved blokke med M01: Stil softkey på UDE

Afbryde programafvikling eller programm-test ved blokke med M01: Softkey stilles på INDE

3D-tastsystemer

12.1 Tastcykler i driftart manuel drift og El. Håndhjul

TNC'en skal fra maskinfabrikanten være forberedt for brug af et 3D-tastsystem.

Hvis De vil udføre målinger under program-afviklingen, så skal De være opmærksom på, at De kan bruge værktøjs-data (længde, radius, akse) enten fra de kalibrerede data eller fra den sidste TOOL-CALL-blok (Valg over MP7411).

Under tastcykler kører 3D-tastsystemet akseparallelt hen til emnet, efter at De har trykket på den externe START-taste. Maskinfabrikanten fastlægger tast-tilspændingen: Se billedet til højre. Når 3D-tastsystemet har berørt emnet,

- sender 3D-tastsystemet et signal TNC'en: Koordinaterne til den tastede position bliver lagret
- stopper 3D-tastsystemet og
- kører i ilgang tilbage til startpositionen for tastforløbet

Bliver taststiften ikke udbøjet indenfor den fastlagte vej, afgiver TNC'en en hertil svarende fejlmelding (Vej: MP6130).

Valg af tast-funktion

► Vælg driftsart manuel drift eller el. håndhjul Vælg håndhjul

KANT-	Vælg tastfunktion:
TASTER	Trule astiliant TACT

Tryk softkey TAST-FUNKTION. TNC'en viser yderligere softkeys: Se tabellen til højre

Funktion	Softkey
Kalibrering af virksom længde	KAL. L
Kalibrering af virksom radius	KAL. R
Grunddrejning	TASTNING
Henføringspunkt-fastlæggelse	POS
Hjørne som henf.punkt	P
Kredscentrum som henf.punkt	

Kalibrering af et kontakt tastsystem

Tastsystemet skal De kalibrere ved

- Idriftsættelsen
- Taststift-brud
- Taststift-skift
- Andring af tasttilspænding
- Uregelmæssigheder, for eksempel ved opvarmning af maskinen

Ved kalibrering fremskaffer TNC'en den "aktive" længde af taststiften og den "aktive" radius af tastkuglen. For kalibrering af 3D-tastsystemet opspænder De en indstillingsring med kendt højde og kendt inderradius på maskinbordet.

Kalibrering af den aktive længde

Fastlæg henf.spunktet i spindel-aksen således, at for maskinbordet gælder: Z=0.

- Vælg kalibrerings-funktion for tastsystem-længde: Tryk softkey TAST-FUNKTIONER og KAL.L TNC'en viser et menu-vindue med fire indlæsefelter.
- ► Vælg værktøjs-akse med softkey
- ► Henf.punkt: Indlæs højde af indstillingsring
- Menpunkt virksom kugleradius og virksom længde kræver ingen indlæsning
- Kør tastsystemet tæt over overfladen af indstillingsringen
- ▶ Om nødvendigt, ændre kørselsretning: Tryk pil-taste
- ▶ Tast overflade: Tryk extern START-taste

Kalibrere virksom radius og udjævnetastsystemmidtforskydning

Tastsystem-aksen falder normalt ikke helt sammen med spindelaksen. Kalibrerings-funktionen måler forskydningen mellem tastsystem-aksen og spindel-aksen og udjævner den regnemæssigt.

Ved denne funktion drejer TNC'en 3D-tastsystem 180°. Drejningen bliver udløst med en hjælpe-funktion, som maskinfabrikanten har fastlagt i maskinparameter 6160.

Målingen af tastsystem-centerforskydningen gennemfører De efter kalibreringen af den aktive tast-kugleradius.

▶ Positioner tastkuglen i manuel drift i indstillingsringens hul

- Vælg kalibrer-funktion for tastkugle-radius og tastsystem-centerforskydning: Tryk softkey KAL R
- Vælg værktøjs-akse, indlæs radius for indstillingsringen
- Tast: Tryk 4 x extern START-taste. 3D-tastsystemet taster i hver akseretning en position i hullet og omregner den aktive tastkugle-radius
- Hvis De vil afslutte kalibreringsfunk-tionen, tryk da på softkey END
- 180
- Bestemmelse af tastkugle-centerforskydning: Tryk softkey "180°". TNC'en drejer da tastsystemet 180°
- Tast: Tryk 4 x extern START-taste. 3D-tastsystemet taster i hver akseretning en position i hullet og omregner tastsystemets-midtforskydning.

Visning af kalibreringsværdier

TNC'en lagrer den virksomme længde, den virksomme radius og bidraget af tastsystemets-midtforskydning og tager hensyn til disse værdier ved senere brug af 3D-tastsystemet. For at se de indlagrede værdier, tryk på KAL. L og KAL. R.

Kompensering for skævt liggende emne

Et skævt opspændt emne kompenserer TNC'en for ved en regnemæssig "grunddrejning".

Hertil sætter TNC'en drejevinklen på den vinkel, den ene emneflade skal have med vinkelhenfóringsaksen for bearbejdningsplanet. Se billedet til højre forneden.

- Tastretningen for måling af det skævt liggende emne vælges altid vinkelret på vinkelhenføringsaksen.

For at grunddrejningen bliver rigtigt udregnet i programafviklingen, skal De i første kørselsblok programmere begge koordinater for bearbejdningsplanet.

- ▶ Valg af tastfunktion: Tryk softkey TAST ROT
- Positioner tastsystemet i nærheden af det første tastpunkt.
- Vælg tastretning vinkelret på vinkelhenføringsaksen: Vælg akse med pil-taste.
- ▶ Tastning: Tryk extern START-taste.
- Positioner tastsystemet i nærheden af det andet tastpunkt.
- ▶ Tastning: Tryk extern START-taste.

KALIE	BRERIN	IG: EF	FEKTI	V RAD	IUS		
X + X	(- Y+	· Y -					
VÆRKT Kontr Effek Effek Tastk Tastk	Ø <mark>JSAK</mark> QLRIN (TIV K (TIV L (UGLE (UGLE	SE = IGS RF UGLE- ÆNGDE MIDTF MIDTF	Z RADIUS RADIU S = +1 ORSKU	= 25. S= 1. 25.37 DT X+ DT Y-	003 996 0.193 0.059	1	
KALK. X	(+ 1	50.30	10 25				
Ż	2 +2	50.22	25	T FØ S		M5/	9
х	Y	z					SLUT

12.2 He<mark>nfør</mark>ingspunkt-fastlæggelse med 3D-tastsystemer

SLUT

TNC'en gemmer grunddrejningen sikret ved strømsvigt. Grunddreininger er virksom for alle efterfølgende programafviklinger og program-test.

Visning af grunddrejning

Vinklen for grunddreiningen står efter fornvet valg af TAST ROT i drejevinkel-visningen. TNC'en viser også drejevinklen i den efterfølgende statusvisning (billedskærm-opdeling PROGRAM + STATUS POS.-VIS)

I status-visningen bliver et symbol for grunddrejningen indblændet, når TNC'en kører maskin-aksen svarende til grunddrejningen.

Ophævelse af grunddrejning

- ▶ Valg af tastfunktion: Tryk softkey TAST ROT
- ▶ indlæs drejevinkel "0" overfør med tasten ENT
- ► Afslut tastfunktion: Tryk taste END

12.2 Henføringspunkt-fastlæggelse med **3D-tastsystemer**

Funktionerne for henføringspunkt-fastlæggelse på et oprettet emne bliver valgt med følgende softkeys:

- Henf.punkt-fastlæggelse i en vilkårlig akse med ANTASTEN POS
- Fastlæggelse af hjørne som henf punkt med TAST P
- Fastlæggelse af cirkelcenter som henf.punkt med TAST CC

Henf.punkt-fastlæggelse i en vilkårlig akse (se billedet til højre forneden) ▶ Vælg tastfunktion: Tryk softkey TAST POS

- POS
- ▶ Positioner tastsystemet i nærheden af tastpunktet
- ▶ Vælg tastretning og samtidig akse, hvori henf.-punktet skal fastlægges, f.eks. tast Z i retning Z: Vælg med piltaster.
- ▶ Tastning: Tryk extern START-taste.
- ▶ Henføringspunkt: Indlæs Soll-koordinater, overfør med tasten ENT

Hjørne som henf.punkt - overfør punkterne, som blev tastet for grunddrejningen (se billedet til højre for oven) TASTNING

- ▶ Vælg tastfunktion: Tryk softkey TAST P
- ► Tastpunkter fra grunddrejning?: Tryk taste ENT, for at overføre koordinaterne for tastpunkterne
- Positioner tastsystemet i nærheden af det første tastpunkt på emne-kanten, som ikke blev tastet for grunddreiningen
- ▶ Vælg tastretning: Vælg akse med pil-taster
- ▶ Tastning: Tryk extern START-taste.
- Positioner tastsystemet i nærheden af det andet tastpunkt på den samme kant
- ▶ Tastning: Tryk extern START-taste.
- ▶ Henføringspunkt: Indlæs begge koordinater til henføringspunktet i menuvinduet, ovefør med tasten ENT
- Afslut tast-funktion: Tryk taste END

Hjørne som henføringspunkt - overfør ikke punkter, som blev tastet for grunddrejningen

- ▶ Vælg tastfunktion: Tryk softkey TAST P
- ▶ Tastpunkter fra grunddreining?: Sig nej med tasten NO ENT (Dialogspørgsmål vises kun, hvis De først har gennemført en grunddreining)
- ▶ Tast begge emne-kanter hver to gange
- ▶ Indlæs koordinaterne til henføringspunktet, overfør med taste ENT
- Afslut tast-funktion: Tryk taste END

Cirkelcenter som henføringspunkt

Centrum af huller, cirkulære lommer, cylindre, tappe, cirkelformede Ø'er osv. kan De fastlægge som henføringspunkter.

Indvendig kreds:

TNC'en taster kredsens indervæg automatisk i alle fire koordinatakse-retninger.

Ved afbrudte kredse (kredsbuer) kan De vælge tastretningen vilkårligt.

- > Positioner tastkuglen cirka i kredsmidten

▶ Vælg tastfunktion: Vælg softkey TAST CC

- Tastning: Tryk extern START-taste fire gange. Tastsystemet taster 4 punkter efter hinanden på kredsens indervæg.
- Hvis De vil arbejde med ændrings-måling (kun ved maskiner med spindel-orientering, afhængig af MP6160) tryk softkey 180° og tast påny 4 punkter på kredsens indervæg.
- Hvis De vil arbejde uden ændringsmåling: Tryk taste END
- Henf.punkt: Indlæs i menuvinduet begge koordinater til kredscentret, overfør med taste ENT.
- ▶ Afslut tastfunktion: Tryk taste END

Udvendig kreds

- Positioner tastkuglen i nærheden af det første tastpunkt udvendig på kredsen
- ► Vælg tastretning: Vælg med softkey
- ► Tastning: Tryk extern START-taste.
- Tastforløb for de øvrige 3 punkter gentages. Se billedet til højre forneden
- Indlæs koordinaterne til henføringspunktet, overfør med taste ENT

Efter tastningen viser TNC'en de aktuelle koordinater til kredsens midtpunkt og kredsradius PR.

12.3Emne opmåling med 3D-tastsystemer

Med 3D-tastsystemet kan De bestemme:

- positions-koordinater og ud fra disse
- mål og vinkler på emnet

Bestemmelse af koordinater til en position på et oprettet emne

- ▶ Vælg tastfunktion: Tryk softkey TAST POS
- > Positioner tastsystemet i nærheden af tastpunktet
- Vælg tastretning og samtidig akse, til hvilke koordinaterne skal henføres: Vælg akse med piltaster.
- ▶ Start tastforløb: Tryk extern START-taste

TNC'en viser koordinaterne til tastpunktet som henføringspunkt.

Bestemmelse af koordinaterne til et hjørnepunkt i bearbejdningsplanet

Bestemmelse af koordinaterne til hjørnepunktet, som beskrevet under "hjørne som henføringspunkt" . TNC'en viser koordinaterne til det tastede hjørne som henføringspunkt .

Bestemmelse af emnemål

- ▶ Vælg tastfunktion: Tryk softkey TAST POS
- Positioner tastsystemet i nærheden af det første tastpunkt A
- ▶ Vælg tastretning med pil-taster
- ▶ Tastning: Tryk extern START-taste.
- Noter den viste værdi for henføringspunktet (kun, hvis tidligere fastlagt henføringspunkt forbliver virksomt)
- ▶ Indlæs henføringspunkt: "0"
- ▶ Afbryde dialog: Tryk taste END
- ▶ Vælg tastfunktion påny: Tryk softkey TAST POS

- Positioner tastsystemet i nærheden af det andet tastpunkt B
- Vælg tastretning med pil-taster: Samme akse, dog modsatte retning af den ved første tastning.
- ► Tastning: Tryk extern START-taste.

I displayet HENEPUNKT står afstanden mellem begge punkter på koordinataksen.

Sæt positionsvisningen på værdier for længdemåling igen

- ▶ Vælg tastfunktion: Tryk softkey TAST POS
- ▶ Tast første tastpunkt påny
- Sæt henføringspunkt på den noterede værdi
- ► Afbryd dialog: Tryk taste END.

Vinkel måling

Med et 3D-tastsystem kan De bestemme en vinkel i bearbejdningsplanet. Det der bliver målt er

vinklen mellem vinkelhenføringsaksen og en emne-kant eller

vinklen mellem to kanter

Den målte vinkel bliver vist som en værdi på maximal 90°.

Bestemmelse af vinklen mellem vinkelhenføringsakse og en emne-kant

TASTNING

- ▶ Valg af tastfunktion: Tryk softkey TAST ROT
- Drejevinkel: Noter den viste drejevinkel, hvis de senere skal fremstille den gennemførte grunddrejning igen.
- Gennemføring af grunddrejning med den sammenlignende side (se "Kompensering af skævt liggende emne")
- Med softkey TAST ROT at vise vinklen mellem vinkelhenføringsakse og emnekant som drejevinkel.
- Ophævelse af grunddrejning eller genfremstille den oprindelige grunddrejning:
- Sæt drejevinkel på den noterede værdi.

Bestemmelse af vinkel mellem to emne-kanter

- ► Valg af tastfunktion: Tryk softkey TAST ROT
- Drejevinkel: Noter den viste drejevinkel, hvis de senere skal fremstille den gennemførte grunddrejning igen.
- Udfør grunddrejningen for den første side (se "Kompensering for skævt liggende emne")
- ► Tast den anden side ligesom ved en grunddrejning, drejevinkel må ikke sættes på 0 !
- Med softkey TAST ROT kan De få vist vinklen PA mellem emnekanter som drejningsvinkel.
- Ophæv grunddrejningen eller indlæs oprindelig grunddrejning: Indlæs den noterede drejevinkel

Måling med 3D-tastsystem under en programafvikling

Med 3D-Tastsystemet kan man også under en programafvikling indsamle positioner på emnet – også med transformeret bearbejdnings-plan. Anvendelse:

- Måling af højdeforskelle ved støbte flader
- Tolerancekontrol efter bearbejdningen

Tastsystem-brugen programmerer De i driftsart program-indlagring/ editering med tasten TOUCH PROBE og med softkey REF PLANE. TNC'en positionerer tastsystemet og taster automatisk den forudgivne position. Derved kører TNC'en tastsystemet parallelt med maskin-aksen, som De har fastlagt i en tast-cyklus. En aktiv grunddrejning eller rotation tager TNC'en kun hensyn til for beregningen af tastpunktet. Koordinaterne til tastpunktet lægger TNC'en i en Q-parameter. TNC'en afbryder tastforløbet, hvis tastsystemet indenfor et bestemt område (vælges over MP 6130) ikke bliver udbøjet. Koordinaterne til positionen, der hvor sydpolen af tastkuglen befinder sig ved tastningen, er efter tastforløbet yderligere indlagret i parameter Q115 til Q118. For værdierne i disse parametre tager TNC'en ikke hensyn til taststift-længde og -radius.

Tastsystemet forpositioneres manuelt således, at en kollision ved kørsel til den programmerede forposition undgås.

De skal passe på, at TNC´en anvender værktøjsdata som længde, radius, og akse enten fra de kalibrerede data el. fra den sidste TOOL CALL-blok: Vælges over MP7411.

▶ I driftsart program indlagring/editering tryk taste TOUCH PROBE.

- ▶ Vælg tastfunktion: Tryk softkey HENF.PLAN
- Parameter-Nr. for resultat: Indlæs nummeret for Qparameteren, i hvilken værdien for koordinaterne bliver anvist
- Tast-akse/tast-retning: Indlæs tast-akse med aksevalgstaste og fortegn for tastretning. Overfør med taste ENT.
- ► Koordinater: Indlæs med aksevalgs-tasten alle koordinaterne for forpositioneringen af tastsystemet.
- ▶ Afslut indlæsning: Tryk taste ENT.

NC-blok eksempel

67 TCH PROBE 0.0 berøringspunkt Q5 X-68 TCH PROBE 0.1 X+5 Y+0 Z-5

Eksempel: Bestemmelse af højden af en Ø på emnet

Program-afvikling

- Anvisning af program-parameter
- Med cyklus HENF:PLAN mål højde
- Beregning af højde

BEGIN PGM 3DTASTEN MM	
1 FN 0: Q11 = +20	1. Tastpunkt: X-koordinat
2 FN 0: Q12 = +50	1. Tastpunkt: Y-koordinat
3 FN 0: Q13 = +10	1. Tastpunkt: Z-koordinat
4 FN 0: Q21 = +50	2. Tastpunkt: X-koordinat
5 FN 0: Q22 = +10	2. Tastpunkt: Y-koordinat
6 FN 0: Q23 = +0	2. Tastpunkt: Z-koordinat
7 TOOL CALL O Z	Tastsystem-kald
8 L Z+250 RO FMAX	Tastsystem frikøres
9 L X+Q11 Y+Q12 RO FMAX	Forpositionering for første måling
10 TCH PROBE 0.0 HENF:PLAN Q10 Z-	Overkant på emne måles
11 TCH PROBE 0.1 Z+Q13	
12 L X+Q21 Y+Q22 RO FMAX	Forpositionering for anden måling
13 TCH PROBE 0.0 HENF.PLAN Q20 Z-	Måling af dybde
14 TCH PROBE 0.1 Z+Q23	
15 FN 2: Q1 = +Q20 - +Q10	Beregning af absolut højde af Ø´en
16 STOP	Programafvikling-stop: Q1 kontrolleres
17 L Z+250 RO FMAX M2	Værktøj frikøres, program-slut
END PGM 3DTASTEN MM	

Digitalisering

13.1 Digitalisering med kontakt tastsystem (option)

Med optionen digitalisering registrerer TNC'en 3D-former med et kontakt tastsystem.

For at digitalisere behøver De følgende komponenter:

- tastsystem
- et softwaremodul "Option Digitalisering"
- SUSA evaluerings software fra HEIDENHAIN for viderebearbejdning af digitaliserede data, som er indsamlet med cyklus BUGTET KURVE

for digitalisering står følgende digitaliserings-cykler til rådighed:

- OMRÅDE
- BUGTET KURVE
- HØJDELINIER

 TNC og maskine skal fra maskinfabrikantens side være forberedt for brugen af et tastsystem.

Før De begynder med digitalisereing, skal De kalibrere tastsystemet.

Funktion

En 3D-form bliver med tastsystemet punkt for punkt aftastet i et valgbart raster. Digitaliseringshastigheden ligger mellem 200 og 800 mm/min ved en punktafstand (PAFST) fra 1 mm (maskinafhængig værdi).

De registrerede positioner udlæser TNC'en over datainterfacet – i reglen til en PC'er. Konfigurér datainterfacet herfor (se "14.4 Indretning af externt datainterface").

Hvis de ved fræsning af de registrerede digitaliseringsdata anvender et værktøj hvis radius svarer til taststift-radius, så kan De uden videre afvikle digitaliseringsdataerne

Digitaliserings-cykler skal programmeres for hovedakserne X, Y og Z.

Koordinat-omregning eller en grunddrejning må ikke være aktive under en digitalisering.

TNC'en giver BLK FORM med ud i digitaliseringsdatafilen.

13.2 Programmering af digitaliseringscykler

- ▶ Tryk taste TOUCH PROBE
- ► Vælg med softkey den ønskede digitaliseringscyklus
- ▶ Besvar TNC'ens dialogspørgsmål: Indlæs de ønskede værdier via tastaturet og overfør hver indlæsning med tasten ENT. Når TNC'en har alle de nødvendige informationer, afsluttes cyklusdefinition automatisk. Informationerne om de enkelte indlæseparametre finder De ved cyklus-beskrivelserne i dette kapitel.

Fastlæggelse af digitaliserings-område

For definition af digitaliserings-området står cyklus 5 OMRÅDE til rådighed. De kan definere et kasseformet område, i hvilket formen bliver aftastet.

Digitaliserings-området fastlægger De som en kasse ved angivelse af minimum- og maximum-koordinater i de tre hovedakser X, Y og Z - som ved råemne-definitionen BLK FORM. Se billedet til hójre.

- ▶ PGM NAVN digitaliseringsdata: Navnet på filen, hvori digitaliseringsdataerne bliver lagret.
- ▶ AkseTCH PROBE: Indlæs tastsystem-akse
- MIN-punkt område. Minimum-punkt for området, i hvilket der bliver digitaliseret
- MAX-punkt område: Maximal-punkt for området, i hvilket der bliver digitaliseret
- Sikker højde: Positionen i tastsystem-aksen, i hvilken en kollision af taststift og form er udelukket.

NC-blok eksempel

50	TCH	PROBE	5.0	OMRÅD E
51	TCH	PROBE	5.1	PGM NAME: DATA
52	TCH	PROBE	5.2	Z X+0 Y+0 Z+0
53	TCH	PROBE	5.3	X+10 Y+10 Z+20
54	TCH	PROBE	5.4	HØJDE: + 100

13.3 Digitalisering af bugtet kurve

Digitaliseringscyklus 6 BUGTET KURVE

Med digitaliser-cyklus BUGTET KURVE digitaliserer De en 3D-form bugtet kurve. Denne kørsel egner sig særligt for relativt flade former. Hvis De vil videre bearbejde digitaliseringsdataerne med HEIDENHAIN-softwaren SUSA, skal De digitalisere en bugtet kurve.

Ved digitaliseringsforløbet vælger De en akse i bearbejdningsplanet, i hvilken tastsystemet kører i positiv retning indtil områdegrænsen – gående ud fra MIN-punktet i bearbejdningsplanet. Der bliver tastsystemet forskudt med linieafstanden og kører så tilbage i denne linie. I den anden ende af linien bliver tastsystemet så påny forskudt med linienafstanden. Forløbet gentager sig, indtil det totale område er aftastet.

Ved slutningen af digitaliseringsforløbet kører tastsystem tilbage til sikker højde.

Startpunkt

- MIN-punkt-koordinater i bearbejdningsplanet fra cyklus 5 OMRÅDE, spindelakse-koordinater = Sikker højde
- TNC`en kører automtisk til startpunkt: Først i spindelaksen i sikker højde, så i bearbejdningsplanet

Kørsel til formen

Tastsystemet kører i negativ spindelakse-retning hen til formen. Koordinaten til positionen, der hvor tastsystemet berører formen, bliver lagret.

> I bearbejdnings-programmet skal De før digitaliseringscyklus BUGTET KURVE definere digitaliseringscyklus OMRÅDE.

Digitaliserings-parametre

- ▶ Linieretning: Koordinatakse i bearbejdningsplanet, i hvis positive retning tastsystemet kører ud fra første lagrede konturpunkt
- Begrænsning i normal-retning: Strækningen, med hvilken tastsystemet frikører efter en udbøjning. Indlæseområde:
 0 til 5 mm. Anbefaling: Indlæseværdien skal ligge mellem
 0.5 • punktafstand og punktafstand. Jo mindre tastkugle, desto større skal De vælge begrænsning i normal-retning
- Linieafstand: Forskydning af tastsystemet ved linie-enden; Linieafstand. Indlæseområde: 0 til 5 mm
- MAX. punktafstand : Maximal afstand mellem de af TNC´en lagrede punkter. TNC'en tager yderligere hensyn til de for formen af modellen vigtige punkter, f.eks. ved indvendige hjørner. Indlæseområde: 0.02 til 5 mm

NC-blok eksempel

60	TCH	PROBE	6.0	BUGTET	KUR	/ E	
61	TCH	PROBE	6.1	RETNING	G:)	(
62	TCH	PROBE	6.2	SVING:	0.5	L.AFST:	0.2
	Р	.AFST:	0.5				

13.4 Digitalisering af højdekurver

Digitaliseringscyklus 7 HØJDEKURVE

Med digitaliserings-cyklus HØJDEKURVE bliver en 3D-form digitaliseret trinvis. Digitalisering i højdekurver egner sig især for stejle former (f.eks. styre-pasninger på forme til sprøjtestøbning) eller hvis kun en enkelt højdekurve skal registreres (f.eks. omridslinie af en kurveskive).

Ved digitaliseringsforløbet kører tastsystemet – efter at det første punkt er registreret – med konstant højde omkring formen. Bliver det først registrerede punkt nået igen, følger en fremrykning med den indlæste linieafstand i positiv eller negativ retning af spindelaksen. Tastsystemet kører påny med konstant højde omkring emnet indtil det først registrerede punkt på denne højde. Forløbet gentager sig, indtil hele området er digitaliseret.

Ved slutningen af digitaliseringsforløbet kører tastsystem tilbage til sikker højde og det programmerede startpunkt.

Begrænsninger i aftastningsområdet

- I tastsystem-aksen: Det definerede OMRÅDE skal ligge med mindst tastkugle-radius under det højste punkt af 3D-formen
- I bearbejdningsplanet: Det definerede område skal være mindst tastkugle-radius større end 3D-formen

Startpunkt

- Spindelakse-koordinater for MIN-punkter fra cyklus 5 OMRÅDE, når linienafstand er indlæst positiv
- Spindelakse-koordinater for MAX-punkter fra cyklus 5 OMRÅDE, når linienafstand er indlæst negativ
- Koordinaterne til bearbejdningsplanet er defineret i cyklus HØJDELINIE
- TNC`en kører automtisk til startpunkt: Først i spindelaksen i sikker højde, så i bearbejdningsplanet

Kørsel til formen

Tastsystemet kører i den i cyklus HØJDELINIE programmerede retning til formen. Koordinaten til positionen, der hvor tastsystemet berører formen, bliver lagret.

I bearbejdnings-programmet skal De før digitaliseringscyklus HØJDELINIE definere digitaliseringscyklus OMRÅDE.

Digitaliserings-parametre

- Tidsbegrænsning: Tiden, indenfor hvilken tastsystemet skal nå det første tastpunkt på en højdekurve efter et omløb. TNC'en afbryder digitaliserings-cyklus, hvis den indlæste tid overskrides. Indlæseområde: 0 til 7200 sekunder. Ingen tidsbegrænsning, hvis De indlæser "0"
- Startpunkt: Koordinaterne til startpunktet i bearbejdningsplanet
- Startakse og retning: Koordinat-akse og -retning, i hvilke tastsystemet kører til formen
- Startakse og retning: Koordinat-akse og -retning, i hvilke tastsystem kører om formen under digitaliseringen. Med digitaliserings-retningen fastlægger De allerede, om den efterfølgende fræsebearbejdning bliver gennemført i med- eller modløb.
- Begrænsning i normal-retning: Strækningen, med hvilken tastsystemet frikører efter en udbøjning. Indlæseområde:
 0 til 5 mm. Anbefaling: Indlæseværdien skal ligge mellem
 0.5 • punktafstand og punktafstand. Jo mindre tastkugle, desto større skal De vælge begrænsning i normal-retning
- Linieafstand og retning: Forskydning af tastsystemet, når det igen når startpunktet for en højdelinie; Fortegnet fastlægger retningen, i hvilken tastsystemet bliver forskudt. Indlæseområde: -5 til +5 mm

 Hvis De kun vil digitalisere en enkelt højdekurve, så indlæser De for linieafstanden 0.

MAX. punktafstand : Maximal afstand mellem de af TNC´en lagrede punkter. TNC'en tager yderligere hensyn til de for formen af modellen vigtige punkter, f.eks. ved indvendige hjørner. Indlæseområde: 0.02 til 5 mm

NC-blok eksempel

60	TCH	PROBE	7.0	HØJDEKURVE
61	TCH	PROBE	7.1	TID: 0 X+0 Y+0
62	TCH	PROBE	7.2	RÆKKEFØLGE: Y- / X-
63	TCH	PROBE	7.2	HUB: 0.5 L.ABST+: +0.2
	P .	AFST:	0.5	

13.5 Anvendelse af digitaliseringsdata i et bear-bejdnings-program

NC-blok eksempler på et digitaliseringsdata-fil, registreret med cyklus HØJDELINIE

BEGIN PGM DATEN MM	Program-navn DATA: Fastlagt i cyklus OMRÅDE
1 BLK FORM 0.1 Z X-40 Y-20 Z+0	Råemnel-definition: Størrelsen bliver fastlagt af TNC'en
2 BLK FORM 0.2 X+40 Y+40 Z+25	
3 L Z+250 FMAX	Sikker højde i spindelaksen: Fastlagt i cyklus område
4 L X+0 Y-25 FMAX	Startpunkt i X/Y: Fastlagt i cyklus HØJDELINIE
5 L Z+25	Starthøjde i Z: Fastlagt i cyklus HØJDELINIE, afhængig
	af fortegnet for LINIEAFSTANDEN
6 L X+0,002 Y-12,358	Første registrerede position
7 L X+0,359 Y-12,021	Anden registrerede position
253 L X+0,003 Y-12,390	Første højdelinie digitaliseret: Første registrerede position nået igen
254 L Z+24,5	Fremrykning til næste højdekurve
2597 L X+0,093 Y-16,390	Sidste registrerede position i området
2598 L X+0 Y-25 FMAX	Tilbage til startpunktet i X/Y
2599 L Z+250 FMAX	Tilbage til sikker højde i spindelaksen
END PGM DATEN MM	Program-slut
For at afvikle digitaliseringsdata fremstiller De følgende program:	
BEGIN PGM FRÆSNING MM	Værktøjs-definition: Værktøjs-radius = Taststift-radius
1 TOOL DEE 1 1+0 R+4	Værktøis-kald

1 TOOL DEF 1 L+0 R+4	Værktøjs-kald
2 TOOL CALL 1 Z S4000	Fastlæggelse af fræsetilspænding, spindel og kølemiddel INDE
3 L RO F1500 M13	Kald af digitaliseringsdata, som er lagret externt
4 CALL PGM EXT:DATA	
END PGM FRÆSNING MM	

MOD-funktioner

14.1 Valg, ændre og forlade MOD-funktioner

Med MOD-funktionerne kan De vælge yderligere displays og indlæsemuligheder.

Valg af MOD-funktioner

Vælg den driftsart, i hvori De skal ændre MOD-funktionen.

▶ Vælg MOD-funktion: Tryk taste MOD Billedet til højre viser "MOD-billedskærmen".

De kan foretage følgende ændringer:

- Valg af positions-display
- Valg af måle-enhed (mm/tommer)
- Fastlæggelse af programmerings-sprog for MDI
- Indlæsning af nøgletal
- Indretning af interface
- Maskinspecifikke bruger-parametre
- Fastlæggelse af begrænsning af kørselsområde
- NC-software Visning af nummer
- PLC-Software Visning af nummer

Ændring af MOD-funktion

- ▶ Vælg MOD-funktion i den viste menu med piltaster.
- Tryk gentagne gange taste ENT, indtil funktionen står i det lyse felt eller indlæs tal og overfør med taste ENT

Forlade MOD-funktioner

Afslut MOD-funktion: Tryk softkey SLUT eller taste END.

14.2 System-Informationen

Med softkey SYSTEM-INFORM. viser TNC'en følgende informationer:

- Ledig program-hukommelse
- NC-software-nummer
- PLC-software-nummer
- DSP-software-nummer
- Forhånden værende optioner, f.eks. digitalisering

står efter valg af funktionen i TNC-billedskærmen.

PROGRAM-INDLÆSNING		
POSITIONSVÆRDI 1 POSITIONSVÆRDI 2	KALK. Akt.	
SKIFT - MM/TOMMER	ММ	
PROGRAM-INPUT	ISO	
KALK. X -139.560		
Z +163.360	T 1 Z F Ø	
	S 4000	M3/9
RS 232 BRUGER ENDE- KONTAKT SETUP PARAMETER MASKINE	INFO ENDE- KONTAKT SYSTEM TEST	HJÆLP SLUT

For indlæsning af nøgle-tallet trykker De softkey med nøglen. TNC'en kræver for følgende funktioner et nøgle-tal:

Funktion	Nøgletal
Valg af bruger-parametre	123
Ophæve programbeskyttelse	86357
Driftstime-tæller for:	
styring inde	
programafvikling	
spindel inde	857282

De kan tilbagestille de enkelte tider, idet De trykker tasten ENT (skal være frigivet med maskin-parameter)

14.4 Indretning af datainterface

For indretning af datainterface trykker De softkey RS 232 - INDRET. TNC'en viser en billedskærm-menu, i hvilken De indlæser følgende indstillinger:

Valg af DRIFTSART for externt udstyr

Externt udstyr	INTERFACE RS232
HEIDENHAIN Diskette-enhed FE 401 og FE 401B	FE
Fremmed udstyr, som printer, læser, Stanser, PC uden TNCremo	EXT1, EXT2
PC med HEIDENHAIN-software TNCremo	FE
Ingen data overføre; f.eks. digitali- sering uden måleværdi indsamling, eller arbejde uden tilsluttet udstyr	NUL

Indstilling af BAUD-RATE

BAUD-RATE (dataoverførings-hastighed) er valgbar mellem 110 og 115.200 Baud. TNC'en lagrer for hver driftsart (FE, EXT1 osv.) en BAUD-RATE.

	datainterface
	af
	Indretning
	14.4
	nøgle-tal;
	Bes
9	Indlá
SLUT	4.3
	7

FΕ

57600

98 10

T F S 1000

0

OVERFØRSEL

M5/

PROGRAMTEST

BAUD RATE

z

каск. Х

Block buffer

DATAPORT RS232

HUKOMMELSE F. BLOKVIS TIL RÅDIGHED CKBYTEJ RESERVERET CKBYTEJ

> +150.300 -24.725 +250.225

Fastlæg hukommelse for blokvis overførsel

For parallelt med blokvis afvikling at kunne editere andre programmer, fastlægger De hukommelsen for den blokvise overføring.

TNC'en viser den til rådighed værende hukommelse. De vælger den reserverede hukommelse mindre end den frie hukommelse.

Indstilling af blokbuffer

For at garantere en kontinuerlig afvikling ved blokvis overføring, behøver TNC'en et vist forråd af blokke i program-hukommelsen.

I blokbufferen fastlægger De, hvor mange NC-blokke der kan indlæses over datainterfacet, før TNC'en begynder med afviklingen. Indlæseværdien for blokbufferen er afhængig af punktafstanden i NC-programmet. Ved meget små punktafstande indlæses en stor blokbuffer, ved større punktafstande indlæses en mindre blokbuffer. Retningsværdi: 1000

Software for dataoverførsel

For overførsel af filer fra TNC'en og til TNC'en, skal De bruge HEIDENHAIN-software TNCremo for dataoverførsel. Med TNCremo kan De med det serielle interface styre alle HEIDENHAIN- styringer.

Sæt Dem venligst i forbindelse med TP TEKNIK A/S, for, mod betaling, at få dataoverførings-softwaren TNCremo.

System-forudsætninger for TNCremo

- PC type AT eller kompatibelt system
- 640 kB arbejdslager
- 1 MByte fri plads på Deres harddisk
- et ledigt serielt interface
- driftssystem MS-DOS/PC-DOS 3.00 eller højere, Windows 3.1 eller højere, OS/2
- For et mere behageligt arbejde en Microsoft (TM) kompatibel mus (ikke tvingende nødvendig)

Installation underWindows

- Start installations-programmet SETUPEXE med fil-manager (Explorer)
- ▶ Følg anvisningerne for setup-programmet

Start TNCremo under Windows

Windows 3.1, 3.11, NT:

Dobbeltklik på ikonen i programgruppen HEIDENHAIN anvendelser

Windows95:

▶ Klik på <Start>, <Program>, <HEIDENHAIN anvendelser>, <TNCremo>

Når De starter TNCremo for første gang, bliver De efter tilslutningen af styringen, spurgt om interface (COM1 oder COM2) og efter dataoverførsels-hastighed. Indlæs de ønskede informationer.

Dataoverførsel mellem TNC 410 og TNCremo

Kontroller, om:

- TNC 410 er tilsluttet det rigtige serielle interface på regneren
- dataoverførings-hastigheden på TNC´en og i TNCremo stemmer overens

Efter at De har startet TNCremo, ser De i venstre del af vinduet alle filer, som er lagret i det aktive bibliotek. Med <bibliotek>, <omskift> kan De vælge et vilkårligt drev hhv. et andet bibliotek på Deres styring. For at kunne starte dataoverførslen fra TNC´en (se "4.2 fil-styring"), vælger De <forbindelse>, <filserver>. TNCremo er nu klar til at modtage data.

AfslutTNCremo

Vælg menupunktet <fil>, <afslut>, eller tryk på tastkombinationen ALT+X

Vær også opmærksom på hjælpefunktionen i TNCremo, i hvilken alle funktioner bliver forklaret.

14.5 Maskinspecifikke bruger-parametre

Maskinfabrikanten kan belægge indtil 16 brugerparametre med funktioner. Vær opmærksom på Deres maskinhåndbog.

14.6 Valg af positions-visning

For manuel drift og programafviklings-driftsarter har De indflydelse på visning af koordinaten:

Billedet til højre viser forskellige positioner af værktøjet

- 1 Udgangs-position
- 2 Mål-position af værktøjet
- 3 Emne-nulpunkt
- 4 Maskin-nulpunkt

For positions-visningen på TNC'en kan De vælge følgende koordinater:

Funktion	Visning	
Soll-Position; den af TNC'en aktuelle forudgivne værdi	SOLL	
Aktposition; den øjeblikkelige værktøjs-position	AKT.	
Reference-position; Aktposition henført til REF maskin-nulpunktet		
Restvejen til den programmerede position; forskellen mellem Akt og mål-position	RESTVEJ	
Slæbefejl; forskellen mellem Soll og Aktposition	SLBF	
Med MOD-funktion positions-visning 1 vælger De positions-visning i status-display.		

Med MOD-funktion positions-visning 2 vælger De positions-visning i det yderligere status-display.

14.7 Valg af målesystem

Med MOD-funktionen SKIFT MM/TOMME fastlægger De, om TNC'en skal vise koordinaterne i mm eller tommer (tomme-system).

- Metrisk målesystem: f.eks. X = 15,789 (mm) MOD-funktion skift MM/tomme = mm. Visning med 3 cifre efter kommaet
- Tomme-system: f.eks. X = 0,6216 (tomme) MOD-funktion skift MM/TOMME. Visning med 4 cifre efter kommaet.

Denne MOD-funktion fastlægger også målesystemet, når De åbner et nyt program.

14.8 Valg af programmeringssprog

Med MOD-funktionen PROGRAM-INDLÆSN. fastlægger De, om De i driftsart positionering med manuel indlæsning kan programmere en klartext-dialog blok eller en DIN/ISO-blok.

- Indlæs klartext-dialog-blok: HEIDENHAIN
- Indlæs DIN/ISO-blok: ISO

Denne MOD-funktion fastlægger også programmeringssproget, når De åbner et nyt program.

Hvis De skifter mellem klartext-dialog og DIN/ISOindlæsning (og omvendt), skal De slette den sidst aktive fil \$MDI i driftsart program-indlagring.

14.9 Indlæsning af kørselsområdebegrænsninger

Indenfor det maximale kørselsområde kan De begrænse den reelt brugbare kørselsstrækning for koordinatakserne.

Anvendelseseksempel: Sikre et deleapparat mod kollision

Kørselsområde-begrænsning for programafviklingen

Det maximale kørselsområde er begrænset med software-endekontakt. Den reelt brugbare kørselsvej bliver indskrænket med MOD-funktionen KØRSELSOMRÅDE MASKINE: Herfor indlæser De maximalværdier i positiv og negativ retning af akserne henført til maskin-nulpunktet.

Arbejde uden kørselsområde-begrænsning

For koordinatakserne, som skal køres uden kørselsområdebegrænsninger, indlæser De den maximale kørselsvej for TNC´en (+/- 30 000 mm) som kørselsområde.

Fremskaffelse og indlæsning af maximalt kørselsområde

- ► Vælg positions-visning REF
- Kør til de ønskede positive og negative ende-positioner for X-, Yog Z-akserne
- Noter værdierne med fortegn
- ▶ Vælg MOD-funktionen: Tryk taste MOD
- VERFAHR-BEREICH MASCHINE
- indlæs kørselsområde-begrænsning: tryk softkey KØRSELSOMRÅDE MASKINE. Indlæs de noterede værdier for akserne som begrænsning, overfør med tasten ENT
- ► Afslut MOD-funktion: Tryk taste END.
- Der tages ikke hensyn til værktøjs-radiuskorrektur ved kørselsområde-begrænsninger.
 - Der tages hensyn til kørselsområde-begrænsning og software-endekontakt, efter at reference-punkter er overkørt.

Kørselsområde-begrænsning for rogram-test

For program-test og programmerings-grafik kan De definere et separat "kørselsområde". Herfor trykker De softkey KØRSELSOMRÅDE TEST, efter at De har aktiveret MOD-funktionen, indlæs de ønskede værdier og overfør med tasten ENT.

Yderligere til begrænsningen kan De endnu definere stedet for emne- henføringspunktet henført til maskin-nulpunktet.

14.10 Udføre HJÆLP-funktion

HJÆLP

HJÆLP-funktionen er ikke til rådighed på alle maskiner. Nærmere informationer kan fås hos maskinfabrikanten.

Hjælpe-funktionen skal understøtte brugeren i situationer, i hvilke fastlagte handlingsmåder, f.eks. frikørsel af maskinen efter en strømafbrydelse, er nødvendig. Også Hjælp-funktioner lader sig dokumentere og udføre i en HJÆLP-fil.

Vælg og udfør en HJÆLP-funktion

▶ Vælg MOD-funktion: Tryk taste MOD

▶ Vælg HJÆLP-funktion: tryk softkey HJÆLP

- Vælg med piltasten "opad/nedad" linier i hjælpe-filen, som er kendetegnet med et #
- ▶ Udfør valgte HJÆLP-funktion: tryk NC-start

Tabeller og oversigter

15.1 Generelle bruger-parametre

Generelle brugerparametre er maskinparametre, hvis forhold har indflydelse på TNC'en.

Typiske brugerparametre er f.eks.

- Dialogsproget
- Interface-forhold
- Kørselshastigheder
- Bearbeidningsforløb
- Virkning af override

Indlæsemuligheder for maskinparametre

Maskin-parametre lader sig programmere som

- Decimaltal
- Indlæs talværdi direkte
- Dual-/binærtal (ved bit-koderede maskin-parametre) Procent-tegn "%" indlæses før talværdi
- Hexadecimaltal (ved bit-koderede maskin-parametre) Dollar-tegn "\$" indlæses før talværdi

Eksempel:

Istedet for decimaltallet 27 kan De også indlæse binærtallet %11011 eller hexadecimaltallet \$1B.

De enkelte maskinparametre må gerne angives samtidigt i de forskellige talsystemer.

Nogle maskinparametre har flere funktioner. Indlæseværdien af sådanne maskinparametre fremkommer af summen der af de enkelte værdier kendetegnet med + tegnet.

Valg af generelle brugerparametre

Generelle bruger-parametre vælger De i MOD-funktionen med nøgletallet 123.

I MOD-funktionen står også maskinspecifikke brugerparametre til rådighed.

Extern dataoverførsel

Fastlæggelse af styretegn for blokvis overførsel

TNC-interface EXT1 (5020.0) og EXT2 (5020.1) tilpasses externt udstyr	
	MP5020.x
	7 Databit (ASCII-Code, 8.bit = Paritet): +0
	8 Databit (ASCII-Code, 9.bit = Paritet): +1
	Block-Check-Charakter (BCC) fri: +0
	Block-Check-Charakter (BCC) styretegn ikke tilladt: +2
	Overførsels-stop ved RTS aktiv: +4
	Overførsels-stop ved RTS ikke aktiv: +0
	Overførsels-stop ved DC3 aktiv: +8
	Overførsels-stop ved DC3 ikke aktiv: +0
	Character parity even: +0
	Character parity odd: +16
	Character parity ikke ønsket: +0
	Character parity ønsket: +32
	11/2 stop bits: +0
	2 stop bits: +64
	1 stop-bits: +128
	1 stop-bits: +192
Ekcompoly	

Eksempel:

Tilpasning af TNC-interface EXT2 (MP 5020.1) til et externt udstyr med følgende indstilling :

8 data bits, BCC vilkårlig, overførings-stop ved DC3, even character parity, character parity ønsket, 2 stop bits Indlæsning for **MP 5020.1**: 1+0+8+0+32+64 = **105**

Fastlæg interface-type for EXT1 (5030.0) og EXT2 (5030.1)

MP5030.x

Standard-overførsel: 0 Interface for blokvis overførsel: 1

3D-tastsystem og digitalisering

Valg af overføringsart	
	MP6010
	Tastsystem med kabel-overførsel: 0
	Tastsystem med infrarød-overførsel: 1
Tasttilspænding for kontakt tastsystem	
	MP6120
	80 bis 3 000 [mm/min]
Maximale kørselsvej til tastpunkt	
	MP6130
	0,001 til 30 000 [mm]
Sikkerhedsafstand til tastpunkt ved automatisk i	måling
	MP6140
	0,001 til 30 000 [mm]
llgang for tastning med kontakt tastsystem	
	MP6150
	1 til 300 000 [mm/min]
Måling af tastsystem-midtforskydning kalibrerin	g af kontakt tastsystem
	MP6160
	Ingen 180°-drejning af 3D-tastsystem ved kalibrering: 0
	M-funktion for 180°-drejning af tastsystem ved
	kalibrering: 1 til 88
Radiusopmåling medTT 120:Tastretning	
	MP6505
	Positiv tastretning i vinkel-henføringsakse (0°-akse): 0
	Positiv tastretning i +90°-akse: 1
	Negativ tastretning i vinkel-henføringsakse (0°-akse): 2
	Negativ tastretning 1 +90°-akse: 3
Tasttilspænding for anden måling med TT 120, sty	/lus-form, korrekturer iTOOL.T
	MIP6507 December of toottilonerading for orden måling med TT 100
	med konstant telerance: 10
	Beregning af tasttilspænding for anden måling med TT 120
	med variabel tolerance: +1
	Konstant tasttilspænding for anden måling med TT 120: +2
Maximal tilladelig målefeil med TT 120 ved måling	g med roterende værktøi
Nødvendig for beregning af	.
tilspændingshastighed i forbindelse med MP6570	
	MP6510
	0,002 tilbis 0,999 [mm] (anbefaling: 0,005 mm)
Tasttilspænding for TT 120 med stående værktøj	
	MP6520
	80 til 3 000 [mm/min]

-
CD
E.
T
Ξ
Ē
1
σ
<u> </u>
10
0
<u> </u>
U
0
_
<u> </u>
0
()
_
()
Ψ.
Ð
Ĕ.
()
-
(7
U
U
5
5
5.1 G
5.1 G

Radius-opmåling med TT 120: Afstand værktøjs	s-underkant til stylus-overkant	
	MP6530	
	0,001 til 30 000,000 [mm]	
Sikkerheds-afstand i spindelakse over stylus fo	or TT 120 ved forpositionering	
	MP6540.0	
	0,001 til 30 000,000 [mm]	
Sikkerhedszone i bearbejdningsplanet om stylu	us for TT 120 ved forpositionering	
	MP6540.1	
	0,001 til 30 000,000 [mm]	
llgang i tastcyklus for TT 120		
	MP6550	
	10 til 10 000 [mm/min]	
M-funktion for spindel-orientering ved enkeltsk	ær-opmåling	
	MP6560	
	-1 til 88	
Måling med roterende værktøj: Tilladelig omløb	oshastighed på fræseromkreds	
Nødvendig for beregning af omdrejningstal og		
tasttilspænding TNC-display, TNC-editor		
	MP6570	
	40,000 til 120,000 [m/min]	
REF-koordinater for TT-120-stift-midtpunkt		
	MP6580.0	
	X-akse: -30 000,000 til 30 000,000	
	MP6580.1	
	Y-akse: -30 000,000 til 30 000,000	
	MP6580.2	
	Z-akse: -30 000,000 til 30 000,000	

TNC-displays, TNC-editor

Indretning som programmeringsplads	
	MP7210
	TNC med maskine: 0
	TNC som programmeringsplads med aktiv PLC: 1
	TNC som programmeringsplads med ikke aktiv PLC: 2
Kvittering af dialog strømafbrydelse efter ind	dkobling
	MP7212
	Kvittering med taste: 0
	Automatisk kvittering: 1
DIN/ISO-programmering: Fastlæggelse af bl	oknummer-skridtbredde
	MP7220
	0 til 250
Bestemmelse af dialogsprog	
	MP7230
	Tysk: O
	engelsk: 1
Konfigurering af værktøjs-tabel	
	MP7260
	Ikke aktiv: 0
	Antal værktøjer i værktøjs-tabellen: 1 til 254
Konfigurering af værktøjs-pladstabel	
	MP7261
	Ikke aktiv: 0
	Antal værktøjer i værktøjs-tabellen: 1 til 254

đ
Ĕ
ē
3
al
ö
J
Ð
Ð
5
Q
đ
-
e
erell
nerell
enerell
Generell
1 Generell
5.1 Generell
15.1 Generell

Konfigurering af værktøjs-tabel (brug ikke: 0); Spalte-nummre i værktøjs-tabel for

MP7266.0	Værktøjs-navn – NAVN: 0 til 22
MP7266.1	Værktøjs-længde – L: 0 til 22
MP7266.2	Værktøjs-radius – R: 0 til 22
MP7266.3	Reserveret
MP7266.4	Sletspån længde – DL: 0 til 22
MP7266.5	Sletspån radius – DR: 0 til 22
MP7266.6	Reserveret
MP7266.7	Værktøj spærret – TL: 0 til 22
MP7266.8	Tvilling-værktøj – RT: 0 til 22
MP7266.9	Maximal brugstid – TIME1: 0 til 22
MP7266.10	Max. brugstid ved TOOL CALL – TIME2: 0 til 22
MP7266.11	Aktuel brugstid – CUR. TID: 0 til 22
MP7266.12	Værktøjs-kommentar – DOC: 0 til 22
MP7266.13	Antal skær – CUT.: 0 til 22
MP7266.14	Tolerance for slitage i værktøjs-længde – LTOL: 0 til 22
MP7266.15	Tolerance for slitage af værktøjs-radius – RTOL: 0 ti 22
MP7266.16	Skær-retning – DIRECT.: 0 til 22
MP7266.17	PLC-status – PLC: 0 til 22
MP7266.18	Yderligere forskydning af værktøj i værktøjsakse til MP6530 – TT:L-OFFS: 0 til 22
MP7266.19	Forskydning af værktøj mellem stift-midte og værktøjs-midte – TT:R-OFFS: 0 til 22
MP7266.20	Tolerance for brud-erkendelse af værktøjs-længde – LBREAK.: 0 til 22
MP7266.21	Tolerance for brud-erkendelse af værktøjs-radius- RBREAK: 0 til 22

Konfigurering af værktøjs-pladstabel; Spalte-nummer i værktøjs-tabel for (brug ikke: 0)	
	MP7267.0
	Værktøjsnummer – T: 0 til 5
	MP7267.1
	Specialværktøj – ST: 0 til 5
	MP7267.2
	Fast plads – F: 0 til 5
	MP7267.3
	Plads spærret – L: 0 til 5
	MP7267.4
	PLC – status – PLC: 0 til 5
Driftsart manuel drift: Visning af tilspænding	
	MP7270
Vicning of goortrin	Tilspænding F vises kun, når akseretnings-tasten bliver trykket: +0 Tilspænding F vises, også når ingen akseretnings-taste bliver trykket (tilspænding af den "den mest langsomme" akse): +1 Spindelomdrejningstal S og hjælpe-funktion M efter STOP atter virksom: +0 Spindelomdrejningstal S og hjælpe funktion M efter STOP ikke mere virksom: +2
visning ar geartrin	MD727/
	ivir 7274 Ikke vise det aktuelle geartrin: 0
	Vis aktuelle geartrin: 1
Fastlæggelse af decimaltegn	
	MP7280
	Visning af komma som decimaltegn: 0
	Visning af punkt som decimaltegn: 1
Positions-visning i værktøjsakse	
	MP7285
	Visning henfører sig til værktøjs-henføringspunkt: 0
	Visning i værktøjsakse henfører sig til
	værktøjs-spids: 1

MP7290.0

0,1 mm hhv. 0,1°: 0 0,05 mm hhv. 0,05°: 1 0,01 mm hhv. 0,01°: 2 0,005 mm hhv. 0,005°: 3 0,001 mm hhv. 0,001°: 4

Måleskridt for Y-aksen

MP7290.1

0,1 mm hhv. 0,1°: 0 0,05 mm hhv. 0,05°: 1 0,01 mm hhv. 0,01°: 2 0,005 mm hhv. 0,005°: 3 0,001 mm hhv. 0,001°: 4

Måleskridt for Z-aksen

MP7290.2

0,1 mm hhv. 0,1°: 0 0,05 mm hhv. 0,05°: 1 0,01 mm hhv. 0,01°: 2 0,005 mm hhv. 0,005°: 3 0,001 mm hhv. 0,001°: 4

Måleskridt for den IV.-akse

MP7290.3

0,1 mm hhv. 0,1°: 0 0,05 mm bhhv. 0,05°: 1 0,01 mm hhv. 0,01°: 2 0,005 mm hhv. 0,005°: 3 0,001 mm hhv. 0,001°: 4

Generel spærring af henf.punkt-fastlæggelse

MP7295

Henf.punkt-fastlæggelse ej spærres: **+0** Henf.punkt-fastlæggelse spærres i X-aksen: **+1** Henf.punkt-fastlæggelse spærres i Y-aksen: **+2** Henf.punkt-fastlæggelse spærres i Z-aksen: **+4** Henf.punkt-fastlæggelse spærres i IV. akse: **+8**

Spærring af henf.punkt-fastlæggelse med orange aksetaster

MP7296

Henf.punkt-fastlæggelse ej spærres: 0

 ${\sf Henf.punkt-fastlæggelse \ spærring \ med \ orangefarvede \ aksetaster: \ 1}$

Tilbagestilling af status-visning, Q-parameter og værktøisdata	
	MP7300
	Slet ikke status-visning: +0
	Slet status-visning: +1
	Slet Q-parameter: +0
	Slet ikke Q-parameter: +2
	Slet værktøjs-nummer, -akse og -data: +0
	Slet ikke værktøjs-nummer, -akse og -data: +4
Fastlæggelse for grafisk-fremstilling	
	MP7310
	Grafisk fremstilling i tre planer efter DIN 6, del 1,
	projektionsmetode 1: +0
	Grafisk fremstilling i tre planer efter DIN 6, del 1,
	projektionsmetode 2: +1
	Koordinatensystem for grafisk fremstilling må ikke drejes: +0
	Koordinatensystem for grafisk fremstillng drejes med 90°: +2
	Simulation ved bearbejdningscykler, kun tegne sidste fremrykning: +0
	Simulation ved bearbejdningscykler, tegne alle fremrykninger: +16
Fastlæggelse for programmerings-grafik	
	MP7311
	Indstikspunkt fremstilles ikke som cirkel: +0
	Indstikspunkt fremstilles som cirkel: +1
	Bugtet-kurve bane fremstilles ikke ved cykler: +0
	Bugtet-kurve bane fremstilles ved cykler: +2
	Korrigerede baner fremstilles ikke: +0
	Korrigerede Baner fremstilles: +3

Cyklus 17: Spindelorientering ved cyklus-start	
, , ,	MP7160
	Spindelorientering gennemføres: 0
	Ingen spindelorientering gennemføres: 1
Virkning af cyklus 11 DIM.FAKTOR	
	MP7410
	DIM.FAKTOR virker i 3 akser: 0
	DIM.FAKTOR virker kun i bearbejdningsplanet: 1
Værktøjsdata ved programmerbare tast-cykler	TOUCH-PROBE 0
	MP7411
	Overskrivning af aktuelle værktøjsdata med kalibreringsdata fra
	3D-tastsystem : 0
	Aktuelle værktøjsdata bliver beholdt: 1
Overgangsmodus ved konturfræsning	
	MP7415.0
	Indføj rundingskreds: 0
	Indføj Polynom 3. grad (kubisk Spline, kurve uden springende ændring af hastighed): 1
	Indføj Polynom 5. Grad (Kurve uden springende ændring af acceleration): 2
	Indføj Polynom 7. Grad (Kurve uden springende ændring af ryk): 3
Indstillinger for konturfræsning	
	MP7415.1
	Kontur ikke overlappe: +0
	Kontur overlappe: +1
	Hastighedsprofil ikke udglatte, hvis der ligger en kort retlinie mellem
	konturovergange: +0
	Hastighedsprofil udglatte, hvis der ligger en kort retlinie mellem konturovergange: +2

MP7420.0

Fræsning af kanal om konturen medurs for Ø'er og modurs for lommer: +0 Fræsning af kanal om konturen medurs forlommer og modurs for Ø'er: +1 Fræsning af konturkanal før udrømning: +0 Fræsning af konturkanal efter udrømning: +2 Forbindelse af korrigerede konturer: +0 Forbindelse af ukorrigerede konturer: +4 Udrømning hver gang indtil lommedybde: +0 Lomme fræses og udrømmes hele vejen rundt før yderligere fremrykning: +8

For cyklerne 6, 15, 16 gælder: Kør værktøjet ved slutningen af cyklus til den sidst programmerede position før cyklus-kaldet: **+0** Værktøjet frikøres ved slutningen af cykluskun i spindelaksen: **+16**

SL-cykler arbejdsmåde

MP7420.1

Adskilte områder bugtet kurve med udtrækbevægelse skrubbe: **+0** Adskilte områder efter hinanden uden udtrækbevægelse skrubbe: **+1** Bit 1 til Bit 7: reserveret

MP7420.1 = 0

(Små kredse = Indstiksbevægelse)

15.1 Generelle bruger-parametre

Cyklus 4 LOMMEFRÆSNING og cyklus 5 RUND LOMME: Overlapningsfaktor MP7430 0,1 til 1,414

Virkemåde af forskellige hjælpe-funktioner M

MP7440

Programafviklings-stop ved M06: +0 Ingen programafviklings-stop ved M06: +1 Ingen cyklus-kald med M89: +0 Cyklus-kald med M89: +2 programafviklings-stop ved M-funktion: +0 Ingen programafviklings-stop ved M-funktion: +4 Mærke "akse i position"ikke fastlægges ved ventetid mellem to NCblokke: +0 Mærke "akse i position"fastlægges ikke ved ventetid mellem to NCblokke: +32

Vinkel for retningsændring, der stadig bliver kørt med konstant banehastighed (Hjørne med R0, "Indvendigt-hjørne" også radiuskorrigeret)

Gælder for drift med slæbeafstand og hastighedsforstyring

MP7460

0,000 til 179,999 [°]

Maximal banehastighed ved tilspændings-ov	verride 100% i programafviklings-driftsarter
	0 til 99.999 [mm/min]
Nulpunkter henført til nulpunkt-tabellen	
	MP7475
	Emne-nulpunkt: +0
	Maskin-nulpunkt: +1
Elektroniske håndhjul	
Fastlæggesle af håndhjuls-type	
	MP7640
	Maskine uden håndhjul: 0
	Indbygget-håndhjul HR 130: 2
	Multi-håndhjul med hjælpetaster: 5
	Bærbart håndhjul HR 410 med hjælpefunktioner: 6
Håndhjuls-funktioner	
	MP7641
	Underdelingsfaktor indlæsbar med tastatur: +0
	Underdelingsfaktor fastlægges med PLC-modul: +1
	Håndhjul ikke aktiv i driftsart indlagring: +0
	Håndhjul aktiv i driftsart indlagring: +2

15.2 Stikforbindelser og tilslutningskabel for datainterface

Interface V.24/RS-232-C

HEIDENHAIN-udstyr

Stik-forbindelserne på TNC-logikenhed (X21) og på adapter-blok er forskellige.

Fremmed udstyr

Stikforbindelserne på fremmed udstyr kan i høj grad afvige fra stikforbindelserne på et HEIDENHAIN-udstyr.

De er afhængig af udstyr og overførselsmåde. Bemærk venligst stikforbindelserne på adapter-blokken på nedenstående tegning.

15.3 Tekniske informationer

TNC-karakteristik

Kort beskrivelse	
	Banestyring for maskiner med indtil 4 akser, yderligere spindel- orientering
Komponenter	
	Earvahilladekærm med softkove
Data-interface	■ V.24 / RS-232-C
Samtidigt kørende akser ved konturelementer	
	Retlinier indtil 3 akser
	Cirkler indtil 2 akser
	Skruelinie 3 akser
"Look Ahead"	
	Defineret afrunding af uregelmæssige konturovergange (f.eks. ved
	3D-tormer)
	aeometri for tilspændingstilbasning
Paralleldrift	Editering, medens TNC'en udfører et bearbejdnigs-program
Grafisk fremstilling	
	Programmerings-grafik
	Test-grafik
Fil-typer	
	HEIDENHAIN-klartext-dialog-programmer
	DIN/ISO-programmer
	Nulpunkt-tabeller
Program-lager	Rattarianhakkat for an 10,000 NC blokka (afbangia of
	block/engde) 128 Khyte
	■ Indtil 64 filer kan styres
Veryletzie definitionen	· · · · · · · · · · · · · · · · · · ·
værktøjs-definitioner	Indtil 254 værktøjer i program eller i værktøjs-tabeller
Programmeringshjælp	= Evolution on fact till, og factoren laft best s
	 Funktioner for til- og frakørsel af kontur H LÆL P-funktion

Programmerbare funktioner

Konturelementer	
	 Rette linier Affasning Cirkulær bane Cirkelcentrum Cirkelradius Tangentialt tilsluttende cirkulær bane Hjørne-runding Rette og cirkelbaner for tilkørsel og forlade konturen
Fri kontur-programmering	
	For alle konturelementer, hvor der ikke foreligger en NC-korrekt målsætning
Programspring	
	Underprogram
	Programdel-gentagelse
	Hovedprogram som underprogram
Bearbeidnings-cykler	
	 Borecykler for boring, dybdeboring, reifning, uddrejning, gevindboring med og uden kompenserende patron Firkant- og runde -lommer skrubning og sletfræsning Cykler for fræsning af retlinier og cirkelformede noter Regelmæssige punktmønstre auf Kreis und Linien Unregelmäßige Punktmønster fra punkt-tabeller Cykler for nedfræsning af planer og skråvinklede flader Bearbejdning af vilkårlige lommer og Ø'er
Koordinat-omregninger	
	 Nulpunkt-forskydning Spejling Drejning Dim.faktor
Brug af 3D-tastsystem	 Tastfunktioner for henføringspunkt-fastlæggelse og for automatisk emne-opmåling Digitalisering af 3D-former med kontakt tastsystem (option) Automatisk værktøjs-opmåling med TT 120

Matematiske funktione

atiske funktioner	
	Grundregnearter +, -, x og
	Trekantberegninger sin, cos, tan, arcsin, arccos, arctan
	Roduddragning af værdier (\sqrt{a}) og kvadratsum ($\sqrt{a^2 + b^2}$)
	Kvadrering af værdier (SQ)
	Opløft værdier i potens (^)
	Konstant PI (3,14)
	Logaritme-funktioner
	Exponential-funktioner
	Andre fortegn (NEG)
	Afrunde til helt tal (INT)
	Lave absolutte værdier (ABS)
	Afskæring før komma (FRAC)
	Sammenligne større, mindre, lig med, ulig med

TNC-data

Blok-bearbejdningstid			
	6 ms/blok		
	20 ms/blok ved blokvis afvikling over datainterface		
Cyklustid i reguleringskreds			
oykuodu roguornigokious	Baneinterpolation	: 6 ms	
Dataoverførings-hastighed			
	Maximal 115 200	Maximal 115 200 Baud	
Omgivelsestemperatur			
	Drift:	0°C til +45°C	
	På lager:	–30°C til +70°C	
Kørestrækning			
	Maximal 300 m (Maximal 300 m (11 811 Zoll)	
Kørselshastighed			
	Maximal 300 m/min (11 811 Zoll/min)		
Spindelomdrejningstal			
	Maximal 99 999 omdr./min		
Indlæse-område			
	■ Minimum 1µm	Minimum 1µm (0,0001 tomme) hhv. 0,001°	
	Maximum 30 0	00,000 mm (1.181 tomme) hhv. 30 000,000°	

15.4 TNC-fejlmeldinger

TNC'en viser automatisk fejlmeldinger blandt andet ved

- forkert indlæsning
- logik fejl i programmet
- konturelementer der ikke kan udføres
- uforskriftsmæssig indsætning af tastsystem

Nogle særlig hyppigt forekommende TNC-fejlmelding står i den følgende oversigt.

En fejlmelding, der indeholder nummeret på en programblok, blev forårsaget af denne blok eller en forudgående. TNC-meldetekster bliver slettet med tasten CE, efter at årsagen er fjernet.

TNC-fejlmeldinger ved programmering

Ingen yderligere filer kan indlæses	
	Slet gamle filer for at kunne indlæse yderligere filer
Indlæseværdi forkert	
	Indlæs LBL-nummer korrekt
	Bemærk indlæsebegrænsning
Ext. ud-/indlæsning ikke klar	
	Overføringskabel er ikke tilsluttet
	Overføringskabel er defekt eller loddet forkert
	Det tilsluttede udstvr (PC, printer) er ikke indkoblet
	Overførselshastigheder (Baudrate) stemmer ikke overens
Beskyttet fil!	
	Ophæv programbeskyttelse, hvis filen skal editeres
Label-nummer optaget	
	Label-numre må kun anvendes een gang
Spring til label 0 ikke tilladt	
	CALL LBL 0 må ikke programmeres

program-test og programafvikling

Jer	TNC-fejlmeldinger ved p
ding	Akse dobbelt programmeret
ejlmel	Aktuel blok ikke valgt
TNC-f	Tastpunkt kan ikke nås
15.4	Aritmetikfejl

	For positionering må koordinaterne til akserne kun indlæses een gang
Aktuel blok ikke valgt	Program-start for program-test eller programafvikling vælges med GOTO 0
Tastpunkt kan ikke nås	 3D-tastsystem forpositioneres nærmere ved tastpunkt Maskinparameter, i hvilken positionen for TT bliver lagt, stemmer ikke overens med den virkelige position for TT
Aritmetikfejl	Beregninger med ikke tilladte værdier Definer værdier indenfor områdegrænser Tast-positioner for 3D-tastsystemet vælges entydigt liggende fra hinanden Ved enkeltskær-opmåling med TT Indfør skærerne i værktøjs-tabellen dog ikke 0 TCH PROBE 30 (TT kalibrering) udføres før De opmåler værktøjs- længde eller værktøjs-radius Beregninger skal kunne gennemføres matematisk korrekt
Banekorrektur afsluttet forkert	Værktøjs-radiuskorrektur ikke ophævet i en blok med cirkelbane- position
Banekorrektur begyndt forkert	 Indlæs samme radiuskorrektur før og efter en RND- og CHF-blok Værktøjs-radiuskorrektur må ikke begyndes i en blok med cirkelbane- position
CYCL DEF ukomplet	 Definer cykler med alle angivelser i den fastlagte rækkefølge Omregningscykler må ikke kaldes Før cyklus-kald definer cyklus Fremrykningsdybde forskellig fra 0 indlæses
Plan forkert defineret	 Værktøjs-akse må ikke ændres ved aktiv grunddrejning Hovedaksen for cirkelbanen skal defineres korrekt Begge hovedakser defineres for CC
Forkert akse programmeret	 Spærrede akser må ikke programmeres Firkant-lomme og not udføres i bearbejdningseplanet Drejeakse må ikke spejles Affaselængde indlæses positivt

Forkert omdrejningstal	Omdr.tal programmeres indenfor områdegrænserne	
Affasning ikke tilladt	Affase mellem to ret-linie-blokke med samme radius-korrektur indføjes	
Fejlbehæftede programdata	Det over datainterfacet indlæste rogram indeholder forkerte blokformater	
Ingen ændring ved løbende PGM	Program må ikke editeres, under en overførsel eller afvikling	
Cirkel-endepunkt forkert	 Tilslutningscirkel skal indlæses komplet Bane-endepunkter på cirkelbane programmeres vandret 	
Cirkelcentrum mangler	Cirkelcenter defineres med CCPol defineres med CC	
Label-nr. mangler	Kald kun fastlagte label-numre	
Dim.faktor ikke tilladt	Dim.faktoren for koordinatakserne i planet for cirkelbanen indlæses identisk	
PGM-afsnit kan ikke fremstilles	 Vælg fræserradius mindre 4D-bevægelser bliver ikke simuleret grafisk Indlæs spindel-akse for simulation lig aksen i BLK-FORM 	
Radiuskorrektur udefineret	Indlæs radiuskorrektur RR eller RL i et underprogram for cyklus 14 KONTUR	
Runding ikke defineret	Tangentialt tilsluttende cirkler og rundings-buer skal indlæses korrekt	
Rundungs-radius for stor	Rundings-buer skal passe mellem kontur-elementerne	
Taste uden funktion	Denne melding vises ved tryk på taste uden aktuel funktion	
Taststift udbøjet	Forpositioner taststift før første tastning uden emneberøring	

Kalibrere tastsystemet	Kelibrar TT påny, maakingaramatar for TT ar blavet andrat
	Kalibrer II pany, maskinparameter for II er blevet ændret
Tastsystem ikke klar	 Indstille sende- og modtagevindue (TS 630) på modtageenhed Kontroller om tastsystem er driftsklar
TOOL CALL mangler	 Kun kalde værktøjer, som også er defineret Gennemføre blokfremløb med PLC = INDE
Udefineret programstart	 I Programmet begynd kun med TOOL DEF-blok Programmet må efter en afbrydelse ikke startes påny med tilsluttende cirkelbane eller Pol-overføring
Tilspænding mangler	 Indlæs tilspænding for positionerings-blok Indlæs FMAX i hver blok igen Ved arbejde med punkt-tabeller: Programmér tilspænding med talværdi
Fortegn forkert	Indlæs fortegn for cyklus-parameter forskriftsmæssigt
Værktøjs-radius for stor	Værktøjs-radius vælges således, at det ligger indenfor de forudgivne grænser konturelementer lader sig beregne og udføre
Værktøjs-brugstid udløbet	TIME1 eller TIME2 fra TOOL.T blev overskredet, i værktøjs-tabellen blev ingen tvilling-værktøj defineret
Vinkel-henføring mangler	 Cirkelbaner og -endepunkter skal entydigt defineres Polarkoordinat-indlæsning: Definér polarkoordinat-vinkel korrekt
For høj sammenkædning	 Underprogrammer afsluttes med LBL0 Fastlæg CALL LBL for underprogram uden REP Fastlæg CALL LBL for programdel-gentagelser med gentagelser (REP) Underprogrammer må ikke kalde sig selv Underprogrammer må sammenkædes maximalt 8-gange Hovedprogrammer som underprogrammer må sammenkædes maximalt 4-gange

Akse dobbelt programmeret	For koordinaterne til startpunktet (cyklus HØJDELINIE) programmeres for to forskellige akser
Start-position forkert	Startpunkt-koordinate for cyklus HØJDELINIE programmeres således, at disse ligger indenfor OMRÅDE
Tastpunkt kan ikke nås	 Taststift må ikke være udbøjet før den når OMRÅDE Taststift må være udbøjet i OMRÅDE
Område overskredet	Indlæs OMRÅDE for alle 3D-forme
Data for område fejlagtige	 indlæs MIN-koordinater mindre end de tilsvarende MAX-koordinater definer OMRÅDE indenfor begrænsningen ved software- endekontakt definer OMRÅDE for cykler BUGTET KURVE og HØJDELINIE
Drejning ikke tiladt	Nulstil koordinat-omregningen før digitalisering
Spalteakse ikke tilladt her	Startpunkt-koordinater (cyklus HØJDELINIE) defineres forskelligt fra taststift-akse
Forkert akse programmeret	 Indlæs kalibrerede tastsystem-akse i cyklus OMRÅDE Aksen i cyklus OMRÅDE må ikke dobbelt programmeres
Dim.faktor ikke tilladt	Nulstil koordinat-omregningen før digitalisering
Spejlning ikke tilladt	Nulstil koordinat-omregningen før digitalisering
Taststift udbøjet	Tastsystem forpositioneres således, at det udenfor OMRÅDE ikke bliver udbøjet

Tastsystem ikke klar	 Sende- og modtagevindue (TS 630) på modtagerenhed indstilles Kontrollér om tastsystem er driftsklar Tastsystemet lader sig ikket frikøre 	
Skift tastsytem-batteri	Udskift batterier i tasthoved (TS 630)Melding bliver udlæst ved linie ende	
Tids-begrænsning er overskredet	Tids-begrænsning og 3D-Form skal afstemmes efter hinanden (cyklus HØJDEKURVE)	

15.5 Udskiftning af buffer-batteri

Når styringen er udkoblet (slukket), forsyner et buffer-batteri TNC'en med strøm, for ikke at miste data i RAM-hukommelsen.

Når TNC'en viser meldingen SKIFT BUFFER-BATTERI, skal De udskifte batterierne. Batterierne er anbragt ved siden af strømforsyningen i logik-enheden (det runde, sorte hus). Der befinder sig yderligere i TNC'en en energiforsyning, der forsyner styringen med strøm, medens De skifter batterierne (maximal forsyningstid: 24 timer).

⇒ Ved udskiftning af buffer-batterier skal maskine og TNC udkobles!

Buffer-batterierne må kun skiftes af skolet personale!

Batteri-type: 3 AA-cellen, leak-proof, IEC-betegnelse "LR6"

SYMBOLER

3D-fremstilling ... 234 3D-tastsystem kalibrering kontakt ... 249 Måling under programafvikling ... 256 Udjævne midtpunktforskydning ... 249

Α

Åbne konturhjørner: M98 ... 113 Akt.-position overtage ... 77 Arbejdsrum-overvågning ved PGM-test ... 274

В

Banebevægelser

fri kontur-programmering FK. Se **FK-programmering** polarkoordinater ... 86 cirkelbane med tangential tilslutning ... 88 cirkelbane om Pol CC ... 87 oversigt ... 86 retlinie ... 87 retvinklede koordinater ... 76 Cirkelbane med fastlagt radius ... 80 cirkelbane med tangential tilslutning ... 81 cirkelbane om cirkelcentrum ... 79 oversigt ... 76 retlinie ... 77 Banefunktioner grundlaget ... 65 cirkel og cirkelbuer ... 66 forpositionerin ... 66 BAUD-RATE indstilling ... 269 Bearbeidning, afbryde ... 240 Betjeningsfelt ... 5 Billedskærm-opdeling ... 4

В

Blok ændring 38 indføje 38 slette 38 Blokbuffer 270 Blokforløb ... 243 Borecykler ... 124 Boring ... 126, 129 Brugerparametre Bruger-parametre generelle ... 278 for 3D-tastsystemer og digitalisering 280 for bearbeidning og programafvik. ... 287 for extern dataoverførsel ... 279 for TNC-visnig, TNC-editor ... 282 Buffer-batteri skift 300

С

Cirkelbane ... 79, 80, 81, 87, 88 Cirkelcentrum CC ... 78 Cirkulær lomme skrubbe ... 144 slette ... 146 Cyklus definere ... 120 -gruppe ... 120 kald ... 121, 123 med punkt-tabeller ... 122 Cylinder ... 228

D

Datainterface indretning ... 269 stikforbindelser ... 290 Dataoverførselshastighed ... 269 Dataoverførsels-software ... 270

D

Delefamilien ... 207 Dialog ... 37 Digitalisering bugtet kurve ... 262 Digitaliserings-cykler programmering ... 261 fastlægge område ... 261 i højdelinier ... 263 Digitaliseringsdata afvikling ... 265 Dim.faktor ... 186 Dim.faktor aksespecifik ... 187 Drejeakse reducere visning ... 117 vejoptimeret kørsel ... 117 Dreining ... 185 Driftsarter ... 5 Dvæletid ... 190 Dybdeboring ... 125

E

Ellipse ... 224 Emne-positioner absolutte ... 29 inkrementale ... 29 relative ... 29 Emne-skråflade kompensering ... 250

F

Fase ... 77 Fejlmeldinger udlæsning ... 213 ved digitalisering ... 299 ved programmering ... 295 ved program-test og programafvik. ... 296 ndex

F

Fil-styring fil beskytte ... 32 fil indlæsning ... 33 fil kopiering ... 32 fil navneændring ... 32 fil slette ... 32 fil-navn ... 31 fil-type ... 31 kald ... 31 Firkant lomme skrubbe ... 140 slette ... 141 Firkant tap slette ... 143 **FK-programmering** åbne dialog ... 93 cirkelbane ... 94 FK-program konvertering ... 32 grafik ... 92 grundlaget ... 92 hiælpepunkter ... 96 lukkede konturer ... 97 relativ-henf. ... 97 retlinie ... 94 Fremstilling i 3 planer ... 233 Fuldkreds ... 79

G

Gentilkørsel til kontur ... 244 Gevindboring med komp.patron ... 133 uden komp.patron ... 134 Grafik udsnits-forstørrelse ... 234 ved programmering ... 39 visning ... 232 Grafisk simulation ... 235

н

Helix-interpolation ... 88 Henf.punkt valg ... 30 Henf.system ... 27 Henføringspunkt-fastlæggelse med 3D-tastsystem ... 251 cirkelcentrum som henf.punkt ... 253 hjørne som henf.punkt ... 252 i en vilkårlig akse ... 251 uden 3D-tastsystem ... 19 Hjælpeakser ... 27 Hjælpe-filer udførsel ... 275 Hiælpe-funktion visning ... 41 Hjælpe-funktioner for baneforhold ... 107 for drejeakse ... 117 for koordinatangivelser ... 105 for programafvik.-kontrol ... 105 for spindel ... 105 indlæsning ... 104 Hjørne-runding 82 Hovedakser 27 Hulkreds ... 159

Т

Ikke styrede akser i NC-program ... 239 Ilgang 44 Indkobling 14

К

Klartext-dialog ... 37 Kommentarer, indføje ... 40 Konstant banehastighed: M90 ... 107 Konstant tilsp. på værktøjs-skær ... 115 Kontur frakøre ... 68 Kontur tilkøre ... 68 Kontur-cykler. Se SL-cykler Konturfilter: M124 ... 110 Konturovergang M112 ... 108 M124 ... 110 Konturtrin, små: M97 ... 112 Koordinat-omregning oversigt ... 181 Kugle ... 228

L

Langhul fræse ... 150 Look ahead ... 115

Μ

Maskinakse, kørsel med elektronisk håndhjul ... 16 med externe retningstaster ... 15 skridtvis ... 17 Maskinfaste koordinater: M91/M92 ... 105 Maskin-parametre for 3D-tastsystemer ... 280 for extern dataoverførsel ... 279 for TNC-visning og TNC-editor ... 281 MOD-funktion ændre ... 268 forlade ... 268 vælge ... 268

Ν

Nedfræsning 176 Notfræsning pendlende ... 150 Nulpunkt-forskydning ... 182 med nulpunkt-tabeller ... 182

Ρ

Parameter-programmering. se Q-parameter-programmering Parantesregningng ... 219 Plads-tabel ... 50 Polarkoordinater Grundlaget ... 28 Pol fastlæggelse ... 28 Positionering med man.indl. ... 22 POSITIP-drift ... 239 Program åbning ... 35 editering ... 38 -opbygning ... 34 Programafvikling afbryde ... 240 fortsættelse efter afbrydelse ... 241 oversigt ... 238 overspringe blokke ... 246 udførelse ... 238 vilk. indgang i program ... 243 Programdel-gentagelse arbejdsmåde ... 195 kald ... 196 programmering ... 196 programmerings-anvis. ... 195

Ρ

Program-kald over cyklus ... 190 vilk. program som underprogram ... 196 Programmerings-grafik ... 39 Program-navn. se fil-styring: Fil-navn Program-styring. Se fil-styring Program-test indtil en bestemt blok ... 237 oversigt ... 236 udførelse ... 237 Punktmønster oversigt ... 158 på cirkel ... 159 på linier ... 160 Punkt-tabeller ... 122 programmerings-eksempel ... 136, 157

0

Q-parameter-programmering betingede spring ... 211 formel indlæsning ... 219 matematiske grundfunktioner ... 208 programmeringsanvis. ... 206 vinkelfunktioner ... 210 yderligere funktioner ... 213 Q-parametre forbelagte ... 222, 223 kontrollere ... 212 overgive værdier til PLC ... 218

R

Radiuskorrektur ... 52 hjørne bearbejdning ... 55 indlæsning ... 54 indv.hjørne ... 55 udv.hjørne ... 55 Råemne definere ... 34 Referencepunkter overkøre ... 14 Reifning 127 Retlinie ... 77, 87 Rund not fræse ... 152 Rund tap slette ... 147 Rundungskreds mellem retliniestykker: M112 ... 108

S

Sammenkædninger ... 197 Set oppefra ... 233 Skruelinie 88 SL-cykler arbejdsmåde ... 288 cyklus Kontur ... 165 forboring ... 168 overlejrede konturer ... 166 oversigt ... 164 udskrubning. Speiling 184 Spindelomdreiningstal ændring 18 indlæsning ... 18, 44 Spindel-orientering 191 Status-visning generel 9 vderligere ... 9 Styret flade ... 178 Systemdata læse ... 215

Т

Tastcykler 248 Teach-in ... 77 Tekniske informationer ... 292 Tilbehør ... 12 Tilsp. ændre ... 18 TNC 410 ... 2 TNCremo ... 270 Trigonometri ... 210

U

Uddrejning ... 128 Udskrubning. *se* SL-cykler: udrømning Underprogram arbejdsmåde ... 194 kald ... 195 programmering ... 195 programmerings-anvis. ... 194 Undersænk.bagfra ... 131 Universal-boring ... 129

V

Værktøjs-bevægelser oversigt ... 64 programmere ... 37 Værktøjs-data delta-værdier ... 46 indlæsn. i program ... 46 indlæsn. i tabellen ... 47 kald ... 51 Værktøjs-korrektur længde ... 52 radius ... 52 Værktøjs-længde ... 45 Værktøjs-nummer ... 45 Værktøjs-opmåling automatisk ... 56 værktøjs-længde ... 59 værktøjs-radius ... 61 TT 120 kalibrering ... 58

V

Værktøjs-radius ... 46 Værktøjsskift ... 51 automatisk ... 51 Værktøjs-tabel editering ... 49 forlade ... 49 indlæsemuligheder ... 47 vælge ... 49 Vinkelfunktioner ... 210

W

WEmne opmåling ... 254

Μ	Virkning af M-funktion Virksom ved blok	Start	Slut	Side
M00	Programafvikling STOP/spindel STOP/kølemiddel UDE			105
M01	Alternativ programafvikling-stop			240
M02	Programafvikling STOP/spindel STOP/kølemiddel UDE/evt. slet status-display			
	(afhængig af maskin-parameter)/tilbagespring til blok 1			105
M03	Spindel INDE medurs			
M04	Spindel INDE modurs			
M05	Spindel STOP			105
M06	Værktøjsskift/programafvik. STOP (afhængig af maskin-parameter)/spindel STOP			105
M08	Kølemiddel INDE			
M09	Kølemiddel UDE			105
M13	Spindel INDE medurs/kølemiddel INDE			
M14	Spindel INDE modurs/kølemiddel INDE			105
M30	Samme funktion som M02			105
M89	Fri hjælpe-funktion eller			
	cyklus-kald, modal virksom (afhængig af maskin-parameter)			121
M90	Kun i slæbe drift: konstant banehastighed ved hjørner			107
M91	Koordinater i positioneringsblokken henfører sig til maskin-nulpunkt			105
M92	I positioneringsblok: Koordinater henfører sig til en af maskin-			
	fabrikanten defineret position, f.eks. på værktøjsskift-position			105
M93	Within the positioning block: Coordinates are referenced to current tool position.			
	Valid in blocks with R0, R+, R–			
M94	Display af drejeakse reduceres til en værdi under 360°			117
M97	Bearbejdning af små konturtrin			112
M98	Komplet bearbejdning af åbne konturer			113
M99	Blokvis cyklus-kald			121
M101	Automatisk værktøjsskift med tvillingværktøj, hvis max. brugstid er udløbet			
M102	M101 tilbagestilles			51
M103	Tilspænding ved indstikning reducering af faktor F (procentual værdi)			114
M109	Konstant banehastighed på værktøjs-skær ved cirkelbuer			
	(tilspændings-forhøjelse og -reducering)			
M110	Konstant banehastighed på værktøjs-skær ved cirkelbuer			
N 4 4 4 4	(kun tilspændings-reducering)		_	445
				115
M112	Automatisk indføjelse af rundingskreds på ikke-tangentiale retlinieovergange;	_		
N 4 1 1 O	tolerancen for konturatvigelsen indlæses over i			100
IVI I I 3				108
IVI120	Foruaberegning at radiuskorrigeret kontur (LOUK AHEAD)			115
IVI124	Konturfilter			110
IVI126	Vejoptimeret kørsel med drejeakser			
M127	M126 tilbagestilles			117

HEIDENHAIN

DR. JOHANNES HEIDENHAIN GmbH Dr.-Johannes-Heidenhain-Straße 5 83301 Traunreut, Germany 2 +49 (86 69) 31-0 FAX +49 (8669) 5061 E-Mail: info@heidenhain.de **Technical support FAX** +49 (8669) 31-1000 E-Mail: service@heidenhain.de Measuring systems 2 +49 (8669) 31-3104 E-Mail: service.ms-support@heidenhain.de TNC support 窗[:]+49 (8669) 31-31 01 E-Mail: service.nc-support@heidenhain.de **NC programming** 22 +49 (8669) 31-3103 E-Mail: service.nc-pgm@heidenhain.de **PLC programming** (2) +49 (8669) 31-31 02 E-Mail: service.plc@heidenhain.de

Lathe controls
2 +49 (711) 952803-0
E-Mail: service.hsf@heidenhain.de

www.heidenhain.de