User’s Manual
Cycle Programming

TNC 320

NC Software
340 551-04
340 554-04

English (en)
9/2009
About this Manual

The symbols used in this manual are described below.

This symbol indicates that important notes about the function described must be adhered to.

This symbol indicates that there is one or more of the following risks when using the described function:
- Danger to workpiece
- Danger to fixtures
- Danger to tool
- Danger to machine
- Danger to operator

This symbol indicates that the described function must be adapted by the machine tool builder. The function described may therefore vary depending on the machine.

This symbol indicates that you can find detailed information about a function in another manual.

Do you desire any changes, or have you found any errors?

We are continuously striving to improve documentation for you. Please help us by sending your requests to the following e-mail address: tnc-userdoc@heidenhain.de.
This manual describes functions and features provided by TNCs as of the following NC software numbers.

<table>
<thead>
<tr>
<th>TNC model</th>
<th>NC software number</th>
</tr>
</thead>
<tbody>
<tr>
<td>TNC 320</td>
<td>340 551-04</td>
</tr>
<tr>
<td>TNC 320 Programming Station</td>
<td>340 554-04</td>
</tr>
</tbody>
</table>

The machine tool builder adapts the usable features of the TNC to his machine by setting machine parameters. Some of the functions described in this manual may therefore not be among the features provided by the TNC on your machine tool.

TNC functions that may not be available on your machine include:

- Tool measurement with the TT

Please contact your machine tool builder to become familiar with the features of your machine.

Many machine manufacturers, as well as HEIDENHAIN, offer programming courses for the TNCs. We recommend these courses as an effective way of improving your programming skill and sharing information and ideas with other TNC users.

User's Manual:

All TNC functions that have no connection with cycles are described in the User’s Manual of the TNC 320. Please contact HEIDENHAIN if you require a copy of this User’s Manual.

Software options

The TNC 320 features various software options that can be enabled by your machine tool builder. Each option is to be enabled separately and contains the following respective functions:

<table>
<thead>
<tr>
<th>Hardware options</th>
</tr>
</thead>
<tbody>
<tr>
<td>Additional axis for 4 axes and open-loop spindle</td>
</tr>
<tr>
<td>Additional axis for 5 axes and open-loop spindle</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Software option 1 (option number #08)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cylinder surface interpolation (Cycles 27, 28 and 29)</td>
</tr>
<tr>
<td>Feed rate in mm/min for rotary axes: M116</td>
</tr>
<tr>
<td>Tilting the machining plane (plane functions, Cycle 19 and 3D-ROT soft key in the Manual Operation mode)</td>
</tr>
<tr>
<td>Circle in 3 axes with tilted working plane</td>
</tr>
</tbody>
</table>
Feature content level (upgrade functions)

Along with software options, significant further improvements of the TNC software are managed via the Feature Content Level (FCL) upgrade functions. Functions subject to the FCL are not available simply by updating the software on your TNC.

Upgrade functions are identified in the manual with **FCL n**, where *n* indicates the sequential number of the feature content level.

You can purchase a code number in order to permanently enable the FCL functions. For more information, contact your machine tool builder or HEIDENHAIN.

Intended place of operation

The TNC complies with the limits for a Class A device in accordance with the specifications in EN 55022, and is intended for use primarily in industrially-zoned areas.

Legal information

This product uses open source software. Further information is available on the control under

- Programming and Editing operating mode
- MOD function
- LICENSE INFO soft key

All upgrade functions are available to you without surcharge when you receive a new machine.
New Functions of Software
340 55x-04

- The **PATTERN DEF** function for defining patterns was introduced (see “Pattern Definition PATTERN DEF” on page 44)
- The **SEL PATTERN** function makes it possible to select point tables (see “Selecting a point table in the program” on page 54)
- With the **CYCL CALL PAT** function, cycles can now be run in connection with point tables (see “Calling a cycle in connection with point tables” on page 55)
- The **DECLARE CONTOUR** function can now also define the depth of the contour (see “Entering a simple contour formula” on page 223)
- New machining cycle for single-fluted deep-hole drilling (see “SINGLE-FLUTED DEEP-HOLE DRILLING (Cycle 241, DIN/ISO: G241)” on page 84)
- The new fixed cycles 251 to 257 were introduced for milling pockets, studs and slots (see “Overview” on page 126)
- Touch Probe Cycle 412: Additional parameter Q365 “type of traverse” (see “DATUM FROM INSIDE OF CIRCLE (Cycle 412, DIN/ISO: G412)” on page 328)
- Touch Probe Cycle 413: Additional parameter Q365 “type of traverse” (see “DATUM FROM OUTSIDE OF CIRCLE (Cycle 413, DIN/ISO: G413)” on page 332)
- Touch Probe Cycle 416: Additional parameter Q320 (setup clearance, (see “DATUM CIRCLE CENTER (Cycle 416, DIN/ISO: G416)” on page 345))
- Touch Probe Cycle 421: Additional parameter Q365 “type of traverse” (see “MEASURE HOLE (Cycle 421, DIN/ISO: G421)” on page 376)
- Touch Probe Cycle 422: Additional parameter Q365 “type of traverse” (see “MEAS. CIRCLE OUTSIDE (Cycle 422, DIN/ISO: G422)” on page 380)
- Touch Probe Cycle 425 (MEASURE SLOT) was expanded by parameters Q301 (Move to clearance height) and Q320 (setup clearance) (see “MEASURE INSIDE WIDTH (Cycle 425, DIN/ISO: G425)” on page 392)
- In the machine operating modes Program Run, Full Sequence and Program Run, Single Block, datum tables can now also be selected (**STATUS M**)
- The definition of feed rates in fixed cycles can now also include **FU** and **FZ** values
- The **PLANE** function for flexible definition of a tilted working place was introduced (see User’s Manual for Conversational Programming)
- The context-sensitive help system TNCguide was introduced (see User’s Manual for Conversational Programming)
- The **FUNCTION PARAX** function for defining the behavior of the parallel axes U, V and W was introduced (see User’s Manual for Conversational Programming)
- The conversational languages Slovak, Norwegian, Latvian, Korean, Turkish and Romanian were introduced (see User’s Manual for Conversational Programming)
- Individual characters can now be deleted by using the backspace key (see User’s Manual for Conversational Programming)
Changed Functions of Software
340 55x-04

- In Cycle 22 you can now define a tool name also for the coarse roughing tool (see “ROUGH-OUT (Cycle 22, DIN/ISO: G122)” on page 180).
- With Cycle 25 Contour Train, closed contours can now also be programmed.
- The pocket-, stud- and slot-milling cycles 210 to 214 were removed from the standard soft-key row (CYCL DEF > POCKETS/STUDS/SLOTS). For reasons of compatibility, the cycles will still be available, and can be selected via the GOTO key.
- The additional status display has been revised. The following improvements were made (see User’s Manual for Conversational Programming):
 - A new overview page with the most important status displays was introduced.
 - The tolerance values set in Cycle 32 are displayed.
- Tool changes are now also possible during mid-program startup.
- Language-dependent tables can now be output with FN16 F-Print.
- The soft-key structure of the SPEC FCT function was changed and adapted to the iTNC 530.
1 Fundamentals / Overviews 35

1.1 Introduction 36
1.2 Available Cycle Groups 37
 Overview of fixed cycles 37
 Overview of touch probe cycles 38
2 Using Fixed Cycles 39

2.1 Working with Fixed Cycles 40
 Machine-specific cycles 40
 Defining a cycle using soft keys 41
 Defining a cycle using the GOTO function 41
 Calling cycles 42

2.2 Pattern Definition PATTERN DEF 44
 Application 44
 Entering PATTERN DEF definitions 45
 Using PATTERN DEF 45
 Defining individual machining positions 46
 Defining a single row 47
 Defining a single pattern 48
 Defining individual frames 49
 Defining a full circle 50
 Defining a circular arc 51

2.3 Point Tables 52
 Application 52
 Creating a point table 52
 Hiding single points from the machining process 53
 Selecting a point table in the program 54
 Calling a cycle in connection with point tables 55
3 Fixed Cycles: Drilling 57

3.1 Fundamentals 58
 Overview 58
3.2 CENTERING (Cycle 240, DIN/ISO: G240) 59
 Cycle run 59
 Please note while programming: 59
 Cycle parameters 60
3.3 DRILLING (Cycle 200) 61
 Cycle run 61
 Please note while programming: 61
 Cycle parameters 62
3.4 REAMING (Cycle 201, DIN/ISO: G201) 63
 Cycle run 63
 Please note while programming: 63
 Cycle parameters 64
3.5 BORING (Cycle 202, DIN/ISO: G202) 65
 Cycle run 65
 Please note while programming: 66
 Cycle parameters 67
3.6 UNIVERSAL DRILLING (Cycle 203, DIN/ISO: G203) 69
 Cycle run 69
 Please note while programming: 70
 Cycle parameters 71
3.7 BACK BORING (Cycle 204, DIN/ISO: G204) 73
 Cycle run 73
 Please note while programming: 74
 Cycle parameters 75
3.8 UNIVERSAL PECKING (Cycle 205, DIN/ISO: G205) 77
 Cycle run 77
 Please note while programming: 78
 Cycle parameters 79
3.9 BORE MILLING (Cycle 208, DIN/ISO: G208) 81
 Cycle run 81
 Please note while programming: 82
 Cycle parameters 83
3.10 SINGLE-FLUTED DEEP-HOLE DRILLING (Cycle 241, DIN/ISO: G241) 84
 Cycle run 84
 Please note while programming: 84
 Cycle parameters 85
3.11 Programming Examples 87
4 Fixed Cycles: Tapping / Thread Milling 91

4.1 Fundamentals 92
 Overview 92
4.2 TAPPING NEW with a Floating Tap Holder (Cycle 206, DIN/ISO: G206) 93
 Cycle run 93
 Please note while programming: 93
 Cycle parameters 94
4.3 RIGID TAPPING without a Floating Tap Holder NEW (Cycle 207, DIN/ISO: G207) 95
 Cycle run 95
 Please note while programming: 96
 Cycle parameters 97
4.4 TAPPING WITH CHIP BREAKING (Cycle 209, DIN/ISO: G209) 98
 Cycle run 98
 Please note while programming: 99
 Cycle parameters 100
4.5 Fundamentals of Thread Milling 101
 Prerequisites 101
4.6 THREAD MILLING (Cycle 262, DIN/ISO: G262) 103
 Cycle run 103
 Please note while programming: 104
 Cycle parameters 105
4.7 THREAD MILLING/COUNTERSINKING (Cycle 263, DIN/ISO: G263) 106
 Cycle run 106
 Please note while programming: 107
 Cycle parameters 108
4.8 THREAD DRILLING/MILLING (Cycle 264, DIN/ISO: G264) 110
 Cycle run 110
 Please note while programming: 111
 Cycle parameters 112
4.9 HELICAL THREAD DRILLING/MILLING (Cycle 265, DIN/ISO: G265) 114
 Cycle run 114
 Please note while programming: 115
 Cycle parameters 116
4.10 OUTSIDE THREAD MILLING (Cycle 267, DIN/ISO: G267) 118
 Cycle run 118
 Please note while programming: 119
 Cycle parameters 120
4.11 Programming Examples 122
5.1 Fundamentals 126
 Overview 126
5.2 RECTANGULAR POCKET (Cycle 251, DIN/ISO: G251) 127
 Cycle run 127
 Please note while programming: 128
 Cycle parameters 129
5.3 CIRCULAR POCKET (Cycle 252, DIN/ISO: G252) 132
 Cycle run 132
 Please note while programming: 133
 Cycle parameters 134
5.4 SLOT MILLING (Cycle 253, DIN/ISO: G253) 136
 Cycle run 136
 Please note while programming: 137
 Cycle parameters 138
5.5 CIRCULAR SLOT (Cycle 254, DIN/ISO: G254) 141
 Cycle run 141
 Please note while programming: 142
 Cycle parameters 143
5.6 RECTANGULAR STUD (Cycle 256, DIN/ISO: G256) 146
 Cycle run 146
 Please note while programming: 147
 Cycle parameters 148
5.7 CIRCULAR STUD (Cycle 257, DIN/ISO: G257) 150
 Cycle run 150
 Please note while programming: 151
 Cycle parameters 152
5.8 Programming Examples 154
6 Fixed Cycles: Pattern Definitions 157

6.1 Fundamentals 158
 Overview 158

6.2 CIRCULAR PATTERN (Cycle 220, DIN/ISO: G220) 159
 Cycle run 159
 Please note while programming: 159
 Cycle parameters 160

6.3 LINEAR PATTERN (Cycle 221, DIN/ISO: G221) 162
 Cycle run 162
 Please note while programming: 162
 Cycle parameters 163

6.4 Programming Examples 164
7 Fixed Cycles: Contour Pocket 167

7.1 SL Cycles 168
 Fundamentals 168
 Overview 170

7.2 CONTOUR GEOMETRY (Cycle 14, DIN/ISO: G37) 171
 Please note while programming: 171
 Cycle parameters 171

7.3 Overlapping Contours 172
 Fundamentals 172
 Subprograms: overlapping pockets 173
 Area of inclusion 174
 Area of exclusion 175
 Area of intersection 175

7.4 CONTOUR DATA (Cycle 20, DIN/ISO: G120) 176
 Please note while programming: 176
 Cycle parameters 177

7.5 PILOT DRILLING (Cycle 21, DIN/ISO: G121) 178
 Cycle run 178
 Please note while programming: 178
 Cycle parameters 179

7.6 ROUGH-OUT (Cycle 22, DIN/ISO: G122) 180
 Cycle run 180
 Please note while programming: 181
 Cycle parameters 182

7.7 FLOOR FINISHING (Cycle 23, DIN/ISO: G123) 183
 Cycle run 183
 Please note while programming: 183
 Cycle parameters 183

7.8 SIDE FINISHING (Cycle 24, DIN/ISO: G124) 184
 Cycle run 184
 Please note while programming: 184
 Cycle parameters 185

7.9 CONTOUR TRAIN (Cycle 25, DIN/ISO: G125) 186
 Cycle run 186
 Please note while programming: 186
 Cycle parameters 187

7.10 Programming Examples 188
8.1 Fundamentals 196
 Overview of cylindrical surface cycles 196
8.2 CYLINDER SURFACE (Cycle 27, DIN/ISO: G127, Software Option) 197
 Execution of cycle 197
 Please note while programming: 198
 Cycle parameters 199
8.3 CYLINDER SURFACE Slot Milling (Cycle 28, DIN/ISO: G128, Software-Option 1) 200
 Cycle run 200
 Please note while programming: 201
 Cycle parameters 202
8.4 CYLINDER SURFACE Ridge Milling (Cycle 29, DIN/ISO: G129, Software-Option 1) 203
 Cycle run 203
 Please note while programming: 204
 Cycle parameters 205
8.5 Programming Examples 206
9 Fixed Cycles: Contour Pocket with Contour Formula 211

9.1 SL Cycles with Complex Contour Formula 212
 Fundamentals 212
 Selecting a program with contour definitions 214
 Defining contour descriptions 214
 Entering a complex contour formula 215
 Overlapping contours 216
 Contour machining with SL Cycles 218

9.2 SL Cycles with Simple Contour Formula 222
 Fundamentals 222
 Entering a simple contour formula 223
 Contour machining with SL Cycles 223
10 Fixed Cycles: Multipass Milling 225

10.1 Fundamentals 226
 Overview 226

10.2 MULTIPASS MILLING (Cycle 230, DIN/ISO: G230) 227
 Cycle run 227
 Please note while programming: 227
 Cycle parameters 228

10.3 RULED SURFACE (Cycle 231, DIN/ISO: G231) 229
 Cycle run 229
 Please note while programming: 230
 Cycle parameters 231

10.4 FACE MILLING (Cycle 232, DIN/ISO: G232) 233
 Cycle run 233
 Please note while programming: 235
 Cycle parameters 235

10.5 Programming Examples 238
11 Cycles: Coordinate Transformations 241

11.1 Fundamentals 242
 Overview 242
 Effect of coordinate transformations 242
11.2 DATUM SHIFT (Cycle 7, DIN/ISO: G54) 243
 Effect 243
 Cycle parameters 243
11.3 DATUM Shift with Datum Tables (Cycle 7, DIN/ISO: G53) 244
 Effect 244
 Please note while programming: 245
 Cycle parameters 246
 Selecting a datum table in the part program 246
 Editing the datum table in the Programming and Editing mode of operation 247
 Configuring the datum table 248
 To leave a datum table 248
 Status displays 248
11.4 DATUM SETTING (Cycle 247, DIN/ISO: G247) 249
 Effect 249
 Please note before programming: 249
 Cycle parameters 249
 Status displays 249
11.5 MIRROR IMAGE (Cycle 8, DIN/ISO: G28) 250
 Effect 250
 Please note while programming: 250
 Cycle parameters 251
11.6 ROTATION (Cycle 10, DIN/ISO: G73) 252
 Effect 252
 Please note while programming: 252
 Cycle parameters 253
11.7 SCALING (Cycle 11, DIN/ISO: G72) 254
 Effect 254
 Cycle parameters 255
11.8 AXIS-SPECIFIC SCALING (Cycle 26) 256
 Effect 256
 Please note while programming: 256
 Cycle parameters 257
11.9 WORKING PLANE (Cycle 19, DIN/ISO: G80, Software Option 1) 258
 Effect 258
 Please note while programming: 259
 Cycle parameters 259
 Reset 259
 Position the axis of rotation 260
 Position display in the tilted system 262
 Workspace monitoring 262
 Positioning in a tilted coordinate system 262
 Combining coordinate transformation cycles 263
 Procedure for working with Cycle 19 WORKING PLANE 264
11.10 Programming Examples 265
12 Cycles: Special Functions 267

12.1 Fundamentals 268
 Overview 268

12.2 Dwell Time (Cycle 9, DIN/ISO: G04) 269
 Function 269
 Cycle parameters 269

12.3 Program Call (Cycle 12, DIN/ISO: G39) 270
 Cycle function 270
 Please note while programming: 270
 Cycle parameters 271

12.4 Oriented Spindle Stop (Cycle 13, DIN/ISO: G36) 272
 Cycle function 272
 Please note while programming: 272
 Cycle parameters 272

12.5 Tolerance (Cycle 32, DIN/ISO: G62) 273
 Cycle function 273
 Influences of the geometry definition in the CAM system 274
 Please note while programming: 275
 Cycle parameters 276
13 Using Touch Probe Cycles 277

13.1 General Information about Touch Probe Cycles 278
 Method of function 278
 Consider a basic rotation in the Manual Operation mode 278
 Cycles in the Manual and El. Handwheel Modes 278
 Touch probe cycles for automatic operation 279

13.2 Before You Start Working with Touch Probe Cycles 281
 Maximum traverse to touch point: DIST in touch probe table 281
 Setup clearance to touch point: SET_UP in touch probe table 281
 Orient the infrared touch probe to the programmed probe direction: TRACK in touch probe table 281
 Touch trigger probe, probing feed rate: F in touch probe table 282
 Touch trigger probe, rapid traverse for positioning: FMAX 282
 Touch trigger probe, rapid traverse for positioning: F_PREPOS in touch probe table 282
 Multiple measurements 282
 Confidence range for multiple measurement 282
 Executing touch probe cycles 283

13.3 Touch Probe Table 284
 General information 284
 Editing touch probe tables 284
 Touch probe data 285
14 Touch Probe Cycles: Automatic Measurement of Workpiece Misalignment 287

14.1 Fundamentals 288
 Overview 288
 Characteristics common to all touch probe cycles for measuring workpiece misalignment 289

14.2 BASIC ROTATION (Cycle 400, DIN/ISO: G400) 290
 Cycle run 290
 Please note while programming: 290
 Cycle parameters 291

14.3 BASIC ROTATION from Two Holes (Cycle 401, DIN/ISO: G401) 293
 Cycle run 293
 Please note while programming: 293
 Cycle parameters 294

14.4 BASIC ROTATION over Two Studs (Cycle 402, DIN/ISO: G402) 296
 Cycle run 296
 Please note while programming: 296
 Cycle parameters 297

14.5 BASIC ROTATION compensation via rotary axis (Cycle 403, DIN/ISO: G403) 299
 Cycle run 299
 Please note while programming: 299
 Cycle parameters 300

14.6 SET BASIC ROTATION (Cycle 404, DIN/ISO: G404) 302
 Cycle run 302
 Cycle parameters 302

14.7 Compensating Workpiece Misalignment by Rotating the C Axis (Cycle 405, DIN/ISO: G405) 303
 Cycle run 303
 Please note while programming: 304
 Cycle parameters 305
15 Touch Probe Cycles: Automatic Datum Setting 309

15.1 Fundamentals 310
 Overview 310
 Characteristics common to all touch probe cycles for datum setting 311

15.2 SLOT CENTER REF PT (Cycle 408, DIN/ISO: G408) 313
 Cycle run 313
 Please note while programming: 314
 Cycle parameters 314

15.3 DATUM RIDGE CENTER (Cycle 409, DIN/ISO: G409) 317
 Cycle run 317
 Please note while programming: 317
 Cycle parameters 318

15.4 DATUM FROM INSIDE OF RECTANGLE (Cycle 410, DIN/ISO: G410) 320
 Cycle run 320
 Please note while programming: 321
 Cycle parameters 321

15.5 DATUM FROM OUTSIDE OF RECTANGLE (Cycle 411, DIN/ISO: G411) 324
 Cycle run 324
 Please note while programming: 325
 Cycle parameters 325

15.6 DATUM FROM INSIDE OF CIRCLE (Cycle 412, DIN/ISO: G412) 328
 Cycle run 328
 Please note while programming: 329
 Cycle parameters 329

15.7 DATUM FROM OUTSIDE OF CIRCLE (Cycle 413, DIN/ISO: G413) 332
 Cycle run 332
 Please note while programming: 333
 Cycle parameters 333

15.8 DATUM FROM OUTSIDE OF CORNER (Cycle 414, DIN/ISO: G414) 336
 Cycle run 336
 Please note while programming: 337
 Cycle parameters 338

15.9 DATUM FROM INSIDE OF CORNER (Cycle 415, DIN/ISO: G415) 341
 Cycle run 341
 Please note while programming: 342
 Cycle parameters 342
15.10 DATUM CIRCLE CENTER (Cycle 416, DIN/ISO: G416) 345
 Cycle run 345
 Please note while programming: 346
 Cycle parameters 346

15.11 DATUM IN TOUCH PROBE AXIS (Cycle 417, DIN/ISO: G417) 349
 Cycle run 349
 Please note while programming: 349
 Cycle parameters 350

15.12 DATUM AT CENTER OF 4 HOLES (Cycle 418, DIN/ISO: G418) 351
 Cycle run 351
 Please note while programming: 352
 Cycle parameters 352

15.13 DATUM IN ONE AXIS (Cycle 419, DIN/ISO: G419) 355
 Cycle run 355
 Please note while programming: 355
 Cycle parameters 356
16 Touch Probe Cycles: Automatic Workpiece Inspection 363

16.1 Fundamentals 364
 - Overview 364
 - Recording the results of measurement 365
 - Measurement results in Q parameters 367
 - Classification of results 367
 - Tolerance monitoring 368
 - Tool monitoring 368
 - Reference system for measurement results 369

16.2 REF. PLANE (Cycle 0, DIN/ISO: G55) 370
 - Cycle run 370
 - Please note while programming: 370
 - Cycle parameters 370

16.3 POLAR REFERENCE PLANE (Cycle 1) 371
 - Cycle run 371
 - Please note while programming: 371
 - Cycle parameters 372

16.4 MEASURE ANGLE (Cycle 420, DIN/ISO: G420) 373
 - Cycle run 373
 - Please note while programming: 373
 - Cycle parameters 374

16.5 MEASURE HOLE (Cycle 421, DIN/ISO: G421) 376
 - Cycle run 376
 - Please note while programming: 376
 - Cycle parameters 377

16.6 MEAS. CIRCLE OUTSIDE (Cycle 422, DIN/ISO: G422) 380
 - Cycle run 380
 - Please note while programming: 380
 - Cycle parameters 381

16.7 MEAS. RECTAN. INSIDE (Cycle 423, DIN/ISO: G423) 384
 - Cycle run 384
 - Please note while programming: 385
 - Cycle parameters 385

16.8 MEAS. RECTAN. OUTSIDE (Cycle 424, ISO: G424) 388
 - Cycle run 388
 - Please note while programming: 389
 - Cycle parameters 389

16.9 MEASURE INSIDE WIDTH (Cycle 425, DIN/ISO: G425) 392
 - Cycle run 392
 - Please note while programming: 392
 - Cycle parameters 393
16.10 MEASURE RIDGE WIDTH (Cycle 426, ISO: G426) 395
 Cycle run 395
 Please note while programming: 395
 Cycle parameters 396
16.11 MEASURE COORDINATE (Cycle 427, DIN/ISO: G427) 398
 Cycle run 398
 Please note while programming: 398
 Cycle parameters 399
16.12 MEAS. BOLT HOLE CIRC. (Cycle 430, DIN/ISO: G430) 401
 Cycle run 401
 Please note while programming: 401
 Cycle parameters 402
16.13 MEASURE PLANE (Cycle 431, DIN/ISO: G431) 405
 Cycle run 405
 Please note while programming: 406
 Cycle parameters 406
16.14 Programming Examples 408
17 Touch Probe Cycles: Special Functions 413

17.1 Fundamentals 414
 Overview 414
17.2 MEASURING (Cycle 3) 415
 Cycle run 415
 Please note while programming: 415
 Cycle parameters 416
18 Touch Probe Cycles: Automatic Tool Measurement 417

18.1 Fundamentals 418
 Overview 418
 Differences between Cycles 31 to 33 and Cycles 481 to 483 419
 Setting the machine parameters 420
 Entries in the tool table TOOL.T 421

18.2 Calibrating the TT (Cycle 30 or 480, DIN/ISO: G480) 423
 Cycle run 423
 Please note while programming: 423
 Cycle parameters 423

18.3 Measuring the Tool Length (Cycle 31 or 481, DIN/ISO: G481) 424
 Cycle run 424
 Please note while programming: 425
 Cycle parameters 425

18.4 Measuring the Tool Radius (Cycle 32 or 482, ISO: G482) 426
 Cycle run 426
 Please note while programming: 426
 Cycle parameters 427

18.5 Measuring Tool Length and Radius (Cycle 33 or 483, ISO: G483) 428
 Cycle run 428
 Please note while programming: 428
 Cycle parameters 429
Fundamentals / Overviews
1.1 Introduction

Frequently recurring machining cycles that comprise several working steps are stored in the TNC memory as standard cycles. Coordinate transformations and several special functions are also available as cycles.

Most cycles use Q parameters as transfer parameters. Parameters with specific functions that are required in several cycles always have the same number: For example, \texttt{Q200} is always assigned the setup clearance, \texttt{Q202} the plunging depth, etc.

Danger of collision!

Cycles sometimes execute extensive operations. For safety reasons, you should run a graphical program test before machining.

If you use indirect parameter assignments in cycles with numbers greater than 200 (e.g. \texttt{Q210 = Q1}), any change in the assigned parameter (e.g. \texttt{Q1}) will have no effect after the cycle definition. Define the cycle parameter (e.g. \texttt{Q210}) directly in such cases.

If you define a feed-rate parameter for fixed cycles greater than 200, then instead of entering a numerical value you can use soft keys to assign the feed rate defined in the \texttt{TOOL CALL} block (FAUTO soft key). You can also use the feed-rate alternatives \texttt{FMAX} (rapid traverse), \texttt{FZ} (feed per tooth) and \texttt{FU} (feed per rev), depending on the respective cycle and the function of the feed-rate parameter.

Note that, after a cycle definition, a change of the \texttt{FAUTO} feed rate has no effect, because internally the TNC assigns the feed rate from the \texttt{TOOL CALL} block when processing the cycle definition.

If you want to delete a block that is part of a cycle, the TNC asks you whether you want to delete the whole cycle.
1.2 Available Cycle Groups

Overview of fixed cycles

The soft-key row shows the available groups of cycles.

<table>
<thead>
<tr>
<th>Cycle group</th>
<th>Soft key</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cycles for pecking, reaming, boring, and counterboring</td>
<td>DRILLING/THREAD</td>
<td>58</td>
</tr>
<tr>
<td>Cycles for tapping, thread cutting and thread milling</td>
<td>DRILLING/THREAD</td>
<td>92</td>
</tr>
<tr>
<td>Cycles for milling pockets, studs and slots</td>
<td>POCKETS/STUDS/SLOTS</td>
<td>126</td>
</tr>
<tr>
<td>Cycles for producing point patterns, such as circular or linear hole patterns</td>
<td>PATTERN</td>
<td>158</td>
</tr>
<tr>
<td>SL (Subcontour List) cycles which allow the contour-parallel machining of relatively complex contours consisting of several overlapping subcontours, cylinder surface interpolation</td>
<td>SL II</td>
<td>170</td>
</tr>
<tr>
<td>Cycles for multipass milling of flat or twisted surfaces</td>
<td>MULTIPASS MELING</td>
<td>226</td>
</tr>
<tr>
<td>Coordinate transformation cycles which enable datum shift, rotation, mirror image, enlarging and reducing for various contours</td>
<td>COORD. TRANSF.</td>
<td>242</td>
</tr>
<tr>
<td>Special cycles such as dwell time, program call, oriented spindle stop and tolerance</td>
<td>SPECIAL CYCLES</td>
<td>268</td>
</tr>
</tbody>
</table>

If required, switch to machine-specific fixed cycles. These fixed cycles can be integrated by your machine tool builder.
Overview of touch probe cycles

The soft-key row shows the available groups of cycles.

<table>
<thead>
<tr>
<th>Cycle group</th>
<th>Soft key</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cycles for automatic measurement and compensation of workpiece misalignment</td>
<td></td>
<td>Page 288</td>
</tr>
<tr>
<td>Cycles for automatic workpiece presetting</td>
<td></td>
<td>Page 310</td>
</tr>
<tr>
<td>Cycles for automatic workpiece inspection</td>
<td></td>
<td>Page 364</td>
</tr>
<tr>
<td>Calibration cycles, special cycles</td>
<td></td>
<td>Page 414</td>
</tr>
<tr>
<td>Cycles for automatic tool measurement (enabled by the machine tool builder)</td>
<td></td>
<td>Page 418</td>
</tr>
</tbody>
</table>

If required, switch to machine-specific touch probe cycles. These touch probe cycles can be integrated by your machine tool builder.
Using Fixed Cycles
2.1 Working with Fixed Cycles

Machine-specific cycles

In addition to the HEIDENHAIN cycles, many machine tool builders offer their own cycles in the TNC. These cycles are available in a separate cycle-number range:

- Cycles 300 to 399
 Machine-specific cycles that are to be defined through the CYCLE DEF key
- Cycles 500 to 599
 Machine-specific touch probe cycles that are to be defined through the TOUCH PROBE key

Sometimes, machine-specific cycles also use transfer parameters, which HEIDENHAIN already used in the standard cycles. The TNC executes DEF-active cycles as soon as they are defined (see also “Calling cycles” on page 42). It executes CALL-active cycles only after they have been called (see also “Calling cycles” on page 42). When DEF-active cycles and CALL-active cycles are used simultaneously, it is important to prevent overwriting of transfer parameters already in use. Use the following procedure:

- As a rule, always program DEF-active cycles before CALL-active cycles.
- If you do want to program a DEF-active cycle between the definition and call of a CALL-active cycle, do it only if there is no common use of specific transfer parameters.

Refer to your machine manual for a description of the specific function.
Defining a cycle using soft keys

- The soft-key row shows the available groups of cycles.
- Press the soft key for the desired group of cycles, for example DRILLING for the drilling cycles.
- Select the desired cycle, for example THREAD MILLING. The TNC initiates the programming dialog and asks all required input values. At the same time a graphic of the input parameters is displayed in the right screen window. The parameter that is asked for in the dialog prompt is highlighted.
- Enter all parameters requested by the TNC and conclude each entry with the ENT key.
- The TNC ends the dialog when all required data has been entered.

Defining a cycle using the GOTO function

- The soft-key row shows the available groups of cycles.
- The TNC shows an overview of cycles in a pop-up window.
- Choose the desired cycle with the arrow keys, or
- Enter the cycle number and confirm it with the ENT key. The TNC then initiates the cycle dialog as described above.

Example NC blocks

```
7 CYCL DEF 200 DRILLING
Q200=2 ;SETUP CLEARANCE
Q201=3 ;DEPTH
Q206=150 ;FEED RATE FOR PLNGNG
Q202=5 ;PLUNGING DEPTH
Q210=0 ;DWELL TIME AT TOP
Q203=+0 ;SURFACE COORDINATE
Q204=50 ;2ND SETUP CLEARANCE
Q211=0.25 ;DWELL TIME AT DEPTH
```
2.1 Working with Fixed Cycles

Calling cycles

Prerequisites

The following data must always be programmed before a cycle call:

- **BLK FORM** for graphic display (needed only for test graphics)
- Tool call
- Direction of spindle rotation (M functions M3/M4)
- Cycle definition (CYCL DEF)

For some cycles, additional prerequisites must be observed. They are detailed in the descriptions for each cycle.

The following cycles become effective automatically as soon as they are defined in the part program. These cycles cannot and must not be called:

- Cycle 220 for point patterns on circles and Cycle 221 for point patterns on lines
- SL Cycle 14 CONTOUR GEOMETRY
- SL Cycle 20 CONTOUR DATA
- Cycle 32 TOLERANCE
- Coordinate transformation cycles
- Cycle 9 DWELL TIME
- All touch probe cycles

You can call all other cycles with the functions described as follows.
2.1 Working with Fixed Cycles

Calling a cycle with CYCL CALL
The CYCL CALL function calls the most recently defined fixed cycle once. The starting point of the cycle is the position that was programmed last before the CYCL CALL block.

- To program the cycle call, press the CYCL CALL key.
- Press the CYCL CALL M soft key to enter a cycle call.
- If necessary, enter the miscellaneous function M (for example M3 to switch the spindle on), or end the dialog by pressing the END key.

Calling a cycle with CYCL CALL PAT
The CYCL CALL PAT function calls the most recently defined fixed cycle at all positions that you defined in a PATTERN DEF pattern definition (see “Pattern Definition PATTERN DEF” on page 44) or in a point table (see “Point Tables” on page 52).

Calling a cycle with M99/89
The M99 function, which is active only in the block in which it is programmed, calls the last defined fixed cycle once. You can program M99 at the end of a positioning block. The TNC moves to this position and then calls the last defined fixed cycle.

If the TNC is to execute the cycle automatically after every positioning block, program the cycle call with M89.

To cancel the effect of M89, program:
- M99 in the positioning block in which you move to the last starting point, or
- Define with CYCL DEF a new fixed cycle
2.2 Pattern Definition PATTERN DEF

Application

You use the **PATTERN DEF** function to easily define regular machining patterns, which you can call with the **CYCL CALL PAT** function. As with the cycle definitions, support graphics that illustrate the respective input parameter are also available for pattern definitions.

PATTERN DEF is to be used only in connection with the tool axis Z.

The following machining patterns are available:

<table>
<thead>
<tr>
<th>Machining pattern</th>
<th>Soft key</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>POINT</td>
<td>POINT</td>
<td>Page 46</td>
</tr>
<tr>
<td>Definition of up to any 9 machining positions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ROW</td>
<td>ROW</td>
<td>Page 47</td>
</tr>
<tr>
<td>Definition of a single frame, straight or rotated</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PATTERN</td>
<td>PATTERN</td>
<td>Page 48</td>
</tr>
<tr>
<td>Definition of a single pattern, straight, rotated or distorted</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FRAME</td>
<td>FRAME</td>
<td>Page 49</td>
</tr>
<tr>
<td>Definition of a single frame, straight, rotated or distorted</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CIRCLE</td>
<td>CIRCLE</td>
<td>Page 50</td>
</tr>
<tr>
<td>Definition of a full circle</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PITCH CIRCLE</td>
<td>PITCH CIR</td>
<td>Page 51</td>
</tr>
<tr>
<td>Definition of a pitch circle</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2.2 Pattern Definition PATTERN DEF

Entering PATTERN DEF definitions

- Select the Programming and Editing operating mode
- Press the Special Functions key
- Select the functions for contour and point machining
- Open a PATTERN DEF block
- Select the desired machining pattern, e.g. a single row
- Enter the required definitions, and confirm each entry with the ENT key

Using PATTERN DEF

As soon as you have entered a pattern definition, you can call it with the CYCL CALL PAT function (see “Calling a cycle with CYCL CALL PAT“ on page 43). The TNC then performs the most recently defined machining cycle on the machining pattern you defined.

A machining pattern remains active until you define a new one, or select a point table with the SEL PATTERN function.

You can use the mid-program startup function to select any point at which you want to start or continue machining (see User’s Manual, Test Run and Program Run sections).
Defining individual machining positions

You can enter up to 9 machining positions. Confirm each entry with the ENT key.

If you have defined a workpiece surface in Z not equal to 0, then this value is effective in addition to the workpiece surface Q203 that you defined in the machining cycle.

▶ X coord. of machining position (absolute): Enter X coordinate.
▶ Y coord. of machining position (absolute): Enter Y coordinate.
▶ Workpiece surface coordinate (absolute): Enter Z coordinate at which machining is to begin.

Example: NC blocks

10 L Z+100 R0 FMAX
11 PATTERN DEF
POS1 (X+25 Y+33.5 Z+0)
POS2 (X+50 Y+75 Z+0)
Defining a single row

If you have defined a workpiece surface in Z not equal to 0, then this value is effective in addition to the workpiece surface Q203 that you defined in the machining cycle.

- **Starting point in X** (absolute): Coordinate of the starting point of the row in the X axis.
- **Starting point in Y** (absolute): Coordinate of the starting point of the row in the Y axis.
- **Spacing of machining positions (incremental)**: Distance between the machining positions. You can enter a positive or negative value.
- **Number of positions**: Total number of machining positions.
- **Rot. position of entire pattern (absolute)**: Angle of rotation around the entered starting point. Reference axis: Major axis of the active machining plane (e.g. X for tool axis Z). You can enter a positive or negative value.
- **Workpiece surface coordinate** (absolute): Enter Z coordinate at which machining is to begin.

Example: NC blocks

```
10 L Z+100 R0 FMAX
11 PATTERN DEF
ROW1 (X+25 Y+33.5 D+8 NUM5 ROT0 Z+0)
```

![Diagram of pattern definition](image)
2.2 Pattern Definition PATTERN DEF

Defining a single pattern

If you have defined a workpiece surface in Z not equal to 0, then this value is effective in addition to the workpiece surface Q203 that you defined in the machining cycle.

The Rotary pos. ref. ax. and Rotary pos. minor ax. parameters are added to a previously performed rotated position of the entire pattern.

- **Starting point in X (absolute):** Coordinate of the starting point of the pattern in the X axis.
- **Starting point in Y (absolute):** Coordinate of the starting point of the pattern in the Y axis.
- **Spacing of machining positions X (incremental):** Distance between the machining positions in the X direction. You can enter a positive or negative value.
- **Spacing of machining positions Y (incremental):** Distance between the machining positions in the Y direction. You can enter a positive or negative value.
- **Number of columns:** Total number of columns in the pattern
- **Number of lines:** Total number of rows in the pattern
- **Rot. position of entire pattern (absolute):** Angle of rotation by which the entire pattern is rotated around the entered starting point. Reference axis: Major axis of the active machining plane (e.g. X for tool axis Z). You can enter a positive or negative value.
- **Rotary pos. ref. ax.:** Angle of rotation around which only the principal axis of the machining plane is distorted with respect to the entered starting point. You can enter a positive or negative value.
- **Rotary pos. minor ax.:** Angle of rotation around which only the minor axis of the machining plane is distorted with respect to the entered starting point. You can enter a positive or negative value.
- **Workpiece surface coordinate (absolute):** Enter Z coordinate at which machining is to begin.

Example: NC blocks

```
10 L Z+100 R0 FMAX
11 PATTERN DEF
PAT1 (X+25 Y+33.5 DX+8 DY+10 NUMX5 NUMY4 ROT+0 ROTX+0 ROTY+0 Z+0)
```
Defining individual frames

If you have defined a workpiece surface in Z not equal to 0, then this value is effective in addition to the workpiece surface Q203 that you defined in the machining cycle.

The Rotary pos. ref. ax. and Rotary pos. minor ax. parameters are added to a previously performed rotated position of the entire pattern.

- **Starting point in X (absolute):** Coordinate of the starting point of the frame in the X axis.
- **Starting point in Y (absolute):** Coordinate of the starting point of the frame in the Y axis.
- **Spacing of machining positions X (incremental):** Distance between the machining positions in the X direction. You can enter a positive or negative value.
- **Spacing of machining positions Y (incremental):** Distance between the machining positions in the Y direction. You can enter a positive or negative value.
- **Number of columns:** Total number of columns in the pattern
- **Number of lines:** Total number of rows in the pattern
- **Rot. position of entire pattern (absolute):** Angle of rotation by which the entire pattern is rotated around the entered starting point. Reference axis: Major axis of the active machining plane (e.g. X for tool axis Z). You can enter a positive or negative value.
- **Rotary pos. ref. ax.:** Angle of rotation around which only the principal axis of the machining plane is distorted with respect to the entered starting point. You can enter a positive or negative value.
- **Rotary pos. minor ax.:** Angle of rotation around which only the minor axis of the machining plane is distorted with respect to the entered starting point. You can enter a positive or negative value.
- **Workpiece surface coordinate (absolute):** Enter Z coordinate at which machining is to begin.

Example: NC blocks

```
10 L Z+100 R0 FMAX
11 PATTERN DEF
FRAME1 (X+25 Y+33.5 DX+8 DY+10 NUMX5 NUMY4 ROT+0 ROTX+0 ROTY+0 Z+0)
```
Defining a full circle

If you have defined a workpiece surface in Z not equal to 0, then this value is effective in addition to the workpiece surface Q203 that you defined in the machining cycle.

- **Bolt-hole circle center X** (absolute): Coordinate of the circle center in the X axis.
- **Bolt-hole circle center Y** (absolute): Coordinate of the circle center in the Y axis.
- **Bolt-hole circle diameter**: Diameter of the bolt-hole circle.
- **Starting angle**: Polar angle of the first machining position. Reference axis: Major axis of the active machining plane (e.g. X for tool axis Z). You can enter a positive or negative value.
- **Number of positions**: Total number of machining positions on the circle.
- **Workpiece surface coordinate** (absolute): Enter Z coordinate at which machining is to begin.

Example: NC blocks

```
10 L Z+100 R0 FMAX
11 PATTERN DEF
CIRC1 (X+25 Y+33 D80 START+45 NUM8 Z+0)
```

![Diagram of a full circle pattern definition](image)
Defining a circular arc

If you have defined a workpiece surface in Z not equal to 0, then this value is effective in addition to the workpiece surface Q203 that you defined in the machining cycle.

- **Bolt-hole circle center X** (absolute): Coordinate of the circle center in the X axis.
- **Bolt-hole circle center Y** (absolute): Coordinate of the circle center in the Y axis.
- **Bolt-hole circle diameter**: Diameter of the bolt-hole circle.
- **Starting angle**: Polar angle of the first machining position. Reference axis: Major axis of the active machining plane (e.g. X for tool axis Z). You can enter a positive or negative value.
- **Stepping angle/end angle**: Incremental polar angle between two machining positions. You can enter a positive or negative value. As an alternative you can enter the end angle (switch via soft key).
- **Number of positions**: Total number of machining positions on the circle.
- **Workpiece surface coordinate** (absolute): Enter Z coordinate at which machining is to begin.

Example: NC blocks

```
10 L Z+100 R0 FMAX
11 PATTERN DEF PITCHCIRC1 (X+25 Y+33 D80 START+45 STEP30 NUM8 Z+0)
```
2.3 Point Tables

Application

You should create a point table whenever you want to run a cycle, or several cycles in sequence, on an irregular point pattern.

If you are using drilling cycles, the coordinates of the working plane in the point table represent the hole centers. If you are using milling cycles, the coordinates of the working plane in the point table represent the starting-point coordinates of the respective cycle (e.g. center-point coordinates of a circular pocket). Coordinates in the spindle axis correspond to the coordinate of the workpiece surface.

Creating a point table

Select the **Programming and Editing** mode of operation.

Press the PGM MGT key to call the file manager.

FILE NAME?

Enter the name and file type of the point table and confirm your entry with the ENT key.

To select the unit of measure, press the MM or INCH soft key. The TNC changes to the program blocks window and displays an empty point table.

With the soft key INSERT LINE, insert new lines and enter the coordinates of the desired machining position.

Repeat the process until all desired coordinates have been entered.

The name of the point table must begin with a letter.

With the soft keys X OFF/ON, Y OFF/ON, Z OFF/ON (second soft-key row), you can specify which coordinates you want to enter in the point table.
Hiding single points from the machining process

In the **FADE** column of the point table you can specify if the defined point is to be hidden during the machining process.

1. **↓ ↑** In the table, select the point to be hidden.
2. **←** Select the FADE column.
3. **ENT** Activate hiding, or
4. **NO ENT** Deactivate hiding.
Selecting a point table in the program

In the Programming and Editing mode of operation, select the program for which you want to activate the point table:

- Press the PGM CALL key to call the function for selecting the point table.

- Press the POINT TABLE soft key.

Enter the name of the point table and confirm your entry with the END key. If the point table is not stored in the same directory as the NC program, you must enter the complete path.

Example NC block

```
7 SEL PATTERN "TNC:DIRKT5\NUST35.PNT"
```
Calling a cycle in connection with point tables

If you want the TNC to call the last defined fixed cycle at the points defined in a point table, then program the cycle call with CYCLE CALL PAT:

- To program the cycle call, press the CYCL CALL key.
- Press the CYCL CALL PAT soft key to call a point table.
- Enter the feed rate at which the TNC is to move from point to point (if you make no entry the TNC will move at the last programmed feed rate; FMAX not valid).
- If required, enter a miscellaneous function M, then confirm with the END key.

The TNC retracts the tool to the safety clearance between the starting points. Depending on which is greater, the TNC uses either the spindle axis coordinate from the cycle call or the value from cycle parameter Q204 as the safety clearance.

If you want to move at reduced feed rate when pre-positioning in the spindle axis, use the miscellaneous function M103.

Effect of the point tables with SL cycles and Cycle 12
The TNC interprets the points as an additional datum shift.

Effect of the point tables with Cycles 200 to 208 and 262 to 267
The TNC interprets the points of the working plane as coordinates of the hole centers. If you want to use the coordinate defined in the point table for the spindle axis as the starting point coordinate, you must define the workpiece surface coordinate (Q203) as 0.

Effect of the point tables with Cycles 210 to 215
The TNC interprets the points as an additional datum shift. If you want to use the points defined in the point table as starting-point coordinates, you must define the starting points and the workpiece surface coordinate (Q203) in the respective milling cycle as 0.

Effect of the point tables with Cycles 251 to 254
The TNC interprets the points of the working plane as coordinates of the cycle starting point. If you want to use the coordinate defined in the point table for the spindle axis as the starting point coordinate, you must define the workpiece surface coordinate (Q203) as 0.
2.3 Point Tables
3

Fixed Cycles: Drilling
3.1 Fundamentals

Overview

The TNC offers 9 cycles for all types of drilling operations:

<table>
<thead>
<tr>
<th>Cycle</th>
<th>Soft key</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>240 CENTERING</td>
<td></td>
<td>59</td>
</tr>
<tr>
<td>With automatic pre-positioning, 2nd setup clearance, optional entry of the centering diameter or centering depth</td>
<td></td>
<td></td>
</tr>
<tr>
<td>200 DRILLING</td>
<td></td>
<td>61</td>
</tr>
<tr>
<td>With automatic pre-positioning, 2nd setup clearance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>201 REAMING</td>
<td></td>
<td>63</td>
</tr>
<tr>
<td>With automatic pre-positioning, 2nd setup clearance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>202 BORING</td>
<td></td>
<td>65</td>
</tr>
<tr>
<td>With automatic pre-positioning, 2nd setup clearance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>203 UNIVERSAL DRILLING</td>
<td></td>
<td>69</td>
</tr>
<tr>
<td>With automatic pre-positioning, 2nd setup clearance, chip breaking, and decrementing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>204 BACK BORING</td>
<td></td>
<td>73</td>
</tr>
<tr>
<td>With automatic pre-positioning, 2nd setup clearance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>205 UNIVERSAL PECKING</td>
<td></td>
<td>77</td>
</tr>
<tr>
<td>With automatic pre-positioning, 2nd setup clearance, chip breaking, and advanced stop distance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>208 BORE MILLING</td>
<td></td>
<td>81</td>
</tr>
<tr>
<td>With automatic pre-positioning, 2nd setup clearance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>241 SINGLE-LIP DEEP-HOLE DRILLING</td>
<td></td>
<td>84</td>
</tr>
<tr>
<td>With automatic pre-positioning to deepened starting point, shaft speed and coolant definition</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3.2 CENTERING (Cycle 240, DIN/ISO: G240)

Cycle run

1. The TNC positions the tool in the spindle axis at rapid traverse \texttt{FMAX} to the setup clearance above the workpiece surface.
2. The tool is centered at the programmed feed rate \texttt{F} to the entered centering diameter or centering depth.
3. If defined, the tool remains at the centering depth.
4. Finally, the tool moves to setup clearance or—if programmed—to the 2nd setup clearance at rapid traverse \texttt{FMAX}.

Please note while programming:

Program a positioning block for the starting point (hole center) in the working plane with radius compensation \texttt{R0}.

The algebraic sign for the cycle parameter \texttt{Q344} (diameter) or \texttt{Q201} (depth) determines the working direction. If you program the diameter or depth = 0, the cycle will not be executed.

Danger of collision!

Use the machine parameter \texttt{displayDepthErr} to define whether, if a positive depth is entered, the TNC should output an error message (on) or not (off).

Keep in mind that the TNC reverses the calculation for pre-positioning when a \textbf{positive diameter or depth is entered}. This means that the tool moves at rapid traverse in the tool axis to setup clearance \textbf{below} the workpiece surface!
3.2 CENTERING (Cycle 240, DIN/ISO: G240)

Cycle parameters

- **Setup clearance** Q200: Distance between tool tip and workpiece surface. Enter a positive value. Input range 0 to 99999.9999
- **Select Depth/Diameter (0/1)** Q343: Select whether centering is based on the entered diameter or depth. If the TNC is to center based on the entered diameter, the point angle of the tool must be defined in the T-ANGLE column of the tool table TOOL.T.
 - 0: Centering based on the entered depth
 - 1: Centering based on the entered diameter
- **Depth** Q201: Distance between workpiece surface and centering bottom (tip of centering taper). Only effective if Q343=0 is defined. Input range –99999.9999 to 99999.9999
- **Diameter (algebraic sign)** Q344: Centering diameter. Only effective if Q343=1 is defined. Input range –99999.9999 to 99999.9999
- **Feed rate for plunging** Q206: Traversing speed of the tool during centering in mm/min. Input range: 0 to 99999.999; alternatively FAUTO, FU.
- **Dwell time at depth** Q211: Time in seconds that the tool remains at the hole bottom. Input range: 0 to 3600.0000
- **Workpiece surface coordinate** Q203: Coordinate of the workpiece surface. Input range: -99999.9999 to 99999.9999
- **2nd setup clearance** Q204: Coordinate in the spindle axis at which no collision between tool and workpiece (fixtures) can occur. Input range: 0 to 99999.9999

Example: NC blocks

```
10 L Z+100 R0 FMAX
11 CYCL DEF 240 CENTERING
   Q200=2 ;SETUP CLEARANCE
   Q343=1 ;SELECT DEPTH/DIA.
   Q201=+0 ;DEPTH
   Q344=-9 ;DIAMETER
   Q206=250 ;FEED RATE FOR PLNGNG
   Q211=0.1 ;Dwell TIME AT DEPTH
   Q203=+20 ;SURFACE COORDINATE
   Q204=100 ;2ND SETUP CLEARANCE
12 L X+30 Y+20 R0 FMAX M3 M99
13 L X+80 Y+50 R0 FMAX M99
```
3.3 DRILLING (Cycle 200)

Cycle run

1. The TNC positions the tool in the spindle axis at rapid traverse \(F_{\text{MAX}} \) to the setup clearance above the workpiece surface.
2. The tool drills to the first plunging depth at the programmed feed rate \(F \).
3. The TNC returns the tool at \(F_{\text{MAX}} \) to the setup clearance, dwells there (if a dwell time was entered), and then moves at \(F_{\text{MAX}} \) to the setup clearance above the first plunging depth.
4. The tool then advances with another infeed at the programmed feed rate \(F \).
5. The TNC repeats this process (2 to 4) until the programmed depth is reached.
6. The tool is retracted from the hole bottom to the setup clearance or—if programmed—to the 2nd setup clearance at \(F_{\text{MAX}} \).

Please note while programming:

- Program a positioning block for the starting point (hole center) in the working plane with radius compensation \(R_0 \).
- The algebraic sign for the cycle parameter DEPTH determines the working direction. If you program DEPTH = 0, the cycle will not be executed.

Danger of collision!

- Use the machine parameter displayDepthErr to define whether, if a positive depth is entered, the TNC should output an error message (on) or not (off).
- Keep in mind that the TNC reverses the calculation for pre-positioning when a **positive depth is entered**. This means that the tool moves at rapid traverse in the tool axis to setup clearance **below** the workpiece surface!
Cycle parameters

- **Setup clearance Q200** (incremental): Distance between tool tip and workpiece surface. Enter a positive value. Input range 0 to 99999.9999

- **Depth Q201** (incremental): Distance between workpiece surface and bottom of hole (tip of drill taper). Input range: –99999.9999 to 99999.9999

- **Feed rate for plunging Q206**: Traversing speed of the tool during drilling in mm/min. Input range: 0 to 99999.9999; alternatively **FAUTO, FU**.

- **Plunging depth Q202** (incremental): Infeed per cut. Input range 0 to 99999.9999. The depth does not have to be a multiple of the plunging depth. The TNC will go to depth in one movement if:
 - the plunging depth is equal to the depth
 - the plunging depth is greater than the depth

- **Dwell time at top Q210**: Time in seconds that the tool remains at setup clearance after having been retracted from the hole for chip release. Input range 0 to 3600.0000

- **Workpiece surface coordinate Q203** (absolute): Coordinate of the workpiece surface. Input range: -99999.9999 to 99999.9999

- **2nd setup clearance Q204** (incremental): Coordinate in the spindle axis at which no collision between tool and workpiece (fixtures) can occur. Input range 0 to 99999.9999

- **Dwell time at depth Q211**: Time in seconds that the tool remains at the hole bottom. Input range 0 to 3600.0000

Example: NC blocks

```
11 CYCL DEF 200 DRILLING
  Q200=2 ;SETUP CLEARANCE
  Q201=-15 ;DEPTH
  Q206=250 ;FEED RATE FOR PLNGNG
  Q202=5 ;PLUNGING DEPTH
  Q210=0 ;DWELL TIME AT TOP
  Q203=+20 ;SURFACE COORDINATE
  Q204=100 ;2ND SETUP CLEARANCE
  Q211=0.1 ;DWELL TIME AT DEPTH
12 L X+30 Y+20 FMAX M3
13 CYCL CALL
14 L X+80 Y+50 FMAX M99
```
3.4 REAMING (Cycle 201, DIN/ISO: G201)

Cycle run

1. The TNC positions the tool in the spindle axis to the entered setup clearance above the workpiece surface at rapid traverse F_{MAX}.
2. The tool reams to the entered depth at the programmed feed rate F.
3. If programmed, the tool remains at the hole bottom for the entered dwell time.
4. The tool then retracts to the setup clearance at the feed rate F, and from there—if programmed—to the 2nd setup clearance at F_{MAX}.

Please note while programming:

Program a positioning block for the starting point (hole center) in the working plane with radius compensation R_0.

The algebraic sign for the cycle parameter DEPTH determines the working direction. If you program DEPTH = 0, the cycle will not be executed.

Danger of collision!

Use the machine parameter displayDepthErr to define whether, if a positive depth is entered, the TNC should output an error message (on) or not (off).

Keep in mind that the TNC reverses the calculation for pre-positioning when a positive depth is entered. This means that the tool moves at rapid traverse in the tool axis to setup clearance below the workpiece surface!
Cycle parameters

- **Setup clearance** Q200 (incremental): Distance between tool tip and workpiece surface. Input range 0 to 99999.9999
- **Depth** Q201 (incremental): Distance between workpiece surface and bottom of hole. Input range: -99999.9999 to 99999.9999
- **Feed rate for plunging** Q206: Traversing speed of the tool during reaming in mm/min. Input range: 0 to 99999.9999; alternatively FAUTO, FU.
- **Dwell time at depth** Q211: Time in seconds that the tool remains at the hole bottom. Input range 0 to 3600.0000
- **Retraction feed rate** Q208: Traversing speed of the tool in mm/min when retracting from the hole. If you enter Q208 = 0, the tool retracts at the reaming feed rate. Input range 0 to 99999.9999
- **Workpiece surface coordinate** Q203 (absolute): Coordinate of the workpiece surface. Input range 0 to 99999.9999
- **2nd setup clearance** Q204 (incremental): Coordinate in the spindle axis at which no collision between tool and workpiece (fixtures) can occur. Input range 0 to 99999.9999

Example: NC blocks

```
11 CYCL DEF 201 REAMING
   Q200=2 ;SETUP CLEARANCE
   Q201=-15 ;DEPTH
   Q206=100 ;FEED RATE FOR PLNGNG
   Q211=0.5 ;DWELL TIME AT DEPTH
   Q208=250 ;RETRACTION FEED RATE
   Q203=+20 ;SURFACE COORDINATE
   Q204=100 ;2ND SETUP CLEARANCE

12 L X+30 Y+20 FMAX M3

13 CYCL CALL

14 L X+80 Y+50 FMAX M9

15 L Z+100 FMAX M2
```
3.5 BORING (Cycle 202, DIN/ISO: G202)

Cycle run

1. The TNC positions the tool in the spindle axis at rapid traverse F_{MAX} to the setup clearance above the workpiece surface.
2. The tool drills to the programmed depth at the feed rate for plunging.
3. If programmed, the tool remains at the hole bottom for the entered dwell time with active spindle rotation for cutting free.
4. The TNC then orients the spindle to the position that is defined in parameter Q336.
5. If retraction is selected, the tool retracts in the programmed direction by 0.2 mm (fixed value).
6. The TNC moves the tool at the retraction feed rate to the setup clearance and then, if entered, to the 2nd setup clearance at F_{MAX}. If Q214=0, the tool point remains on the wall of the hole.
Please note while programming:

Machine and TNC must be specially prepared by the machine tool builder for use of this cycle.

This cycle is effective only for machines with servo-controlled spindle.

Program a positioning block for the starting point (hole center) in the working plane with radius compensation R_0.

The algebraic sign for the cycle parameter DEPTH determines the working direction. If you program $\text{DEPTH} = 0$, the cycle will not be executed.

After the cycle is completed, the TNC restores the coolant and spindle conditions that were active before the cycle call.

Danger of collision!

Use the machine parameter displayDepthErr to define whether, if a positive depth is entered, the TNC should output an error message (on) or not (off).

Keep in mind that the TNC reverses the calculation for pre-positioning when a positive depth is entered. This means that the tool moves at rapid traverse in the tool axis to setup clearance below the workpiece surface!

Select a disengaging direction in which the tool moves away from the edge of the hole.

Check the position of the tool tip when you program a spindle orientation to the angle that you enter in Q336 (for example, in the Positioning with Manual Data Input mode of operation). Set the angle so that the tool tip is parallel to a coordinate axis.

During retraction the TNC automatically takes an active rotation of the coordinate system into account.
Cycle parameters

- **Setup clearance** Q200 (incremental): Distance between tool tip and workpiece surface. Input range 0 to 99999.9999
- **Depth** Q201 (incremental): Distance between workpiece surface and bottom of hole. Input range: -99999.9999 to 99999.9999
- **Feed rate for plunging** Q206: Traversing speed of the tool during boring at mm/min. Input range: 0 to 99999.999; alternatively **FAUTO, FU**.
- **Dwell time at depth** Q211: Time in seconds that the tool remains at the hole bottom. Input range 0 to 3600.0000
- **Retraction feed rate** Q208: Traversing speed of the tool in mm/min when retracting from the hole. If you enter Q208 = 0, the tool retracts at feed rate for plunging. Input range 0 to 99999.999, alternatively **FMAX, FAUTO**
- **Workpiece surface coordinate** Q203 (absolute): Coordinate of the workpiece surface. Input range: -99999.9999 to 99999.9999
- **2nd setup clearance** Q204 (incremental): Coordinate in the spindle axis at which no collision between tool and workpiece (fixtures) can occur. Input range 0 to 99999.999
Disengaging direction (0/1/2/3/4) Q214: Determine the direction in which the TNC retracts the tool at the hole bottom (after spindle orientation).

- 0 Do not retract tool
- 1 Retract tool in the negative ref. axis direction
- 2 Retract tool in the neg. minor axis direction
- 3 Retract tool in the positive ref. axis direction
- 4 Retract tool in the pos. minor axis direction

Angle for spindle orientation Q336 (absolute): Angle at which the TNC positions the tool before retracting it. Input range -360.000 to 360.000

Example:

```plaintext
10 L Z+100 R0 FMAX
11 CYCL DEF 202 BORING
   Q200=2 ;SETUP CLEARANCE
   Q201=-15 ;DEPTH
   Q206=100 ;FEED RATE FOR PLNGNG
   Q211=0.5 ;DWELL TIME AT DEPTH
   Q208=250 ;RETRACTION FEED RATE
   Q203=+20 ;SURFACE COORDINATE
   Q204=100 ;2ND SETUP CLEARANCE
   Q214=1 ;DISENGAGING DIRECTN
   Q336=0 ;ANGLE OF SPINDLE
12 L X+30 Y+20 FMAX M3
13 CYCL CALL
14 L X+80 Y+50 FMAX M99
```
3.6 UNIVERSAL DRILLING
(Cycle 203, DIN/ISO: G203)

Cycle run

1 The TNC positions the tool in the spindle axis to the entered setup clearance above the workpiece surface at rapid traverse F_{MAX}.

2 The tool drills to the first plunging depth at the programmed feed rate F.

3 If you have programmed chip breaking, the tool then retracts by the entered retraction value. If you are working without chip breaking, the tool retracts at the retraction feed rate to the setup clearance, remains there—if programmed—for the entered dwell time, and advances again at F_{MAX} to the setup clearance above the first PLUNGING DEPTH.

4 The tool then advances with another infeed at the programmed feed rate. If programmed, the plunging depth is decreased after each infeed by the decrement.

5 The TNC repeats this process (2 to 4) until the programmed total hole depth is reached.

6 The tool remains at the hole bottom—if programmed—for the entered dwell time to cut free, and then retracts to the setup clearance at the retraction feed rate. If programmed, the tool moves to the 2nd setup clearance at F_{MAX}.
Please note while programming:

Program a positioning block for the starting point (hole center) in the working plane with radius compensation R0.

The algebraic sign for the cycle parameter DEPTH determines the working direction. If you program DEPTH = 0, the cycle will not be executed.

Danger of collision!

Use the machine parameter displayDepthErr to define whether, if a positive depth is entered, the TNC should output an error message (on) or not (off).

Keep in mind that the TNC reverses the calculation for pre-positioning when a positive depth is entered. This means that the tool moves at rapid traverse in the tool axis to setup clearance below the workpiece surface!
Cycle parameters

- **Setup clearance** Q200 (incremental): Distance between tool tip and workpiece surface. Input range 0 to 99999.9999

- **Depth** Q201 (incremental): Distance between workpiece surface and bottom of hole (tip of drill taper). Input range –99999.9999 to 99999.9999

- **Feed rate for plunging** Q206: Traversing speed of the tool during drilling in mm/min. Input range: 0 to 99999.9999; alternatively FAUTO, FU.

- **Plunging depth** Q202 (incremental): Infeed per cut. Input range 0 to 99999.9999. The depth does not have to be a multiple of the plunging depth. The TNC will go to depth in one movement if:
 - the plunging depth is equal to the depth
 - the plunging depth is greater than the depth and no chip breaking is defined

- **Dwell time at top** Q210: Time in seconds that the tool remains at setup clearance after having been retracted from the hole for chip release. Input range 0 to 3600.0000

- **Workpiece surface coordinate** Q203 (absolute): Coordinate of the workpiece surface. Input range: -99999.9999 to 99999.9999

- **2nd setup clearance** Q204 (incremental): Coordinate in the spindle axis at which no collision between tool and workpiece (fixtures) can occur. Input range 0 to 99999.9999

- **Decrement** Q212 (incremental): Value by which the TNC decreases the plunging depth Q202 after each infeed. Input range 0 to 99999.9999
- **No. of breaks before retracting** Q213: Number of chip breaks after which the TNC is to withdraw the tool from the hole for chip release. For chip breaking, the TNC retracts the tool each time by the value in Q256. Input range 0 to 99999.

- **Minimum plunging depth** Q205 (incremental): If you have entered a decrement, the TNC limits the plunging depth to the value entered with Q205. Input range 0 to 99999.9999.

- **Dwell time at depth** Q211: Time in seconds that the tool remains at the hole bottom. Input range 0 to 3600.0000.

- **Retraction feed rate** Q208: Traversing speed of the tool in mm/min when retracting from the hole. If you enter Q208 = 0, the TNC retracts the tool at the feed rate in Q206. Input range 0 to 99999.999, alternatively FMAX, FAUTO.

- **Retraction rate for chip breaking** Q256 (incremental): Value by which the TNC retracts the tool during chip breaking. Input range 0.1000 to 99999.9999.

Example: NC blocks

```
11 CYCL DEF 203 UNIVERSAL DRILLING
Q200=2 ;SETUP CLEARANCE
Q201=-20 ;DEPTH
Q206=150 ;FEED RATE FOR PLNGNG
Q202=5 ;PLUNGING DEPTH
Q210=0 ;DWELL TIME AT TOP
Q203=+20 ;SURFACE COORDINATE
Q204=50 ;2ND SETUP CLEARANCE
Q212=0.2 ;DECREMENT
Q213=3 ;BREAKS
Q205=3 ;MIN. PLUNGING DEPTH
Q211=0.25 ;DWELL TIME AT DEPTH
Q208=500 ;RETRACTION FEED RATE
Q256=0.2 ;DIST. FOR CHIP BRKNG
```
3.7 BACK BORING (Cycle 204, DIN/ISO: G204)

Cycle run

This cycle allows holes to be bored from the underside of the workpiece.

1. The TNC positions the tool in the spindle axis at rapid traverse \textit{FMAX} to the setup clearance above the workpiece surface.

2. The TNC then orients the spindle to the 0° position with an oriented spindle stop, and displaces the tool by the off-center distance.

3. The tool is then plunged into the already bored hole at the feed rate for pre-positioning until the tooth has reached the setup clearance on the underside of the workpiece.

4. The TNC then centers the tool again over the bore hole, switches on the spindle and the coolant and moves at the feed rate for boring to the depth of bore.

5. If a dwell time is entered, the tool will pause at the top of the bore hole and will then be retracted from the hole again. Another oriented spindle stop is carried out and the tool is once again displaced by the off-center distance.

6. The TNC moves the tool at the pre-positioning feed rate to the setup clearance and then—if entered—to the 2nd setup clearance at \textit{FMAX}.
Please note while programming:

Machine and TNC must be specially prepared by the machine tool builder for use of this cycle.

This cycle is effective only for machines with servo-controlled spindle.

Special boring bars for upward cutting are required for this cycle.

Program a positioning block for the starting point (hole center) in the working plane with radius compensation R_0.

The algebraic sign for the cycle parameter depth determines the working direction. Note: A positive sign bores in the direction of the positive spindle axis.

The entered tool length is the total length to the underside of the boring bar and not just to the tooth.

When calculating the starting point for boring, the TNC considers the tooth length of the boring bar and the thickness of the material.

Danger of collision!

Check the position of the tool tip when you program a spindle orientation to the angle that you enter in Q336 (for example, in the Positioning with Manual Data Input mode of operation). Set the angle so that the tool tip is parallel to a coordinate axis. Select a disengaging direction in which the tool moves away from the edge of the hole.
Cycle parameters

- **Setup clearance** Q200 (incremental): Distance between tool tip and workpiece surface. Input range 0 to 99999.9999
- **Depth of counterbore** Q249 (incremental): Distance between underside of workpiece and the top of the hole. A positive sign means the hole will be bored in the positive spindle axis direction. Input range –99999.9999 to 99999.9999
- **Material thickness** Q250 (incremental): Thickness of the workpiece. Input range 0.0001 to 99999.9999
- **Off-center distance** Q251 (incremental): Off-center distance for the boring bar; value from tool data sheet. Input range 0.0001 to 99999.9999
- **Tool edge height** Q252 (incremental): Distance between the underside of the boring bar and the main cutting tooth; value from tool data sheet. Input range 0.0001 to 99999.9999
- **Feed rate for pre-positioning** Q253: Traversing speed of the tool in mm/min when plunging into the workpiece, or when retracting from the workpiece. Input range 0 to 99999.9999; alternatively FMAX, FAUTO
- **Feed rate for back boring** Q254: Traversing speed of the tool during back boring in mm/min. Input range: 0 to 99999.9999; alternatively FAUTO, FU.
- **Dwell time** Q255: Dwell time in seconds at the top of the bore hole. Input range 0 to 3600.000
3.7 BACK BORING (Cycle 204, DIN/ISO: G204)

- **Workpiece surface coordinate** Q203 (absolute): Coordinate of the workpiece surface. Input range: -99999.9999 to 99999.9999

- **2nd setup clearance** Q204 (incremental): Coordinate in the spindle axis at which no collision between tool and workpiece (fixtures) can occur. Input range 0 to 99999.9999

- **Disengaging direction (0/1/2/3/4)** Q214: Determine the direction in which the TNC displaces the tool by the off-center distance (after spindle orientation). Input of 0 is not permitted.
 1. Retract tool in the negative ref. axis direction
 2. Retract tool in the neg. minor axis direction
 3. Retract tool in the positive ref. axis direction
 4. Retract tool in the pos. minor axis direction

- **Angle for spindle orientation** Q336 (absolute): Angle at which the TNC positions the tool before it is plunged into or retracted from the bore hole. Input range -360.0000 to 360.0000

Example: NC blocks

<table>
<thead>
<tr>
<th>NC Blocks</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>11 CYCL DEF 204 BACK BORING</td>
<td></td>
</tr>
<tr>
<td>Q200=2 ;SETUP CLEARANCE</td>
<td></td>
</tr>
<tr>
<td>Q249=+5 ;DEPTH OF COUNTERBORE</td>
<td></td>
</tr>
<tr>
<td>Q250=20 ;MATERIAL THICKNESS</td>
<td></td>
</tr>
<tr>
<td>Q251=3.5 ;OFF-CENTER DISTANCE</td>
<td></td>
</tr>
<tr>
<td>Q252=15 ;TOOL EDGE HEIGHT</td>
<td></td>
</tr>
<tr>
<td>Q253=750 ;F PRE-POSITIONING</td>
<td></td>
</tr>
<tr>
<td>Q254=200 ;F COUNTERSINKING</td>
<td></td>
</tr>
<tr>
<td>Q255=0 ;Dwell TIME</td>
<td></td>
</tr>
<tr>
<td>Q203=+20 ;SURFACE COORDINATE</td>
<td></td>
</tr>
<tr>
<td>Q204=50 ;2ND SETUP CLEARANCE</td>
<td></td>
</tr>
<tr>
<td>Q214=1 ;DISENGAGING DIRECTN</td>
<td></td>
</tr>
<tr>
<td>Q336=0 ;ANGLE OF SPINDLE</td>
<td></td>
</tr>
</tbody>
</table>
3.8 UNIVERSAL PECKING (Cycle 205, DIN/ISO: G205)

Cycle run

1. The TNC positions the tool in the spindle axis to the entered setup clearance above the workpiece surface at rapid traverse F_{MAX}.

2. If you enter a deepened starting point, the TNC moves at the defined positioning feed rate to the setup clearance above the deepened starting point.

3. The tool drills to the first plunging depth at the programmed feed rate F.

4. If you have programmed chip breaking, the tool then retracts by the entered retraction value. If you are working without chip breaking, the tool is moved at rapid traverse to the setup clearance, and then at F_{MAX} to the entered starting position above the first plunging depth.

5. The tool then advances with another infeed at the programmed feed rate. If programmed, the plunging depth is decreased after each infeed by the decrement.

6. The TNC repeats this process (2 to 4) until the programmed total hole depth is reached.

7. The tool remains at the hole bottom—if programmed—for the entered dwell time to cut free, and then retracts to the setup clearance at the retraction feed rate. If programmed, the tool moves to the 2nd setup clearance at F_{MAX}.
Please note while programming:

Program a positioning block for the starting point (hole center) in the working plane with radius compensation \(R_0 \).

The algebraic sign for the cycle parameter DEPTH determines the working direction. If you program DEPTH = 0, the cycle will not be executed.

If you enter advance stop distances Q258 not equal to Q259, the TNC will change the advance stop distances between the first and last plunging depths at the same rate.

If you use Q379 to enter a deepened starting point, the TNC merely changes the starting point of the infeed movement. Retraction movements are not changed by the TNC, therefore they are calculated with respect to the coordinate of the workpiece surface.

Danger of collision!

Use the machine parameter displayDepthErr to define whether, if a positive depth is entered, the TNC should output an error message (on) or not (off).

Keep in mind that the TNC reverses the calculation for pre-positioning when a positive depth is entered. This means that the tool moves at rapid traverse in the tool axis to setup clearance below the workpiece surface!
Cycle parameters

- **Setup clearance** \(Q200\) (incremental): Distance between tool tip and workpiece surface. Input range 0 to 99999.9999

- **Depth** \(Q201\) (incremental): Distance between workpiece surface and bottom of hole (tip of drill taper). Input range –99999.9999 to 99999.9999

- **Feed rate for plunging** \(Q206\): Traversing speed of the tool during drilling in mm/min. Input range: 0 to 99999.9999; alternatively **FAUTO, FU**.

- **Plunging depth** \(Q202\) (incremental): Infeed per cut. Input range 0 to 99999.9999. The depth does not have to be a multiple of the plunging depth. The TNC will go to depth in one movement if:
 - the plunging depth is equal to the depth
 - the plunging depth is greater than the depth

- **Workpiece surface coordinate** \(Q203\) (absolute): Coordinate of the workpiece surface. Input range: -99999.9999 to 99999.9999

- **2nd setup clearance** \(Q204\) (incremental): Coordinate in the spindle axis at which no collision between tool and workpiece (fixtures) can occur. Input range 0 to 99999.9999

- **Decrement** \(Q212\) (incremental): Value by which the TNC decreases the plunging depth \(Q202\). Input range 0 to 99999.9999

- **Minimum plunging depth** \(Q205\) (incremental): If you have entered a decrement, the TNC limits the plunging depth to the value entered with \(Q205\). Input range 0 to 99999.9999

- **Upper advanced stop distance** \(Q258\) (incremental): Setup clearance for rapid traverse positioning when the TNC moves the tool again to the current plunging depth after retraction from the hole; value for the first plunging depth. Input range 0 to 99999.9999

- **Lower advanced stop distance** \(Q259\) (incremental): Setup clearance for rapid traverse positioning when the TNC moves the tool again to the current plunging depth after retraction from the hole; value for the last plunging depth. Input range 0 to 99999.9999
3.8 UNIVERSAL PECKING (Cycle 205, DIN/ISO: G205)

- **Infeed depth for chip breaking** Q257 (incremental): Depth at which the TNC carries out chip breaking. No chip breaking if 0 is entered. Input range 0 to 99999.9999

- **Retraction rate for chip breaking** Q256 (incremental): Value by which the TNC retracts the tool during chip breaking. The TNC retracts the tool at a feed rate of 3000 mm/min. Input range 0.1000 to 99999.9999.

- **Dwell time at depth** Q211: Time in seconds that the tool remains at the hole bottom. Input range 0 to 3600.0000

- **Deepened starting point** Q379 (incremental with respect to the workpiece surface): Starting position of drilling if a shorter tool has already pilot drilled to a certain depth. The TNC moves at the feed rate for pre-positioning from the setup clearance to the deepened starting point. Input range 0 to 99999.9999

- **Feed rate for pre-positioning** Q253: Traversing velocity of the tool during positioning from the setup clearance to a deepened starting point in mm/min. Effective only if Q379 is entered not equal to 0. Input range 0 to 99999.9999, alternatively FMAX, FAUTO

Example: NC blocks

```
11 CYCL DEF 205 UNIVERSAL PECKING
Q200=2 ;SETUP CLEARANCE
Q201=-80 ;DEPTH
Q206=150 ;FEED RATE FOR PLNGNG
Q202=15 ;PLUNGING DEPTH
Q203=+100 ;SURFACE COORDINATE
Q204=50 ;2ND SETUP CLEARANCE
Q212=0.5 ;DECREMENT
Q205=3 ;MIN. PLUNGING DEPTH
Q258=0.5 ;UPPER ADV. STOP DIST.
Q259=1 ;LOWER ADV. STOP DIST.
Q207=5 ;DEPTH FOR CHIP BRKNG
Q256=0.2 ;DIST. FOR CHIP BRKNG
Q211=0.25 ;DWELL TIME AT DEPTH
Q379=7.5 ;STARTING POINT
Q253=750 ;F PRE-POSITIONING
```
3.9 BORE MILLING (Cycle 208, DIN/ISO: G208)

Cycle run

1. The TNC positions the tool in the spindle axis at rapid traverse \textbf{FMAX} to the programmed setup clearance above the workpiece surface and then moves the tool to the bore hole circumference on a rounded arc (if enough space is available).

2. The tool mills in a helix from the current position to the first plunging depth at the programmed feed rate \textbf{F}.

3. When the drilling depth is reached, the TNC once again traverses a full circle to remove the material remaining after the initial plunge.

4. The TNC then positions the tool at the center of the hole again.

5. Finally the TNC returns to the setup clearance at \textbf{FMAX}. If programmed, the tool moves to the 2nd setup clearance at \textbf{FMAX}.
Please note while programming:

- Program a positioning block for the starting point (hole center) in the working plane with radius compensation \(R_0 \).

- The algebraic sign for the cycle parameter DEPTH determines the working direction. If you program DEPTH = 0, the cycle will not be executed.

- If you have entered the bore hole diameter to be the same as the tool diameter, the TNC will bore directly to the entered depth without any helical interpolation.

- An active mirror function does not influence the type of milling defined in the cycle.

- Note that if the infeed distance is too large, the tool or the workpiece may be damaged.

- To prevent the infeeds from being too large, enter the maximum plunge angle of the tool in the ANGLE column of the tool table. The TNC then automatically calculates the max. infeed permitted and changes your entered value accordingly.

Danger of collision!

- Use the machine parameter displayDepthErr to define whether, if a positive depth is entered, the TNC should output an error message (on) or not (off).

- Keep in mind that the TNC reverses the calculation for pre-positioning when a positive depth is entered. This means that the tool moves at rapid traverse in the tool axis to setup clearance below the workpiece surface!
Cycle parameters

- **Setup clearance** Q200 (incremental): Distance between tool lower edge and workpiece surface. Input range 0 to 99999.9999

- **Depth** Q201 (incremental): Distance between workpiece surface and bottom of hole. Input range: -99999.9999 to 99999.9999

- **Feed rate for plunging** Q206: Traversing speed of the tool during helical drilling in mm/min. Input range: 0 to 99999.999; alternatively FAUTO, FU, FZ.

- **Infeed per helix** Q334 (incremental): Depth of the tool plunge with each helix (=360°). Input range 0 to 99999.9999

- **Workpiece surface coordinate** Q203 (absolute): Coordinate of the workpiece surface. Input range: -99999.9999 to 99999.9999

- **2nd setup clearance** Q204 (incremental): Coordinate in the spindle axis at which no collision between tool and workpiece (fixtures) can occur. Input range 0 to 99999.9999

- **Nominal diameter** Q335 (absolute value): Bore-hole diameter. If you have entered the nominal diameter to be the same as the tool diameter, the TNC will bore directly to the entered depth without any helical interpolation. Input range 0 to 99999.9999

- **Roughing diameter** Q342 (absolute): As soon as you enter a value greater than 0 in Q342, the TNC no longer checks the ratio between the nominal diameter and the tool diameter. This allows you to rough-mill holes whose diameter is more than twice as large as the tool diameter. Input range 0 to 99999.9999

- **Climb or up-cut** Q351: Type of milling operation with M3
 - +1 = climb milling
 - −1 = up-cut milling

Example: NC blocks

```
12 CYCL DEF 208 BORE MILLING
   Q200=2 ;SETUP CLEARANCE
   Q201=-80 ;DEPTH
   Q206=150 ;FEED RATE FOR PLUNGING
   Q334=1.5 ;PLUNGING DEPTH
   Q203=+100 ;SURFACE COORDINATE
   Q204=50 ;2ND SETUP CLEARANCE
   Q335=25 ;NOMINAL DIAMETER
   Q342=0 ;ROUGHING DIAMETER
   Q351=+1 ;CLIMB OR UP-CUT
```
3.10 SINGLE-FLUTED DEEP-HOLE DRILLING (Cycle 241, DIN/ISO: G241)

Cycle run

1. The TNC positions the tool in the spindle axis to the entered setup clearance above the workpiece surface at rapid traverse F_{MAX}.

2. Then the TNC moves the tool at the defined positioning feed rate to the setup clearance above the deepened starting point and switches on the drilling speed (M_3) and the coolant. The TNC executes the approach motion at the direction of rotation defined in the cycle, with clockwise, counterclockwise or stationary spindle.

3. The tool drills to the entered drilling depth at the programmed feed rate F.

4. If programmed, the tool remains at the hole bottom for chip breaking. Then the TNC switches off the coolant and resets the drilling speed to the value defined for retraction.

5. After the dwell time at the hole bottom, the tool is retracted to the setup clearance at the retraction feed rate. If programmed, the tool moves to the 2nd setup clearance at F_{MAX}.

Please note while programming:

- Program a positioning block for the starting point (hole center) in the working plane with radius compensation R_0.
- The algebraic sign for the cycle parameter DEPTH determines the working direction. If you program DEPTH = 0, the cycle will not be executed.
- Use the machine parameter displayDepthErr to define whether, if a positive depth is entered, the TNC should output an error message (on) or not (off).
- Keep in mind that the TNC reverses the calculation for pre-positioning when a positive depth is entered. This means that the tool moves at rapid traverse in the tool axis to setup clearance below the workpiece surface!
Cycle parameters

- **Setup clearance** Q200 (incremental): Distance between tool tip and workpiece surface. Input range 0 to 99999.9999
- **Depth** Q201 (incremental): Distance between workpiece surface and bottom of hole. Input range: -99999.9999 to 99999.9999
- **Feed rate for plunging** Q206: Traversing speed of the tool during drilling in mm/min. Input range: 0 to 99999.9999; alternatively FAUTO, FU.
- **Dwell time at depth** Q211: Time in seconds that the tool remains at the hole bottom. Input range 0 to 3600.0000
- **Workpiece surface coordinate** Q203 (absolute): Coordinate of the workpiece surface. Input range: -99999.9999 to 99999.9999
- **2nd setup clearance** Q204 (incremental): Coordinate in the spindle axis at which no collision between tool and workpiece (fixtures) can occur. Input range 0 to 99999.9999
- **Deepened starting point** Q379 (incremental with respect to the workpiece surface): Starting position for actual drilling operation. The TNC moves at the feed rate for pre-positioning from the setup clearance to the deepened starting point. Input range 0 to 99999.9999
- **Feed rate for pre-positioning** Q253: Traversing velocity of the tool during positioning from the setup clearance to the deepened starting point in mm/min. Effective only if Q379 is entered not equal to 0. Input range 0 to 99999.9999, alternatively FMAX, FAUTO
- **Retraction feed rate** Q208: Traversing speed of the tool in mm/min when retracting from the hole. If you enter Q208 = 0, the TNC retracts the tool at the feed rate in Q206. Input range 0 to 99999.9999, alternatively FMAX, FAUTO
3.10 SINGLE-FLUTED DEEP-HOLE DRILLING (Cycle 241, DIN/ISO: G241)

- **Rotat. dir. of entry/exit (3/4/5)** Q426: Desired direction of spindle rotation when tool moves into and retracts from the hole. Input range:
 - 3: Spindle rotation with M3
 - 4: Spindle rotation with M4
 - 5: Movement with stationary spindle

- **Spindle speed of entry/exit** Q427: Desired spindle speed when tool moves into and retracts from the hole. Input range 0 to 99999

- **Drilling speed** Q428: Desired speed for drilling. Input range 0 to 99999

- **M function for coolant on?** Q429: M function for switching on the coolant. The TNC switches the coolant on if the tool is in the hole at the deepened starting point. Input range 0 to 999

- **M function for coolant off?** Q430: M function for switching off the coolant. The TNC switches the coolant off if the tool is at the hole depth. Input range 0 to 999

Example: NC blocks

```plaintext
11 CYCL DEF 241 SINGLE-LIP DEEP-HOLE DRILLING

Q200=2 ;SETUP CLEARANCE
Q201=-80 ;DEPTH
Q206=150 ;FEED RATE FOR PLUNGING
Q211=0.25 ;DWELL TIME AT DEPTH
Q203=+100 ;SURFACE COORDINATE
Q204=50 ;2ND SETUP CLEARANCE
Q379=7.5 ;STARTING POINT
Q253=750 ;F PRE-POSITIONING
Q208=1000 ;RETRACTION FEED RATE
Q426=3 ;DIR. OF SPINDLE ROT.
Q427=25 ;ROT. SPEED INFEED/OUT
Q428=500 ;DRILLING SPEED
Q429=8 ;COOLANT ON
Q430=9 ;COOLANT OFF
```
3.11 Programming Examples

Example: Drilling cycles

0 BEGIN PGM C200 MM
1 BLK FORM 0.1 Z X+0 Y+0 Z-20
2 BLK FORM 0.2 X+100 Y+100 Z+0
3 TOOL CALL 1 Z S4500
4 L Z+250 RO FMAX
5 CYCL DEF 200 DRILLING
 Q200=2 ;SETUP CLEARANCE
 Q201=-15 ;DEPTH
 Q206=250 ;FEED RATE FOR PLNGN
 Q202=5 ;PLUNGING DEPTH
 Q210=0 ;DWELL TIME AT TOP
 Q203=-10 ;SURFACE COORDINATE
 Q204=20 ;2ND SET-UP CLEARANCE
 Q211=0.2 ;DWELL TIME AT DEPTH

Definition of workpiece blank
Tool call (tool radius 3)
Retract the tool
Cycle definition
<table>
<thead>
<tr>
<th>Line</th>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>L X+10 Y+10 R0 FMAX M3</td>
<td>Approach hole 1, spindle ON</td>
</tr>
<tr>
<td>7</td>
<td>CYCL CALL</td>
<td>Cycle call</td>
</tr>
<tr>
<td>8</td>
<td>L Y+90 R0 FMAX M99</td>
<td>Approach hole 2, call cycle</td>
</tr>
<tr>
<td>9</td>
<td>L X+90 R0 FMAX M99</td>
<td>Approach hole 3, call cycle</td>
</tr>
<tr>
<td>10</td>
<td>L Y+10 R0 FMAX M99</td>
<td>Approach hole 4, call cycle</td>
</tr>
<tr>
<td>11</td>
<td>L Z+250 R0 FMAX M2</td>
<td>Retract in the tool axis, end program</td>
</tr>
<tr>
<td>12</td>
<td>END PGM C200 MM</td>
<td></td>
</tr>
</tbody>
</table>
Example: Using drilling cycles in connection with PATTERN DEF

The drill hole coordinates are stored in the pattern definition `PATTERN DEF POS` and are called by the TNC with `CYCL CALL PAT`:

The tool radii are selected so that all work steps can be seen in the test graphics.

Program sequence
- Centering (tool radius 4)
- Drilling (tool radius 2.4)
- Tapping (tool radius 3)

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>BEGIN PGM 1 MM</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>BLK FORM 0.1 Z X+0 Y+0 Z-20</td>
<td>Definition of workpiece blank</td>
</tr>
<tr>
<td>2</td>
<td>BLK FORM 0.2 X+100 Y+100 Y+0</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>TOOL CALL 1 Z S5000</td>
<td>Call the centering tool (tool radius 4)</td>
</tr>
<tr>
<td>4</td>
<td>L Z+10 R0 F5000</td>
<td>Move tool to clearance height (enter a value for F)</td>
</tr>
<tr>
<td>5</td>
<td>PATTERN DEF</td>
<td>The TNC positions to the clearance height after every cycle</td>
</tr>
<tr>
<td>POS1</td>
<td>X+10 Y+10 Z+0</td>
<td>Define all drilling positions in the point pattern</td>
</tr>
<tr>
<td>POS2</td>
<td>X+40 Y+30 Z+0</td>
<td></td>
</tr>
<tr>
<td>POS3</td>
<td>X+20 Y+55 Z+0</td>
<td></td>
</tr>
<tr>
<td>POS4</td>
<td>X+10 Y+90 Z+0</td>
<td></td>
</tr>
<tr>
<td>POS5</td>
<td>X+90 Y+90 Z+0</td>
<td></td>
</tr>
<tr>
<td>POS6</td>
<td>X+80 Y+65 Z+0</td>
<td></td>
</tr>
<tr>
<td>POS7</td>
<td>X+80 Y+30 Z+0</td>
<td></td>
</tr>
<tr>
<td>POS8</td>
<td>X+90 Y+10 Z+0</td>
<td></td>
</tr>
</tbody>
</table>
3.11 Programming Examples

<table>
<thead>
<tr>
<th>Line</th>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>CYCL DEF 240 CENTERING</td>
<td>Cycle definition: CENTERING</td>
</tr>
<tr>
<td></td>
<td>Q200=2 ;SETUP CLEARANCE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Q343=0 ;SELECT DEPTH/DIA.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Q201=-2 ;DEPTH</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Q344=-10 ;DIAMETER</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Q206=150 ;FEED RATE FOR PLNGN</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Q211=0 ;Dwell time at depth</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Q203=+0 ;SURFACE COORDINATE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Q204=50 ;2ND SETUP CLEARANCE</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>CYCL CALL PAT F5000 M13</td>
<td>Call the cycle in connection with point pattern</td>
</tr>
<tr>
<td>8</td>
<td>L Z+100 R0 FMAX</td>
<td>Retract the tool, change the tool</td>
</tr>
<tr>
<td>9</td>
<td>TOOL CALL 2 Z S5000</td>
<td>Call the drilling tool (radius 2.4)</td>
</tr>
<tr>
<td>10</td>
<td>L Z+10 R0 F5000</td>
<td>Move tool to clearance height (enter a value for F)</td>
</tr>
<tr>
<td>11</td>
<td>CYCL DEF 200 DRILLING</td>
<td>Cycle definition: drilling</td>
</tr>
<tr>
<td></td>
<td>Q200=2 ;SETUP CLEARANCE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Q201=-25 ;DEPTH</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Q206=150 ;FEED RATE FOR PECKING</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Q202=5 ;PLUNGING DEPTH</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Q210=0 ;Dwell time at top</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Q203=+0 ;SURFACE COORDINATE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Q204=50 ;2ND SETUP CLEARANCE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Q211=0.2 ;Dwell time at depth</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>CYCL CALL PAT F5000 M13</td>
<td>Call the cycle in connection with point pattern</td>
</tr>
<tr>
<td>13</td>
<td>L Z+100 R0 FMAX</td>
<td>Retract the tool</td>
</tr>
<tr>
<td>14</td>
<td>TOOL CALL 3 Z S200</td>
<td>Call the tapping tool (radius 3)</td>
</tr>
<tr>
<td>15</td>
<td>L Z+50 R0 FMAX</td>
<td>Move tool to clearance height</td>
</tr>
<tr>
<td>16</td>
<td>CYCL DEF 206 TAPPING NEW</td>
<td>Cycle definition for tapping</td>
</tr>
<tr>
<td></td>
<td>Q200=2 ;SETUP CLEARANCE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Q201=-25 ;DEPTH OF THREAD</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Q206=150 ;FEED RATE FOR PECKING</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Q211=0 ;Dwell time at depth</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Q203=+0 ;SURFACE COORDINATE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Q204=50 ;2ND SETUP CLEARANCE</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>CYCL CALL PAT F5000 M13</td>
<td>Call the cycle in connection with point pattern</td>
</tr>
<tr>
<td>18</td>
<td>L Z+100 R0 FMAX M2</td>
<td>Retract in the tool axis, end program</td>
</tr>
<tr>
<td>19</td>
<td>END PGM 1 MM</td>
<td></td>
</tr>
</tbody>
</table>
Fixed Cycles: Tapping / Thread Milling
4.1 Fundamentals

Overview

The TNC offers 8 cycles for all types of threading operations:

<table>
<thead>
<tr>
<th>Cycle</th>
<th>Soft key</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>206 TAPPING NEW</td>
<td>206</td>
<td>Page 93</td>
</tr>
<tr>
<td>With a floating tap holder, with automatic pre-positioning, 2nd setup clearance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>207 RIGID TAPPING NEW</td>
<td>207</td>
<td>Page 95</td>
</tr>
<tr>
<td>Without a floating tap holder, with automatic pre-positioning, 2nd set-up clearance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>209 TAPPING W/ CHIP BREAKING</td>
<td>209</td>
<td>Page 98</td>
</tr>
<tr>
<td>Without a floating tap holder, with automatic pre-positioning, 2nd set-up clearance, chip breaking</td>
<td></td>
<td></td>
</tr>
<tr>
<td>262 THREAD MILLING</td>
<td>262</td>
<td>Page 103</td>
</tr>
<tr>
<td>Cycle for milling a thread in pre-drilled material</td>
<td></td>
<td></td>
</tr>
<tr>
<td>263 THREAD MILLING/CNTSNKG</td>
<td>263</td>
<td>Page 106</td>
</tr>
<tr>
<td>Cycle for milling a thread in pre-drilled material and machining a countersunk chamfer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>264 THREAD DRILLING/MILLING</td>
<td>264</td>
<td>Page 110</td>
</tr>
<tr>
<td>Cycle for drilling into the solid material with subsequent milling of the thread with a tool</td>
<td></td>
<td></td>
</tr>
<tr>
<td>265 HEL.THREAD DRILLING/MILLING</td>
<td>265</td>
<td>Page 114</td>
</tr>
<tr>
<td>Cycle for milling the thread into the solid material</td>
<td></td>
<td></td>
</tr>
<tr>
<td>267 outside THREAD MILLING</td>
<td>267</td>
<td>Page 114</td>
</tr>
<tr>
<td>Cycle for milling an external thread and machining a countersunk chamfer</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
4.2 TAPPING NEW with a Floating Tap Holder (Cycle 206, DIN/ISO: G206)

Cycle run

1 The TNC positions the tool in the spindle axis to the entered setup clearance above the workpiece surface at rapid traverse F_{MAX}.
2 The tool drills to the total hole depth in one movement.
3 Once the tool has reached the total hole depth, the direction of spindle rotation is reversed and the tool is retracted to the setup clearance at the end of the dwell time. If programmed, the tool moves to the 2nd setup clearance at F_{MAX}.
4 At the setup clearance, the direction of spindle rotation reverses once again.

Please note while programming:

- Program a positioning block for the starting point (hole center) in the working plane with radius compensation R_0.
- The algebraic sign for the cycle parameter DEPTH determines the working direction. If you program DEPTH = 0, the cycle will not be executed.
- A floating tap holder is required for tapping. It must compensate the tolerances between feed rate and spindle speed during the tapping process.
- When a cycle is being run, the spindle speed override knob is disabled. The feed-rate override knob is active only within a limited range, which is defined by the machine tool builder (refer to your machine manual).
- For tapping right-hand threads activate the spindle with M3, for left-hand threads use M4.

Danger of collision!

- Use the machine parameter displayDepthErr to define whether, if a positive depth is entered, the TNC should output an error message (on) or not (off).
- Keep in mind that the TNC reverses the calculation for pre-positioning when a **positive depth is entered**. This means that the tool moves at rapid traverse in the tool axis to setup clearance below the workpiece surface!
Cycle parameters

- **Setup clearance** Q200 (incremental): Distance between tool tip (at starting position) and workpiece surface. Standard value: approx. 4 times the thread pitch. Input range 0 to 99999.9999
- **Total hole depth** Q201 (thread length, incremental): Distance between workpiece surface and end of thread. Input range –99999.9999 to 99999.9999
- **Feed rate F** Q206: Traversing speed of the tool during tapping. Input range: 0 to 99999.9999, alternatively FAUTO
- **Dwell time at bottom** Q211: Enter a value between 0 and 0.5 seconds to avoid wedging of the tool during retraction. Input range 0 to 3600.0000
- **Workpiece surface coordinate** Q203 (absolute): Coordinate of the workpiece surface. Input range: -99999.9999 to 99999.9999
- **2nd setup clearance** Q204 (incremental): Coordinate in the spindle axis at which no collision between tool and workpiece (fixtures) can occur. Input range 0 to 99999.9999

The feed rate is calculated as follows: \(F = S \times p \)

- \(F \): Feed rate (mm/min)
- \(S \): Spindle speed (rpm)
- \(p \): Thread pitch (mm)

Example: NC blocks

```
25 CYCL DEF 206 TAPPING NEW
Q200=2 ; SETUP CLEARANCE
Q201=-20 ; DEPTH
Q206=150 ; FEED RATE FOR PLNGNG
Q211=0.25 ; DWELL TIME AT DEPTH
Q203=+25 ; SURFACE COORDINATE
Q204=50 ; 2ND SETUP CLEARANCE
```

Retracting after a program interruption

If you interrupt program run during tapping with the machine stop button, the TNC will display a soft key with which you can retract the tool.
4.3 RIGID TAPPING without a Floating Tap Holder NEW (Cycle 207, DIN/ISO: G207)

Cycle run

The TNC cuts the thread without a floating tap holder in one or more passes.

1 The TNC positions the tool in the spindle axis to the entered setup clearance above the workpiece surface at rapid traverse FMAX.
2 The tool drills to the total hole depth in one movement.
3 Once the tool has reached the total hole depth, the direction of spindle rotation is reversed and the tool is retracted to the setup clearance at the end of the dwell time. If programmed, the tool moves to the 2nd setup clearance at FMAX.
4 The TNC stops the spindle turning at setup clearance.
4.3 RIGID TAPPING without a Floating Tap Holder NEW (Cycle 207, DIN/ISO: G207)

Please note while programming:

Machine and TNC must be specially prepared by the machine tool builder for use of this cycle.
This cycle is effective only for machines with servo-controlled spindle.

Program a positioning block for the starting point (hole center) in the working plane with radius compensation R0.
The algebraic sign for the total hole depth parameter determines the working direction.
The TNC calculates the feed rate from the spindle speed.
If the feed-rate override is used during tapping, the TNC automatically adjusts the feed rate.
The feed-rate override knob is disabled.
At the end of the cycle the spindle comes to a stop. Before the next operation, restart the spindle with M3 (or M4).

Danger of collision!
Use the machine parameter displayDepthErr to define whether, if a positive depth is entered, the TNC should output an error message (on) or not (off).
Keep in mind that the TNC reverses the calculation for pre-positioning when a positive depth is entered. This means that the tool moves at rapid traverse in the tool axis to setup clearance below the workpiece surface!
Cycle parameters

- **Setup clearance** Q200 (incremental): Distance between tool tip (at starting position) and workpiece surface. Input range 0 to 99999.9999

- **Total hole depth** Q201 (incremental): Distance between workpiece surface and end of thread. Input range: -99999.9999 to 99999.9999

- **Pitch** Q239
 - Pitch of the thread. The algebraic sign differentiates between right-hand and left-hand threads:
 - `+` = right-hand thread
 - `−` = left-hand thread
 - Input range -99.9999 to 99.9999

- **Workpiece surface coordinate** Q203 (absolute):
 - Coordinate of the workpiece surface. Input range: -99999.9999 to 99999.9999

- **2nd setup clearance** Q204 (incremental): Coordinate in the spindle axis at which no collision between tool and workpiece (fixtures) can occur. Input range 0 to 99999.9999

Retracting after a program interruption

If you interrupt program run during thread cutting with the machine stop button, the TNC will display the MANUAL OPERATION soft key. If you press the MANUAL OPERATION key, you can retract the tool under program control. Simply press the positive axis direction button of the active spindle axis.

Example: NC blocks

```
26 CYCL DEF 207 RIGID TAPPING NEW
  Q200=2 ;SETUP CLEARANCE
  Q201=-20 ;DEPTH
  Q239=+1 ;PITCH
  Q203=+25 ;SURFACE COORDINATE
  Q204=50 ;2ND SETUP CLEARANCE
```
4.4 TAPPING WITH CHIP BREAKING (Cycle 209, DIN/ISO: G209)

Cycle run

The TNC machines the thread in several passes until it reaches the programmed depth. You can define in a parameter whether the tool is to be retracted completely from the hole for chip breaking.

1. The TNC positions the tool in the tool axis at rapid traverse \textit{FMAX} to the programmed setup clearance above the workpiece surface. There it carries out an oriented spindle stop.

2. The tool moves to the programmed infeed depth, reverses the direction of spindle rotation and retracts by a specific distance or completely for chip breaking, depending on the definition. If you have defined a factor for increasing the spindle speed, the TNC retracts from the hole at the corresponding speed.

3. It then reverses the direction of spindle rotation again and advances to the next infeed depth.

4. The TNC repeats this process (2 to 3) until the programmed thread depth is reached.

5. The tool is then retracted to the setup clearance. If programmed, the tool moves to the 2nd setup clearance at \textit{FMAX}.

6. The TNC stops the spindle turning at setup clearance.
Please note while programming:

Machine and TNC must be specially prepared by the machine tool builder for use of this cycle. This cycle is effective only for machines with servo-controlled spindle.

Program a positioning block for the starting point (hole center) in the working plane with radius compensation R0.

The algebraic sign for the parameter thread depth determines the working direction.

The TNC calculates the feed rate from the spindle speed. If the feed-rate override is used during tapping, the TNC automatically adjusts the feed rate.

The feed-rate override knob is disabled.

If you defined an rpm factor for fast retraction in cycle parameter Q403, the TNC limits the speed to the maximum speed of the active gear range.

At the end of the cycle the spindle comes to a stop. Before the next operation, restart the spindle with M3 (or M4).

Danger of collision!

Use the machine parameter displayDepthErr to define whether, if a positive depth is entered, the TNC should output an error message (on) or not (off).

Keep in mind that the TNC reverses the calculation for pre-positioning when a positive depth is entered. This means that the tool moves at rapid traverse in the tool axis to setup clearance below the workpiece surface!
4.4 TAPPING WITH CHIP BREAKING (Cycle 209, DIN/ISO: G209)

Cycle parameters

- **Setup clearance** Q200 (incremental): Distance between tool tip (at starting position) and workpiece surface. Input range 0 to 99999.9999
- **Thread depth** Q201 (incremental): Distance between workpiece surface and end of thread. Input range -99999.9999 to 99999.9999
- **Pitch** Q239
 Pitch of the thread. The algebraic sign differentiates between right-hand and left-hand threads:
 + = right-hand thread
 – = left-hand thread
 Input range -99.9999 to 99.9999
- **Workpiece surface coordinate** Q203 (absolute): Coordinate of the workpiece surface. Input range: -99999.9999 to 99999.9999
- **2nd setup clearance** Q204 (incremental): Coordinate in the spindle axis at which no collision between tool and workpiece (fixtures) can occur. Input range 0 to 99999.9999
- **Infeed depth for chip breaking** Q257 (incremental): Depth at which TNC carries out chip breaking. Input range 0 to 99999.9999
- **Retraction rate for chip breaking** Q256: The TNC multiplies the pitch Q239 by the programmed value and retracts the tool by the calculated value during chip breaking. If you enter Q256 = 0, the TNC retracts the tool completely from the hole (to the setup clearance) for chip breaking. Input range 0.1000 to 99999.9999
- **Angle for spindle orientation** Q336 (absolute): Angle at which the TNC positions the tool before machining the thread. This allows you to regroove the thread, if required. Input range -360.0000 to 360.0000.
- **RPM factor for retraction** Q403: Factor by which the TNC increases the spindle speed—and therefore also the retraction feed rate—when retracting from the drill hole. Input range 0.0001 to 10, rpm is increased at most to the maximum speed of the active gear range.

Retracting after a program interruption

If you interrupt program run during thread cutting with the machine stop button, the TNC will display the MANUAL OPERATION soft key. If you press the MANUAL OPERATION key, you can retract the tool under program control. Simply press the positive axis direction button of the active spindle axis.

Example: NC blocks

```
26 CYCL DEF 209 TAPPING W/ CHIP BRKG
  Q200=2  ;SETUP CLEARANCE
  Q201=-20 ;DEPTH
  Q239=+1  ;PITCH
  Q203=+25 ;SURFACE COORDINATE
  Q204=50  ;2ND SETUP CLEARANCE
  Q257=5   ;DEPTH FOR CHIP BRKNG
  Q256=+25 ;DIST. FOR CHIP BRKNG
  Q336=50  ;ANGLE OF SPINDLE
  Q403=1.5 ;RPM FACTOR
```
4.5 Fundamentals of Thread Milling

Prerequisites

- Your machine tool should feature internal spindle cooling (cooling lubricant at least 30 bars, compressed air supply at least 6 bars).
- Thread milling usually leads to distortions of the thread profile. To correct this effect, you need tool-specific compensation values which are given in the tool catalog or are available from the tool manufacturer. You program the compensation with the delta value for the tool radius DR in the TOOL CALL.
- The Cycles 262, 263, 264 and 267 can only be used with rightward rotating tools. For Cycle 265 you can use rightward and leftward rotating tools.
- The working direction is determined by the following input parameters: Algebraic sign Q239 (+ = right-hand thread / – = left-hand thread) and milling method Q351 (+1 = climb / –1 = up-cut). The table below illustrates the interrelation between the individual input parameters for rightward rotating tools.

<table>
<thead>
<tr>
<th>Internal thread</th>
<th>Pitch</th>
<th>Climb/Up-cut</th>
<th>Work direction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Right-handed</td>
<td>+</td>
<td>+1(RL)</td>
<td>Z+</td>
</tr>
<tr>
<td>Left-handed</td>
<td>–</td>
<td>–1(RR)</td>
<td>Z+</td>
</tr>
<tr>
<td>Right-handed</td>
<td>+</td>
<td>–1(RR)</td>
<td>Z–</td>
</tr>
<tr>
<td>Left-handed</td>
<td>–</td>
<td>+1(RL)</td>
<td>Z–</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>External thread</th>
<th>Pitch</th>
<th>Climb/Up-cut</th>
<th>Work direction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Right-handed</td>
<td>+</td>
<td>+1(RL)</td>
<td>Z–</td>
</tr>
<tr>
<td>Left-handed</td>
<td>–</td>
<td>–1(RR)</td>
<td>Z–</td>
</tr>
<tr>
<td>Right-handed</td>
<td>+</td>
<td>–1(RR)</td>
<td>Z+</td>
</tr>
<tr>
<td>Left-handed</td>
<td>–</td>
<td>+1(RL)</td>
<td>Z+</td>
</tr>
</tbody>
</table>

The TNC references the programmed feed rate during thread milling to the tool cutting edge. Since the TNC, however, always displays the feed rate relative to the path of the tool tip, the displayed value does not match the programmed value.

The machining direction of the thread changes if you execute a thread milling cycle in connection with Cycle 8 MIRRORING in only one axis.
Danger of collision!

Always program the same algebraic sign for the infeeds: Cycles comprise several sequences of operation that are independent of each other. The order of precedence according to which the work direction is determined is described with the individual cycles. For example, if you only want to repeat the countersinking process of a cycle, enter 0 for the thread depth. The work direction will then be determined from the countersinking depth.

Procedure in case of a tool break

If a tool break occurs during thread cutting, stop the program run, change to the Positioning with MDI operating mode and move the tool in a linear path to the hole center. You can then retract the tool in the infeed axis and replace it.
4.6 THREAD MILLING (Cycle 262, DIN/ISO: G262)

Cycle run

1. The TNC positions the tool in the spindle axis to the entered setup clearance above the workpiece surface at rapid traverse FMAX.

2. The tool moves at the programmed feed rate for pre-positioning to the starting plane. The starting plane is derived from the algebraic sign of the thread pitch, the milling method (climb or up-cut milling) and the number of threads per step.

3. The tool then approaches the thread diameter tangentially in a helical movement. Before the helical approach, a compensating motion of the tool axis is carried out in order to begin at the programmed starting plane for the thread path.

4. Depending on the setting of the parameter for the number of threads, the tool mills the thread in one helical movement, in several offset movements or in one continuous movement.

5. After this, the tool departs the contour tangentially and returns to the starting point in the working plane.

6. At the end of the cycle, the TNC retracts the tool at rapid traverse to the setup clearance, or—if programmed—to the 2nd setup clearance.
4.6 THREAD MILLING (Cycle 262, DIN/ISO: G262)

Please note while programming:

Program a positioning block for the starting point (hole center) in the working plane with radius compensation R_0.

The algebraic sign for the cycle parameter thread depth determines the working direction. If you program the thread $\text{DEPTH} = 0$, the cycle will not be executed.

The nominal thread diameter is approached in a semi-circle from the center. A pre-positioning movement to the side is carried out if the pitch of the tool diameter is four times smaller than the nominal thread diameter.

Note that the TNC makes a compensation movement in the tool axis before the approach movement. The length of the compensation movement is at most half of the thread pitch. Ensure sufficient space in the hole!

If you change the thread depth, the TNC automatically changes the starting point for the helical movement.

Danger of collision!

Use the machine parameter displayDepthErr to define whether, if a positive depth is entered, the TNC should output an error message (on) or not (off).

Keep in mind that the TNC reverses the calculation for pre-positioning when a positive depth is entered. This means that the tool moves at rapid traverse in the tool axis to setup clearance below the workpiece surface!
Cycle parameters

- **Nominal diameter** Q335: Nominal thread diameter. Input range 0 to 99999.9999
- **Thread pitch** Q239: Pitch of the thread. The algebraic sign differentiates between right-hand and left-hand threads:
 - + = right-hand thread
 - – = left-hand thread
 Input range -99.9999 to 99.9999
- **Thread depth** Q201: Distance between workpiece surface and root of thread. Input range -99999.9999 to 99999.9999
- **Threads per step** Q355: Number of thread revolutions by which the tool is moved:
 - 0 = one 360° helical line to the thread depth
 - 1 = continuous helical path over the entire length of the thread
 - >1 = several helical paths with approach and departure; between them, the TNC offsets the tool by Q355, multiplied by the pitch. Input range 0 to 99999
- **Feed rate for pre-positioning** Q253: Traversing speed of the tool in mm/min when plunging into the workpiece, or when retracting from the workpiece. Input range 0 to 99999.999; alternatively FMAX, FAUTO
- **Climb or up-cut** Q351: Type of milling operation with M3
 - +1 = climb milling
 - –1 = up-cut milling
- **Setup clearance** Q200: Distance between tool tip and workpiece surface. Input range 0 to 99999.9999
- **Workpiece surface coordinate** Q203 (absolute): Coordinate of the workpiece surface. Input range: -99999.9999 to 99999.9999
- **2nd setup clearance** Q204: Coordinate in the spindle axis at which no collision between tool and workpiece (fixtures) can occur. Input range 0 to 99999.9999
- **Feed rate for milling** Q207: Traversing speed of the tool during milling in mm/min. Input range: 0 to 99999.999, alternatively FAUTO.

Example: NC blocks

Q335 = 10 ;NOMINAL DIAMETER	Q239 = +1.5 ;PITCH	Q201 = -20 ;DEPTH OF THREAD
Q355 = 0 ;THREADS PER STEP	Q253 = 750 ;F PRE-POSITIONING	
Q351 = +1 ;CLIMB OR UP-CUT	Q200 = 2 ;SETUP CLEARANCE	
Q203 = +30 ;SURFACE COORDINATE	Q204 = 50 ;2ND SETUP CLEARANCE	
Q207 = 500 ;FEED RATE FOR MILLING		
4.7 THREAD MILLING/COUNTERSINKING
(Cycle 263, DIN/ISO: G263)

Cycle run

1 The TNC positions the tool in the spindle axis to the entered setup clearance above the workpiece surface at rapid traverse F_{MAX}.

Countersinking

2 The tool moves at the feed rate for pre-positioning to the countersinking depth minus the setup clearance, and then at the feed rate for countersinking to the countersinking depth.

3 If a safety clearance to the side has been entered, the TNC immediately positions the tool at the feed rate for pre-positioning to the countersinking depth.

4 Then, depending on the available space, the TNC makes a tangential approach to the core diameter, either tangentially from the center or with a pre-positioning move to the side, and follows a circular path.

Countersinking at front

5 The tool moves at the feed rate for pre-positioning to the countersinking depth at front.

6 The TNC positions the tool without compensation from the center on a semicircle to the offset at front, and then follows a circular path at the feed rate for countersinking.

7 The tool then moves in a semicircle to the hole center.

Thread milling

8 The TNC moves the tool at the programmed feed rate for pre-positioning to the starting plane for the thread. The starting plane is determined from the thread pitch and the type of milling (climb or up-cut).

9 Then the tool moves tangentially on a helical path to the thread diameter and mills the thread with a 360° helical motion.

10 After this, the tool departs the contour tangentially and returns to the starting point in the working plane.

11 At the end of the cycle, the TNC retracts the tool at rapid traverse to setup clearance, or—if programmed—to the 2nd setup clearance.
Please note while programming:

Before programming, note the following:

Program a positioning block for the starting point (hole center) in the working plane with radius compensation R_0.

The algebraic sign of the cycle parameters depth of thread, countersinking depth or sinking depth at front determines the working direction. The working direction is defined in the following sequence:
1st: Depth of thread
2nd: Countersinking depth
3rd: Depth at front

If you program a depth parameter to be 0, the TNC does not execute that step.

If you want to countersink with the front of the tool, define the countersinking depth as 0.

Program the thread depth as a value smaller than the countersinking depth by at least one-third the thread pitch.

Danger of collision!

Use the machine parameter `displayDepthErr` to define whether, if a positive depth is entered, the TNC should output an error message (on) or not (off).

Keep in mind that the TNC reverses the calculation for pre-positioning when a **positive depth is entered**. This means that the tool moves at rapid traverse in the tool axis to setup clearance **below** the workpiece surface!
Cycle parameters

- **Nominal diameter** Q335: Nominal thread diameter. Input range 0 to 99999.9999
- **Thread pitch** Q239: Pitch of the thread. The algebraic sign differentiates between right-hand and left-hand threads:
 - + = right-hand thread
 - – = left-hand thread
 Input range -99.9999 to 99.9999
- **Thread depth** Q201 (incremental): Distance between workpiece surface and root of thread. Input range –99999.9999 to 99999.9999
- **Countersinking depth** Q356 (incremental): Distance between tool point and the top surface of the workpiece. Input range –99999.9999 to 99999.9999
- **Feed rate for pre-positioning** Q253: Traversing speed of the tool in mm/min when plunging into the workpiece, or when retracting from the workpiece. Input range 0 to 99999.9999; alternatively FMAX, FAUTO
- **Climb or up-cut** Q351: Type of milling operation with M3
 - +1 = climb milling
 - –1 = up-cut milling
- **Setup clearance** Q200 (incremental): Distance between tool tip and workpiece surface. Input range 0 to 99999.9999
- **Setup clearance to the side** Q357 (incremental): Distance between tool tooth and the wall of the hole. Input range 0 to 99999.9999
- **Depth at front** Q358 (incremental): Distance between tool tip and the top surface of the workpiece for countersinking at the front of the tool. Input range –99999.9999 to 99999.9999
- **Countersinking offset at front** Q359 (incremental): Distance by which the TNC moves the tool center away from the hole center. Input range 0 to 99999.9999
4.7 THREAD MILLING/COUNTERSINKING (Cycle 263, DIN/ISO: G263)

- **Workpiece surface coordinate** Q203 (absolute): Coordinate of the workpiece surface. Input range: -99999.9999 to 99999.9999

- **2nd setup clearance** Q204 (incremental): Coordinate in the spindle axis at which no collision between tool and workpiece (fixtures) can occur. Input range 0 to 99999.9999

- **Feed rate for countersinking** Q254: Traversing speed of the tool during countersinking in mm/min. Input range: 0 to 99999.999, alternatively FAUTO, FU.

- **Feed rate for milling** Q207: Traversing speed of the tool during milling in mm/min. Input range: 0 to 99999.9999, alternatively FAUTO.

Example: NC blocks

```
25 CYCL DEF 263 THREAD MILLNG/CNTRSNKG
Q335=10 ;NOMINAL DIAMETER
Q239=+1.5 ;PITCH
Q201=-16 ;DEPTH OF THREAD
Q356=-20 ;COUNTERSINKING DEPTH
Q253=750 ;F PRE-POSITIONING
Q351=+1 ;CLIMB OR UP-CUT
Q200=2 ;SETUP CLEARANCE
Q357=0.2 ;CLEARANCE TO SIDE
Q358=+0 ;DEPTH AT FRONT
Q359=+0 ;OFFSET AT FRONT
Q203=+30 ;SURFACE COORDINATE
Q204=50 ;2ND SETUP CLEARANCE
Q254=150 ;F COUNTERSINKING
Q207=500 ;FEED RATE FOR MILLING
```
4.8 THREAD DRILLING/MILLING
(Cycle 264, DIN/ISO: G264)

Cycle run

1. The TNC positions the tool in the spindle axis to the entered setup clearance above the workpiece surface at rapid traverse \(F_{\text{MAX}} \).

Drilling

2. The tool drills to the first plunging depth at the programmed feed rate for plunging.
3. If you have programmed chip breaking, the tool then retracts by the entered retraction value. If you are working without chip breaking, the tool is moved at rapid traverse to the setup clearance, and then at \(F_{\text{MAX}} \) to the entered starting position above the first plunging depth.
4. The tool then advances with another infeed at the programmed feed rate.
5. The TNC repeats this process (2 to 4) until the programmed total hole depth is reached.

Countersinking at front

6. The tool moves at the feed rate for pre-positioning to the countersinking depth at front.
7. The TNC positions the tool without compensation from the center on a semicircle to the offset at front, and then follows a circular path at the feed rate for countersinking.
8. The tool then moves in a semicircle to the hole center.

Thread milling

9. The TNC moves the tool at the programmed feed rate for pre-positioning to the starting plane for the thread. The starting plane is determined from the thread pitch and the type of milling (climb or up-cut).
10. Then the tool moves tangentially on a helical path to the thread diameter and mills the thread with a 360° helical motion.
11. After this, the tool departs the contour tangentially and returns to the starting point in the working plane.
12. At the end of the cycle, the TNC retracts the tool at rapid traverse to setup clearance, or—if programmed—to the 2nd setup clearance.
Please note while programming:

- Program a positioning block for the starting point (hole center) in the working plane with radius compensation R_0.

- The algebraic sign of the cycle parameters depth of thread, countersinking depth or sinking depth at front determines the working direction. The working direction is defined in the following sequence:
 1st: Depth of thread
 2nd: Total hole depth
 3rd: Depth at front

- If you program a depth parameter to be 0, the TNC does not execute that step.

- Program the thread depth as a value smaller than the total hole depth by at least one-third the thread pitch.

Danger of collision!

- Use the machine parameter `displayDepthErr` to define whether, if a positive depth is entered, the TNC should output an error message (on) or not (off).

- Keep in mind that the TNC reverses the calculation for pre-positioning when a **positive depth is entered**. This means that the tool moves at rapid traverse in the tool axis to setup clearance **below** the workpiece surface!
Cycle parameters

- **Nominal diameter** Q335: Nominal thread diameter. Input range 0 to 99999.9999
- **Thread pitch** Q239: Pitch of the thread. The algebraic sign differentiates between right-hand and left-hand threads:
 - + = right-hand thread
 - – = left-hand thread
 Input range -99.9999 to 99.9999
- **Thread depth** Q201 (incremental): Distance between workpiece surface and root of thread. Input range -99999.9999 to 99999.9999
- **Total hole depth** Q356 (incremental): Distance between workpiece surface and bottom of hole. Input range -99999.9999 to 99999.9999
- **Feed rate for pre-positioning** Q253: Traversing speed of the tool in mm/min when plunging into the workpiece, or when retracting from the workpiece. Input range 0 to 99999.9999; alternatively FMAX, FAUTO
- **Climb or up-cut** Q351: Type of milling operation with M3
 - +1 = climb milling
 - –1 = up-cut milling
- **Plunging depth** Q202 (incremental): Infeed per cut. The depth does not have to be a multiple of the plunging depth. Input range 0 to 99999.9999. The TNC will go to depth in one movement if:
 - the plunging depth is equal to the depth
 - the plunging depth is greater than the depth
- **Upper advanced stop distance** Q258 (incremental): Setup clearance for rapid traverse positioning when the TNC moves the tool again to the current plunging depth after retraction from the hole. Input range 0 to 99999.9999
- **Infeed depth for chip breaking** Q257 (incremental): Depth at which TNC carries out chip breaking. No chip breaking if 0 is entered. Input range 0 to 99999.9999
- **Retraction rate for chip breaking** Q256 (incremental): Value by which the TNC retracts the tool during chip breaking. Input range 0.1000 to 99999.9999
- **Depth at front** Q358 (incremental): Distance between tool tip and the top surface of the workpiece for countersinking at the front of the tool. Input range -99999.9999 to 99999.9999

- **Countersinking offset at front** Q359 (incremental): Distance by which the TNC moves the tool center away from the hole center. Input range 0 to 99999.9999

- **Setup clearance** Q200 (incremental): Distance between tool tip and workpiece surface. Input range 0 to 99999.9999

- **Workpiece surface coordinate** Q203 (absolute): Coordinate of the workpiece surface. Input range: -99999.9999 to 99999.9999

- **2nd setup clearance** Q204 (incremental): Coordinate in the spindle axis at which no collision between tool and workpiece (fixtures) can occur. Input range 0 to 99999.9999

- **Feed rate for plunging** Q206: Traversing speed of the tool during drilling in mm/min. Input range: 0 to 99999.9999; alternatively FAUTO, FU.

- **Feed rate for milling** Q207: Traversing speed of the tool during milling in mm/min. Input range: 0 to 99999.9999, alternatively FAUTO.

Example: NC blocks

```
25 CYCL DEF 264 THREAD DRILLNG/MILLNG
Q335=10 ;NOMINAL DIAMETER
Q239=+1.5 ;PITCH
Q201=-16 ;DEPTH OF THREAD
Q356=-20 ;TOTAL HOLE DEPTH
Q253=750 ;F PRE-POSITIONING
Q351=+1 ;CLIMB OR UP-CUT
Q202=5 ;PLUNGING DEPTH
Q258=0.2 ;ADVANCED STOP DISTANCE
Q257=5 ;DEPTH FOR CHIP BRKNG
Q256=0.2 ;DIST. FOR CHIP BRKNG
Q358=+0 ;DEPTH AT FRONT
Q359=+0 ;OFFSET AT FRONT
Q200=2 ;SETUP CLEARANCE
Q203=+30 ;SURFACE COORDINATE
Q204=50 ;2ND SETUP CLEARANCE
Q206=150 ;FEED RATE FOR PLNGNG
Q207=500 ;FEED RATE FOR MILLING
```
4.9 HELICAL THREAD DRILLING/MILLING (Cycle 265, DIN/ISO: G265)

Cycle run

1. The TNC positions the tool in the spindle axis to the entered setup clearance above the workpiece surface at rapid traverse F_{MAX}.

Countersinking at front

2. If countersinking is before thread milling, the tool moves at the feed rate for countersinking to the sinking depth at front. If countersinking occurs after thread milling, the TNC moves the tool to the countersinking depth at the feed rate for pre-positioning.

3. The TNC positions the tool without compensation from the center on a semicircle to the offset at front, and then follows a circular path at the feed rate for countersinking.

4. The tool then moves in a semicircle to the hole center.

Thread milling

5. The tool moves at the programmed feed rate for pre-positioning to the starting plane for the thread.

6. The tool then approaches the thread diameter tangentially in a helical movement.

7. The tool moves on a continuous helical downward path until it reaches the thread depth.

8. After this, the tool departs the contour tangentially and returns to the starting point in the working plane.

9. At the end of the cycle, the TNC retracts the tool at rapid traverse to setup clearance, or—if programmed—to the 2nd setup clearance.
Please note while programming:

Program a positioning block for the starting point (hole center) in the working plane with radius compensation R0.

The algebraic sign of the cycle parameters depth of thread or sinking depth at front determines the working direction. The working direction is defined in the following sequence:
1st: Depth of thread
2nd: Depth at front

If you program a depth parameter to be 0, the TNC does not execute that step.

If you change the thread depth, the TNC automatically changes the starting point for the helical movement.

The type of milling (up-cut/climb) is determined by the thread (right-hand/left-hand) and the direction of tool rotation, since it is only possible to work in the direction of the tool.

Danger of collision!

Use the machine parameter displayDepthErr to define whether, if a positive depth is entered, the TNC should output an error message (on) or not (off).

Keep in mind that the TNC reverses the calculation for pre-positioning when a **positive depth is entered**. This means that the tool moves at rapid traverse in the tool axis to setup clearance **below** the workpiece surface!
Cycle parameters

- **Nominal diameter** Q335: Nominal thread diameter. Input range 0 to 99999.9999

- **Thread pitch** Q239: Pitch of the thread. The algebraic sign differentiates between right-hand and left-hand threads:
 + = right-hand thread
 – = left-hand thread
 Input range -99.9999 to 99.9999

- **Thread depth** Q201 (incremental): Distance between workpiece surface and root of thread. Input range –99999.9999 to 99999.9999

- **Feed rate for pre-positioning** Q253: Traversing speed of the tool in mm/min when plunging into the workpiece, or when retracting from the workpiece. Input range 0 to 99999.9999; alternatively FMAX, FAUTO

- **Depth at front** Q358 (incremental): Distance between tool tip and the top surface of the workpiece for countersinking at the front of the tool. Input range –99999.9999 to 99999.9999

- **Countersinking offset at front** Q359 (incremental): Distance by which the TNC moves the tool center away from the hole center. Input range 0 to 99999.9999

- **Countersink** Q360: Execution of the chamfer
 0 = before thread machining
 1 = after thread machining

- **Setup clearance** Q200 (incremental): Distance between tool tip and workpiece surface. Input range 0 to 99999.9999
- **Workpiece surface coordinate** Q203 (absolute): Coordinate of the workpiece surface. Input range: -99999.9999 to 99999.9999

- **2nd setup clearance** Q204 (incremental): Coordinate in the spindle axis at which no collision between tool and workpiece (fixtures) can occur. Input range 0 to 99999.9999

- **Feed rate for countersinking** Q254: Traversing speed of the tool during countersinking in mm/min. Input range: 0 to 99999.9999, alternatively FAUTO, FU.

- **Feed rate for milling** Q207: Traversing speed of the tool during milling in mm/min. Input range: 0 to 99999.9999, alternatively FAUTO.

Example: NC blocks

```plaintext
25 CYCL DEF 265 HEL. THREAD DRLG/MLG
Q335=10 ;NOMINAL DIAMETER
Q239=+1.5 ;PITCH
Q201=-16 ;DEPTH OF THREAD
Q253=750 ;F PRE-POSITIONING
Q358=+0 ;DEPTH AT FRONT
Q359=+0 ;OFFSET AT FRONT
Q360=0 ;COUNTERSINK
Q200=2 ;SETUP CLEARANCE
Q203=+30 ;SURFACE COORDINATE
Q204=50 ;2ND SETUP CLEARANCE
Q254=150 ;F COUNTERSINKING
Q207=500 ;FEED RATE FOR MILLING
```
4.10 OUTSIDE THREAD MILLING
(Cycle 267, DIN/ISO: G267)

Cycle run

1. The TNC positions the tool in the spindle axis to the entered setup clearance above the workpiece surface at rapid traverse \(F_{\text{MAX}} \).

Countersinking at front

2. The TNC moves in the reference axis of the working plane from the center of the stud to the starting point for countersinking at front. The position of the starting point is determined by the thread radius, tool radius and pitch.

3. The tool moves at the feed rate for pre-positioning to the countersinking depth at front.

4. The TNC positions the tool without compensation from the center on a semicircle to the offset at front, and then follows a circular path at the feed rate for countersinking.

5. The tool then moves on a semicircle to the starting point.

Thread milling

6. The TNC positions the tool to the starting point if there has been no previous countersinking at front. Starting point for thread milling = starting point for countersinking at front.

7. The tool moves at the programmed feed rate for pre-positioning to the starting plane. The starting plane is derived from the algebraic sign of the thread pitch, the milling method (climb or up-cut milling) and the number of threads per step.

8. The tool then approaches the thread diameter tangentially in a helical movement.

9. Depending on the setting of the parameter for the number of threads, the tool mills the thread in one helical movement, in several offset movements or in one continuous movement.

10. After this, the tool departs the contour tangentially and returns to the starting point in the working plane.

11. At the end of the cycle, the TNC retracts the tool at rapid traverse to the setup clearance, or—if programmed—to the 2nd setup clearance.
Please note while programming:

Program a positioning block for the starting point (stud center) in the working plane with radius compensation R_0. The offset required before countersinking at the front should be determined ahead of time. You must enter the value from the center of the stud to the center of the tool (uncorrected value).

The algebraic sign of the cycle parameters depth of thread or sinking depth at front determines the working direction. The working direction is defined in the following sequence:
1st: Depth of thread
2nd: Depth at front

If you program a depth parameter to be 0, the TNC does not execute that step.

The algebraic sign for the cycle parameter thread depth determines the working direction.

Danger of collision!

Use the machine parameter displayDepthErr to define whether, if a positive depth is entered, the TNC should output an error message (on) or not (off).

Keep in mind that the TNC reverses the calculation for pre-positioning when a positive depth is entered. This means that the tool moves at rapid traverse in the tool axis to setup clearance below the workpiece surface!
4.10 OUTSIDE THREAD MILLING (Cycle 267, DIN/ISO: G267)

Cycle parameters

- **Nominal diameter** Q335: Nominal thread diameter.
 Input range 0 to 99999.9999

- **Thread pitch** Q239: Pitch of the thread. The algebraic sign differentiates between right-hand and left-hand threads:
 + = right-hand thread
 – = left-hand thread
 Input range -99.9999 to 99.9999

- **Thread depth** Q201 (incremental): Distance between workpiece surface and root of thread.

- **Threads per step** Q355: Number of thread revolutions by which the tool is moved:
 0 = one helical line to the thread depth
 1 = continuous helical path over the entire length of the thread
 >1 = several helical paths with approach and departure; between them, the TNC offsets the tool by Q355, multiplied by the pitch. Input range 0 to 99999

- **Feed rate for pre-positioning** Q253: Traversing speed of the tool in mm/min when plunging into the workpiece, or when retracting from the workpiece.
 Input range 0 to 99999.999; alternatively FMAX, FAUTO

- **Climb or up-cut** Q351: Type of milling operation with M3
 +1 = climb milling
 –1 = up-cut milling

Images and Diagrams:
- Illustrations showing the tool positioning and thread fabrication process.
- Diagrams depicting the thread milling cycle with different parameters.

Notes:
- This cycle is designed for machining external threads on cylindrical parts.
- Parameters are critical for achieving precise thread dimensions and orientations.
- Proper planning and execution are necessary to avoid thread errors and tool wear.

References:
- DIN/ISO G267 standard for outside thread milling.
- Technical specifications for tooling and machining parameters.
Setup clearance Q200 (incremental): Distance between tool tip and workpiece surface. Input range 0 to 99999.9999

Depth at front Q358 (incremental): Distance between tool tip and the top surface of the workpiece for countersinking at the front of the tool. Input range –99999.9999 to 99999.9999

Countersinking offset at front Q359 (incremental): Distance by which the TNC moves the tool center away from the stud center. Input range 0 to 99999.9999

Workpiece surface coordinate Q203 (absolute): Coordinate of the workpiece surface. Input range: -99999.9999 to 99999.9999

2nd setup clearance Q204 (incremental): Coordinate in the spindle axis at which no collision between tool and workpiece (fixtures) can occur. Input range 0 to 99999.9999

Feed rate for countersinking Q254: Traversing speed of the tool during countersinking in mm/min. Input range: 0 to 99999.9999, alternatively FAUTO, FU.

Feed rate for milling Q207: Traversing speed of the tool during milling in mm/min. Input range: 0 to 99999.9999, alternatively FAUTO.

Example: NC blocks

```
25 CYCL DEF 267 OUTSIDE THREAD MLLNG
Q335=10 ;NOMINAL DIAMETER
Q239=+1.5 ;PITCH
Q201=-20 ;DEPTH OF THREAD
Q355=0 ;THREADS PER STEP
Q253=750 ;F PRE-POSITIONING
Q351=+1 ;CLIMB OR UP-CUT
Q200=2 ;SETUP CLEARANCE
Q358=+0 ;DEPTH AT FRONT
Q359=+0 ;OFFSET AT FRONT
Q203=+30 ;SURFACE COORDINATE
Q204=50 ;2ND SETUP CLEARANCE
Q254=150 ;F COUNTERSINKING
Q207=500 ;FEED RATE FOR MILLING
```
4.11 Programming Examples

Example: Thread milling

The drill hole coordinates are stored in the point table TAB1.PNT and are called by the TNC with CYCL CALL PAT.

The tool radii are selected so that all work steps can be seen in the test graphics.

Program sequence
- Centering
- Drilling
- Tapping

```
0 BEGIN PGM 1 MM
1 BLK FORM 0.1 Z X+0 Y+0 Z-20  
Definition of workpiece blank
2 BLK FORM 0.2 X+100 Y+100 Y+0
3 TOOL CALL 1 Z S5000
4 L Z+10 R0 F5000
The TNC positions to the clearance height after every cycle
5 SEL PATTERN "TAB1"
6 CYCL DEF 200 DRILLING
Q200=2 ;SETUP CLEARANCE
Q201=-2 ;DEPTH
Q206=150 ;FEED RATE FOR PLNGN
Q202=2 ;PLUNGING DEPTH
Q210=0 ;DWELL TIME AT TOP
Q203=+0 ;SURFACE COORDINATE
Q204=0 ;2ND SET-UP CLEARANCE
Q211=0.2 ;DWELL TIME AT DEPTH
0 must be entered here, effective as defined in point table
0 must be entered here, effective as defined in point table
```
4.11 Programming Examples

<table>
<thead>
<tr>
<th>Line</th>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>CYCL CALL PAT F5000 M3</td>
<td>Cycle call in connection with point table TAB1.PNT</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Feed rate between points: 5000 mm/min</td>
</tr>
<tr>
<td>11</td>
<td>L Z+100 R0 FMAX M6</td>
<td>Retract the tool, change the tool</td>
</tr>
<tr>
<td>12</td>
<td>TOOL CALL Z Z S5000</td>
<td>Call tool: drill</td>
</tr>
<tr>
<td>13</td>
<td>L Z+10 R0 F5000</td>
<td>Move tool to clearance height (enter a value for F)</td>
</tr>
<tr>
<td>14</td>
<td>CYCL DEF 200 DRILLING</td>
<td>Cycle definition: drilling</td>
</tr>
<tr>
<td></td>
<td>Q200=2 ;SETUP CLEARANCE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Q201=-25 ;DEPTH</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Q206=150 ;FEED RATE FOR PECKING</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Q202=5 ;PLUNGING DEPTH</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Q210=0 ;Dwell time at top</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Q203=+0 ;SURFACE COORDINATE</td>
<td>0 must be entered here, effective as defined in point table</td>
</tr>
<tr>
<td></td>
<td>Q204=0 ;2ND SETUP CLEARANCE</td>
<td>0 must be entered here, effective as defined in point table</td>
</tr>
<tr>
<td></td>
<td>Q211=0.2 ;Dwell time at depth</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>CYCL CALL PAT F5000 M3</td>
<td>Cycle call in connection with point table TAB1.PNT</td>
</tr>
<tr>
<td>16</td>
<td>L Z+100 R0 FMAX M6</td>
<td>Retract the tool, change the tool</td>
</tr>
<tr>
<td>17</td>
<td>TOOL CALL 3 Z S200</td>
<td>Tool call for tap</td>
</tr>
<tr>
<td>18</td>
<td>L Z+50 R0 FMAX</td>
<td>Move tool to clearance height</td>
</tr>
<tr>
<td>19</td>
<td>CYCL DEF 206 TAPPING NEW</td>
<td>Cycle definition for tapping</td>
</tr>
<tr>
<td></td>
<td>Q200=2 ;SETUP CLEARANCE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Q201=-25 ;DEPTH OF THREAD</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Q206=150 ;FEED RATE FOR PECKING</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Q211=0 ;Dwell time at depth</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Q203=+0 ;SURFACE COORDINATE</td>
<td>0 must be entered here, effective as defined in point table</td>
</tr>
<tr>
<td></td>
<td>Q204=0 ;2ND SETUP CLEARANCE</td>
<td>0 must be entered here, effective as defined in point table</td>
</tr>
<tr>
<td>20</td>
<td>CYCL CALL PAT F5000 M3</td>
<td>Cycle call in connection with point table TAB1.PNT</td>
</tr>
<tr>
<td>21</td>
<td>L Z+100 R0 FMAX M2</td>
<td>Retract in the tool axis, end program</td>
</tr>
<tr>
<td>22</td>
<td>END PGM 1 MM</td>
<td></td>
</tr>
</tbody>
</table>
4.11 Programming Examples

Point table TAB1.PNT

<table>
<thead>
<tr>
<th>TAB1.PNTMM</th>
</tr>
</thead>
<tbody>
<tr>
<td>NRXYZ</td>
</tr>
<tr>
<td>0+10+10+0</td>
</tr>
<tr>
<td>1+40+30+0</td>
</tr>
<tr>
<td>2+90+10+0</td>
</tr>
<tr>
<td>3+80+30+0</td>
</tr>
<tr>
<td>4+80+65+0</td>
</tr>
<tr>
<td>5+90+90+0</td>
</tr>
<tr>
<td>6+10+90+0</td>
</tr>
<tr>
<td>7+20+55+0</td>
</tr>
<tr>
<td>[END]</td>
</tr>
</tbody>
</table>
Fixed Cycles: Pocket Milling / Stud Milling / Slot Milling
5.1 Fundamentals

Overview

The TNC offers 6 cycles for machining pockets, studs and slots:

<table>
<thead>
<tr>
<th>Cycle</th>
<th>Soft key</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>251 RECTANGULAR POCKET</td>
<td>251</td>
<td>Page 127</td>
</tr>
<tr>
<td>Roughing/finishing cycle with selection of machining operation and helical plunging</td>
<td></td>
<td></td>
</tr>
<tr>
<td>252 CIRCULAR POCKET</td>
<td>252</td>
<td>Page 132</td>
</tr>
<tr>
<td>Roughing/finishing cycle with selection of machining operation and helical plunging</td>
<td></td>
<td></td>
</tr>
<tr>
<td>253 SLOT MILLING</td>
<td>253</td>
<td>Page 136</td>
</tr>
<tr>
<td>Roughing/finishing cycle with selection of machining operation and reciprocal plunging</td>
<td></td>
<td></td>
</tr>
<tr>
<td>254 CIRCULAR SLOT</td>
<td>254</td>
<td>Page 141</td>
</tr>
<tr>
<td>Roughing/finishing cycle with selection of machining operation and reciprocal plunging</td>
<td></td>
<td></td>
</tr>
<tr>
<td>256 RECTANGULAR STUD</td>
<td>256</td>
<td>Page 146</td>
</tr>
<tr>
<td>Roughing/finishing cycle with stepover, if multiple passes are required</td>
<td></td>
<td></td>
</tr>
<tr>
<td>257 CIRCULAR STUD</td>
<td>257</td>
<td>Page 150</td>
</tr>
<tr>
<td>Roughing/finishing cycle with stepover, if multiple passes are required</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
5.2 RECTANGULAR POCKET
(Cycle 251, DIN/ISO: G251)

Cycle run

Use Cycle 251 RECTANGULAR POCKET to completely machine rectangular pockets. Depending on the cycle parameters, the following machining alternatives are available:

- Complete machining: Roughing, floor finishing, side finishing
- Only roughing
- Only floor finishing and side finishing
- Only floor finishing
- Only side finishing

Roughing

1. The tool plunges into the workpiece at the pocket center and advances to the first plunging depth. Specify the plunging strategy with Parameter Q366.

2. The TNC roughs out the pocket from the inside out, taking the overlap factor (Parameter Q370) and the finishing allowances (parameters Q368 and Q369) into account.

3. At the end of the roughing operation, the TNC moves the tool tangentially away from the pocket wall, then moves by the setup clearance above the current pecking depth and returns from there at rapid traverse to the pocket center.

4. This process is repeated until the programmed pocket depth is reached.

Finishing

5. Inasmuch as finishing allowances are defined, the TNC then finishes the pocket walls, in multiple infeeds if so specified. The pocket wall is approached tangentially.

6. Then the TNC finishes the floor of the pocket from the inside out. The pocket floor is approached tangentially.
5.2 RECTANGULAR POCKET (Cycle 251, DIN/ISO: G251)

Please note while programming:

With an inactive tool table you must always plunge vertically (Q366=0) because you cannot define a plunging angle.

Pre-position the tool in the machining plane to the starting position with radius compensation R0. Note Parameter Q367 (pocket position).

The TNC automatically pre-positions the tool in the tool axis. Note Parameter Q204 (2nd setup clearance).

The algebraic sign for the cycle parameter DEPTH determines the working direction. If you program DEPTH = 0, the cycle will not be executed.

At the end of the cycle, the TNC returns the tool to the starting position.

At the end of a roughing operation, the TNC positions the tool back to the pocket center at rapid traverse. The tool is above the current pecking depth by the setup clearance. Enter the setup clearance so that the tool cannot jam because of chips.

Danger of collision!

Use the machine parameter displayDepthErr to define whether, if a positive depth is entered, the TNC should output an error message (on) or not (off).

Keep in mind that the TNC reverses the calculation for pre-positioning when a positive depth is entered. This means that the tool moves at rapid traverse in the tool axis to setup clearance below the workpiece surface!

If you call the cycle with machining operation 2 (only finishing), then the TNC positions the tool in the center of the pocket at rapid traverse to the first plunging depth.
Cycle parameters

- **Machining operation (0/1/2) Q215**: Define the machining operation:
 0: Roughing and finishing
 1: Only roughing
 2: Only finishing
 Side finishing and floor finishing are only executed if the finishing allowances (Q368, Q369) have been defined.

- **First side length Q218**: Pocket length, parallel to the reference axis of the working plane. Input range 0 to 99999.9999

- **2nd side length Q219**: Pocket length, parallel to the minor axis of the working plane. Input range 0 to 99999.9999

- **Corner radius Q220**: Radius of the pocket corner. If you have entered 0 here, the TNC assumes that the corner radius is equal to the tool radius. Input range 0 to 99999.9999

- **Finishing allowance for side Q368**: Finishing allowance in the working plane. Input range 0 to 99999.9999

- **Angle of rotation Q224**: Angle by which the entire pocket is rotated. The center of rotation is the position at which the tool is located when the cycle is called. Input range -360.0000 to 360.0000

- **Pocket position Q367**: Position of the pocket in reference to the position of the tool when the cycle is called:
 0: Tool position = Center of pocket
 1: Tool position = Lower left corner
 2: Tool position = Lower right corner
 3: Tool position = Upper right corner
 4: Tool position = Upper left corner

- **Feed rate for milling Q207**: Traversing speed of the tool during milling in mm/min. Input range: 0 to 99999.999; alternatively FAUTO, FU, FZ

- **Climb or up-cut Q351**: Type of milling operation with M3:
 +1 = climb milling
 -1 = up-cut milling
5.2 RECTANGULAR POCKET (Cycle 251, DIN/ISO: G251)

- **Depth** Q201 (incremental): Distance between workpiece surface and bottom of pocket. Input range: -99999.9999 to 99999.9999
- **Plunging depth** Q202 (incremental): Infeed per cut. Enter a value greater than 0. Input range 0 to 99999.9999
- **Finishing allowance for floor** Q369 (incremental): Finishing allowance in the tool axis. Input range 0 to 99999.9999
- **Feed rate for plunging** Q206: Traversing speed of the tool while moving to depth in mm/min. Input range: 0 to 99999.9999; alternatively FAUTO, FU, FZ
- **Infeed for finishing** Q338 (incremental): Infeed per cut. Q338=0: Finishing in one infeed. Input range 0 to 99999.9999
- **Setup clearance** Q200 (incremental): Distance between tool tip and workpiece surface. Input range 0 to 99999.9999
- **Workpiece surface coordinate** Q203 (absolute): Absolute coordinate of the workpiece surface. Input range –99999.9999 to 99999.9999
- **2nd setup clearance** Q204 (incremental): Coordinate in the spindle axis at which no collision between tool and workpiece (fixtures) can occur. Input range 0 to 99999.9999
Path overlap factor Q370: Q370 x tool radius = stepover factor k. Input range 0.1 to 1.9999.

Plunging strategy Q366: Type of plunging strategy:
- 0 = vertical plunging. The TNC plunges perpendicularly, regardless of the plunging angle ANGLE defined in the tool table.
- 1 = helical plunging. In the tool table, the plunging angle ANGLE for the active tool must be defined as not equal to 0. The TNC will otherwise display an error message.
- 2 = reciprocating plunge. In the tool table, the plunging angle ANGLE for the active tool must be defined as not equal to 0. Otherwise, the TNC generates an error message. The reciprocation length depends on the plunging angle. As a minimum value the TNC uses twice the tool diameter.

Feed rate for finishing Q385: Traversing speed of the tool during side and floor finishing in mm/min. Input range: 0 to 99999.9999; alternatively FAUTO, FU, FZ.

Example: NC blocks

```plaintext
8 CYCL DEF 251 RECTANGULAR POCKET
Q215=0  ;MACHINING OPERATION
Q218=80 ;FIRST SIDE LENGTH
Q219=60 ;2ND SIDE LENGTH
Q220=5  ;CORNER RADIUS
Q368=0.2 ;ALLOWANCE FOR SIDE
Q224=+0 ;ANGLE OF ROTATION
Q367=0  ;POCKET POSITION
Q207=500 ;FEED RATE FOR MILLING
Q351=+1 ;CLimb OR UP-CUT
Q201=-20 ;DEPTH
Q202=5  ;PLUNGING DEPTH
Q369=0.1 ;ALLOWANCE FOR FLOOR
Q206=150 ;FEED RATE FOR PLUNGING
Q338=5  ;INFEED FOR FINISHING
Q200=2  ;SETUP CLEARANCE
Q203=+0 ;SURFACE COORDINATE
Q204=50  ;2ND SETUP CLEARANCE
Q370=1  ;TOOL PATH OVERLAP
Q366=1  ;PLUNGE
Q385=500 ;FEED RATE FOR FINISHING
9 L X+50 Y+50 R0 FMAX M3 M99
```
5.3 CIRCULAR POCKET (Cycle 252, DIN/ISO: G252)

Cycle run

Use Cycle 252 CIRCULAR POCKET to completely machine circular pockets. Depending on the cycle parameters, the following machining alternatives are available:

- Complete machining: Roughing, floor finishing, side finishing
- Only roughing
- Only floor finishing and side finishing
- Only floor finishing
- Only side finishing

Roughing

1. The tool plunges into the workpiece at the pocket center and advances to the first plunging depth. Specify the plunging strategy with Parameter Q366.
2. The TNC roughs out the pocket from the inside out, taking the overlap factor (Parameter Q370) and the finishing allowances (parameters Q368 and Q369) into account.
3. At the end of the roughing operation, the TNC moves the tool tangentially away from the pocket wall, then moves by the setup clearance above the current pecking depth and returns from there at rapid traverse to the pocket center.
4. This process is repeated until the programmed pocket depth is reached.

Finishing

5. Inasmuch as finishing allowances are defined, the TNC then finishes the pocket walls, in multiple infeeds if so specified. The pocket wall is approached tangentially.
6. Then the TNC finishes the floor of the pocket from the inside out. The pocket floor is approached tangentially.
Please note while programming:

With an inactive tool table you must always plunge vertically (Q366=0) because you cannot define a plunging angle.

Pre-position the tool in the machining plane to the starting position (circle center) with radius compensation R0.

The TNC automatically pre-positions the tool in the tool axis. Note Parameter Q204 (2nd setup clearance).

The algebraic sign for the cycle parameter DEPTH determines the working direction. If you program DEPTH = 0, the cycle will not be executed.

At the end of the cycle, the TNC returns the tool to the starting position.

At the end of a roughing operation, the TNC positions the tool back to the pocket center at rapid traverse. The tool is above the current pecking depth by the setup clearance. Enter the setup clearance so that the tool cannot jam because of chips.

Danger of collision!

Use the machine parameter displayDepthErr to define whether, if a positive depth is entered, the TNC should output an error message (on) or not (off).

Keep in mind that the TNC reverses the calculation for pre-positioning when a positive depth is entered. This means that the tool moves at rapid traverse in the tool axis to setup clearance below the workpiece surface!

If you call the cycle with machining operation 2 (only finishing), then the TNC positions the tool in the center of the pocket at rapid traverse to the first plunging depth.
Cycle parameters

- **Machining operation (0/1/2)** Q215: Define the machining operation:
 - 0: Roughing and finishing
 - 1: Only roughing
 - 2: Only finishing
 Side finishing and floor finishing are only executed if the finishing allowances (Q368, Q369) have been defined.

- **Circle diameter** Q223: Diameter of the finished pocket. Input range 0 to 99999.9999

- **Finishing allowance for side** Q368 (incremental): Finishing allowance in the working plane. Input range 0 to 99999.9999

- **Feed rate for milling** Q207: Traversing speed of the tool during milling in mm/min. Input range: 0 to 99999.9999; alternatively FAUTO, FU, FZ

- **Climb or up-cut** Q351: Type of milling operation with M3:
 - +1 = climb milling
 - –1 = up-cut milling

- **Depth** Q201 (incremental): Distance between workpiece surface and bottom of pocket. Input range –99999.9999 to 99999.9999

- **Plunging depth** Q202 (incremental): Infeed per cut. Enter a value greater than 0. Input range 0 to 99999.9999

- **Finishing allowance for floor** Q369 (incremental): Finishing allowance in the tool axis. Input range 0 to 99999.9999

- **Feed rate for plunging** Q206: Traversing speed of the tool while moving to depth in mm/min. Input range: 0 to 99999.9999; alternatively FAUTO, FU, FZ

- **Infeed for finishing** Q338 (incremental): Infeed per cut. Q338=0: Finishing in one infeed. Input range 0 to 99999.9999
Setup clearance Q200 (incremental): Distance between tool tip and workpiece surface. Input range 0 to 99999.9999

Workpiece surface coordinate Q203 (absolute): Absolute coordinate of the workpiece surface. Input range –99999.9999 to 99999.9999

2nd setup clearance Q204 (incremental): Coordinate in the spindle axis at which no collision between tool and workpiece (fixtures) can occur. Input range 0 to 99999.9999

Path overlap factor Q370: Q370 x tool radius = stepover factor k. Input range 0.1 to 1.9999.

Plunging strategy Q366: Type of plunging strategy:

- 0 = vertical plunging. The TNC plunges perpendicularly, regardless of the plunging angle ANGLE defined in the tool table.
- 1 = helical plunging. In the tool table, the plunging angle ANGLE for the active tool must be defined as not equal to 0. The TNC will otherwise display an error message.

Feed rate for finishing Q385: Traversing speed of the tool during side and floor finishing in mm/min. Input range: 0 to 99999.999; alternatively FAUTO, FU, FZ

Example: NC blocks

8 CYCL DEF 252 CIRCULAR POCKET
Q215=0 ;MACHINING OPERATION
Q223=60 ;CIRCLE DIAMETER
Q368=0.2 ;ALLOWANCE FOR SIDE
Q207=500 ;FEED RATE FOR MILLING
Q351=+1 ;CLIMB OR UP-CUT
Q201=-20 ;DEPTH
Q202=5 ;PLUNGING DEPTH
Q369=0.1 ;ALLOWANCE FOR FLOOR
Q206=150 ;FEED RATE FOR PLUNGING
Q338=5 ;INFEED FOR FINISHING
Q200=2 ;SETUP CLEARANCE
Q203=+0 ;SURFACE COORDINATE
Q204=50 ;2ND SETUP CLEARANCE
Q370=1 ;TOOL PATH OVERLAP
Q366=1 ;PLUNGE
Q385=500 ;FEED RATE FOR FINISHING
9 L X+50 Y+50 RO FMAX M3 M99
5.4 SLOT MILLING (Cycle 253, DIN/ISO: G253)

Cycle run

Use Cycle 253 to completely machine a slot. Depending on the cycle parameters, the following machining alternatives are available:

- Complete machining: Roughing, floor finishing, side finishing
- Only roughing
- Only floor finishing and side finishing
- Only floor finishing
- Only side finishing

Roughing

1. Starting from the left slot arc center, the tool moves in a reciprocating motion at the plunging angle defined in the tool table to the first infeed depth. Specify the plunging strategy with Parameter Q366.

2. The TNC roughs out the slot from the inside out, taking the finishing allowances (parameters Q368 and Q369) into account.

3. This process is repeated until the slot depth is reached.

Finishing

4. Inasmuch as finishing allowances are defined, the TNC then finishes the slot walls, in multiple infeeds if so specified. The slot side is approached tangentially in the right slot arc.

5. Then the TNC finishes the floor of the slot from the inside out. The slot floor is approached tangentially.
Please note while programming:

With an inactive tool table you must always plunge vertically (Q366=0) because you cannot define a plunging angle.

Pre-position the tool in the machining plane to the starting position with radius compensation R0. Note Parameter Q367 (slot position).

The TNC automatically pre-positions the tool in the tool axis. Note Parameter Q204 (2nd setup clearance).

At the end of the cycle the TNC returns the tool to the starting point (slot center) in the working plane. Exception: if you define a slot position not equal to 0, then the TNC only positions the tool in the tool axis to the 2nd setup clearance. In these cases, always program absolute traverse movements after the cycle call.

The algebraic sign for the cycle parameter DEPTH determines the working direction. If you program DEPTH = 0, the cycle will not be executed.

If the slot width is greater than twice the tool diameter, the TNC roughs the slot correspondingly from inside out. You can therefore mill any slots with small tools, too.

Danger of collision!

Use the machine parameter displayDepthErr to define whether, if a positive depth is entered, the TNC should output an error message (on) or not (off).

Keep in mind that the TNC reverses the calculation for pre-positioning when a positive depth is entered. This means that the tool moves at rapid traverse in the tool axis to setup clearance below the workpiece surface!

If you call the cycle with machining operation 2 (only finishing), then the TNC positions the tool to the first plunging depth at rapid traverse!
Cycle parameters

- **Machining operation (0/1/2)** Q215: Define the machining operation:
 - 0: Roughing and finishing
 - 1: Only roughing
 - 2: Only finishing
 Side finishing and floor finishing are only executed if the finishing allowances (Q368, Q369) have been defined.

- **Slot length** Q218 (value parallel to the reference axis of the working plane): Enter the length of the slot. Input range 0 to 99999.9999

- **Slot width** Q219 (value parallel to the secondary axis of the working plane): Enter the slot width. If you enter a slot width that equals the tool diameter, the TNC will carry out the roughing process only (slot milling). Maximum slot width for roughing: Twice the tool diameter. Input range 0 to 99999.9999

- **Finishing allowance for side** Q368 (incremental): Finishing allowance in the working plane.

- **Angle of rotation** Q374 (absolute): Angle by which the entire slot is rotated. The center of rotation is the position at which the tool is located when the cycle is called. Input range –360.000 to 360.000

- **Slot position (0/1/2/3/4)** Q367: Position of the slot in reference to the position of the tool when the cycle is called:
 - 0: Tool position = Center of slot
 - 1: Tool position = Left end of slot
 - 2: Tool position = Center of left slot circle
 - 3: Tool position = Center of right slot circle
 - 4: Tool position = Right end of slot

- **Feed rate for milling** Q207: Traversing speed of the tool during milling in mm/min. Input range: 0 to 99999.999; alternatively **FAUTO, FU, FZ**

- **Climb or up-cut** Q351: Type of milling operation with M3:
 - +1 = climb milling
 - –1 = up-cut milling
- **Depth** Q201 (incremental): Distance between workpiece surface and bottom of slot. Input range –99999.9999 to 99999.9999

- **Plunging depth** Q202 (incremental): Infeed per cut. Enter a value greater than 0. Input range 0 to 99999.9999

- **Finishing allowance for floor** Q369 (incremental): Finishing allowance in the tool axis. Input range 0 to 99999.9999

- **Feed rate for plunging** Q206: Traversing speed of the tool while moving to depth in mm/min. Input range: 0 to 99999.999; alternatively \textsc{fauto}, \textsc{fu}, \textsc{fz}

- **Infeed for finishing** Q338 (incremental): Infeed per cut. Q338=0: Finishing in one infeed. Input range 0 to 99999.9999
5.4 SLOT MILLING (Cycle 253, DIN/ISO: G253)

- **Setup clearance** Q200 (incremental): Distance between tool tip and workpiece surface. Input range 0 to 99999.9999

- **Workpiece surface coordinate** Q203 (absolute): Absolute coordinate of the workpiece surface. Input range -99999.9999 to 99999.9999

- **2nd setup clearance** Q204 (incremental): Coordinate in the spindle axis at which no collision between tool and workpiece (fixtures) can occur. Input range 0 to 99999.9999

- **Plunging strategy** Q366: Type of plunging strategy:
 - 0 = vertical plunging. The TNC plunges perpendicularly, regardless of the plunging angle \(\text{ANGLE} \) defined in the tool table.
 - 1 = helical plunging. In the tool table, the plunging angle \(\text{ANGLE} \) for the active tool must be defined as not equal to 0. Otherwise, the TNC generates an error message. Plunge on a helical path only if there is enough space.
 - 2 = reciprocating plunge. In the tool table, the plunging angle \(\text{ANGLE} \) for the active tool must be defined as not equal to 0. The TNC will otherwise display an error message.

- **Feed rate for finishing** Q385: Traversing speed of the tool during side and floor finishing in mm/min. Input range: 0 to 99999.9999; alternatively FAUTO, FU, FZ.

Example: NC blocks

```
8 CYCL DEF 253 SLOT MILLING
Q215=0 ;MACHINING OPERATION
Q218=80 ;SLOT LENGTH
Q219=12 ;SLOT WIDTH
Q368=0.2 ;ALLOWANCE FOR SIDE
Q374=+0 ;ANGLE OF ROTATION
Q367=0 ;SLOT POSITION
Q207=500 ;FEED RATE FOR MILLING
Q351=+1 ;CLIMB OR UP-CUT
Q201=-20 ;DEPTH
Q202=5 ;PLUNGING DEPTH
Q369=0.1 ;ALLOWANCE FOR FLOOR
Q206=150 ;FEED RATE FOR PLUNGING
Q338=5 ;INFEED FOR FINISHING
Q200=2 ;SETUP CLEARANCE
Q203=+0 ;SURFACE COORDINATE
Q204=50 ;2ND SETUP CLEARANCE
Q366=1 ;PLUNGE
Q385=500 ;FEED RATE FOR FINISHING
9 L X+50 Y+50 R0 FMAX M3 M99
```
5.5 CIRCULAR SLOT (Cycle 254, DIN/ISO: G254)

Cycle run

Use Cycle 254 to completely machine a circular slot. Depending on the cycle parameters, the following machining alternatives are available:

- Complete machining: Roughing, floor finishing, side finishing
- Only roughing
- Only floor finishing and side finishing
- Only floor finishing
- Only side finishing

Roughing

1. The tool moves in a reciprocating motion in the slot center at the plunging angle defined in the tool table to the first infeed depth. Specify the plunging strategy with Parameter Q366.
2. The TNC roughs out the slot from the inside out, taking the finishing allowances (parameters Q368 and Q369) into account.
3. This process is repeated until the slot depth is reached.

Finishing

4. Inasmuch as finishing allowances are defined, the TNC then finishes the slot walls, in multiple infeeds if so specified. The slot side is approached tangentially.
5. Then the TNC finishes the floor of the slot from the inside out. The slot floor is approached tangentially.
Please note while programming:

With an inactive tool table you must always plunge vertically \((Q366=0)\) because you cannot define a plunging angle.

Pre-position the tool in the machining plane with radius compensation \(R0\). Define Parameter \(Q367\) (Reference for slot position) appropriately.

The TNC automatically pre-positions the tool in the tool axis. Note Parameter \(Q204\) (2nd setup clearance).

At the end of the cycle the TNC returns the tool to the starting point (center of the circular arc) in the working plane. Exception: if you define a slot position not equal to 0, then the TNC only positions the tool in the tool axis to the 2nd setup clearance. In these cases, always program absolute traverse movements after the cycle call.

The algebraic sign for the cycle parameter DEPTH determines the working direction. If you program \(DEPTH = 0\), the cycle will not be executed.

If the slot width is greater than twice the tool diameter, the TNC roughs the slot correspondingly from inside out. You can therefore mill any slots with small tools, too.

The slot position 0 is not allowed if you use Cycle 254 Circular Slot in combination with Cycle 221.

Danger of collision!

Use the machine parameter \(displayDepthErr\) to define whether, if a positive depth is entered, the TNC should output an error message (on) or not (off).

Keep in mind that the TNC reverses the calculation for pre-positioning when a positive depth is entered. This means that the tool moves at rapid traverse in the tool axis to setup clearance below the workpiece surface!

If you call the cycle with machining operation 2 (only finishing), then the TNC positions the tool to the first plunging depth at rapid traverse!
Cycle parameters

- **Machining operation (0/1/2) Q215**: Define the machining operation:
 0: Roughing and finishing
 1: Only roughing
 2: Only finishing
 Side finishing and floor finishing are only executed if the finishing allowances (Q368, Q369) have been defined.

- **Slot width** Q219 (value parallel to the secondary axis of the working plane): Enter the slot width. If you enter a slot width that equals the tool diameter, the TNC will carry out the roughing process only (slot milling). Maximum slot width for roughing: Twice the tool diameter. Input range 0 to 99999.9999

- **Finishing allowance for side** Q368 (incremental): Finishing allowance in the working plane. Input range 0 to 99999.9999

- **Pitch circle diameter** Q375: Enter the diameter of the pitch circle. Input range 0 to 99999.9999

- **Reference for slot position (0/1/2/3) Q367**: Position of the slot in reference to the position of the tool when the cycle is called:
 0: The tool position is not taken into account. The slot position is determined from the entered pitch circle center and the starting angle.
 1: Tool position = Center of left slot circle. Starting angle Q376 refers to this position. The entered pitch circle center is not taken into account.
 2: Tool position = Center of center line. Starting angle Q376 refers to this position. The entered pitch circle center is not taken into account.
 3: Tool position = Center of right slot circle. Starting angle Q376 refers to this position. The entered pitch circle center is not taken into account.

- **Center in 1st axis** Q216 (absolute): Center of the pitch circle in the reference axis of the working plane. **Only effective if Q367 = 0**. Input range: -99999.9999 to 99999.9999

- **Center in 2nd axis** Q217 (absolute): Center of the pitch circle in the minor axis of the working plane. **Only effective if Q367 = 0**. Input range: -99999.9999 to 99999.9999

- **Starting angle** Q376 (absolute): Enter the polar angle of the starting point. Input range –360.000 to 360.000

- **Angular length** Q248 (incremental): Enter the angular length of the slot. Input range 0 to 360.000
5.5 CIRCULAR SLOT (Cycle 254, DIN/ISO: G254)

- **Angle increment** Q378 (incremental): Angle by which the entire slot is rotated. The center of rotation is at the center of the pitch circle. Input range –360.000 to 360.000

- **Number of repetitions** Q377: Number of machining operations on a pitch circle. Input range 1 to 99999

- **Feed rate for milling** Q207: Traversing speed of the tool during milling in mm/min. Input range: 0 to 99999.999; alternatively FAUTO, FU, FZ

- **Climb or up-cut** Q351: Type of milling operation with M3:
 - +1 = climb milling
 - –1 = up-cut milling

- **Depth** Q201 (incremental): Distance between workpiece surface and bottom of slot. Input range –99999.9999 to 99999.9999

- **Plunging depth** Q202 (incremental): Infeed per cut. Enter a value greater than 0. Input range 0 to 99999.9999

- **Finishing allowance for floor** Q369 (incremental): Finishing allowance in the tool axis. Input range 0 to 99999.9999

- **Feed rate for plunging** Q206: Traversing speed of the tool while moving to depth in mm/min. Input range: 0 to 99999.999; alternatively FAUTO, FU, FZ

- **Infeed for finishing** Q338 (incremental): Infeed per cut. Q338=0: Finishing in one infeed. Input range 0 to 99999.9999
- **Setup clearance** Q200 (incremental): Distance between tool tip and workpiece surface. Input range 0 to 99999.9999

- **Workpiece surface coordinate** Q203 (absolute): Absolute coordinate of the workpiece surface. Input range –99999.9999 to 99999.9999

- **2nd setup clearance** Q204 (incremental): Coordinate in the spindle axis at which no collision between tool and workpiece (fixtures) can occur. Input range 0 to 99999.9999

- **Plunging strategy** Q366: Type of plunging strategy:
 - 0 = vertical plunging. The TNC plunges perpendicularly, regardless of the plunging angle ANGLE defined in the tool table.
 - 1 = helical plunging. In the tool table, the plunging angle ANGLE for the active tool must be defined as not equal to 0. Otherwise, the TNC generates an error message. Plunge on a helical path only if there is enough space.
 - 2 = reciprocating plunge. In the tool table, the plunging angle ANGLE for the active tool must be defined as not equal to 0. Otherwise, the TNC generates an error message. The TNC can only plunge reciprocally once the traversing length on the circular arc is at least three times the tool diameter.

- **Feed rate for finishing** Q385: Traversing speed of the tool during side and floor finishing in mm/min. Input range: 0 to 99999.999; alternatively FAUTO, FU, FZ.

Example: NC blocks

```
8 CYCL DEF 254 CIRCULAR SLOT
Q215=0 ;MACHINING OPERATION
Q219=12 ;SLOT WIDTH
Q368=0.2 ;ALLOWANCE FOR SIDE
Q375=80 ;PITCH CIRCLE DIA.
Q367=0 ;REF. SLOT POSITION
Q216=+50 ;CENTER IN 1ST AXIS
Q217=+50 ;CENTER IN 2ND AXIS
Q376=+45 ;STARTING ANGLE
Q248=90 ;ANGULAR LENGTH
Q378=0 ;STEPPING ANGLE
Q377=1 ;NUMBER OF OPERATIONS
Q207=500 ;FEED RATE FOR MILLING
Q351=+1 ;CLimb OR up-CUT
Q201=-20 ;DEPTH
Q202=5 ;PLUNGING DEPTH
Q369=0.1 ;ALLOWANCE FOR FLOOR
Q206=150 ;FEED RATE FOR PLUNGING
Q338=5 ;INFEED FOR FINISHING
Q200=2 ;SETUP CLEARANCE
Q203=+0 ;SURFACE COORDINATE
Q204=50 ;2ND SETUP CLEARANCE
Q366=1 ;PLUNGE
Q385=500 ;FEED RATE FOR FINISHING
9 L X+50 Y+50 R0 FMAX M3 M99
```
5.6 RECTANGULAR STUD
(Cycle 256, DIN/ISO: G256)

Cycle run

Use Cycle 256 to machine a rectangular stud. If a dimension of the workpiece blank is greater than the maximum possible stepover, then the TNC performs multiple stepovers until the finished dimension has been machined.

1 The tool moves from the cycle starting position (stud center) in the positive X direction to the starting position for the stud machining. The starting position is 2 mm to the right of the unmachined stud.

2 If the tool is at the 2nd setup clearance, it moves at rapid traverse FMAX to the setup clearance, and from there it advances to the first plunging depth at the feed rate for plunging.

3 The tool then moves tangentially on a semicircle to the stud contour and machines one revolution.

4 If the finished dimension cannot be machined with one revolution, the TNC performs a stepover with the current factor, and machines another revolution. The TNC takes the dimensions of the workpiece blank, the finished dimension, and the permitted stepover into account. This process is repeated until the defined finished dimension has been reached.

5 The tool then tangentially departs the contour on a semicircle and returns to the starting point for the stud machining.

6 The TNC then plunges the tool to the next plunging depth, and machines the stud at this depth.

7 This process is repeated until the programmed stud depth is reached.
Please note while programming:

- Pre-position the tool in the machining plane to the starting position with radius compensation R0. Note Parameter Q367 (stud position).
 - The TNC automatically pre-positions the tool in the tool axis. Note Parameter Q204 (2nd setup clearance).
 - The algebraic sign for the cycle parameter DEPTH determines the working direction. If you program DEPTH = 0, the cycle will not be executed.
 - At the end, the TNC positions the tool back to the setup clearance, or to the 2nd setup clearance if one was programmed.

Danger of collision!

- Use the machine parameter displayDepthErr to define whether, if a positive depth is entered, the TNC should output an error message (on) or not (off).
 - Keep in mind that the TNC reverses the calculation for pre-positioning when a positive depth is entered. This means that the tool moves at rapid traverse in the tool axis to setup clearance below the workpiece surface!
 - Leave enough room next to the stud for the approach motion. Minimum: tool diameter + 2 mm
Cycle parameters

- **First side length** Q218: Stud length, parallel to the reference axis of the working plane. Input range 0 to 99999.9999

- **Workpiece blank side length 1** Q424: Length of the stud blank, parallel to the reference axis of the working plane. Enter **Workpiece blank side length 1** greater than **First side length**. The TNC performs multiple stepovers if the difference between blank dimension 1 and finished dimension 1 is greater than the permitted stepover (tool radius multiplied by path overlap Q370). The TNC always calculates a constant stepover. Input range 0 to 99999.9999

- **Second side length** Q219: Stud length, parallel to the minor axis of the working plane. Enter **Workpiece blank side length 2** greater than **Second side length**. The TNC performs multiple stepovers if the difference between blank dimension 2 and finished dimension 2 is greater than the permitted stepover (tool radius multiplied by path overlap Q370). The TNC always calculates a constant stepover. Input range 0 to 99999.9999

- **Workpiece blank side length 2** Q425: Length of the stud blank, parallel to the minor axis of the working plane. Input range 0 to 99999.9999

- **Corner radius** Q220: Radius of the stud corner. Input range 0 to 99999.9999

- **Finishing allowance for side** Q368 (incremental): Finishing allowance in the working plane, is left over after machining. Input range 0 to 99999.9999

- **Angle of rotation** Q224 (absolute): Angle by which the entire stud is rotated. The center of rotation is the position at which the tool is located when the cycle is called. Input range –360.000 to 360.000

- **Stud position** Q367: Position of the stud in reference to the position of the tool when the cycle is called:
 - 0: Tool position = Center of stud
 - 1: Tool position = Lower left corner
 - 2: Tool position = Lower right corner
 - 3: Tool position = Upper right corner
 - 4: Tool position = Upper left corner
- **Feed rate for milling** Q207: Traversing speed of the tool during milling in mm/min. Input range: 0 to 99999.999; alternatively FAUTO, FU, FZ.
- **Climb or up-cut** Q351: Type of milling operation with M3:
 - +1 = climb milling
 - –1 = up-cut milling
- **Depth** Q201 (incremental): Distance between workpiece surface and bottom of stud. Input range: -99999.9999 to 99999.9999
- **Plunging depth** Q202 (incremental): Infeed per cut. Enter a value greater than 0. Input range 0 to 99999.9999
- **Feed rate for plunging** Q206: Traversing speed of the tool while moving to depth in mm/min. Input range: 0 to 99999.999; alternatively FMAX, FAUTO, FU, FZ.
- **Setup clearance** Q200 (incremental): Distance between tool tip and workpiece surface. Input range 0 to 99999.9999
- **Workpiece surface coordinate** Q203 (absolute): Absolute coordinate of the workpiece surface. Input range –99999.9999 to 99999.9999
- **2nd setup clearance** Q204 (incremental): Coordinate in the spindle axis at which no collision between tool and workpiece (fixtures) can occur. Input range 0 to 99999.9999
- **Path overlap factor** Q370: Q370 x tool radius = stepover factor k. Input range 0.1 to 1.9999.

Example: NC blocks

```plaintext
8 CYCL DEF 256 RECTANGULAR STUD
Q218=60 ;FIRST SIDE LENGTH
Q424=74 ;WORKPC. BLANK SIDE 1
Q219=40 ;2ND SIDE LENGTH
Q425=60 ;WORKPC. BLANK SIDE 2
Q220=5 ;CORNER RADIUS
Q368=0.2 ;ALLOWANCE FOR SIDE
Q224=+0 ;ANGLE OF ROTATION
Q367=0 ;STUD POSITION
Q207=500 ;FEED RATE FOR MILLING
Q351=+1 ;CLIMB OR UP-CUT
Q201=–20 ;DEPTH
Q202=5 ;PLUNGING DEPTH
Q206=150 ;FEED RATE FOR PLUNGING
Q200=2 ;SETUP CLEARANCE
Q203=+0 ;SURFACE COORDINATE
Q204=50 ;2ND SETUP CLEARANCE
Q370=1 ;TOOL PATH OVERLAP
9 L X+50 Y+50 R0 FMAX M3 M99
```
5.7 CIRCULAR STUD (Cycle 257, DIN/ISO: G257)

Cycle run

Use Cycle 257 to machine a circular stud. If a diameter of the workpiece blank is greater than the maximum possible stepover, then the TNC performs multiple stepovers until the finished diameter has been machined.

1. The tool moves from the cycle starting position (stud center) in the positive X direction to the starting position for the stud machining. The starting position is 2 mm to the right of the unmachined stud.

2. If the tool is at the 2nd setup clearance, it moves at rapid traverse FMAX to the set-up clearance, and from there advances to the first plunging depth at the feed rate for plunging.

3. The tool then moves tangentially on a semicircle to the stud contour and machines one revolution.

4. If the finished diameter cannot be machined with one revolution, the TNC performs a stepover with the current factor, and machines another revolution. The TNC takes the dimensions of the workpiece blank diameter, the finished diameter, and the permitted stepover into account. This process is repeated until the defined finished diameter has been reached.

5. The tool then tangentially departs the contour on a semicircle and returns to the starting point for the stud machining.

6. The TNC then plunges the tool to the next plunging depth, and machines the stud at this depth.

7. This process is repeated until the programmed stud depth is reached.
Please note while programming:

Pre-position the tool in the machining plane to the starting position (stud center) with radius compensation R_0.

The TNC automatically pre-positions the tool in the tool axis. Note Parameter Q204 (2nd setup clearance).

The algebraic sign for the cycle parameter DEPTH determines the working direction. If you program DEPTH $= 0$, the cycle will not be executed.

At the end of the cycle, the TNC returns the tool to the starting position.

At the end, the TNC positions the tool back to the setup clearance, or to the 2nd setup clearance if one was programmed.

Danger of collision!

Use the machine parameter `displayDepthErr` to define whether, if a positive depth is entered, the TNC should output an error message (on) or not (off).

Keep in mind that the TNC reverses the calculation for pre-positioning when a positive depth is entered. This means that the tool moves at rapid traverse in the tool axis to setup clearance below the workpiece surface!

Leave enough room next to the stud for the approach motion. Minimum: tool diameter + 2 mm
Cycle parameters

- **Finished part diameter** Q223: Diameter of the completely machined stud. Input range 0 to 99999.9999

- **Workpiece blank diameter** Q222: Diameter of the workpiece blank. Enter the workpiece blank diameter greater than the finished diameter. The TNC performs multiple stepovers if the difference between the workpiece blank diameter and finished diameter is greater than the permitted stepover (tool radius multiplied by path overlap Q370). The TNC always calculates a constant stepover. Input range 0 to 99999.9999

- **Finishing allowance for side** Q368 (incremental): Finishing allowance in the working plane. Input range 0 to 99999.9999

- **Feed rate for milling** Q207: Traversing speed of the tool during milling in mm/min. Input range: 0 to 99999.9999; alternatively FAUTO, FU, FZ

- **Climb or up-cut** Q351: Type of milling operation with M3:
 +1 = climb milling
 −1 = up-cut milling
- **Depth** Q201 (incremental): Distance between workpiece surface and bottom of stud. Input range: -99999.9999 to 99999.9999

- **Plunging depth** Q202 (incremental): Infeed per cut. Enter a value greater than 0. Input range 0 to 99999.9999

- **Feed rate for plunging** Q206: Traversing speed of the tool while moving to depth in mm/min. Input range: 0 to 99999.9999; alternatively FMAX, FAUTO, FU, FZ.

- **Setup clearance** Q200 (incremental): Distance between tool tip and workpiece surface. Input range 0 to 99999.9999

- **Workpiece surface coordinate** Q203 (absolute): Absolute coordinate of the workpiece surface. Input range –99999.9999 to 99999.9999

- **2nd setup clearance** Q204 (incremental): Coordinate in the spindle axis at which no collision between tool and workpiece (fixtures) can occur. Input range 0 to 99999.9999

- **Path overlap factor** Q370: Q370 x tool radius = stepover factor k. Input range 0.1 to 1.9999.

Example: NC blocks

```
8 CYCL DEF 257 CIRCULAR STUD
Q223=60 ;FINISHED PART DIA.
Q222=60 ;WORKPIECE BLANK DIA.
Q368=0.2 ;ALLOWANCE FOR SIDE
Q207=500 ;FEED RATE FOR MILLING
Q351=+1 ;CLIMB OR UP-CUT
Q201=-20 ;DEPTH
Q202=5 ;PLUNGING DEPTH
Q206=150 ;FEED RATE FOR PLUNGING
Q200=2 ;SETUP CLEARANCE
Q203=+0 ;SURFACE COORDINATE
Q204=50 ;2ND SETUP CLEARANCE
Q370=1 ;TOOL PATH OVERLAP
9 L X+50 Y+50 R0 FMAX M3 M99
```
5.8 Programming Examples

Example: Milling pockets, studs and slots

```
0 BEGIN PGM C210 MM
1 BLK FORM 0.1 Z X+0 Y+0 Z-40  
Definition of workpiece blank
2 BLK FORM 0.2 X+100 Y+100 Z+0
3 TOOL CALL 1 Z S3500  
Call the tool for roughing/finishing
4 L Z+250 R0 FMAX  
Retract the tool
```
5 CYCL DEF 256 RECTANGULAR STUD
Q218=90 ;FIRST SIDE LENGTH
Q424=100 ;WORKPC. BLANK SIDE 1
Q219=80 ;2ND SIDE LENGTH
Q425=100 ;WORKPC. BLANK SIDE 2
Q220=0 ;CORNER RADIUS
Q368=0 ;ALLOWANCE FOR SIDE
Q224=0 ;ROTATIONAL POSITION
Q367=0 ;STUD POSITION
Q207=250 ;FEED RATE FOR MILLING
Q351=+1 ;CLIMB OR UP-CUT
Q201=-30 ;DEPTH
Q202=5 ;PLUNGING DEPTH
Q206=250 ;FEED RATE FOR PLNGNG
Q200=2 ;SETUP CLEARANCE
Q203=+0 ;SURFACE COORDINATE
Q204=20 ;2ND SET-UP CLEARANCE
Q370=1 ;TOOL PATH OVERLAP
6 L X+50 Y+50 R0 M3 M99
Call cycle for machining the contour outside
7 CYCL DEF 252 CIRCULAR POCKET
Q215=0 ;MACHINING OPERATION
Q223=50 ;CIRCLE DIAMETER
Q368=0.2 ;ALLOWANCE FOR SIDE
Q207=500 ;FEED RATE FOR MILLING
Q351=+1 ;CLIMB OR UP-CUT
Q201=-30 ;DEPTH
Q202=5 ;PLUNGING DEPTH
Q369=0.1 ;ALLOWANCE FOR FLOOR
Q206=150 ;FEED RATE FOR PLUNGING
Q338=5 ;INFEED FOR FINISHING
Q200=2 ;SETUP CLEARANCE
Q203=+0 ;SURFACE COORDINATE
Q204=50 ;2ND SETUP CLEARANCE
Q370=1 ;TOOL PATH OVERLAP
Q366=1 ;PLUNGE
Q385=750 ;FEED RATE FOR FINISHING
8 L X+50 Y+50 R0 FMAX M99
Call CIRCULAR POCKET MILLING cycle
9 L Z+250 R0 FMAX M6
Tool change
5.8 Programming Examples

<table>
<thead>
<tr>
<th>Line</th>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>TOLL CALL 2 Z S5000</td>
<td>Call slotting mill</td>
</tr>
<tr>
<td>11</td>
<td>CYCL DEF 254 CIRCULAR SLOT</td>
<td>Define SLOT cycle</td>
</tr>
<tr>
<td></td>
<td>Q215=0 ;MACHINING OPERATION</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Q219=8 ;SLOT WIDTH</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Q368=0.2 ;ALLOWANCE FOR SIDE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Q375=70 ;PITCH CIRCLE DIA.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Q367=0 ;REF. SLOT POSITION</td>
<td>No pre-positioning in X/Y required</td>
</tr>
<tr>
<td></td>
<td>Q216=+50 ;CENTER IN 1ST AXIS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Q217=+50 ;CENTER IN 2ND AXIS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Q376=+45 ;STARTING ANGLE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Q248=90 ;ANGULAR LENGTH</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Q378=180 ;STEPPING ANGLE</td>
<td>Starting point for 2nd slot</td>
</tr>
<tr>
<td></td>
<td>Q377=2 ;NUMBER OF OPERATIONS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Q207=500 ;FEED RATE FOR MILLING</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Q351=+1 ;CLIMB OR UP-CUT</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Q201=-20 ;DEPTH</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Q202=5 ;PLUNGING DEPTH</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Q369=0.1 ;ALLOWANCE FOR FLOOR</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Q206=150 ;FEED RATE FOR PLUNGING</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Q338=5 ;INFEED FOR FINISHING</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Q200=2 ;SETUP CLEARANCE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Q203=+0 ;SURFACE COORDINATE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Q204=50 ;2ND SETUP CLEARANCE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Q366=1 ;PLUNGE</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>CYCL CALL FMAX M3</td>
<td>Call SLOT cycle</td>
</tr>
<tr>
<td>13</td>
<td>L Z+250 R0 FMAX M2</td>
<td>Retract in the tool axis, end program</td>
</tr>
<tr>
<td>14</td>
<td>END PGM C210 MM</td>
<td></td>
</tr>
</tbody>
</table>
Fixed Cycles: Pattern Definitions
6.1 Fundamentals

Overview

The TNC provides two cycles for machining point patterns directly:

<table>
<thead>
<tr>
<th>Cycle</th>
<th>Soft key</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>220 CIRCULAR PATTERN</td>
<td></td>
<td>Page 159</td>
</tr>
<tr>
<td>221 LINEAR PATTERN</td>
<td></td>
<td>Page 162</td>
</tr>
</tbody>
</table>

You can combine Cycle 220 and Cycle 221 with the following fixed cycles:

If you have to machine irregular point patterns, use CYCL CALL PAT (see “Point Tables” on page 52) to develop point tables.

More regular point patterns are available with the PATTERN DEF function (see “Pattern Definition PATTERN DEF” on page 44).

Cycle 200 DRILLING
Cycle 201 REAMING
Cycle 202 BORING
Cycle 203 UNIVERSAL DRILLING
Cycle 204 BACK BORING
Cycle 205 UNIVERSAL PECKING
Cycle 206 TAPPING NEW with a floating tap holder
Cycle 207 RIGID TAPPING without a floating tap holder NEW
Cycle 208 BORE MILLING
Cycle 209 TAPPING WITH CHIP BREAKING
Cycle 240 CENTERING
Cycle 251 RECTANGULAR POCKET
Cycle 252 CIRCULAR POCKET MILLING
Cycle 253 SLOT MILLING
Cycle 254 CIRCULAR SLOT (can only be combined with Cycle 221)
Cycle 256 RECTANGULAR STUD
Cycle 257 CIRCULAR STUD
Cycle 262 THREAD MILLING
Cycle 263 THREAD MILLING/COUNTERSINKING
Cycle 264 THREAD DRILLING/MILLING
Cycle 265 HELICAL THREAD DRILLING/MILLING
Cycle 267 OUTSIDE THREAD MILLING
6.2 CIRCULAR PATTERN (Cycle 220, DIN/ISO: G220)

Cycle run

1. The TNC moves the tool at rapid traverse from its current position to the starting point for the first machining operation.

 Sequence:
 - Move to the 2nd set-up clearance (spindle axis)
 - Approach the starting point in the spindle axis.
 - Move to the setup clearance above the workpiece surface (spindle axis).

2. From this position the TNC executes the last defined fixed cycle.

3. The tool then approaches on a straight line or circular arc the starting point for the next machining operation. The tool stops at the set-up clearance (or the 2nd setup clearance).

4. This process (1 to 3) is repeated until all machining operations have been executed.

Please note while programming:

- Cycle 220 is DEF active, which means that Cycle 220 automatically calls the last defined fixed cycle.
- If you combine Cycle 220 with one of the fixed cycles 200 to 209 and 251 to 267, the setup clearance, workpiece surface and 2nd setup clearance that you defined in Cycle 220 will be effective for the selected fixed cycle.
Cycle parameters

- **Center in 1st axis** Q216 (absolute): Center of the pitch circle in the reference axis of the working plane. Input range -99999.9999 to 99999.9999
- **Center in 2nd axis** Q217 (absolute): Center of the pitch circle in the minor axis of the working plane. Input range -99999.9999 to 99999.9999
- **Pitch circle diameter** Q244: Diameter of the pitch circle. Input range 0 to 99999.9999
- **Starting angle** Q245 (absolute): Angle between the reference axis of the working plane and the starting point for the first machining operation on the pitch circle. Input range –360.000 to 360.000
- **Stopping angle** Q246 (absolute): Angle between the reference axis of the working plane and the starting point for the last machining operation on the pitch circle (does not apply to full circles). Do not enter the same value for the stopping angle and starting angle. If you enter the stopping angle greater than the starting angle, machining will be carried out counterclockwise; otherwise, machining will be clockwise. Input range –360.000 to 360.000
- **Stepping angle** Q247 (incremental): Angle between two machining operations on a pitch circle. If you enter an angle step of 0, the TNC will calculate the angle step from the starting and stopping angles and the number of pattern repetitions. If you enter a value other than 0, the TNC will not take the stopping angle into account. The sign for the angle step determines the working direction (– = clockwise). Input range –360.000 to 360.000
- **Number of repetitions** Q241: Number of machining operations on a pitch circle. Input range 1 to 99999
Setup clearance Q200 (incremental): Distance between tool tip and workpiece surface. Input range 0 to 99999.9999

Workpiece surface coordinate Q203 (absolute): Coordinate of the workpiece surface. Input range: -99999.9999 to 99999.9999

2nd setup clearance Q204 (incremental): Coordinate in the spindle axis at which no collision between tool and workpiece (fixtures) can occur. Input range 0 to 99999.9999

Moving to clearance height Q301: Definition of how the tool is to move between machining processes.
0: Move to the setup clearance between operations.
1: Move to the 2nd setup clearance between machining operations.

Type of traverse? Line=0/Arc=1 Q365: Definition of the path function with which the tool is to move between machining operations.
0: Move between operations on a straight line
1: Move between operations on the pitch circle

Example: NC blocks

```
53 CYCLE DEF 220 POLAR PATTERN
Q216=+50 ;CENTER IN 1ST AXIS
Q217=+50 ;CENTER 2ND AXIS
Q244=80 ;PITCH CIRCLE DIA.
Q245=0 ;STARTING ANGLE
Q246=+360 ;STOPPING ANGLE
Q247=0 ;STEPPING ANGLE
Q241=8 ;NUMBER OF OPERATIONS
Q200=2 ;SETUP CLEARANCE
Q203=+30 ;SURFACE COORDINATE
Q204=50 ;2ND SETUP CLEARANCE
Q301=1 ;MOVE TO CLEARANCE
Q365=0 ;TYPE OF TRAVERSE
```
6.3 LINEAR PATTERN (Cycle 221, DIN/ISO: G221)

Cycle run

1 The TNC automatically moves the tool from its current position to the starting point for the first machining operation.
 Sequence:
 - Move to the 2nd set-up clearance (spindle axis)
 - Approach the starting point in the spindle axis.
 - Move to the setup clearance above the workpiece surface (spindle axis).

2 From this position the TNC executes the last defined fixed cycle.

3 The tool then approaches the starting point for the next machining operation in the positive reference axis direction at the setup clearance (or the 2nd setup clearance).

4 This process (1 to 3) is repeated until all machining operations on the first line have been executed. The tool is located above the last point on the first line.

5 The tool subsequently moves to the last point on the second line where it carries out the machining operation.

6 From this position the tool approaches the starting point for the next machining operation in the negative reference axis direction.

7 This process (6) is repeated until all machining operations in the second line have been executed.

8 The tool then moves to the starting point of the next line.

9 All subsequent lines are processed in a reciprocating movement.

Please note while programming:

Cycle 221 is DEF active, which means that Cycle 221 automatically calls the last defined fixed cycle.

If you combine Cycle 221 with one of the canned cycles 200 to 209 and 251 to 267, the setup clearance, workpiece surface, 2nd setup clearance and the rotational position that you defined in Cycle221 will be effective for the selected canned cycle.

The slot position 0 is not allowed if you use Cycle 254 Circular Slot in combination with Cycle 221.
Cycle parameters

- **Starting point 1st axis** Q225 (absolute): Coordinate of the starting point in the reference axis of the working plane.
- **Starting point 2nd axis** Q226 (absolute): Coordinate of the starting point in the minor axis of the working plane.
- **Spacing in 1st axis** Q237 (incremental): Spacing between each point on a line.
- **Spacing in 2nd axis** Q238 (incremental): Spacing between each line.
- **Number of columns** Q242: Number of machining operations on a line.
- **Number of lines** Q243: Number of passes.
- **Rotational position** Q224 (absolute): Angle by which the entire pattern is rotated. The center of rotation lies in the starting point.
- **Setup clearance** Q200 (incremental): Distance between tool tip and workpiece surface.
- **Workpiece surface coordinate** Q203 (absolute): Coordinate of the workpiece surface.
- **2nd setup clearance** Q204 (incremental): Coordinate in the spindle axis at which no collision between tool and workpiece (fixtures) can occur.
- **Moving to clearance height** Q301: Definition of how the tool is to move between machining processes.
 - **0**: Move to the setup clearance between operations.
 - **1**: Move to the 2nd setup clearance between machining operations.

Example: NC blocks

```
54 CYCL DEF 221 CARTESIAN PATTERN
Q225=+15 ;STARTING POINT 1ST AXIS
Q226=+15 ;STARTING POINT 2ND AXIS
Q237=+10 ;SPACING IN 1ST AXIS
Q238=+8 ;SPACING IN 2ND AXIS
Q242=6 ;NUMBER OF COLUMNS
Q243=4 ;NUMBER OF LINES
Q224=+15 ;ROTATIONAL POSITION
Q200=2 ;SETUP CLEARANCE
Q203=+30 ;SURFACE COORDINATE
Q204=50 ;2ND SETUP CLEARANCE
Q301=1 ;MOVE TO CLEARANCE
```
6.4 Programming Examples

Example: Circular hole patterns

<table>
<thead>
<tr>
<th>Line</th>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>BEGIN PGM PATTERN MM</td>
<td>Definition of workpiece blank</td>
</tr>
<tr>
<td>1</td>
<td>BLK FORM 0.1 Z X+0 Y+0 Z-40</td>
<td>Definition of workpiece blank</td>
</tr>
<tr>
<td>2</td>
<td>BLK FORM 0.2 Y+100 Y+100 Z+0</td>
<td>Tool call</td>
</tr>
<tr>
<td>3</td>
<td>TOOL CALL 1 Z S3500</td>
<td>Retract the tool</td>
</tr>
<tr>
<td>4</td>
<td>L Z+250 R0 FMAX M3</td>
<td>Retract the tool</td>
</tr>
<tr>
<td>5</td>
<td>CYCL DEF 200 DRILLING</td>
<td>Cycle definition: drilling</td>
</tr>
<tr>
<td></td>
<td>Q200=2 ;SETUP CLEARANCE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Q201=-15 ;DEPTH</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Q206=250 ;FEED RATE FOR PLNGN</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Q202=4 ;PLUNGING DEPTH</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Q210=0 ;DWELL TIME</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Q203=+0 ;SURFACE COORDINATE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Q204=0 ;2ND SET-UP CLEARANCE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Q211=0.25 ;DWELL TIME AT DEPTH</td>
<td></td>
</tr>
</tbody>
</table>
6 CYCLE DEF 220 POLAR PATTERN
Define cycle for circular pattern 1, CYCL 200 is called automatically.

| Q216=+30 ;CENTER IN 1ST AXIS | Q200, Q203 and Q204 are effective as defined in Cycle 220. |
| Q217=+70 ;CENTER IN 2ND AXIS |
| Q244=50 ;PITCH CIRCLE DIA. |
| Q245=+0 ;STARTING ANGLE |
| Q246=+360 ;STOPPING ANGLE |
| Q247=+0 ;STEPPING ANGLE |
| Q241=10 ;QUANTITY |
| Q200=2 ;SETUP CLEARANCE |
| Q203=+0 ;SURFACE COORDINATE |
| Q204=100 ;2ND SET-UP CLEARANCE |
| Q301=1 ;MOVE TO CLEARANCE |
| Q365=0 ;TYPE OF TRAVERSE |

7 CYCLE DEF 220 POLAR PATTERN
Define cycle for circular pattern 2, CYCL 200 is called automatically.

| Q216=+90 ;CENTER IN 1ST AXIS |
| Q217=+25 ;CENTER IN 2ND AXIS |
| Q244=70 ;PITCH CIRCLE DIA. |
| Q245=+90 ;STARTING ANGLE |
| Q246=+360 ;STOPPING ANGLE |
| Q247=30 ;STEPPING ANGLE |
| Q241=5 ;QUANTITY |
| Q200=2 ;SET-UP CLEARANCE |
| Q203=+0 ;SURFACE COORDINATE |
| Q204=100 ;2ND SET-UP CLEARANCE |
| Q301=1 ;MOVE TO CLEARANCE |
| Q365=0 ;TYPE OF TRAVERSE |

8 L Z+250 R0 FMAX M2
Retract in the tool axis, end program.

9 END PGM PATTERN MM
Fixed Cycles: Contour Pocket
7.1 SL Cycles

Fundamentals

SL cycles enable you to form complex contours by combining up to 12 subcontours (pockets or islands). You define the individual subcontours in subprograms. The TNC calculates the total contour from the subcontours (subprogram numbers) that you enter in Cycle 14 CONTOUR GEOMETRY.

Characteristics of the Subprograms

- Coordinate transformations are allowed. If they are programmed within the subcontour they are also effective in the following subprograms, but they need not be reset after the cycle call.
- The TNC ignores feed rates F and miscellaneous functions M.
- The TNC recognizes a pocket if the tool path lies inside the contour, for example if you machine the contour clockwise with radius compensation RR.
- The TNC recognizes an island if the tool path lies outside the contour, for example if you machine the contour clockwise with radius compensation RL.
- The subprograms must not contain spindle axis coordinates.
- Always program both axes in the first block of the subprogram
- If you use Q parameters, then only perform the calculations and assignments within the affected contour subprograms.

Example: Program structure: Machining with SL cycles

```
0 BEGIN PGM SL2 MM
...
12 CYCL DEF 14 CONTOUR GEOMETRY ...
13 CYCL DEF 20 CONTOUR DATA ...
...
16 CYCL DEF 21 PILOT DRILLING ...
17 CYCL CALL
...
18 CYCL DEF 22 ROUGH OUT ...
19 CYCL CALL
...
22 CYCLE DEF 23 FLOOR FINISHING ...
23 CYCL CALL
...
26 CYCL DEF 24 SIDE FINISHING ...
27 CYCL CALL
...
50 L Z+250 R0 FMAX M2
51 LBL 1
...
55 LBL 0
56 LBL 2
...
60 LBL 0
...
99 END PGM SL2 MM
```
Characteristics of the fixed cycles

- The TNC automatically positions the tool to the setup clearance before a cycle.
- Each level of infeed depth is milled without interruptions since the cutter traverses around islands instead of over them.
- The radius of “inside corners” can be programmed—the tool keeps moving to prevent surface blemishes at inside corners (this applies for the outermost pass in the Rough-out and Side Finishing cycles).
- The contour is approached on a tangential arc for side finishing.
- For floor finishing, the tool again approaches the workpiece on a tangential arc (for tool axis Z, for example, the arc may be in the Z/X plane).
- The contour is machined throughout in either climb or up-cut milling.

The machining data (such as milling depth, finishing allowance and setup clearance) are entered as CONTOUR DATA in Cycle 20.
Overview

<table>
<thead>
<tr>
<th>Cycle</th>
<th>Soft key</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>14 CONTOUR GEOMETRY (essential)</td>
<td></td>
<td>Page 171</td>
</tr>
<tr>
<td>20 CONTOUR DATA (essential)</td>
<td></td>
<td>Page 176</td>
</tr>
<tr>
<td>21 PILOT DRILLING (optional)</td>
<td></td>
<td>Page 178</td>
</tr>
<tr>
<td>22 ROUGH OUT (essential)</td>
<td></td>
<td>Page 180</td>
</tr>
<tr>
<td>23 FLOOR FINISHING (optional)</td>
<td></td>
<td>Page 183</td>
</tr>
<tr>
<td>24 SIDE FINISHING (optional)</td>
<td></td>
<td>Page 184</td>
</tr>
</tbody>
</table>

Enhanced cycles:

<table>
<thead>
<tr>
<th>Cycle</th>
<th>Soft key</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>25 CONTOUR TRAIN</td>
<td></td>
<td>Page 186</td>
</tr>
</tbody>
</table>
7.2 CONTOUR GEOMETRY (Cycle 14, DIN/ISO: G37)

Please note while programming:

All subprograms that are superimposed to define the contour are listed in Cycle 14 CONTOUR GEOMETRY.

Before programming, note the following:

Cycle 14 is DEF active which means that it becomes effective as soon as it is defined in the part program.

You can list up to 12 subprograms (subcontours) in Cycle 14.

Cycle parameters

- **Label numbers for the contour**: Enter all label numbers for the individual subprograms that are to be superimposed to define the contour. Confirm every label number with the ENT key. When you have entered all numbers, conclude entry with the END key. Entry of up to 12 subprogram numbers 1 to 254.
7.3 Overlapping Contours

Fundamentals

Pockets and islands can be overlapped to form a new contour. You can thus enlarge the area of a pocket by another pocket or reduce it by an island.

Example: NC blocks

```
12 CYCL DEF 14.0 CONTOUR GEOMETRY
13 CYCL DEF 14.1 CONTOUR LABEL1/2/3/4
```
Subprograms: overlapping pockets

The subsequent programming examples are contour subprograms that are called by Cycle 14 CONTOUR GEOMETRY in a main program.

Pockets A and B overlap.
The TNC calculates the points of intersection S₁ and S₂. They do not have to be programmed.
The pockets are programmed as full circles.

Subprogram 1: Pocket A

```
51 LBL 1
52 L X+10 Y+50 RR
53 CC X+35 Y+50
54 C X+10 Y+50 DR-
55 LBL 0
```

```
51 LBL 1
52 L X+10 Y+50 RR
53 CC X+35 Y+50
54 C X+10 Y+50 DR-
55 LBL 0
```

Subprogram 2: Pocket B

```
56 LBL 2
57 L X+90 Y+50 RR
58 CC X+65 Y+50
59 C X+90 Y+50 DR-
60 LBL 0
```
Area of inclusion

Both surfaces A and B are to be machined, including the overlapping area:

- The surfaces A and B must be pockets.
- The first pocket (in Cycle 14) must start outside the second pocket.

Surface A:

51 LBL 1
52 L X+10 Y+50 RR
53 CC X+35 Y+50
54 C X+10 Y+50 DR-
55 LBL 0

Surface B:

56 LBL 2
57 L X+90 Y+50 RR
58 CC X+65 Y+50
59 C X+90 Y+50 DR-
60 LBL 0
Area of exclusion

Surface A is to be machined without the portion overlapped by B:
- Surface A must be a pocket and B an island.
- A must start outside of B.
- B must start inside of A.

Surface A:

```
51 LBL 1
52 L X+10 Y+50 RR
53 CC X+35 Y+50
54 C X+10 Y+50 DR-
55 LBL 0
```

Surface B:

```
56 LBL 2
57 L X+90 Y+50 RL
58 CC X+65 Y+50
59 C X+90 Y+50 DR-
60 LBL 0
```

Area of intersection

Only the area where A and B overlap is to be machined. (The areas covered by A or B alone are to be left unmachined.)
- A and B must be pockets.
- A must start inside of B.

Surface A:

```
51 LBL 1
52 L X+60 Y+50 RR
53 CC X+35 Y+50
54 C X+60 Y+50 DR-
55 LBL 0
```

Surface B:

```
56 LBL 2
57 L X+90 Y+50 RR
58 CC X+65 Y+50
59 C X+90 Y+50 DR-
60 LBL 0
```
Please note while programming:

Machining data for the subprograms describing the subcontours are entered in Cycle 20.

Cycle 20 is DEF active, which means that it becomes effective as soon as it is defined in the part program.

The algebraic sign for the cycle parameter DEPTH determines the working direction. If you program DEPTH = 0, the TNC performs the cycle at the depth 0.

The machining data entered in Cycle 20 are valid for Cycles 21 to 24.

If you are using the SL cycles in Q parameter programs, the cycle parameters Q1 to Q20 cannot be used as program parameters.
Cycle parameters

- **Milling depth** Q1 (incremental): Distance between workpiece surface and bottom of pocket. Input range –99999.9999 to 99999.9999
- **Path overlap** factor Q2: Q2 x tool radius = stepover factor k. Input range -0.0001 to 1.9999.
- **Finishing allowance for side** Q3 (incremental): Finishing allowance in the working plane. Input range: -99999.9999 to 99999.9999
- **Finishing allowance for floor** Q4 (incremental): Finishing allowance in the tool axis. Input range –99999.9999 to 99999.9999
- **Workpiece surface coordinate** Q5 (absolute): Absolute coordinate of the workpiece surface. Input range –99999.9999 to 99999.9999
- **Setup clearance** Q6 (incremental): Distance between tool tip and workpiece surface. Input range 0 to 99999.9999
- **Clearance height** Q7 (absolute): Absolute height at which the tool cannot collide with the workpiece (for intermediate positioning and retraction at the end of the cycle). Input range –99999.9999 to 99999.9999
- **Inside corner radius** Q8: Inside “corner” rounding radius; entered value is referenced to the path of the tool center. **Q8 is not a radius that is inserted as a separate contour element between programmed elements!** Input range 0 to 99999.9999
- **Direction of rotation?** Q9: Machining direction for pockets.
 - Q9 = −1 up-cut milling for pocket and island
 - Q9 = +1 climb milling for pocket and island

You can check the machining parameters during a program interruption and overwrite them if required.

Example: NC blocks

```
57 CYCL DEF 20 CONTOUR DATA
Q1=-20 ;MILLING DEPTH
Q2=1 ;TOOL PATH OVERLAP
Q3=+0.2 ;ALLOWANCE FOR SIDE
Q4=+0.1 ;ALLOWANCE FOR FLOOR
Q5=+30 ;SURFACE COORDINATE
Q6=2 ;SETUP CLEARANCE
Q7=+80 ;CLEARANCE HEIGHT
Q8=0.5 ;ROUNDING RADIUS
Q9=+1 ;DIRECTION
```
7.5 PILOT DRILLING (Cycle 21, DIN/ISO: G121)

Cycle run

1. The tool drills from the current position to the first plunging depth at the programmed feed rate F.
2. Then the tool retracts at rapid traverse F_{MAX} to the starting position and advances again to the first plunging depth minus the advanced stop distance t.
3. The advanced stop distance is automatically calculated by the control:
 - At a total hole depth up to 30 mm: $t = 0.6 \text{ mm}$
 - At a total hole depth exceeding 30 mm: $t = \frac{\text{hole depth}}{50}$
 - Maximum advanced stop distance: 7 mm
4. The tool then advances with another infeed at the programmed feed rate F.
5. The TNC repeats this process (1 to 4) until the programmed depth is reached.
6. After a dwell time at the hole bottom, the tool is returned to the starting position at rapid traverse F_{MAX} for chip breaking.

Application

Cycle 21 is for PILOT DRILLING of the cutter infeed points. It accounts for the allowance for side and the allowance for floor as well as the radius of the rough-out tool. The cutter infeed points also serve as starting points for roughing.

Please note while programming:

Before programming, note the following:

When calculating the infeed points, the TNC does not account for the delta value DR programmed in a TOOL CALL block.

In narrow areas, the TNC may not be able to carry out pilot drilling with a tool that is larger than the rough-out tool.
Cycle parameters

- **Plunging depth** Q10 (incremental): Dimension by which the tool drills in each infeed (negative sign for negative working direction). Input range: -99999.9999 to 99999.9999

- **Feed rate for plunging** Q11: Drilling feed rate in mm/min. Input range: 0 to 99999.9999; alternatively FAUTO, FU, FZ.

- **Rough-out tool number/name** Q13 or QS13: Number or name of rough-out tool. Input range 0 to 32767.9 if a number is entered; maximum 16 characters if a name is entered.

Example: NC blocks

```
58 CYCL DEF 21 PILOT DRILLING
Q10=+5 ;PLUNGING DEPTH
Q11=100 ;FEED RATE FOR PLNGNG
Q13=1 ;ROUGH-OUT TOOL
```
7.6 ROUGH-OUT (Cycle 22, DIN/ISO: G122)

Cycle run

1 The TNC positions the tool over the cutter infeed point, taking the allowance for side into account.
2 In the first plunging depth, the tool mills the contour from the inside outward at the milling feed rate Q12.
3 The island contours (here: C/D) are cleared out with an approach toward the pocket contour (here: A/B).
4 In the next step the TNC moves the tool to the next plunging depth and repeats the roughing procedure until the program depth is reached.
5 Finally the TNC retracts the tool to the clearance height.
Please note while programming:

This cycle requires a center-cut end mill (ISO 1641) or pilot drilling with Cycle 21.

You define the plunging behavior of Cycle 22 with parameter Q19 and with the tool table in the \textbf{ANGLE} and \textbf{LCUTS} columns:

- If Q19=0 is defined, the TNC always plunges perpendicularly, even if a plunge angle (\textbf{ANGLE}) is defined for the active tool.
- If you define the \textbf{ANGLE}=90°, the TNC plunges perpendicularly. The reciprocation feed rate Q19 is used as plunging feed rate.
- If the reciprocation feed rate Q19 is defined in Cycle 22 and \textbf{ANGLE} is defined between 0.1 and 89.999 in the tool table, the TNC plunges helically at the defined \textbf{ANGLE}.
- If the reciprocation feed is defined in Cycle 22 and no \textbf{ANGLE} is in the tool table, the TNC displays an error message.
- If geometrical conditions do not allow helical plunging (slot geometry), the TNC tries a reciprocating plunge. The reciprocation length is calculated from \textbf{LCUTS} and \textbf{ANGLE} (reciprocation length = \textbf{LCUTS} / \tan \textbf{ANGLE}).

If you clear out an acute inside corner and use an overlap factor greater than 1, some material might be left over. Check especially the innermost path in the test run graphic and, if necessary, change the overlap factor slightly. This allows another distribution of cuts, which often provides the desired results.

During fine roughing the TNC does not take a defined wear value \textbf{DR} of the coarse roughing tool into account.
Cycle parameters

- **Plunging depth** Q10 (incremental): Infeed per cut. Input range: -99999.9999 to 99999.9999
- **Feed rate for plunging** Q11: Plunging feed rate in mm/min. Input range: 0 to 99999.9999; alternatively FAUTO, FU, FZ.
- **Feed rate for roughing** Q12: Milling feed rate in mm/min. Input range: 0 to 99999.9999; alternatively FAUTO, FU, FZ.
- **Coarse roughing tool** Q18 or QS18: Number or name of the tool with which the TNC has already coarse-roughed the contour. Switch to name input: Press the TOOL NAME soft key. The TNC automatically inserts the closing quotation mark when you exit the input field. If there was no coarse roughing, enter “0”; if you enter a number or a name, the TNC will only rough-out the portion that could not be machined with the coarse roughing tool. If the portion that is to be roughed cannot be approached from the side, the TNC will mill in a reciprocating plunge-cut; For this purpose you must enter the tool length LCUTS in the tool table TOOL.T and define the maximum plunging ANGLE of the tool. The TNC will otherwise generate an error message. Input range 0 to 32767.9 if a number is entered; maximum 16 characters if a name is entered.
- **Reciprocation feed rate** Q19: Traversing speed of the tool in mm/min during reciprocating plunge cut. Input range: 0 to 99999.9999; alternatively FAUTO, FU, FZ.
- **Retraction feed rate** Q208: Traversing speed of the tool in mm/min when retracting after machining. If you enter Q208 = 0, the TNC retracts the tool at the feed rate in Q12. Input range 0 to 99999.9999, alternatively FMAX FAUTO.

Example: NC blocks

```
59 CYCL DEP 22 ROUGH-OUT
Q10=+5 ; PLUNGING DEPTH
Q11=100 ; FEED RATE FOR PLUNGING
Q12=750 ; FEED RATE FOR ROUGHING
Q18=1 ; COARSE ROUGHING TOOL
Q19=150 ; RECIPROCATION FEED RATE
Q208=99999 ; RETRACTION FEED RATE
```
7.7 FLOOR FINISHING (Cycle 23, DIN/ISO: G123)

Cycle run

The tool approaches the machining plane smoothly (on a vertically tangential arc) if there is sufficient room. If there is not enough room, the TNC moves the tool to depth vertically. The tool then clears the finishing allowance remaining from rough-out.

Please note while programming:

- The TNC automatically calculates the starting point for finishing. The starting point depends on the available space in the pocket.
- The approaching radius for pre-positioning to the final depth is permanently defined and independent of the plunging angle of the tool.

Cycle parameters

- **Feed rate for plunging** Q11: Traversing speed of the tool during plunging. Input range 0 to 99999.9999, alternatively FAUTO, FU, FZ
- **Feed rate for roughing** Q12: Milling feed rate. Input range 0 to 99999.9999, alternatively FAUTO, FU, FZ
- **Retraction feed rate** Q208: Traversing speed of the tool in mm/min when retracting after machining. If you enter Q208 = 0, the TNC retracts the tool at the feed rate in Q12. Input range 0 to 99999.9999, alternatively FMAX, FAUTO

Example: NC blocks

```
60 CYCL DEF 23 FLOOR FINISHING
Q11=100 ;FEED RATE FOR PLNGNG
Q12=350 ;FEED RATE FOR ROUGHING
Q208=99999;RETRACTION FEED RATE
```
7.8 SIDE FINISHING (Cycle 24, DIN/ISO: G124)

Cycle run

The subcontours are approached and departed on a tangential arc. Each subcontour is finished separately.

Please note while programming:

The sum of allowance for side (Q14) and the radius of the finish mill must be smaller than the sum of allowance for side (Q3, Cycle 20) and the radius of the rough mill.

This calculation also holds if you run Cycle 24 without having roughed out with Cycle 22; in this case, enter “0” for the radius of the rough mill.

You can use Cycle 24 also for contour milling. Then you must:

- define the contour to be milled as a single island (without pocket limit), and
- enter the finishing allowance (Q3) in Cycle 20 to be greater than the sum of the finishing allowance Q14 + radius of the tool being used.

The TNC automatically calculates the starting point for finishing. The starting point depends on the available space in the pocket and the allowance programmed in Cycle 20.

The starting point calculated by the TNC also depends on the machining sequence. If you select the finishing cycle with the GOTO key and then start the program, the starting point can be at a different location from where it would be if you execute the program in the defined sequence.
Cycle parameters

- **Direction of rotation? Clockwise** = -1 Q9:
 Machining direction:
 +1: Counterclockwise
 –1: Clockwise

- **Plunging depth** Q10 (incremental): Infeed per cut.
 Input range: -99999.9999 to 99999.9999

- **Feed rate for plunging** Q11: Traversing speed of the tool during plunging. Input range 0 to 99999.9999, alternatively FAUTO, FU, FZ

- **Feed rate for roughing** Q12: Milling feed rate. Input range 0 to 99999.9999, alternatively FAUTO, FU, FZ

- **Finishing allowance for side** Q14 (incremental):
 Enter the allowed material for several finish-milling operations. If you enter Q14 = 0, the remaining finishing allowance will be cleared.
 Input range –99999.9999 to 99999.9999

Example: NC blocks

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>61</td>
<td>CYCLE DEF 24 SIDE FINISHING</td>
<td></td>
</tr>
<tr>
<td>Q9=+1</td>
<td>;DIRECTION</td>
<td></td>
</tr>
<tr>
<td>Q10=+5</td>
<td>;PLUNGING DEPTH</td>
<td></td>
</tr>
<tr>
<td>Q11=100</td>
<td>;FEED RATE FOR PLUNGING</td>
<td></td>
</tr>
<tr>
<td>Q12=350</td>
<td>;FEED RATE FOR ROUGHING</td>
<td></td>
</tr>
<tr>
<td>Q14=0</td>
<td>;ALLOWANCE FOR SIDE</td>
<td></td>
</tr>
</tbody>
</table>
7.9 CONTOUR TRAIN (Cycle 25, DIN/ISO: G125)

Cycle run

In conjunction with Cycle 14 CONTOUR GEOMETRY, this cycle facilitates the machining of open and closed contours.

Cycle 25 CONTOUR TRAIN offers considerable advantages over machining a contour using positioning blocks:

- The TNC monitors the operation to prevent undercuts and surface blemishes. It is recommended that you run a graphic simulation of the contour before execution.
- If the radius of the selected tool is too large, the corners of the contour may have to be reworked.
- The contour can be machined throughout by up-cut or by climb milling. The type of milling even remains effective when the contours are mirrored.
- The tool can traverse back and forth for milling in several infeeds: This results in faster machining.
- Allowance values can be entered in order to perform repeated rough-milling and finish-milling operations.

Please note while programming:

The algebraic sign for the cycle parameter DEPTH determines the working direction. If you program DEPTH = 0, the cycle will not be executed.

The TNC takes only the first label of Cycle 14 CONTOUR GEOMETRY into account.

The memory capacity for programming an SL cycle is limited. You can program up to 16384 contour elements in one SL cycle.

Cycle 20 CONTOUR DATA is not required.

The miscellaneous functions M109 and M110 are not effective when machining a contour with Cycle 25.

Danger of collision!

To avoid collisions,

- Do not program positions in incremental dimensions immediately after Cycle 25 since they are referenced to the position of the tool at the end of the cycle.
- Move the tool to defined (absolute) positions in all main axes, since the position of the tool at the end of the cycle is not identical to the position of the tool at the start of the cycle.
7.9 CONTOUR TRAIN (Cycle 25, DIN/ISO: G125)

Cycle parameters

- **Milling depth** Q1 (incremental): Distance between workpiece surface and contour floor. Input range –99999.9999 to 99999.9999

- **Finishing allowance for side** Q3 (incremental): Finishing allowance in the working plane. Input range –99999.9999 to 99999.9999

- **Workpiece surface coordinate** Q5 (absolute): Absolute coordinate of the workpiece surface referenced to the workpiece datum. Input range –99999.9999 to 99999.9999

- **Clearance height** Q7 (absolute): Absolute height at which the tool cannot collide with the workpiece. Position for tool retraction at the end of the cycle. Input range –99999.9999 to 99999.9999

- **Plunging depth** Q10 (incremental): Infeed per cut. Input range: -99999.9999 to 99999.9999

- **Feed rate for plunging** Q11: Traversing speed of the tool in the spindle axis. Input range 0 to 99999.9999, alternatively FAUTO, FU, FZ

- **Feed rate for milling** Q12: Traversing speed of the tool in the working plane. Input range 0 to 99999.9999, alternatively FAUTO, FU, FZ

- **Climb or up-cut? Up-cut = –1** Q15: Climb milling: Input value = +1 Up-cut milling: Input value = –1 To enable climb milling and up-cut milling alternately in several infeeds: Input value = 0

Example: NC blocks

```
62 CYCL DEF 25 CONTOUR TRAIN
Q1=-20 ;MILLING DEPTH
Q3=+0 ;ALLOWANCE FOR SIDE
Q5=+0 ;SURFACE COORDINATE
Q7=+50 ;CLEARANCE HEIGHT
Q10=+5 ;PLUNGING DEPTH
Q11=100 ;FEED RATE FOR PLNGNG
Q12=350 ;FEED RATE FOR MILLING
Q15=-1 ;CLIMB OR UP-CUT
```
Example: Roughing-out and fine-roughing a pocket

```
0 BEGIN PGM C20 MM
1 BLK FORM 0.1 Z X-10 Y-10 Z-40
2 BLK FORM 0.2 X+100 Y+100 Z+0
3 TOOL CALL 1 Z S2500
4 L Z+250 R0 FMAX
5 CYCL DEF 14.0 CONTOUR GEOMETRY
6 CYCL DEF 14.1 CONTOUR LABEL 1
7 CYCL DEF 20 CONTOUR DATA
  Q1=-20   ;MILLING DEPTH
  Q2=1     ;TOOL PATH OVERLAP
  Q3=+0    ;ALLOWANCE FOR SIDE
  Q4=+0    ;ALLOWANCE FOR FLOOR
  Q5=+0    ;SURFACE COORDINATE
  Q6=2     ;SETUP CLEARANCE
  Q7=+100  ;CLEARANCE HEIGHT
  Q8=0.1   ;ROUNDING RADIUS
  Q9=-1    ;DIRECTION
```
<table>
<thead>
<tr>
<th>Line</th>
<th>Command</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>CYCL DEF 22 ROUGH-OUT</td>
<td>Cycle definition: Coarse roughing</td>
</tr>
<tr>
<td></td>
<td>Q10=5 ;PLUNGING DEPTH</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Q11=100 ;FEED RATE FOR PLNGNG</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Q12=350 ;FEED RATE FOR ROUGHING</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Q18=0 ;COARSE ROUGHING TOOL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Q19=150 ;RECIPIROCATION FEED RATE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Q208=30000;RETRACTION FEED RATE</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>CYCL CALL M3</td>
<td>Cycle call: Coarse roughing</td>
</tr>
<tr>
<td>10</td>
<td>L Z+250 R0 FMAX M6</td>
<td>Tool change</td>
</tr>
<tr>
<td>11</td>
<td>TOOL CALL 2 Z S3000</td>
<td>Tool call: fine roughing tool, diameter 15</td>
</tr>
<tr>
<td>12</td>
<td>CYCL DEF 22 ROUGH-OUT</td>
<td>Define the fine roughing cycle</td>
</tr>
<tr>
<td></td>
<td>Q10=5 ;PLUNGING DEPTH</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Q11=100 ;FEED RATE FOR PLNGNG</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Q12=350 ;FEED RATE FOR ROUGHING</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Q18=1 ;COARSE ROUGHING TOOL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Q19=150 ;RECIPIROCATION FEED RATE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Q208=30000;RETRACTION FEED RATE</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>CYCL CALL M3</td>
<td>Cycle call: Fine roughing</td>
</tr>
<tr>
<td>14</td>
<td>L Z+250 R0 FMAX M2</td>
<td>Retract in the tool axis, end program</td>
</tr>
<tr>
<td>15</td>
<td>LBL 1</td>
<td>Contour subprogram</td>
</tr>
<tr>
<td>16</td>
<td>L X+0 Y+30 RR</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>FC DR- R30 CCX+30 CCY+30</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>FL AN+60 PDX+30 PDY+30 D10</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>FSELECT 3</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>FPOL X+30 Y+30</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>FC DR- R20 CCPR+55 CCPA+60</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>FSELECT 2</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>FL AN-120 PDX+30 PDY+30 D10</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>FSELECT 3</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>FC X+0 DR- R30 CCX+30 CCY+30</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>FSELECT 2</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>LBL 0</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>END PGM C20 MM</td>
<td></td>
</tr>
</tbody>
</table>
Example: Pilot drilling, roughing-out and finishing overlapping contours

0 BEGIN PGM C21 MM
1 BLK FORM 0.1 Z X+0 Y+0 Z-40 Definition of workpiece blank
2 BLK FORM 0.2 X+100 Y+100 Z+0
3 TOOL CALL 1 Z S2500 Tool call: Drill, diameter 12
4 L Z+250 R0 FMAX Retract the tool
5 CYCL DEF 14.0 CONTOUR GEOMETRY Define contour subprogram
6 CYCL DEF 14.1 CONTOUR LABEL1/2/3/4
7 CYCL DEF 20 CONTOUR DATA Define general machining parameters
 Q1=-20 ;MILLING DEPTH
 Q2=1 ;TOOL PATH OVERLAP
 Q3=+0.5 ;ALLOWANCE FOR SIDE
 Q4=+0.5 ;ALLOWANCE FOR FLOOR
 Q5=+0 ;SURFACE COORDINATE
 Q6=2 ;SETUP CLEARANCE
 Q7=+100 ;CLEARANCE HEIGHT
 Q8=0.1 ;ROUNDING RADIUS
 Q9=-1 ;DIRECTION
8 CYCL DEF 21 PILOT DRILLING
 Q10=5 ;PLUNGING DEPTH
 Q11=250 ;FEED RATE FOR PLNGNG
 Q13=2 ;ROUGH-OUT TOOL
Cycle definition: Pilot drilling

9 CYCL CALL M3
Cycle call: Pilot drilling

10 L +250 R0 FMAX M6
Tool change

11 TOOL CALL 2 Z S3000
Call the tool for roughing/finishing, diameter 12

12 CYCL DEF 22 ROUGH-OUT
 Q10=5 ;PLUNGING DEPTH
 Q11=100 ;FEED RATE FOR PLNGNG
 Q12=350 ;FEED RATE FOR ROUGHING
 Q18=0 ;COARSE ROUGHING TOOL
 Q19=150 ;RECIROCATION FEED RATE
 Q208=30000;RETRACTION FEED RATE
Cycle definition: Rough-out

13 CYCL CALL M3
Cycle call: Rough-out

14 CYCL DEF 23 FLOOR FINISHING
 Q11=100 ;FEED RATE FOR PLNGNG
 Q12=200 ;FEED RATE FOR ROUGHING
 Q208=30000;RETRACTION FEED RATE
Cycle definition: Floor finishing

15 CYCL CALL
Cycle call: Floor finishing

16 CYCLE DEF 24 SIDE FINISHING
 Q9=+1 ;DIRECTION
 Q10=5 ;PLUNGING DEPTH
 Q11=100 ;FEED RATE FOR PLNGNG
 Q12=400 ;FEED RATE FOR ROUGHING
 Q14=+0 ;ALLOWANCE FOR SIDE
Cycle definition: Side finishing

17 CYCL CALL
Cycle call: Side finishing

18 L Z+250 R0 FMAX M2
Retract in the tool axis, end program
<table>
<thead>
<tr>
<th>Line</th>
<th>Code</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>LBL 1</td>
<td>Contour subprogram 1: left pocket</td>
</tr>
<tr>
<td>20</td>
<td>CC X+35 Y+50</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>L X+10 Y+50 RR</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>C X+10 DR-</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>LBL 0</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>LBL 2</td>
<td>Contour subprogram 2: right pocket</td>
</tr>
<tr>
<td>25</td>
<td>CC X+65 Y+50</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>L X+90 Y+50 RR</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>C X+90 DR-</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>LBL 0</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>LBL 3</td>
<td>Contour subprogram 3: square left island</td>
</tr>
<tr>
<td>30</td>
<td>L X+27 Y+50 RL</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>L Y+58</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>L X+43</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>L Y+42</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>L X+27</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>LBL 0</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>LBL 4</td>
<td>Contour subprogram 4: triangular right island</td>
</tr>
<tr>
<td>37</td>
<td>L X+65 Y+42 RL</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>L X+57</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>L X+65 Y+58</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>LBL 0</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>END PGM C21 MM</td>
<td></td>
</tr>
</tbody>
</table>
Example: Contour train

0 BEGIN PGM C25 MM
1 BLK FORM 0.1 Z X+0 Y+0 Z-40 Definition of workpiece blank
2 BLK FORM 0.2 X+100 Y+100 Z+0
3 TOOL CALL 1 Z S2000 Tool call: Diameter 20
4 L Z+250 R0 FMAX Retract the tool
5 CYCL DEF 14.0 CONTOUR GEOMETRY Define contour subprogram
6 CYCL DEF 14.1 CONTOUR LABEL 1
7 CYCL DEF 25 CONTOUR TRAIN Define machining parameters
 Q1=-20 ;MILLING DEPTH
 Q3=+0 ;ALLOWANCE FOR SIDE
 Q5=+0 ;SURFACE COORDINATE
 Q7=+250 ;CLEARANCE HEIGHT
 Q10=5 ;PLUNGING DEPTH
 Q11=100 ;FEED RATE FOR PLNGNG
 Q12=200 ;FEED RATE FOR MILLING
 Q15=+1 ;CLIMB OR UP-CUT
8 CYCL CALL M3 Cycle call
9 L Z+250 R0 FMAX M2 Retract in the tool axis, end program
7.10 Programming Examples

<table>
<thead>
<tr>
<th>Line</th>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>LBL 1</td>
<td>Contour subprogram</td>
</tr>
<tr>
<td>11</td>
<td>L X+0 Y+15 RL</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>L X+5 Y+20</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>CT X+5 Y+75</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>L Y+95</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>RND R7.5</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>L X+50</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>RND R7.5</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>L X+100 Y+80</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>LBL 0</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>END PGM C25 MM</td>
<td></td>
</tr>
</tbody>
</table>
Fixed Cycles: Cylindrical Surface
8.1 Fundamentals

Overview of cylindrical surface cycles

<table>
<thead>
<tr>
<th>Cycle</th>
<th>Soft key</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>27 CYLINDER SURFACE</td>
<td>27</td>
<td>Page 197</td>
</tr>
<tr>
<td>28 CYLINDER SURFACE slot milling</td>
<td>29</td>
<td>Page 200</td>
</tr>
<tr>
<td>29 CYLINDER SURFACE ridge milling</td>
<td>29</td>
<td>Page 203</td>
</tr>
</tbody>
</table>
8.2 CYLINDER SURFACE (Cycle 27, DIN/ISO: G127, Software Option)

Execution of cycle

This cycle enables you to program a contour in two dimensions and then roll it onto a cylindrical surface for 3-D machining. Use Cycle 28 if you want to mill guideways on the cylinder.

The contour is described in a subprogram identified in Cycle 14 CONTOUR GEOMETRY.

In the subprogram you always describe the contour with the coordinates X and Y, regardless of which rotary axes exist on your machine. This means that the contour description is independent of your machine configuration. The path functions L, CHF, CR, RND and CT are available.

The dimensions for the rotary axis (X coordinates) can be entered as desired either in degrees or in mm (or inches). Specify with Q17 in the cycle definition.

1 The TNC positions the tool over the cutter infeed point, taking the allowance for side into account.

2 At the first plunging depth, the tool mills along the programmed contour at the milling feed rate Q12.

3 At the end of the contour, the TNC returns the tool to the setup clearance and returns to the point of penetration.

4 Steps 1 to 3 are repeated until the programmed milling depth Q1 is reached.

5 Then the tool moves to the setup clearance.
Please note while programming:

The machine and TNC must be prepared for cylinder surface interpolation by the machine manufacturer. Refer to your machine tool manual.

In the first NC block of the contour program, always program both cylinder surface coordinates.

The memory capacity for programming an SL cycle is limited. You can program up to 16384 contour elements in one SL cycle.

The algebraic sign for the cycle parameter DEPTH determines the working direction. If you program DEPTH = 0, the cycle will not be executed.

This cycle requires a center-cut end mill (DIN 844).

The cylinder must be set up centered on the rotary table. Set the reference point to the center of the rotary table.

The spindle axis must be perpendicular to the rotary table axis when the cycle is called; switching of the kinematics may be required. If this is not the case, the TNC will generate an error message.

This cycle can also be used in a tilted working plane.

The set-up clearance must be greater than the tool radius.

The machining time can increase if the contour consists of many non-tangential contour elements.
Cycle parameters

- **Milling depth** Q1 (incremental): Distance between the cylindrical surface and the floor of the contour. Input range: -99999.9999 to 99999.9999
- **Finishing allowance for side** Q3 (incremental): Finishing allowance in the plane of the unrolled cylindrical surface. This allowance is effective in the direction of the radius compensation. Input range –99999.9999 to 99999.9999
- **Setup clearance** Q6 (incremental): Distance between the tool tip and the cylinder surface. Input range 0 to 99999.9999
- **Plunging depth** Q10 (incremental): Infeed per cut. Input range: -99999.9999 to 99999.9999
- **Feed rate for plunging** Q11: Traversing speed of the tool in the spindle axis. Input range 0 to 99999.9999, alternatively FAUTO, FU, FZ
- **Feed rate for milling** Q12: Traversing speed of the tool in the working plane. Input range 0 to 99999.9999, alternatively FAUTO, FU, FZ
- **Cylinder radius** Q16: Radius of the cylinder on which the contour is to be machined. Input range 0 to 99999.9999
- **Dimension type? ang./lin.** Q17: The dimensions for the rotary axis of the subprogram are given either in degrees (0) or in mm/inches (1).

Example: NC blocks

<table>
<thead>
<tr>
<th>Q1</th>
<th>;MILLING DEPTH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q3</td>
<td>;ALLOWANCE FOR SIDE</td>
</tr>
<tr>
<td>Q6</td>
<td>;SETUP CLEARANCE</td>
</tr>
<tr>
<td>Q10</td>
<td>;PLUNGING DEPTH</td>
</tr>
<tr>
<td>Q11</td>
<td>;FEED RATE FOR PLNGNG</td>
</tr>
<tr>
<td>Q12</td>
<td>;FEED RATE FOR MILLING</td>
</tr>
<tr>
<td>Q16</td>
<td>;RADIUS</td>
</tr>
<tr>
<td>Q17</td>
<td>;TYPE OF DIMENSION</td>
</tr>
</tbody>
</table>

63 CYCL DEF 27 CYLINDER SURFACE

Q1=-8 ;MILLING DEPTH
Q3=+0 ;ALLOWANCE FOR SIDE
Q6=+0 ;SETUP CLEARANCE
Q10=+3 ;PLUNGING DEPTH
Q11=100 ;FEED RATE FOR PLNGNG
Q12=350 ;FEED RATE FOR MILLING
Q16=25 ;RADIUS
Q17=0 ;TYPE OF DIMENSION
8.3 CYLINDER SURFACE Slot Milling
(Cycle 28, DIN/ISO: G128, Software-Option 1)

Cycle run

This cycle enables you to program a guide notch in two dimensions and then transfer it onto a cylindrical surface. Unlike Cycle 27, with this cycle the TNC adjusts the tool so that, with radius compensation active, the walls of the slot are nearly parallel. You can machine exactly parallel walls by using a tool that is exactly as wide as the slot.

The smaller the tool is with respect to the slot width, the larger the distortion in circular arcs and oblique line segments. To minimize this process-related distortion, you can define in parameter Q21 a tolerance with which the TNC machines a slot as similar as possible to a slot machined with a tool of the same width as the slot.

Program the midpoint path of the contour together with the tool radius compensation. With the radius compensation you specify whether the TNC cuts the slot with climb milling or up-cut milling.

1 The TNC positions the tool over the cutter infeed point.
2 At the first plunging depth, the tool mills along the programmed slot wall at the milling feed rate Q12 while respecting the finishing allowance for the side.
3 At the end of the contour, the TNC moves the tool to the opposite wall and returns to the infeed point.
4 Steps 2 and 3 are repeated until the programmed milling depth Q1 is reached.
5 If you have defined the tolerance in Q21, the TNC then remachines the slot walls to be as parallel as possible.
6 Finally, the tool retracts in the tool axis to the clearance height or to the position last programmed before the cycle.
Please note while programming:

- The machine and TNC must be prepared for cylinder surface interpolation by the machine manufacturer. Refer to your machine tool manual.

- In the first NC block of the contour program, always program both cylinder surface coordinates.

- The memory capacity for programming an SL cycle is limited. You can program up to 16384 contour elements in one SL cycle.

 - The algebraic sign for the cycle parameter DEPTH determines the working direction. If you program DEPTH = 0, the cycle will not be executed.

- This cycle requires a center-cut end mill (DIN 844).

- The cylinder must be set up centered on the rotary table. Set the reference point to the center of the rotary table.

 - The spindle axis must be perpendicular to the rotary table axis when the cycle is called; switching of the kinematics may be required. If this is not the case, the TNC will generate an error message.

 - This cycle can also be used in a tilted working plane.

 - The set-up clearance must be greater than the tool radius.

 - The machining time can increase if the contour consists of many non-tangential contour elements.
Cycle parameters

- **Milling depth** Q_1 (incremental): Distance between the cylindrical surface and the floor of the contour. Input range: -99999.9999 to 99999.9999

- **Finishing allowance for side** Q_3 (incremental): Finishing allowance on the slot wall. The finishing allowance reduces the slot width by twice the entered value. Input range –99999.9999 to 99999.9999

- **Setup clearance** Q_6 (incremental): Distance between the tool tip and the cylinder surface. Input range 0 to 99999.9999

- **Plunging depth** Q_{10} (incremental): Infeed per cut. Input range: -99999.9999 to 99999.9999

- **Feed rate for plunging** Q_{11}: Traversing speed of the tool in the spindle axis. Input range 0 to 99999.9999, alternatively FAUTO, FU, FZ

- **Feed rate for milling** Q_{12}: Traversing speed of the tool in the working plane. Input range 0 to 99999.9999, alternatively FAUTO, FU, FZ

- **Cylinder radius** Q_{16}: Radius of the cylinder on which the contour is to be machined. Input range 0 to 99999.9999

- **Dimension type? ang./lin.** Q_{17}: The dimensions for the rotary axis of the subprogram are given either in degrees (0) or in mm/inches (1).

- **Slot width** Q_{20}: Width of the slot to be machined. Input range –99999.9999 to 99999.9999

- **Tolerance?** Q_{21}: If you use a tool smaller than the programmed slot width Q_{20}, process-related distortion occurs on the slot wall wherever the slot follows the path of an arc or oblique line. If you define the tolerance Q_{21}, the TNC adds a subsequent milling operation to ensure that the slot dimensions are as close as possible to those of a slot that has been milled with a tool exactly as wide as the slot. With Q_{21} you define the permitted deviation from this ideal slot. The number of subsequent milling operations depends on the cylinder radius, the tool used, and the slot depth. The smaller the tolerance is defined, the more exact the slot is and the longer the remachining takes. **Recommendation:** Use a tolerance of 0.02 mm. **Function inactive:** Enter 0 (default setting) Input range 0 to 9.9999
8.4 CYLINDER SURFACE Ridge Milling (Cycle 29, DIN/ISO: G129, Software-Option 1)

Cycle run

This cycle enables you to program a ridge in two dimensions and then transfer it onto a cylindrical surface. With this cycle the TNC adjusts the tool so that, with radius compensation active, the walls of the slot are always parallel. Program the midpoint path of the ridge together with the tool radius compensation. With the radius compensation you specify whether the TNC cuts the ridge with climb milling or up-cut milling.

At the ends of the ridge the TNC always adds a semicircle whose radius is half the ridge width.

1. The TNC positions the tool over the starting point of machining. The TNC calculates the starting point from the ridge width and the tool diameter. It is located next to the first point defined in the contour subprogram, offset by half the ridge width and the tool diameter. The radius compensation determines whether machining begins from the left (1, RL = climb milling) or the right of the ridge (2, RR = up-cut milling).

2. After the TNC has positioned to the first plunging depth, the tool moves on a circular arc at the milling feed rate Q12 tangentially to the ridge wall. If so programmed, it will leave metal for the finishing allowance.

3. At the first plunging depth, the tool mills along the programmed ridge wall at the milling feed rate Q12 until the stud is completed.

4. The tool then departs the ridge wall on a tangential path and returns to the starting point of machining.

5. Steps 2 to 4 are repeated until the programmed milling depth Q1 is reached.

6. Finally, the tool retracts in the tool axis to the clearance height or to the position last programmed before the cycle.
Please note while programming:

The machine and TNC must be prepared for cylinder surface interpolation by the machine manufacturer. Refer to your machine tool manual.

In the first NC block of the contour program, always program both cylinder surface coordinates. The memory capacity for programming an SL cycle is limited. You can program up to 16384 contour elements in one SL cycle.

The algebraic sign for the cycle parameter DEPTH determines the working direction. If you program DEPTH = 0, the cycle will not be executed.

This cycle requires a center-cut end mill (DIN 844).

The cylinder must be set up centered on the rotary table. Set the reference point to the center of the rotary table. The spindle axis must be perpendicular to the rotary table axis when the cycle is called; switching of the kinematics may be required. If this is not the case, the TNC will generate an error message.

This cycle can also be used in a tilted working plane.

The set-up clearance must be greater than the tool radius. The machining time can increase if the contour consists of many non-tangential contour elements.
Cycle parameters

- **Milling depth** \(Q_1 \) (incremental): Distance between the cylindrical surface and the floor of the contour. Input range: \(-99999.9999\) to \(99999.9999\)

- **Finishing allowance for side** \(Q_3 \) (incremental): Finishing allowance on the ridge wall. The finishing allowance increases the ridge width by twice the entered value. Input range: \(-99999.9999\) to \(99999.9999\)

- **Setup clearance** \(Q_6 \) (incremental): Distance between the tool tip and the cylinder surface. Input range \(0\) to \(99999.9999\)

- **Plunging depth** \(Q_{10} \) (incremental): Infeed per cut. Input range: \(-99999.9999\) to \(99999.9999\)

- **Feed rate for plunging** \(Q_{11} \): Traversing speed of the tool in the spindle axis. Input range \(0\) to \(99999.9999\), alternatively \(FAUTO, FU, FZ\)

- **Feed rate for milling** \(Q_{12} \): Traversing speed of the tool in the working plane. Input range \(0\) to \(99999.9999\), alternatively \(FAUTO, FU, FZ\)

- **Cylinder radius** \(Q_{16} \): Radius of the cylinder on which the contour is to be machined. Input range \(0\) to \(99999.9999\)

- **Dimension type? ang./lin.** \(Q_{17} \): The dimensions for the rotary axis of the subprogram are given either in degrees \(0\) or in mm/inches \(1\).

- **Ridge width** \(Q_{20} \): Width of the ridge to be machined. Input range \(-99999.9999\) to \(99999.9999\)

Example: NC blocks

```
63 CYCL DEF 29 CYLINDER SURFACE RIDGE
Q1=-8 ;MILLING DEPTH
Q3=+0 ;ALLOWANCE FOR SIDE
Q6=+0 ;SETUP CLEARANCE
Q10=+3 ;PLUNGING DEPTH
Q11=100 ;FEED RATE FOR PLNGNG
Q12=350 ;FEED RATE FOR MILLING
Q16=25 ;RADIUS
Q17=0 ;TYPE OF DIMENSION
Q20=12 ;RIDGE WIDTH
```
Example: Cylinder surface with Cycle 27

Notes:
- Machine with B head and C table
- Cylinder centered on rotary table
- Datum at center of rotary table
- Description of the midpoint path in the contour subprogram

```
0 BEGIN PGM C28 MM
1 TOOL CALL 1 Y S2000  
Call tool, tool axis is Y
2 L Y+250 R0 FMAX      
Retract the tool
3 L X R0 FMAX          
Position tool on rotary table center
4 CYCL DEF 14.0 CONTOUR GEOMETRY
5 CYCL DEF 14.1 CONTOUR LABEL 1
6 CYCL DEF 27 CYLINDER SURFACE
7 L C+0 R0 FMAX M3     
Pre-position rotary table
8 CYCL CALL             
Cycle call
9 L Y+250 R0 FMAX M2   
Retract in the tool axis, end program
```
<table>
<thead>
<tr>
<th>Line</th>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>LBL 1</td>
<td>Contour subprogram, description of the midpoint path</td>
</tr>
<tr>
<td>11</td>
<td>L X+40 Y+0 RR</td>
<td>Data for the rotary axis are entered in mm (Q17=1)</td>
</tr>
<tr>
<td>12</td>
<td>L Y+35</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>L X+60 Y+52.5</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>L Y+70</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>LBL 0</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>END PGM C28 MM</td>
<td></td>
</tr>
</tbody>
</table>
Example: Cylinder surface with Cycle 28

Note:
- Machine with B head and C table
- Cylinder centered on rotary table
- Datum at center of rotary table

<table>
<thead>
<tr>
<th>Line</th>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>BEGIN PGM C27 MM</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>TOOL CALL 1 Y S2000</td>
<td>Call tool, tool axis is Y</td>
</tr>
<tr>
<td>2</td>
<td>L X+250 R0 FMAX</td>
<td>Retract the tool</td>
</tr>
<tr>
<td>3</td>
<td>L X RO FMAX</td>
<td>Position tool on rotary table center</td>
</tr>
<tr>
<td>4</td>
<td>CYCL DEF 14.0 CONTOUR GEOMETRY</td>
<td>Define contour subprogram</td>
</tr>
<tr>
<td>5</td>
<td>CYCL DEF 14.1 CONTOUR LABEL 1</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>CYCL DEF 28 CYLINDER SURFACE</td>
<td>Define machining parameters</td>
</tr>
<tr>
<td>7</td>
<td>Q1=-7 ;MILLING DEPTH</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Q3=+0 ;ALLOWANCE FOR SIDE</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Q6=2 ;SETUP CLEARANCE</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Q10=-4 ;PLUNGING DEPTH</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Q11=100 ;FEED RATE FOR PLNGNG</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Q12=250 ;FEED RATE FOR MILLING</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Q16=25 ;RADIUS</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Q17=1 ;TYPE OF DIMENSION</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Q20=10 ;SLOT WIDTH</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Q21=0.02 ;TOLERANCE</td>
<td>Remachining active</td>
</tr>
<tr>
<td>7</td>
<td>L C+0 RO FMAX M3</td>
<td>Pre-position rotary table</td>
</tr>
<tr>
<td>8</td>
<td>CYCL CALL</td>
<td>Cycle call</td>
</tr>
<tr>
<td>9</td>
<td>L Y+250 R0 FMAX M2</td>
<td>Retract in the tool axis, end program</td>
</tr>
<tr>
<td>Line</td>
<td>Code</td>
<td>Description</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>-------------</td>
</tr>
<tr>
<td>10</td>
<td>LBL 1</td>
<td>Contour subprogram</td>
</tr>
<tr>
<td>11</td>
<td>L X+40 Y+20 RL</td>
<td>Data for the rotary axis are entered in mm (Q17=1)</td>
</tr>
<tr>
<td>12</td>
<td>L X+50</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>RND R7.5</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>L Y+60</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>RND R7.5</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>L IX-20</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>RND R7.5</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>L Y+20</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>RND R7.5</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>L X+40</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>LBL 0</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>END PGM C27 MM</td>
<td></td>
</tr>
</tbody>
</table>
Fixed Cycles: Contour Pocket with Contour Formula
9.1 SL Cycles with Complex Contour Formula

Fundamentals

SL cycles and the complex contour formula enable you to form complex contours by combining subcontours (pockets or islands). You define the individual subcontours (geometry data) as separate programs. In this way, any subcontour can be used any number of times. The TNC calculates the complete contour from the selected subcontours, which you link together through a contour formula.

The memory capacity for programming an SL cycle (all contour description programs) is limited to 128 contours. The number of possible contour elements depends on the type of contour (inside or outside contour) and the number of contour descriptions. You can program up to 16384 elements.

The SL cycles with contour formula presuppose a structured program layout and enable you to save frequently used contours in individual programs. Using the contour formula, you can connect the subcontours to a complete contour and define whether it applies to a pocket or island.

In its present form, the “SL cycles with contour formula” function requires input from several areas in the TNC’s user interface. This function is to serve as a basis for further development.

Example: Program structure: Machining with SL cycles and complex contour formula

```plaintext
0 BEGIN PGM CONTOUR MM
...
5 SEL CONTOUR "MODEL"
6 CYCL DEF 20 CONTOUR DATA...
8 CYCL DEF 22 ROUGH-OUT...
9 CYCL CALL
...
12 CYCL DEF 23 FLOOR FINISHING...
13 CYCL CALL
...
16 CYCL DEF 24 SIDE FINISHING...
17 CYCL CALL
63 L Z+250 R0 FMAX M2
64 END PGM CONTOUR MM
```
Properties of the subcontours

- By default, the TNC assumes that the contour is a pocket. Do not program a radius compensation.
- The TNC ignores feed rates F and miscellaneous functions M.
- Coordinate transformations are allowed. If they are programmed within the subcontour they are also effective in the following subprograms, but they need not be reset after the cycle call.
- Although the subprograms can contain coordinates in the spindle axis, such coordinates are ignored.
- The working plane is defined in the first coordinate block of the subprogram.
- You can define subcontours with various depths as needed.

Characteristics of the fixed cycles

- The TNC automatically positions the tool to the setup clearance before a cycle.
- Each level of infeed depth is milled without interruptions since the cutter traverses around islands instead of over them.
- The radius of “inside corners” can be programmed—the tool keeps moving to prevent surface blemishes at inside corners (this applies for the outermost pass in the Rough-out and Side Finishing cycles).
- The contour is approached on a tangential arc for side finishing.
- For floor finishing, the tool again approaches the workpiece on a tangential arc (for tool axis Z, for example, the arc may be in the Z/X plane).
- The contour is machined throughout in either climb or up-cut milling.

The machining data (such as milling depth, finishing allowance and setup clearance) are entered as CONTOUR DATA in Cycle 20.

Example: Program structure: Calculation of the subcontours with contour formula

```
0 BEGIN PGM MODEL MM
1 DECLARE CONTOUR QC1 = "CIRCLE1"
2 DECLARE CONTOUR QC2 = "CIRCLEY" DEPTH15
3 DECLARE CONTOUR QC3 = "TRIANGLE" DEPTH10
4 DECLARE CONTOUR QC4 = "SQUARE" DEPTH5
5 QC10 = ( QC1 | QC3 | QC4 ) \ QC2
6 END PGM MODEL MM

0 BEGIN PGM CIRCLE1 MM
1 CC X+75 Y+50
2 LP PR+45 PA+0
3 CP IPA+360 DR+
4 END PGM CIRCLE1 MM

0 BEGIN PGM CIRCLE31XY MM
...
0 BEGIN PGM CIRCLE31XY MM
```
Selecting a program with contour definitions

With the SEL CONTOUR function you select a program with contour definitions, from which the TNC takes the contour descriptions:

- Show the soft-key row with special functions
- Select the menu for functions for contour and point machining.
- Press the SEL CONTOUR soft key.
- Enter the full name of the program with the contour definition and confirm with the END key.

Defining contour descriptions

With the DECLARE CONTOUR function you enter in a program the path for programs from which the TNC draws the contour descriptions. In addition, you can select a separate depth for this contour description (FCL 2 function):

- Show the soft-key row with special functions
- Select the menu for functions for contour and point machining.
- Press the DECLARE CONTOUR soft key.
- Enter the number for the contour designator QC, and confirm with the ENT key.
- Enter the full name of the program with the contour description and confirm with the END key, or if desired,
- define a separate depth for the selected contour.

With the given contour designators QC you can include the various contours in the contour formula.

If you program separate depths for contours, then you must assign a depth to all subcontours (assign the depth 0 if necessary).
Entering a complex contour formula

You can use soft keys to interlink various contours in a mathematical formula.

- Show the soft-key row with special functions
- Select the menu for functions for contour and point machining.
- Press the CONTOUR FORMULA soft key. The TNC then displays the following soft keys:

<table>
<thead>
<tr>
<th>Mathematical function</th>
<th>Soft key</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intersected with e.g. QC10 = QC1 & QC5</td>
<td></td>
</tr>
<tr>
<td>Joined with e.g. QC25 = QC7</td>
<td>QC18</td>
</tr>
<tr>
<td>Joined without intersection e.g. QC12 = QC5 ^ QC25</td>
<td></td>
</tr>
<tr>
<td>Without e.g. QC25 = QC1 \ QC2</td>
<td></td>
</tr>
<tr>
<td>Opening parenthesis e.g. QC12 = QC1 * (QC2 + QC3)</td>
<td></td>
</tr>
<tr>
<td>Closing parenthesis e.g. QC12 = QC1 * (QC2 + QC3)</td>
<td></td>
</tr>
<tr>
<td>Defining a single contour e.g. QC12 = QC1</td>
<td></td>
</tr>
</tbody>
</table>
Overlapping contours

By default, the TNC considers a programmed contour to be a pocket. With the functions of the contour formula, you can convert a contour from a pocket to an island.

Pockets and islands can be overlapped to form a new contour. You can thus enlarge the area of a pocket by another pocket or reduce it by an island.

Subprograms: overlapping pockets

The following programming examples are contour description programs that are defined in a contour definition program. The contour definition program is called through the \texttt{SEL CONTOUR} function in the actual main program.

Pockets A and B overlap.

The TNC calculates the points of intersection S1 and S2 (they do not have to be programmed).

The pockets are programmed as full circles.
9.1 SL Cycles with Complex Contour Formula

Contour description program 1: pocket A

```
0 BEGIN PGM POCKET_A MM
1 L X+10 Y+50 R0
2 CC X+35 Y+50
3 C X+10 Y+50 DR-
4 END PGM POCKET_A MM
```

Contour description program 2: pocket B

```
0 BEGIN PGM POCKET_B MM
1 L X+90 Y+50 R0
2 CC X+65 Y+50
3 C X+90 Y+50 DR-
4 END PGM POCKET_B MM
```

Area of inclusion

Both surfaces A and B are to be machined, including the overlapping area:

- The surfaces A and B must be programmed in separate programs without radius compensation.
- In the contour formula, the surfaces A and B are processed with the “joined with” function.

Contour definition program:

```
50 ...
51 ...
52 DECLARE CONTOUR QC1 = "POCKET_A.H"
53 DECLARE CONTOUR QC2 = "POCKET_B.H"
54 QC10 = QC1 | QC2
55 ...
56 ...
```
Area of exclusion
Surface A is to be machined without the portion overlapped by B:
- The surfaces A and B must be entered in separate programs without radius compensation.
- In the contour formula, the surface B is subtracted from the surface A with the **without** function.

Contour definition program:

```plaintext
50 ...
51 ...
52 DECLARE CONTOUR QC1 = "POCKET_A.H"
53 DECLARE CONTOUR QC2 = "POCKET_B.H"
54 QC10 = QC1 \ QC2
55 ...
56 ...
```

Area of intersection
Only the area where A and B overlap is to be machined. (The areas covered by A or B alone are to be left unmachined.)
- The surfaces A and B must be entered in separate programs without radius compensation.
- In the contour formula, the surfaces A and B are processed with the “intersection with” function.

Contour definition program:

```plaintext
50 ...
51 ...
52 DECLARE CONTOUR QC1 = "POCKET_A.H"
53 DECLARE CONTOUR QC2 = "POCKET_B.H"
54 QC10 = QC1 & QC2
55 ...
56 ...
```

Contour machining with SL Cycles
The complete contour is machined with the SL Cycles 20 to 24 (see “Overview” on page 170).
Example: Roughing and finishing superimposed contours with the contour formula

0 BEGIN PGM CONTOUR MM
1 BLK FORM 0.1 Z X+0 Y+0 Z-40
 Definition of workpiece blank
2 BLK FORM 0.2 X+100 Y+100 Z+0
3 TOOL DEF 1 L+0 R+2.5
 Tool definition of roughing cutter
4 TOOL DEF 2 L+0 R+3
 Tool definition of finishing cutter
5 TOOL CALL 1 Z S2500
 Tool call of roughing cutter
6 L Z+250 RO FMAX
 Retract the tool
7 SEL CONTOUR "MODEL"
 Specify contour definition program
8 CYCL DEF 20 CONTOUR DATA
 Define general machining parameters
 Q1=-20 ;MILLING DEPTH
 Q2=1 ;TOOL PATH OVERLAP
 Q3=+0.5 ;ALLOWANCE FOR SIDE
 Q4=+0.5 ;ALLOWANCE FOR FLOOR
 Q5=+0 ;SURFACE COORDINATE
 Q6=2 ;SETUP CLEARANCE
 Q7=+100 ;CLEARANCE HEIGHT
 Q8=0.1 ;ROUNDBLING RADIUS
 Q9=-1 ;DIRECTION
9.1 SL Cycles with Complex Contour Formula

Cycle definition: Rough-out

<table>
<thead>
<tr>
<th>Line</th>
<th>Description</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>CYCL DEF 22 ROUGH-OUT</td>
<td>Cycle definition: Rough-out</td>
</tr>
<tr>
<td></td>
<td>Q10=5 ;PLUNGING DEPTH</td>
<td>PLUNGING DEPTH</td>
</tr>
<tr>
<td></td>
<td>Q11=100 ;FEED RATE FOR PLNGNG</td>
<td>FEED RATE FOR PLUNGING</td>
</tr>
<tr>
<td></td>
<td>Q12=350 ;FEED RATE FOR ROUGHING</td>
<td>FEED RATE FOR ROUGHING</td>
</tr>
<tr>
<td></td>
<td>Q18=0 ;COARSE ROUGHING TOOL</td>
<td>COARSE ROUGHING TOOL</td>
</tr>
<tr>
<td></td>
<td>Q19=150 ;RECIROCATION FEED RATE</td>
<td>RECIPROCATION FEED RATE</td>
</tr>
<tr>
<td></td>
<td>Q401=100 ;FEED RATE FACTOR</td>
<td>FEED RATE FACTOR</td>
</tr>
<tr>
<td></td>
<td>Q404=0 ;FINE ROUGH STRATEGY</td>
<td>FINE ROUGH STRATEGY</td>
</tr>
<tr>
<td>10</td>
<td>CYCL CALL M3</td>
<td>Cycle call: Rough-out</td>
</tr>
<tr>
<td>11</td>
<td>TOOL CALL 2 Z S5000</td>
<td>Tool call of finishing cutter</td>
</tr>
<tr>
<td>12</td>
<td>CYCL DEF 23 FLOOR FINISHING</td>
<td>Cycle definition: Floor finishing</td>
</tr>
<tr>
<td></td>
<td>Q11=100 ;FEED RATE FOR PLNGNG</td>
<td>FEED RATE FOR PLUNGING</td>
</tr>
<tr>
<td></td>
<td>Q12=200 ;FEED RATE FOR ROUGHING</td>
<td>FEED RATE FOR ROUGHING</td>
</tr>
<tr>
<td>13</td>
<td>CYCL CALL M3</td>
<td>Cycle call: Floor finishing</td>
</tr>
<tr>
<td>14</td>
<td>CYCLE DEF 24 SIDE FINISHING</td>
<td>Cycle definition: Side finishing</td>
</tr>
<tr>
<td></td>
<td>Q9=+1 ;DIRECTION</td>
<td>DIRECTION</td>
</tr>
<tr>
<td></td>
<td>Q10=5 ;PLUNGING DEPTH</td>
<td>PLUNGING DEPTH</td>
</tr>
<tr>
<td></td>
<td>Q11=100 ;FEED RATE FOR PLNGNG</td>
<td>FEED RATE FOR PLUNGING</td>
</tr>
<tr>
<td></td>
<td>Q12=400 ;FEED RATE FOR ROUGHING</td>
<td>FEED RATE FOR ROUGHING</td>
</tr>
<tr>
<td></td>
<td>Q14=+0 ;ALLOWANCE FOR SIDE</td>
<td>ALLOWANCE FOR SIDE</td>
</tr>
<tr>
<td>15</td>
<td>CYCL CALL M3</td>
<td>Cycle call: Side finishing</td>
</tr>
<tr>
<td>16</td>
<td>L Z+250 R0 FMAX M2</td>
<td>Retract in the tool axis, end program</td>
</tr>
<tr>
<td>17</td>
<td>END PGM CONTOUR MM</td>
<td></td>
</tr>
</tbody>
</table>

Contour definition program with contour formula:

<table>
<thead>
<tr>
<th>Line</th>
<th>Description</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>BEGIN PGM MODEL MM</td>
<td>Contour Definition Program</td>
</tr>
<tr>
<td>1</td>
<td>DECLARE CONTOUR QC1 = "CIRCLE1"</td>
<td>Definition of the contour designator for the program “CIRCLE1”</td>
</tr>
<tr>
<td>2</td>
<td>FN 0: Q1 =+35</td>
<td>Assignment of values for parameters used in PGM “CIRCLE31XY”</td>
</tr>
<tr>
<td>3</td>
<td>FN 0: Q2 = +50</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>FN 0: Q3 = +25</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>DECLARE CONTOUR QC2 = "CIRCLE31XY"</td>
<td>Definition of the contour designator for the program “CIRCLE31XY”</td>
</tr>
<tr>
<td>6</td>
<td>DECLARE CONTOUR QC3 = "TRIANGLE"</td>
<td>Definition of the contour designator for the program “TRIANGLE”</td>
</tr>
<tr>
<td>7</td>
<td>DECLARE CONTOUR QC4 = "SQUARE"</td>
<td>Definition of the contour designator for the program “SQUARE”</td>
</tr>
<tr>
<td>8</td>
<td>QC10 = (QC 1</td>
<td>QC 2) \ QC 3 \ QC 4</td>
</tr>
<tr>
<td>9</td>
<td>END PGM MODEL MM</td>
<td></td>
</tr>
</tbody>
</table>
Contour description programs:

<table>
<thead>
<tr>
<th>Contour description program: circle at right</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 BEGIN PGM CIRCLE1 MM</td>
</tr>
<tr>
<td>1 CC X+65 Y+50</td>
</tr>
<tr>
<td>2 L PR+25 PA+0 RO</td>
</tr>
<tr>
<td>3 CP IPA+360 DR+</td>
</tr>
<tr>
<td>4 END PGM CIRCLE1 MM</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Contour description program: circle at left</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 BEGIN PGM CIRCLE31XY MM</td>
</tr>
<tr>
<td>1 CC X+Q1 Y+Q2</td>
</tr>
<tr>
<td>2 LP PR+Q3 PA+0 RO</td>
</tr>
<tr>
<td>3 CP IPA+360 DR+</td>
</tr>
<tr>
<td>4 END PGM CIRCLE31XY MM</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Contour description program: triangle at right</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 BEGIN PGM TRIANGLE MM</td>
</tr>
<tr>
<td>1 L X+73 Y+42 R0</td>
</tr>
<tr>
<td>2 L X+65 Y+58</td>
</tr>
<tr>
<td>3 L X+58 Y+42</td>
</tr>
<tr>
<td>4 L X+73</td>
</tr>
<tr>
<td>5 END PGM TRIANGLE MM</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Contour description program: square at left</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 BEGIN PGM SQUARE MM</td>
</tr>
<tr>
<td>1 L X+27 Y+58 R0</td>
</tr>
<tr>
<td>2 L X+43</td>
</tr>
<tr>
<td>3 L Y+42</td>
</tr>
<tr>
<td>4 L X+27</td>
</tr>
<tr>
<td>5 L Y+58</td>
</tr>
<tr>
<td>6 END PGM SQUARE MM</td>
</tr>
</tbody>
</table>
9.2 SL Cycles with Simple Contour Formula

Fundamentals

SL cycles and the simple contour formula enable you to form contours by combining up to 9 subcontours (pockets or islands) in a simple manner. You define the individual subcontours (geometry data) as separate programs. In this way, any subcontour can be used any number of times. The TNC calculates the contour from the selected subcontours.

Properties of the subcontours

- Do not program a radius compensation.
- The TNC ignores feed rates F and miscellaneous functions M.
- Coordinate transformations are allowed. If they are programmed within the subcontour they are also effective in the following subprograms, but they need not be reset after the cycle call.
- Although the subprograms can contain coordinates in the spindle axis, such coordinates are ignored.
- The working plane is defined in the first coordinate block of the subprogram.

Characteristics of the fixed cycles

- The TNC automatically positions the tool to the setup clearance before a cycle.
- Each level of infeed depth is milled without interruptions since the cutter traverses around islands instead of over them.
- The radius of “inside corners” can be programmed—the tool keeps moving to prevent surface blemishes at inside corners (this applies for the outermost pass in the Rough-out and Side Finishing cycles).
- The contour is approached on a tangential arc for side finishing.
- For floor finishing, the tool again approaches the workpiece on a tangential arc (for tool axis Z, for example, the arc may be in the Z/X plane).
- The contour is machined throughout in either climb or up-cut milling.

The machining data (such as milling depth, finishing allowance and setup clearance) are entered as CONTOUR DATA in Cycle 20.

Example: Program structure: Machining with SL cycles and complex contour formula

0 BEGIN PGM CONTDEF MM
...
5 CONTOUR DEF
 P1= "POCK1.H"
 I2 = "ISLE2.H" DEPTH5
 I3 "ISLE3.H" DEPTH7.5
6 CYCL DEF 20 CONTOUR DATA...
8 CYCL DEF 22 ROUGH-OUT...
9 CYCL CALL
...
12 CYCL DEF 23 FLOOR FINISHING...
13 CYCL CALL
...
16 CYCL DEF 24 SIDE FINISHING...
17 CYCL CALL
63 L Z+250 R0 FMAX M2
64 END PGM CONTDEF MM

The memory capacity for programming an SL cycle (all contour description programs) is limited to **128 contours**. The number of possible contour elements depends on the type of contour (inside or outside contour) and the number of contour descriptions. You can program up to **16384** elements.
Entering a simple contour formula

You can use soft keys to interlink various contours in a mathematical formula.

1. Show the soft-key row with special functions
2. Select the menu for functions for contour and point machining.
3. Press the CONTOUR DEF soft key. The TNC opens the dialog for entering the contour formula.
4. Enter the name of the first subcontour. The first subcontour must always be the deepest pocket. Confirm with the ENT key.
5. Specify via soft key whether the next subcontour is a pocket or an island. Confirm with the ENT key.
6. Enter the name of the second subcontour. Confirm with the ENT key.
7. If needed, enter the depth of the second subcontour. Confirm with the ENT key.
8. Carry on with the dialog as described above until you have entered all subcontours.

- As a rule, always start the list of subcontours with the deepest pocket!
- If the contour is defined as an island, the TNC interprets the entered depth as the island height. The entered value (without an algebraic sign) then refers to the workpiece top surface!
- If the depth is entered as 0, then for pockets the depth defined in the Cycle 20 is effective. Islands then rise up to the workpiece top surface!

Contour machining with SL Cycles

The complete contour is machined with the SL Cycles 20 to 24 (see “Overview” on page 170).
9.2 SL Cycles with Simple Contour Formula

Fixed Cycles: Contour Pocket with Contour Formula
10.1 Fundamentals

Overview

The TNC offers four cycles for machining surfaces with the following characteristics:
- Flat, rectangular surfaces
- Flat, oblique-angled surfaces
- Surfaces that are inclined in any way
- Twisted surfaces

<table>
<thead>
<tr>
<th>Cycle</th>
<th>Soft key</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>230 MULTIPASS MILLING</td>
<td>![230]</td>
<td>Page 227</td>
</tr>
<tr>
<td>For flat rectangular surfaces</td>
<td></td>
<td></td>
</tr>
<tr>
<td>231 RULED SURFACE</td>
<td>![231]</td>
<td>Page 229</td>
</tr>
<tr>
<td>For oblique, inclined or twisted surfaces</td>
<td></td>
<td></td>
</tr>
<tr>
<td>232 FACE MILLING</td>
<td>![232]</td>
<td>Page 233</td>
</tr>
<tr>
<td>For level rectangular surfaces, with indicated oversizes and multiple infeeds</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
10.2 MULTIPASS MILLING (Cycle 230, DIN/ISO: G230)

Cycle run

1. From the current position in the working plane, the TNC positions the tool at rapid traverse \(F_{\text{MAX}} \) to the starting point 1; the TNC moves the tool by its radius to the left and upward.

2. The tool then moves at \(F_{\text{MAX}} \) in the tool axis to the setup clearance. From there it approaches the programmed starting position in the tool axis at the feed rate for plunging.

3. The tool then moves at the programmed feed rate for milling to the end point 2. The TNC calculates the end point from the programmed starting point, the program length, and the tool radius.

4. The TNC offsets the tool to the starting point in the next pass at the stepover feed rate. The offset is calculated from the programmed width and the number of cuts.

5. The tool then returns in the negative direction of the first axis.

6. Multipass milling is repeated until the programmed surface has been completed.

7. At the end of the cycle, the tool is retracted at \(F_{\text{MAX}} \) to the setup clearance.

Please note while programming:

From the current position, the TNC positions the tool at the starting point, first in the working plane and then in the spindle axis.

Pre-position the tool in such a way that no collision between tool and clamping devices can occur.
Cycle parameters

- **Starting point in 1st axis** Q225 (absolute): Minimum point coordinate of the surface to be multipass-milled in the reference axis of the working plane. Input range –99999.9999 to 99999.9999

- **Starting point in 2nd axis** Q226 (absolute): Minimum-point coordinate of the surface to be multipass-milled in the minor axis of the working plane. Input range –99999.9999 to 99999.9999

- **Starting point in 3rd axis** Q227 (absolute): Height in the spindle axis at which multipass-milling is carried out. Input range –99999.9999 to 99999.9999

- **First side length** Q218 (incremental): Length of the surface to be multipass-milled in the reference axis of the working plane, referenced to the starting point in the 1st axis. Input range 0 to 99999.9999

- **Second side length** Q219 (incremental): Length of the surface to be multipass-milled in the minor axis of the working plane, referenced to the starting point in the 2nd axis. Input range 0 to 99999.9999

- **Number of cuts** Q240: Number of passes to be made over the width. Input range 0 to 99999

- **Feed rate for plunging** Q206: Traversing speed of the tool while moving from setup clearance to the milling depth in mm/min. Input range: 0 to 99999.9999; alternatively FAUTO, FU, FZ.

- **Feed rate for milling** Q207: Traversing speed of the tool during milling in mm/min. Input range: 0 to 99999.9999; alternatively FAUTO, FU, FZ

- **Stepover feed rate** Q209: Traversing speed of the tool in mm/min when moving to the next pass. If you are moving the tool transversely in the material, enter Q209 to be smaller than Q207. If you are moving it transversely in the open, Q209 may be greater than Q207. Input range 0 to 99999.9999, alternatively FAUTO, FU, FZ

- **Setup clearance** Q200 (incremental): Distance between tool tip and milling depth for positioning at the start and end of the cycle. Input range 0 to 99999.9999

Example: NC blocks

```
71 CYCL DEF 230 MULTIPASS MILLING
Q225=+10 ;STARTING POINT 1ST AXIS
Q226=+12 ;STARTING POINT 2ND AXIS
Q227=+2.5 ;STARTING PNT 3RD AXIS
Q218=150 ;FIRST SIDE LENGTH
Q219=75 ;SECOND SIDE LENGTH
Q240=25 ;NUMBER OF CUTS
Q206=150 ;FEED RATE FOR PLNGNG
Q207=500 ;FEED RATE FOR MILLING
Q209=200 ;STEPOVER FEED RATE
Q200=2 ;SETUP CLEARANCE
```
10.3 RULED SURFACE (Cycle 231, DIN/ISO: G231)

Cycle run

1. From the current position, the TNC positions the tool in a linear 3-D movement to the starting point 1.
2. The tool subsequently advances to the stopping point 2 at the feed rate for milling.
3. From this point, the tool moves at rapid traverse F_{MAX} by the tool diameter in the positive tool axis direction, and then back to starting point 1.
4. At the starting point 1, the TNC moves the tool back to the last traversed Z value.
5. Then the TNC moves the tool in all three axes from point 1 in the direction of point 4 to the next line.
6. From this point, the tool moves to the stopping point on this pass. The TNC calculates the end point from point 2 and a movement in the direction of point 3.
7. Multipass milling is repeated until the programmed surface has been completed.
8. At the end of the cycle, the tool is positioned above the highest programmed point in the spindle axis, offset by the tool diameter.
Cutting motion
The starting point, and therefore the milling direction, is selectable because the TNC always moves from point 1 to point 2 and in the total movement from point 1/2 to point 3/4. You can program point 1 at any corner of the surface to be machined.

If you are using an end mill for the machining operation, you can optimize the surface finish in the following ways:

- A shaping cut (spindle axis coordinate of point 1 greater than spindle-axis coordinate of point 2) for slightly inclined surfaces.
- A drawing cut (spindle axis coordinate of point 1 smaller than spindle-axis coordinate of point 2) for steep surfaces.
- When milling twisted surfaces, program the main cutting direction (from point 1 to point 2) parallel to the direction of the steeper inclination.

If you are using a spherical cutter for the machining operation, you can optimize the surface finish in the following way:

- When milling twisted surfaces, program the main cutting direction (from point 1 to point 2) perpendicular to the direction of the steepest inclination.

Please note while programming:

From the current position, the TNC positions the tool in a linear 3-D movement to the starting point 1. Pre-position the tool in such a way that no collision between tool and fixtures can occur.

The TNC moves the tool with radius compensation R0 to the programmed positions.

If required, use a center-cut end mill (DIN 844).
Cycle parameters

- **Starting point in 1st axis** Q225 (absolute): Starting point coordinate of the surface to be multipass-milled in the reference axis of the working plane. Input range –99999.9999 to 99999.9999

- **Starting point in 2nd axis** Q226 (absolute): Starting point coordinate of the surface to be multipass-milled in the minor axis of the working plane. Input range –99999.9999 to 99999.9999

- **Starting point in 3rd axis** Q227 (absolute): Starting point coordinate of the surface to be multipass-milled in the tool axis. Input range –99999.9999 to 99999.9999

- **2nd point in 1st axis** Q228 (absolute): End point coordinate of the surface to be multipass milled in the reference axis of the working plane. Input range –99999.9999 to 99999.9999

- **2nd point in 2nd axis** Q229 (absolute): End point coordinate of the surface to be multipass milled in the minor axis of the working plane. Input range –99999.9999 to 99999.9999

- **2nd point in 3rd axis** Q230 (absolute): End point coordinate of the surface to be multipass milled in the spindle axis. Input range –99999.9999 to 99999.9999

- **3rd point in 1st axis** Q231 (absolute): Coordinate of point 3 in the reference axis of the working plane. Input range –99999.9999 to 99999.9999

- **3rd point in 2nd axis** Q232 (absolute): Coordinate of point 3 in the minor axis of the working plane. Input range –99999.9999 to 99999.9999

- **3rd point in 3rd axis** Q233 (absolute): Coordinate of point 3 in the spindle axis. Input range: -99999.9999 to 99999.9999
10.3 RULED SURFACE (Cycle 231, DIN/ISO: G231)

4th point in 1st axis Q234 (absolute): Coordinate of point 4 in the reference axis of the working plane. Input range: -99999.9999 to 99999.9999

4th point in 2nd axis Q235 (absolute): Coordinate of point 4 in the minor axis of the working plane. Input range: -99999.9999 to 99999.9999

4th point in 3rd axis Q236 (absolute): Coordinate of point 4 in the spindle axis. Input range: -99999.9999 to 99999.9999

Number of cuts Q240: Number of passes to be made between points 1 and 4, 2 and 3. Input range: 0 to 99999

Feed rate for milling Q207: Traversing speed of the tool in mm/min while milling. The TNC performs the first step at half the programmed feed rate. Input range: 0 to 99999.999, alternatively FAUTO, FU, FZ

Example: NC blocks

```
72 CYCL DEF 231 RULED SURFACE
Q225=+0 ;STARTING POINT 1ST AXIS
Q226=+5 ;STARTING POINT 2ND AXIS
Q227=-2 ;STARTING PNT 3RD AXIS
Q228=+100 ;2ND POINT 1ST AXIS
Q229=+15 ;2ND POINT 2ND AXIS
Q230=+5 ;2ND POINT 3RD AXIS
Q231=+15 ;3RD POINT 1ST AXIS
Q232=+125 ;3RD POINT 2ND AXIS
Q233=+25 ;3RD POINT 3RD AXIS
Q234=+15 ;4TH POINT 1ST AXIS
Q235=+125 ;4TH POINT 2ND AXIS
Q236=+25 ;4TH POINT 3RD AXIS
Q240=40 ;NUMBER OF CUTS
Q207=500 ;FEED RATE FOR MILLING
```
10.4 FACE MILLING (Cycle 232, DIN/ISO: G232)

Cycle run

Cycle 232 is used to face mill a level surface in multiple infeeds while taking the finishing allowance into account. Three machining strategies are available:

- **Strategy Q389=0**: Meander machining, stepover outside the surface being machined
- **Strategy Q389=1**: Meander machining, stepover within the surface being machined
- **Strategy Q389=2**: Line-by-line machining, retraction and stepover at the positioning feed rate

1. From the current position, the TNC positions the tool at rapid traverse F_{MAX} to the starting position 1 using positioning logic: If the current position in the spindle axis is greater than the 2nd setup clearance, the TNC positions the tool first in the machining plane and then in the spindle axis. Otherwise it first moves to the 2nd setup clearance and then in the machining plane. The starting point in the machining plane is offset from the edge of the workpiece by the tool radius and the safety clearance to the side.

2. The tool then moves in the spindle axis at the positioning feed rate to the first plunging depth calculated by the control.

Strategy Q389=0

3. The tool then advances to the stopping point 2 at the feed rate for milling. The end point lies outside the surface. The control calculates the end point from the programmed starting point, the programmed length, the programmed safety clearance to the side and the tool radius.

4. The TNC offsets the tool to the starting point in the next pass at the pre-positioning feed rate. The offset is calculated from the programmed width, the tool radius and the maximum path overlap factor.

5. The tool then moves back in the direction of the starting point 1.

6. The process is repeated until the programmed surface has been completed. At the end of the last pass, the tool plunges to the next machining depth.

7. In order to avoid non-productive motions, the surface is then machined in reverse direction.

8. The process is repeated until all infeeds have been machined. In the last infeed, simply the finishing allowance entered is milled at the finishing feed rate.

9. At the end of the cycle, the TNC retracts the tool at F_{MAX} to the 2nd setup clearance.
Strategy Q389=1

3. The tool then advances to the stopping point 2 at the feed rate for milling. The end point lies within the surface. The control calculates the end point from the programmed starting point, the programmed length and the tool radius.

4. The TNC offsets the tool to the starting point in the next pass at the pre-positioning feed rate. The offset is calculated from the programmed width, the tool radius and the maximum path overlap factor.

5. The tool then moves back in the direction of the starting point 1. The motion to the next line occurs within the workpiece borders.

6. The process is repeated until the programmed surface has been completed. At the end of the last pass, the tool plunges to the next machining depth.

7. In order to avoid non-productive motions, the surface is then machined in reverse direction.

8. The process is repeated until all infeeds have been machined. In the last infeed, simply the finishing allowance entered is milled at the finishing feed rate.

9. At the end of the cycle, the TNC retracts the tool at \(F_{\text{MAX}} \) to the 2nd setup clearance.

Strategy Q389=2

3. The tool then advances to the stopping point 2 at the feed rate for milling. The end point lies outside the surface. The control calculates the end point from the programmed starting point, the programmed length, the programmed safety clearance to the side and the tool radius.

4. The TNC positions the tool in the spindle axis to the setup clearance over the current infeed depth, and then moves at the pre-positioning feed rate directly back to the starting point in the next line. The TNC calculates the offset from the programmed width, the tool radius and the maximum path overlap factor.

5. The tool then returns to the current infeed depth and moves in the direction of the next end point 2.

6. The milling process is repeated until the programmed surface has been completed. At the end of the last pass, the tool plunges to the next machining depth.

7. In order to avoid non-productive motions, the surface is then machined in reverse direction.

8. The process is repeated until all infeeds have been machined. In the last infeed, simply the finishing allowance entered is milled at the finishing feed rate.

9. At the end of the cycle, the TNC retracts the tool at \(F_{\text{MAX}} \) to the 2nd setup clearance.
Please note while programming:

Enter the 2nd setup clearance in Q204 so that no collision between tool and clamping devices can occur.

If the starting point in the 3rd axis Q227 and the end point in the 3rd axis Q386 are entered as equal values, the TNC does not run the cycle (depth = 0 has been programmed).

Cycle parameters

- **Machining strategy (0/1/2)** Q389: Specify how the TNC is to machine the surface:
 - 0: Meander machining, stepover at positioning feed rate outside the surface to be machined
 - 1: Meander machining, stepover at feed rate for milling within the surface to be machined
 - 2: Line-by-line machining, retraction and stepover at the positioning feed rate

- **Starting point in 1st axis** Q225 (absolute): Starting point coordinate of the surface to be machined in the reference axis of the working plane. Input range –99999.9999 to 99999.9999

- **Starting point in 2nd axis** Q226 (absolute): Starting point coordinate of the surface to be multipass-milled in the minor axis of the working plane. Input range –99999.9999 to 99999.9999

- **Starting point in 3rd axis** Q227 (absolute): Coordinate of the workpiece surface used to calculate the infeeds. Input range –99999.9999 to 99999.9999

- **End point in 3rd axis** Q386 (absolute): Coordinate in the spindle axis to which the surface is to be face milled. Input range –99999.9999 to 99999.9999

- **First side length** Q218 (incremental value): Length of the surface to be machined in the reference axis of the working plane. Use the algebraic sign to specify the direction of the first milling path in reference to the **starting point in the 1st axis**. Input range: -99999.9999 to 99999.9999

- **Second side length** Q219 (incremental value): Length of the surface to be machined in the minor axis of the working plane. Use the algebraic sign to specify the direction of the first stepover in reference to the **starting point in the 2nd axis**. Input range –99999.9999 to 99999.9999
- **Maximum plunging depth** Q202 (incremental value): Maximum amount that the tool is advanced each time. The TNC calculates the actual plunging depth from the difference between the end point and starting point of the tool axis (taking the finishing allowance into account), so that uniform plunging depths are used each time. Input range 0 to 99999.9999

- **Allowance for floor** Q369 (incremental): Distance used for the last infeed. Input range 0 to 99999.9999

- **Max. path overlap factor** Q370: Maximum stepover factor \(k \). The TNC calculates the actual stepover from the second side length (Q219) and the tool radius so that a constant stepover is used for machining. If you have entered a radius \(R2 \) in the tool table (e.g. tooth radius when using a face-milling cutter), the TNC reduces the stepover accordingly. Input range 0.1 to 1.9999

- **Feed rate for milling** Q207: Traversing speed of the tool during milling in mm/min. Input range: 0 to 99999.9999; alternatively **FAUTO, FU, FZ**

- **Feed rate for finishing** Q385: Traversing speed of the tool in mm/min, while milling the last infeed. Input range: 0 to 99999.9999; alternatively **FAUTO, FU, FZ**.

- **Feed rate for pre-positioning** Q253: Traversing speed of the tool in mm/min when approaching the starting position and when moving to the next pass. If you are moving the tool transversely to the material (Q389=1), the TNC moves the tool at the feed rate for milling Q207. Input range 0 to 99999.9999, alternatively **FMAX, FAUTO**
Setup clearance Q200 (incremental): Distance between tool tip and the starting position in the tool axis. If you are milling with machining strategy Q389=2, the TNC moves the tool at the setup clearance over the current plunging depth to the starting point of the next pass. Input range 0 to 99999.9999

Clearance to side Q357 (incremental): Safety clearance to the side of the workpiece when the tool approaches the first plunging depth, and distance at which the stepover occurs if the machining strategy Q389=0 or Q389=2 is used. Input range 0 to 99999.9999

2nd setup clearance Q204 (incremental): Coordinate in the spindle axis at which no collision between tool and workpiece (fixtures) can occur. Input range 0 to 99999.9999

Example: NC blocks

<table>
<thead>
<tr>
<th>71 CYCL DEF 232 FACE MILLING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q389=2 ;STRATEGY</td>
</tr>
<tr>
<td>Q225=+10 ;STARTING PNT 1ST AXIS</td>
</tr>
<tr>
<td>Q226=+12 ;STARTING PNT 2ND AXIS</td>
</tr>
<tr>
<td>Q227=+2.5 ;STARTING PNT 3RD AXIS</td>
</tr>
<tr>
<td>Q386=-3 ;END POINT IN 3RD AXIS</td>
</tr>
<tr>
<td>Q218=150 ;FIRST SIDE LENGTH</td>
</tr>
<tr>
<td>Q219=75 ;SECOND SIDE LENGTH</td>
</tr>
<tr>
<td>Q202=2 ;MAX. PLUNGING DEPTH</td>
</tr>
<tr>
<td>Q369=0.5 ;ALLOWANCE FOR FLOOR</td>
</tr>
<tr>
<td>Q370=1 ;MAX. OVERLAP</td>
</tr>
<tr>
<td>Q207=500 ;FEED RATE FOR MILLING</td>
</tr>
<tr>
<td>Q385=800 ;FEED RATE FOR FINISHING</td>
</tr>
<tr>
<td>Q253=2000 ;F PRE-POSITIONING</td>
</tr>
<tr>
<td>Q200=2 ;SETUP CLEARANCE</td>
</tr>
<tr>
<td>Q357=2 ;CLEARANCE TO SIDE</td>
</tr>
<tr>
<td>Q204=2 ;2ND SETUP CLEARANCE</td>
</tr>
</tbody>
</table>
Example: Multipass milling

```plaintext
0 BEGIN PGM C230 MM
1 BLK FORM 0.1 Z X+0 Y+0 Z+0  \(\text{Definition of workpiece blank}\)
2 BLK FORM 0.2 X+100 Y+100 Z+40
3 TOOL CALL 1 Z S3500  \(\text{Tool call}\)
4 L Z+250 R0 FMAX  \(\text{Retract the tool}\)
5 CYCL DEF 230 MULTIPASS MILLING  \(\text{Cycle definition: MULTIPASS MILLING}\)
   Q225=+0 ; STARTNG PNT 1ST AXIS
   Q226=+0 ; STARTNG PNT 2ND AXIS
   Q227=+35 ; STARTNG PNT 3RD AXIS
   Q218=100 ; FIRST SIDE LENGTH
   Q219=100 ; 2ND SIDE LENGTH
   Q240=25 ; NUMBER OF CUTS
   Q206=250 ; FEED RATE FOR PLNGN
   Q207=400 ; FEED RATE FOR MILLING
   Q209=150 ; STEPover FEED RATE
   Q200=2 ; SET-UP CLEARANCE
```
<table>
<thead>
<tr>
<th>Line</th>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>L X+25 Y+0 R0 FMAX M3</td>
<td>Pre-position near the starting point</td>
</tr>
<tr>
<td>7</td>
<td>CYCL CALL</td>
<td>Cycle call</td>
</tr>
<tr>
<td>8</td>
<td>L Z+250 R0 FMAX M2</td>
<td>Retract in the tool axis, end program</td>
</tr>
<tr>
<td>9</td>
<td>END PGM C230 MM</td>
<td></td>
</tr>
</tbody>
</table>

HEIDENHAIN TNC 320
10.5 Programming Examples
Cycles: Coordinate Transformations
11.1 Fundamentals

Overview

Once a contour has been programmed, you can position it on the workpiece at various locations and in different sizes through the use of coordinate transformations. The TNC provides the following coordinate transformation cycles:

<table>
<thead>
<tr>
<th>Cycle</th>
<th>Soft key</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 DATUM SHIFT</td>
<td></td>
<td>Page 243</td>
</tr>
<tr>
<td>For shifting contours directly within the program or from datum tables</td>
<td></td>
<td></td>
</tr>
<tr>
<td>247 DATUM SETTING</td>
<td></td>
<td>Page 249</td>
</tr>
<tr>
<td>Datum setting during program run</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 MIRROR IMAGE</td>
<td></td>
<td>Page 250</td>
</tr>
<tr>
<td>Mirroring contours</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 ROTATION</td>
<td></td>
<td>Page 252</td>
</tr>
<tr>
<td>For rotating contours in the working plane</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11 SCALING FACTOR</td>
<td></td>
<td>Page 254</td>
</tr>
<tr>
<td>For increasing or reducing the size of contours</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26 AXIS-SPECIFIC SCALING FACTOR</td>
<td></td>
<td>Page 256</td>
</tr>
<tr>
<td>For increasing or reducing the size of contours with scaling factors for each axis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19 WORKING PLANE</td>
<td></td>
<td>Page 258</td>
</tr>
<tr>
<td>Machining in tilted coordinate system on machines with swivel heads and/or rotary tables</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Effect of coordinate transformations

Beginning of effect: A coordinate transformation becomes effective as soon as it is defined—it is not called. It remains in effect until it is changed or canceled.

To cancel coordinate transformations:

- Define cycles for basic behavior with a new value, such as scaling factor 1.0
- Execute a miscellaneous function M2, M30, or an END PGM block (depending on machine parameter clearMode).
- Select a new program
11.2 DATUM SHIFT (Cycle 7, DIN/ISO: G54)

Effect

A DATUM SHIFT allows machining operations to be repeated at various locations on the workpiece.

When the DATUM SHIFT cycle is defined, all coordinate data is based on the new datum. The TNC displays the datum shift in each axis in the additional status display. Input of rotary axes is also permitted.

Reset

- Program a datum shift to the coordinates X=0, Y=0 etc. directly with a cycle definition.
- Call a datum shift to the coordinates X=0; Y=0 etc. from the datum table.

Cycle parameters

Datums: Enter the coordinates of the new datum. Absolute values are referenced to the manually set workpiece datum. Incremental values are always referenced to the datum which was last valid—this can be a datum which has already been shifted. Input range: Up to 6 NC axes, each from –99999.9999 to 99999.9999

Example: NC blocks

```
13 CYCL DEF 7.0 DATUM SHIFT
14 CYCL DEF 7.1 X+60
16 CYCL DEF 7.3 Z-5
15 CYCL DEF 7.2 Y+40
```
11.3 **DATUM Shift with Datum Tables (Cycle 7, DIN/ISO: G53)**

Effect

Datum tables are used for
- frequently recurring machining sequences at various locations on the workpiece
- frequent use of the same datum shift

Within a program, you can either program datum points directly in the cycle definition or call them from a datum table.

Reset

- Call a datum shift to the coordinates X=0; Y=0 etc. from the datum table.
- Execute a datum shift to the coordinates X=0, Y=0 etc. directly with a cycle definition.

Status displays

In the additional status display, the following data from the datum table are shown:
- Name and path of the active datum table
- Active datum number
- Comment from the DOC column of the active datum number
Please note while programming:

Danger of collision!

Datums from a datum table are **always and exclusively** referenced to the current datum (preset).

If you are using datum shifts with datum tables, then use the **SEL TABLE** function to activate the desired datum table from the NC program.

- If you work without **SEL TABLE**, then you must activate the desired datum table before the test run or the program run. (This applies also to the programming graphics).

- Use the file management to select the desired table for a test run in the **Test Run** operating mode: The table receives the status S.

- Use the file management in a program run mode to select the desired table for a program run: The table receives the status M.

The coordinate values from datum tables are only effective with absolute coordinate values.

New lines can only be inserted at the end of the table.

If you create datum tables, the file name has to start with a letter.
Cycle parameters

- **Datum shift**: Enter the number of the datum from the datum table or a Q parameter. If you enter a Q parameter, the TNC activates the datum number entered in the Q parameter. Input range: 0 to 9999

Selecting a datum table in the part program

With the **SEL TABLE** function you select the table from which the TNC takes the datums:

- To select the functions for program call, press the PGM CALL key.
- Press the DATUM TABLE soft key.
- Select the complete path name of the datum table or the file with the SELECT soft key and confirm your entry with the END key.

Example: NC blocks

```
77 CYCL DEF 7.0 DATUM SHIFT
78 CYCL DEF 7.1 #5
```

Program a **SEL TABLE** block before Cycle 7 Datum Shift.

A datum table selected with **SEL TABLE** remains active until you select another datum table with **SEL TABLE** or through PGM MGT.
Editing the datum table in the Programming and Editing mode of operation

After you have changed a value in a datum table, you must save the change with the ENT key. Otherwise the change might not be included during program run.

Select the datum table in the **Programming and Editing** mode of operation.

- Press the PGM MGT key to call the file manager.
- Display the datum tables: Press the soft keys SELECT TYPE and SHOW .D.
- Select the desired table or enter a new file name.
- Edit the file. The soft-key row comprises the following functions for editing:

<table>
<thead>
<tr>
<th>Function</th>
<th>Soft key</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select beginning of table</td>
<td>BEGIN</td>
</tr>
<tr>
<td>Select end of table</td>
<td>END</td>
</tr>
<tr>
<td>Go to previous page</td>
<td>PAGE UP</td>
</tr>
<tr>
<td>Go to next page</td>
<td>PAGE DOWN</td>
</tr>
<tr>
<td>Insert line (only possible at end of table)</td>
<td>INSERT LINE</td>
</tr>
<tr>
<td>Delete line</td>
<td>DELETE LINE</td>
</tr>
<tr>
<td>Find</td>
<td>FIND</td>
</tr>
<tr>
<td>Go to beginning of line</td>
<td>BEGIN LINE</td>
</tr>
<tr>
<td>Go to end of line</td>
<td>END LINE</td>
</tr>
<tr>
<td>Copy the present value</td>
<td>COPY FIELD</td>
</tr>
<tr>
<td>Insert the copied value</td>
<td>PASTE FIELD</td>
</tr>
<tr>
<td>Add the entered number of lines (reference points) to the end of the table</td>
<td>APPEND N LINES</td>
</tr>
</tbody>
</table>
Configuring the datum table

If you do not wish to define a datum for an active axis, press the DEL key. Then the TNC clears the numerical value from the corresponding input field.

To leave a datum table

Select a different type of file in file management and choose the desired file.

After you have changed a value in a datum table, you must save the change with the ENT key. Otherwise the change may not be included during program run.

Status displays

In the additional status display, the TNC shows the values of the active datum shift.
11.4 DATUM SETTING (Cycle 247, DIN/ISO: G247)

Effect

With the Cycle DATUM SETTING, you can activate as the new datum a preset defined in a preset table.

After a DATUM SETTING cycle definition, all of the coordinate inputs and datum shifts (absolute and incremental) are referenced to the new preset.

Status display

In the status display the TNC shows the active preset number behind the datum symbol.

Please note before programming:

When activating a datum from the preset table, the TNC resets the datum shift, mirroring, rotation, scaling factor and axis-specific scaling factor.

If you activate preset number 0 (line 0), then you activate the datum that you last set in a manual operating mode.

Cycle 247 is not functional in Test Run mode.

Cycle parameters

- **Number for datum?**: Enter the number of the datum to be activated from the preset table. Input range: 0 to 65535

Example: NC blocks

```
13 CYCL DEF 247 DATUM SETTING
Q339=4 ;DATUM NUMBER
```

Status displays

In the additional status display (POS. DISP. STATUS) the TNC shows the active preset number behind the datum dialog.
11.5 MIRROR IMAGE (Cycle 8, DIN/ISO: G28)

Effect

The TNC can machine the mirror image of a contour in the working plane.

The mirror image cycle becomes effective as soon as it is defined in the program. It is also effective in the Positioning with MDI mode of operation. The active mirrored axes are shown in the additional status display.

- If you mirror only one axis, the machining direction is reversed (except in fixed cycles).
- If you mirror two axes, the machining direction remains the same.

The result of the mirror image depends on the location of the datum:

- If the datum lies on the contour to be mirrored, the element simply flips over.
- If the datum lies outside the contour to be mirrored, the element also “jumps” to another location.

Reset

Program the MIRROR IMAGE cycle once again with NO ENT.

Please note while programming:

If you mirror only one axis, the machining direction is reversed for the milling cycles (Cycles 2xx). Exception: Cycle 208, in which the direction defined in the cycle applies.
Cycle parameters

Mirrored axis?: Enter the axis to be mirrored. You can mirror all axes, including rotary axes, except for the spindle axis and its auxiliary axes. You can enter up to three axes. Input range: Up to three NC axes X, Y, Z, U, V, W, A, B, C

Example: NC blocks

- CYCL DEF 8.0 MIRROR IMAGE
- CYCL DEF 8.1 X Y Z
11.6 ROTATION (Cycle 10, DIN/ISO: G73)

Effect

The TNC can rotate the coordinate system about the active datum in the working plane within a program.

The ROTATION cycle becomes effective as soon as it is defined in the program. It is also effective in the Positioning with MDI mode of operation. The active rotation angle is shown in the additional status display.

Reference axis for the rotation angle:

- X/Y plane X axis
- Y/Z plane Y axis
- Z/X plane Z axis

Reset

Program the ROTATION cycle once again with a rotation angle of 0°.

Please note while programming:

An active radius compensation is canceled by defining Cycle 10 and must therefore be reprogrammed, if necessary.

After defining Cycle 10, you must move both axes of the working plane to activate rotation for all axes.
Cycle parameters

- **Rotation**: Enter the rotation angle in degrees (°). Input range –360.000° to +360.000° (absolute or incremental)

Example: NC blocks

```plaintext
12 CALL LBL 1
13 CYCL DEF 7.0 DATUM SHIFT
14 CYCL DEF 7.1 X+60
15 CYCL DEF 7.2 Y+40
16 CYCL DEF 10.0 ROTATION
17 CYCL DEF 10.1 ROT+35
18 CALL LBL 1
```
11.7 SCALING (Cycle 11, DIN/ISO: G72)

Effect

The TNC can increase or reduce the size of contours within a program, enabling you to program shrinkage and oversize allowances.

The SCALING FACTOR becomes effective as soon as it is defined in the program. It is also effective in the Positioning with MDI mode of operation. The active scaling factor is shown in the additional status display.

The scaling factor has an effect on
- All three coordinate axes at the same time
- Dimensions in cycles

Prerequisite

It is advisable to set the datum to an edge or a corner of the contour before enlarging or reducing the contour.

Enlargement: SCL greater than 1 and up to 99.999 999
Reduction: SCL less than 1 and at least 0.000 001

Reset

Program the SCALING FACTOR cycle once again with a scaling factor of 1.
Cycle parameters

- **Scaling factor?**: Enter the scaling factor SCL. The TNC multiplies the coordinates and radii by the SCL factor (as described under “Effect” above). Input range: 0.000000 to 99.999999

Example: NC blocks

- 11 CALL LBL 1
- 12 CYCL DEF 7.0 DATUM SHIFT
- 13 CYCL DEF 7.1 X+60
- 14 CYCL DEF 7.2 Y+40
- 15 CYCL DEF 11.0 SCALING
- 16 CYCL DEF 11.1 SCL 0.75
- 17 CALL LBL 1
11.8 AXIS-SPECIFIC SCALING (Cycle 26)

Effect

With Cycle 26 you can account for shrinkage and oversize factors for each axis.

The SCALING FACTOR becomes effective as soon as it is defined in the program. It is also effective in the Positioning with MDI mode of operation. The active scaling factor is shown in the additional status display.

Reset

Program the SCALING FACTOR cycle once again with a scaling factor of 1 for the same axis.

Please note while programming:

Coordinate axes sharing coordinates for arcs must be enlarged or reduced by the same factor.

You can program each coordinate axis with its own axis-specific scaling factor.

In addition, you can enter the coordinates of a center for all scaling factors.

The size of the contour is enlarged or reduced with reference to the center, and not necessarily (as in Cycle 11 SCALING) with reference to the active datum.
Cycle parameters

- **Axis and scaling factor:** Select the coordinate axis/axes by soft key and enter the factor(s) involved in enlarging or reducing. Input range: 0.000000 to 99.999999

- **Center coordinates:** Enter the center of the axis-specific enlargement or reduction. Input range: -99999.9999 to 99999.9999

Example: NC blocks

```
25 CALL LBL 1
26 CYCL DEF 26.0 AXIS-SPECIFIC SCALING
27 CYCL DEF 26.1 X 1.4 Y 0.6 CCX+15 CCY+20
28 CALL LBL 1
```
11.9 WORKING PLANE (Cycle 19, DIN/ISO: G80, Software Option 1)

Effect

In Cycle 19 you define the position of the working plane—i.e. the position of the tool axis referenced to the machine coordinate system—by entering tilt angles. There are two ways to determine the position of the working plane:

- Enter the position of the rotary axes directly.
- Describe the position of the working plane using up to 3 rotations (spatial angle) of the fixed machine coordinate system. The required spatial angle can be calculated by cutting a perpendicular line through the tilted working plane and considering it from the axis around which you wish to tilt. With two spatial angles, every tool position in space can be defined exactly.

Note that the position of the tilted coordinate system, and therefore also all movements in the tilted system, are dependent on your description of the tilted plane.

If you program the position of the working plane via spatial angles, the TNC will calculate the required angle positions of the tilted axes automatically and will store these in the parameters Q120 (A axis) to Q122 (C axis). If two solutions are possible, the TNC will choose the shorter path from the zero position of the rotary axes.

The axes are always rotated in the same sequence for calculating the tilt of the plane: The TNC first rotates the A axis, then the B axis, and finally the C axis.

Cycle 19 becomes effective as soon as it is defined in the program. As soon as you move an axis in the tilted system, the compensation for this specific axis is activated. You must move all axes to activate compensation for all axes.

If you set the function Tilting program run to Active in the Manual Operation mode, the angular value entered in this menu is overwritten by Cycle 19 WORKING PLANE.
Please note while programming:

The functions for tilting the working plane are interfaced to the TNC and the machine tool by the machine tool builder. With some swivel heads and tilting tables, the machine tool builder determines whether the entered angles are interpreted as coordinates of the rotary axes or as mathematical angles of a tilted plane. Refer to your machine tool manual.

Because nonprogrammed rotary axis values are interpreted as unchanged, you should always define all three spatial angles, even if one or more angles are at zero. The working plane is always tilted around the active datum.

If you use Cycle 19 when M120 is active, the TNC automatically rescinds the radius compensation, which also rescinds the M120 function.

Cycle parameters

- **Rotary axis and tilt angle?**: Enter the axes of rotation together with the associated tilt angles. The rotary axes A, B and C are programmed using soft keys. Input range: -360.000 to 360.000

If the TNC automatically positions the rotary axes, you can enter the following parameters:

- **Feed rate? F=**: Traverse speed of the rotary axis during automatic positioning. Input range: 0 to 99999.999

- **Setup clearance? (incremental)**: The TNC positions the tilting head so that the position that results from the extension of the tool by the setup clearance does not change relative to the workpiece. Input range: 0 to 99999.9999

Reset

To cancel the tilt angle, redefine the WORKING PLANE cycle and enter an angular value of 0° for all axes of rotation. You must then program the WORKING PLANE cycle once again by answering the dialog question with the NO ENT key to disable the function.
Position the axis of rotation

The machine tool builder determines whether Cycle 19 positions the axes of rotation automatically or whether they must be positioned manually in the program. Refer to your machine tool manual.

Manual positioning of rotary axes

If the rotary axes are not positioned automatically in Cycle 19, you must position them in a separate L block after the cycle definition.

If you use axis angles, you can define the axis values right in the L block. If you use spatial angles, then use the Q parameters Q120 (A-axis value), Q121 (B-axis value) and Q122 (C-axis value), which are described by Cycle 19.

Example NC blocks:

```
10 L Z+100 R0 FMAX
11 L X+25 Y+10 R0 FMAX
12 CYCL DEF 19.0 WORKING PLANE
13 CYCL DEF 19.1 A+0 B+45 C+0
14 L A+Q120 C+Q122 R0 F1000
15 L Z+80 R0 FMAX
16 L X-8.5 Y-10 R0 FMAX
```

Define the spatial angle for calculation of the compensation
Position the rotary axes by using values calculated by Cycle 19
Activate compensation for the spindle axis
Activate compensation for the working plane

For manual positioning, always use the rotary axis positions stored in Q parameters Q120 to Q122.

Avoid using functions, such as M94 (modulo rotary axes), in order to avoid discrepancies between the actual and nominal positions of rotary axes in multiple definitions.
Automatic positioning of rotary axes
If the rotary axes are positioned automatically in Cycle 19:

- The TNC can position only controlled axes
- In order for the tilted axes to be positioned, you must enter a feed rate and a setup clearance in addition to the tilting angles, during cycle definition.
- Use only preset tools (the full tool length must be defined).
- The position of the tool tip as referenced to the workpiece surface remains nearly unchanged after tilting.
- The TNC performs the tilt at the last programmed feed rate. The maximum feed rate that can be reached depends on the complexity of the swivel head or tilting table.

Example NC blocks:

```
10 L Z+100 R0 FMAX
11 L X+25 Y+10 R0 FMAX
12 CYCL DEF 19.0 WORKING PLANE
13 CYCL DEF 19.1 A+0 B+45 C+0 F5000 SETUP50
14 L Z+80 R0 FMAX
15 L X-8.5 Y-10 R0 FMAX
```
- Define the angle for calculation of the compensation
- Also define the feed rate and the clearance
- Activate compensation for the spindle axis
- Activate compensation for the working plane
Position display in the tilted system

On activation of Cycle 19, the displayed positions (ACTL and NOML) and the datum indicated in the additional status display are referenced to the tilted coordinate system. The positions displayed immediately after cycle definition might not be the same as the coordinates of the last programmed position before Cycle 19.

Workspace monitoring

The TNC monitors only those axes in the tilted coordinate system that are moved. If necessary, the TNC outputs an error message.

Positioning in a tilted coordinate system

With the miscellaneous function M130 you can move the tool, while the coordinate system is tilted, to positions that are referenced to the non-tilted coordinate system.

Positioning movements with straight lines that are referenced to the machine coordinate system (blocks with M91 or M92) can also be executed in a tilted working plane. Constraints:

- Positioning is without length compensation.
- Positioning is without machine geometry compensation.
- Tool radius compensation is not permitted.
Combining coordinate transformation cycles

When combining coordinate transformation cycles, always make sure the working plane is swiveled around the active datum. You can program a datum shift before activating Cycle 19. In this case, you are shifting the machine-based coordinate system.

If you program a datum shift after having activated Cycle 19, you are shifting the tilted coordinate system.

Important: When resetting the cycles, use the reverse sequence used for defining them:

1st: Activate the datum shift
2nd: Activate tilting function
3rd: Activate rotation
...
Machining
...
1st: Reset the rotation
2nd: Reset the tilting function
3rd: Reset the datum shift
11.9 WORKING PLANE (Cycle 19, DIN/ISO: G80, Software Option 1)

Procedure for working with Cycle 19 WORKING PLANE

1 Write the program

- Define the tool (not required if TOOL.T is active), and enter the full tool length.
- Call the tool
- Retract the tool in the tool axis to a position where there is no danger of collision with the workpiece (clamping devices) during tilting.
- If required, position the rotary axis or axes with an L block to the appropriate angular value(s) (depending on a machine parameter).
- Activate datum shift if required.
- Define Cycle 19 WORKING PLANE; enter the angular values for the tilt axes.
- Traverse all principal axes (X, Y, Z) to activate compensation.
- Write the program as if the machining process were to be executed in a non-tilted plane.
- If required, define Cycle 19 WORKING PLANE with other angular values to execute machining in a different axis position. In this case, it is not necessary to reset Cycle 19. You can define the new angular values directly.
- Reset Cycle 19 WORKING PLANE; program 0° for all rotary axes.
- Disable the WORKING PLANE function; redefine Cycle 19 and answer the dialog question with NO ENT.
- Reset datum shift if required.
- Position the rotary axes to the 0° position, if required.

2 Clamp the workpiece

3 Datum setting

- Manually by touch-off
- Controlled with a HEIDENHAIN 3-D touch probe (see the Touch Probe Cycles User’s Manual, chapter 2).
- Automatically with a HEIDENHAIN 3-D touch probe (see the Touch Probe Cycles User’s Manual, chapter 3).

4 Start the part program in the operating mode Program Run, Full Sequence

5 Manual Operation mode

Use the 3-D ROT soft key to set the TILT WORKING PLANE function to INACTIVE. Enter an angular value of 0° for each rotary axis in the menu.
11.10 Programming Examples

Example: Coordinate transformation cycles

Program sequence

- Program the coordinate transformations in the main program
- Machining within a subprogram

<table>
<thead>
<tr>
<th>Line</th>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>BEGIN PGM COTRANS MM</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>BLK FORM 0.1 Z X+0 Y+0 Z-20</td>
<td>Definition of workpiece blank</td>
</tr>
<tr>
<td>2</td>
<td>BLK FORM 0.2 X+130 Y+130 Z+0</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>TOOL CALL 1 Z S4500</td>
<td>Tool call</td>
</tr>
<tr>
<td>4</td>
<td>L Z+250 RO FMAX</td>
<td>Retract the tool</td>
</tr>
<tr>
<td>5</td>
<td>CYCL DEF 7.0 DATUM SHIFT</td>
<td>Shift datum to center</td>
</tr>
<tr>
<td>6</td>
<td>CYCL DEF 7.1 X+65</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>CYCL DEF 7.2 Y+65</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>CALL LBL 1</td>
<td>Call milling operation</td>
</tr>
<tr>
<td>9</td>
<td>LBL 10</td>
<td>Set label for program section repeat</td>
</tr>
<tr>
<td>10</td>
<td>CYCL DEF 10.0 ROTATION</td>
<td>Rotate by 45° (incremental)</td>
</tr>
<tr>
<td>11</td>
<td>CYCL DEF 10.1 IROT+45</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>CALL LBL 1</td>
<td>Call milling operation</td>
</tr>
<tr>
<td>13</td>
<td>CALL LBL 10 REP 6/6</td>
<td>Return jump to LBL 10; repeat the milling operation six times</td>
</tr>
<tr>
<td>14</td>
<td>CYCL DEF 10.0 ROTATION</td>
<td>Reset the rotation</td>
</tr>
<tr>
<td>15</td>
<td>CYCL DEF 10.1 ROT+0</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>CYCL DEF 7.0 DATUM SHIFT</td>
<td>Reset the datum shift</td>
</tr>
<tr>
<td>17</td>
<td>CYCL DEF 7.1 X+0</td>
<td></td>
</tr>
</tbody>
</table>
18 CYCL DEF 7.2 Y+0
19 L Z+250 R0 FMAX M2 Retract in the tool axis, end program
20 LBL 1 Subprogram 1
21 L X+0 Y+0 R0 FMAX Define milling operation
22 L Z+2 R0 FMAX M3
23 L Z-5 R0 F200
24 L X+30 R L
25 L IY+10
26 RND R5
27 L IX+20
28 L IX+10 IY-10
29 RND R5
30 L IX-10 IY-10
31 L IX-20
32 L IY+10
33 L X+0 Y+0 R0 F5000
34 L Z+20 R0 FMAX
35 LBL 0
36 END PGM COTRANS MM
Cycles: Special Functions
12.1 Fundamentals

Overview

The TNC provides four cycles for the following special purposes:

<table>
<thead>
<tr>
<th>Cycle</th>
<th>Soft key</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9 DWELL TIME</td>
<td>9</td>
<td>269</td>
</tr>
<tr>
<td>12 PROGRAM CALL</td>
<td>12</td>
<td>270</td>
</tr>
<tr>
<td>13 ORIENTED SPINDLE STOP</td>
<td>13</td>
<td>272</td>
</tr>
<tr>
<td>32 TOLERANCE</td>
<td>32</td>
<td>273</td>
</tr>
</tbody>
</table>
12.2 DWELL TIME (Cycle 9, DIN/ISO: G04)

Function

This causes the execution of the next block within a running program to be delayed by the programmed DWELL TIME. A dwell time can be used for such purposes as chip breaking.

The cycle becomes effective as soon as it is defined in the program. Modal conditions such as spindle rotation are not affected.

Cycle parameters

- **Dwell time in seconds**: Enter the dwell time in seconds. Input range: 0 to 3600 s (1 hour) in steps of 0.001 seconds

Example: NC blocks

```
89 CYCL DEF 9.0 DWELL TIME
90 CYCL DEF 9.1 DWELL 1.5
```
12.3 PROGRAM CALL (Cycle 12, DIN/ISO: G39)

Cycle function

Routines that you have programmed (such as special drilling cycles or geometrical modules) can be written as main programs and then called like fixed cycles.

Please note while programming:

The program you are calling must be stored on the hard disk of your TNC.

If the program you are defining to be a cycle is located in the same directory as the program you are calling it from, you need only to enter the program name.

If the program you are defining to be a cycle is not located in the same directory as the program you are calling it from, you must enter the complete path, for example `TNC:KLAR35\FK1\50.H`.

If you want to define an ISO program to be a cycle, enter the file type `.I` behind the program name.

As a rule, Q parameters are globally effective when called with Cycle 12. So please note that changes to Q parameters in the called program can also influence the calling program.
Cycle parameters

- **Program name**: Enter the name of the program you want to call and, if necessary, the directory it is located in or activate the file select dialog with the SELECT soft key and select the program to be called.

Call the program with

- CYCL CALL (separate block) or
- M99 (blockwise) or
- M89 (executed after every positioning block)

Example: Designate program 50 as a cycle and call it with M99

```plaintext
55 CYCL DEF 12.0 PGM CALL
56 CYCL DEF 12.1 PGM TNC:\KLAR35\FK1\50.H
57 L X+20 Y+50 FMAX M99
```
12.4 ORIENTED SPINDLE STOP (Cycle 13, DIN/ISO: G36)

Cycle function

The TNC can control the machine tool spindle and rotate it to a given angular position.

Oriented spindle stops are required for

- Tool changing systems with a defined tool change position
- Orientation of the transmitter/receiver window of HEIDENHAIN 3-D touch probes with infrared transmission

The angle of orientation defined in the cycle is positioned to by entering M19 or M20 (depending on the machine).

If you program M19 or M20 without having defined Cycle 13, the TNC positions the machine tool spindle to an angle that has been set by the machine manufacturer (see your machine manual).

Please note while programming:

- Cycle 13 is used internally for machining cycles 202, 204 and 209. Please note that, if required, you must program Cycle 13 again in your NC program after one of the machining cycles mentioned above.

Cycle parameters

- **Angle of orientation**: Enter the angle referenced to the reference axis of the working plane. Input range: 0.0000° to 360.0000°

Example: NC blocks

```
93 CYCL DEF13.0 ORIENTATION
94 CYCL DEF 13.1 ANGLE 180
```
12.5 TOLERANCE (Cycle 32, DIN/ISO: G62)

Cycle function

Machine and TNC must be specially prepared by the machine tool builder for use of this cycle.

With the entries in Cycle 32 you can influence the result of HSC machining with respect to accuracy, surface definition and speed, inasmuch as the TNC has been adapted to the machine’s characteristics.

The TNC automatically smoothens the contour between two path elements (whether compensated or not). The tool has constant contact with the workpiece surface and therefore reduces wear on the machine tool. The tolerance defined in the cycle also affects the traverse paths on circular arcs.

If necessary, the TNC automatically reduces the programmed feed rate so that the program can be machined at the fastest possible speed without short pauses for computing time. **Even if the TNC does not move with reduced speed, it will always comply with the tolerance that you have defined.** The larger you define the tolerance, the faster the TNC can move the axes.

Smoothing the contour results in a certain amount of deviation from the contour. The size of this contour error (tolerance value) is set in a machine parameter by the machine manufacturer. With CYCLE 32, you can change the pre-set tolerance value and select different filter settings, provided that your machine manufacturer implements these features.
Influences of the geometry definition in the CAM system

The most important factor of influence in offline NC program creation is the chord error S defined in the CAM system. The maximum point spacing of NC programs generated in a postprocessor (PP) is defined through the chord error. If the chord error is less than or equal to the tolerance value T defined in Cycle 32, then the TNC can smooth the contour points unless any special machine settings limit the programmed feed rate.

You will achieve optimal smoothing if in Cycle 32 you choose a tolerance value between 110% and 200% of the CAM chord error.
Please note while programming:

With very small tolerance values the machine cannot cut the contour without jerking. These jerking movements are not caused by poor processing power in the TNC, but by the fact that, in order to machine the contour element transitions very exactly, the TNC might have to drastically reduce the speed.

Cycle 32 is DEF active which means that it becomes effective as soon as it is defined in the part program.

The TNC resets Cycle 32 if you

- redefine it and confirm the dialog question for the tolerance value with NO ENT
- select a new program with the PGM MGT key.

After you have reset Cycle 32, the TNC reactivates the tolerance that was predefined by machine parameter.

In a program with millimeters set as unit of measure, the TNC interprets the entered tolerance value in millimeters. In an inch program it interprets it as inches.

If you transfer a program with Cycle 32 that contains only the cycle parameter Tolerance value T, the TNC inserts the two remaining parameters with the value 0 if required.

As the tolerance value increases, the diameter of circular movements usually decreases. If the HSC filter is active on your machine (ask your machine manufacturer, if necessary), the circle can also become larger.

If Cycle 32 is active, the TNC shows the parameters defined for Cycle 32 on the CYC tab of the additional status display.
Cycle parameters

- **Tolerance value T**: Permissible contour deviation in mm (or inches with inch programming). Input range 0 to 99999.9999

- **HSC MODE, Finishing=0, Roughing=1**: Activate filter:
 - Input value 0: **Milling with increased contour accuracy**. The TNC uses the filter settings that your machine tool builder has defined for finishing operations.
 - Input value 1: **Milling at an increased feed rate**. The TNC uses the filter settings that your machine tool builder has defined for roughing operations. The TNC works with optimal smoothing of the contour points, which results in a reduction of machining time.

- **Tolerance for rotary axes TA**: Permissible position error of rotary axes in degrees when M128 is active. The TNC always reduces the feed rate in such a way that—if more than one axis is traversed—the slowest axis moves at its maximum feed rate. Rotary axes are usually much slower than linear axes. You can significantly reduce the machining time for programs for more than one axis by entering a large tolerance value (e.g. 10°), since the TNC does not always have to move the rotary axis to the given nominal position. The contour will not be damaged by entering a rotary axis tolerance value. Only the position of the rotary axis with respect to the workpiece surface will change. Input range 0 to 179.9999

Example: NC blocks

```
95 CYCL DEF 32.0 TOLERANCE
96 CYCL DEF 32.1 T0.05
97 CYCL DEF 32.2 HSC MODE:1 TA5
```
Using Touch Probe Cycles
13.1 General Information about Touch Probe Cycles

The TNC must be specially prepared by the machine tool builder for the use of a 3-D touch probe. The machine tool manual provides further information.

Method of function

Whenever the TNC runs a touch probe cycle, the 3-D touch probe approaches the workpiece in one linear axis. This is also true during an active basic rotation or with a tilted working plane. The machine tool builder determines the probing feed rate in a machine parameter (see “Before You Start Working with Touch Probe Cycles” later in this chapter).

When the probe stylus contacts the workpiece,
- the 3-D touch probe transmits a signal to the TNC: the coordinates of the probed position are stored,
- the touch probe stops moving, and
- returns to its starting position at rapid traverse.

If the stylus is not deflected within a defined distance, the TNC displays an error message (distance: DIST from touch probe table).

Consider a basic rotation in the Manual Operation mode

During probing the TNC considers an active basic rotation and approaches the workpiece at an angle.

Cycles in the Manual and El. Handwheel Modes

In the Manual Operation and El. Handwheel modes, the TNC provides touch probe cycles that allow you to:
- Calibrate the touch probe
- Compensating workpiece misalignment
- Setting datums
Touch probe cycles for automatic operation

Besides the touch probe cycles, which you can use in the Manual and El. Handwheel modes, the TNC provides numerous cycles for a wide variety of applications in automatic mode:

- Calibrating a touch trigger probe
- Compensating workpiece misalignment
- Setting datums
- Automatic workpiece inspection
- Automatic tool measurement

You can program the touch probe cycles in the Programming and Editing operating mode via the TOUCH PROBE key. Like the most recent canned cycles, touch probe cycles with numbers greater than 400 use Q parameters as transfer parameters. Parameters with specific functions that are required in several cycles always have the same number: For example, Q260 is always assigned the clearance height, Q261 the measuring height, etc.

To simplify programming, the TNC shows a graphic during cycle definition. In the graphic, the parameter that needs to be entered is highlighted (see figure at right).
13.1 General Information about Touch Probe Cycles

Using Touch Probe Cycles

Defining the touch probe cycle in the Programming and Editing mode of operation

► The soft-key row shows all available touch probe functions divided into groups.

► Select the desired probe cycle, for example datum setting. Cycles for automatic tool measurement are available only if your machine has been prepared for them.

► Select a cycle, e.g. datum setting at pocket. The TNC initiates the programming dialog and asks for all required input values. At the same time a graphic of the input parameters is displayed in the right screen window. The parameter that is asked for in the dialog prompt is highlighted.

► Enter all parameters requested by the TNC and conclude each entry with the ENT key.

► The TNC ends the dialog when all required data has been entered.

Example: NC blocks

```
5 TCH PROBE 410 DATUM INSIDE RECTAN.
Q321=+50 ;CENTER IN 1ST AXIS
Q322=+50 ;CENTER IN 2ND AXIS
Q323=60 ;FIRST SIDE LENGTH
Q324=20 ;2ND SIDE LENGTH
Q261=-5 ;MEASURING HEIGHT
Q320=0 ;SETUP CLEARANCE
Q260=+20 ;CLEARANCE HEIGHT
Q301=0 ;MOVE TO CLEARANCE
Q305=10 ;NO. IN TABLE
Q331=+0 ;DATUM
Q332=+0 ;DATUM
Q303=+1 ;MEAS. VALUE TRANSFER
Q381=1 ;PROBE IN TS AXIS
Q382=+85 ;1ST CO. FOR TS AXIS
Q383=+50 ;2ND CO. FOR TS AXIS
Q384=+0 ;3RD CO. FOR TS AXIS
Q333=+0 ;DATUM
```

Group of measuring cycles

<table>
<thead>
<tr>
<th>Soft key</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cycles for automatic measurement and compensation of workpiece misalignment</td>
<td>Page 288</td>
</tr>
<tr>
<td>Cycles for automatic workpiece presetting</td>
<td>Page 310</td>
</tr>
<tr>
<td>Cycles for automatic workpiece inspection</td>
<td>Page 364</td>
</tr>
<tr>
<td>Special cycles</td>
<td>Page 414</td>
</tr>
<tr>
<td>Cycles for automatic tool measurement (enabled by the machine tool builder)</td>
<td>Page 418</td>
</tr>
</tbody>
</table>
13.2 Before You Start Working with Touch Probe Cycles

To make it possible to cover the widest possible range of applications, machine parameters enable you to determine the behavior common to all touch probe cycles.

Maximum traverse to touch point: DIST in touch probe table

If the stylus is not deflected within the path defined in `DIST`, the TNC outputs an error message.

Setup clearance to touch point: SET_UP in touch probe table

In `SET_UP` you define how far from the defined (or calculated) touch point the TNC is to pre-position the touch probe. The smaller the value you enter, the more exactly must you define the touch point position. In many touch probe cycles you can also define a setup clearance that is added to `SET_UP`.

Orient the infrared touch probe to the programmed probe direction: TRACK in touch probe table

To increase measuring accuracy, you can use `TRACK = ON` to have an infrared touch probe oriented in the programmed probe direction before every probe process. In this way the stylus is always deflected in the same direction.

If you change `TRACK = ON`, you must recalibrate the touch probe.
13.2 Before You Start Working with Touch Probe Cycles

Touch trigger probe, probing feed rate: F in touch probe table

In F you define the feed rate at which the TNC is to probe the workpiece.

Touch trigger probe, rapid traverse for positioning: FMAX

In FMAX you define the feed rate at which the TNC pre-positions the touch probe, or positions it between measuring points.

Touch trigger probe, rapid traverse for positioning: F_PREPOS in touch probe table

In F_PREPOS you define whether the TNC is to position the touch probe at the feed rate defined in FMAX or at rapid traverse.

- Input value = FMAX_PROBE: Position at feed rate from FMAX
- Input value = FMAX_MACHINE: Pre-position at rapid traverse

Multiple measurements

To increase measuring certainty, the TNC can run each probing process up to three times in sequence. Define the number of measurements in machine parameter **Probe Settings > Configuration of probe behavior > Automatic mode: Multiple measurements with probe function**. If the measured position values differ too greatly, the TNC outputs an error message (the limit value is defined in **confidence range for multiple measurement**). With multiple measurement it is possible to detect random errors, e.g. from contamination.

If the measured values lie within the confidence interval, the TNC saves the mean value of the measured positions.

Confidence range for multiple measurement

When you perform a multiple measurement, you store the value that the measured values may vary in **Probe Settings > Configuration of probe behavior > Automatic mode: Confidence range for multiple measurement**. If the difference in the measured values exceeds the value defined by you, the TNC outputs an error message.
Executing touch probe cycles

All touch probe cycles are DEF active. This means that the TNC runs the cycle automatically as soon as the TNC executes the cycle definition in the program run.

Danger of collision!

When running touch probe cycles, no cycles must be active for coordinate transformation (Cycle 7 DATUM, Cycle 8 MIRROR IMAGE, Cycle 10 ROTATION, Cycles 11 and 26 SCALING and Cycle 19 WORKING PLANE or 3D-ROT).

You can also run the Touch Probe Cycles 408 to 419 during an active basic rotation. Make sure, however, that the basic rotation angle does not change when you use Cycle 7 DATUM SHIFT with datum tables after the measuring cycle.

Touch probe cycles with a number greater than 400 position the touch probe according to a positioning logic:

- If the current coordinate of the south pole of the stylus is less than the coordinate of the clearance height (defined in the cycle), the TNC retracts the touch probe in the probe axis to the clearance height and then positions it in the working plane to the first starting position.
- If the current coordinate of the south pole of the stylus is greater than the coordinate of the clearance height, the TNC first positions the probe in the working plane to the first starting position and then moves it immediately to the measuring height in the touch probe axis.
13.3 Touch Probe Table

General information

Various data is stored in the touch probe table that defines behavior with the probe process. If you run several touch probes on your machine tool, you can save separate data for each touch probe.

Editing touch probe tables

To edit the touch probe table, proceed as follows:

► Select the Manual Operation mode.

► Select the touch probe functions by pressing the PROBE FUNCTION soft key. The TNC displays additional soft keys: see table above.

► Select the touch probe table: Press the TOUCH PROBE TABLE soft key.

► Set the EDIT soft key to ON.

► Using the arrow keys, select the desired setting.

► Perform desired changes.

► Exit the touch probe table: Press the END soft key.
Touch probe data

<table>
<thead>
<tr>
<th>Abbr.</th>
<th>Inputs</th>
<th>Dialog</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO</td>
<td>Number of the touch probe: Enter this number in the tool table (column: TP_NO) under the appropriate tool number</td>
<td>–</td>
</tr>
<tr>
<td>TYPE</td>
<td>Selection of the touch probe used</td>
<td>Selection of touch probe?</td>
</tr>
<tr>
<td>CAL_OF1</td>
<td>Offset of the touch probe axis to the spindle axis for the reference axis</td>
<td>TS center misalignmnt. ref. axis? [mm]</td>
</tr>
<tr>
<td>CAL_OF2</td>
<td>Offset of the touch probe axis to the spindle axis for the minor axis</td>
<td>TS center misalignmnt. ref. axis? [mm]</td>
</tr>
<tr>
<td>CAL_ANG</td>
<td>The TNC orients the touch probe to the orientation angle before calibration or probing (if orientation is possible)</td>
<td>Spindle angle for calibration?</td>
</tr>
<tr>
<td>F</td>
<td>Feed rate at which the TNC is to probe the workpiece.</td>
<td>Probing feed rate? [mm/min]</td>
</tr>
<tr>
<td>FMAX</td>
<td>Feed rate at which the touch probe pre-positions, or is positioned between the measuring points</td>
<td>Rapid traverse in probing cycle? [mm/min]</td>
</tr>
<tr>
<td>DIST</td>
<td>If the stylus is not deflected within the defined path, the TNC outputs an error message</td>
<td>Maximum measuring path? [mm]</td>
</tr>
<tr>
<td>SET_UP</td>
<td>In SET_UP you define how far from the defined (or calculated) touch point the TNC is to pre-position the touch probe. The smaller the value you enter, the more exactly must you define the touch point position. In many touch probe cycles you can also define a setup clearance in addition that is added to Machine Parameter SET_UP</td>
<td>Setup clearance? [mm]</td>
</tr>
<tr>
<td>F_PREPOS</td>
<td>Defining speed with pre-positioning:</td>
<td>Pre-positioning at rap. traverse? ENT/NO ENT</td>
</tr>
<tr>
<td></td>
<td>Pre-positioning with speed from FMAX: FMAX_PROBE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pre-positioning with machine rapid traverse: FMAX_MACHINE</td>
<td></td>
</tr>
<tr>
<td>TRACK</td>
<td>To increase measuring accuracy, you can use TRACK = ON to have an infrared touch probe oriented in the programmed probe direction before every probe process. In this way the stylus is always deflected in the same direction:</td>
<td>Orient touch probe cycles? Yes=ENT, No=NOENT</td>
</tr>
<tr>
<td></td>
<td>ON: Perform spindle tracking</td>
<td></td>
</tr>
<tr>
<td></td>
<td>OFF: Do not perform spindle tracking</td>
<td></td>
</tr>
</tbody>
</table>
13.3 Touch Probe Table
Touch Probe Cycles: Automatic Measurement of Workpiece Misalignment
14.1 Fundamentals

Overview

Danger of collision!
When running touch probe cycles, no cycles must be active for coordinate transformation (Cycle 7 DATUM, Cycle 8 MIRROR IMAGE, Cycle 10 ROTATION, Cycles 11 and 26 SCALING and Cycle 19 WORKING PLANE or 3D-ROT).

The TNC must be specially prepared by the machine tool builder for the use of a 3-D touch probe.

The TNC provides five cycles that enable you to measure and compensate workpiece misalignment. In addition, you can reset a basic rotation with Cycle 404:

<table>
<thead>
<tr>
<th>Cycle</th>
<th>Soft key</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>400 BASIC ROTATION</td>
<td></td>
<td>Page 290</td>
</tr>
<tr>
<td>401 ROT OF 2 HOLES</td>
<td></td>
<td>Page 293</td>
</tr>
<tr>
<td>402 ROT OF 2 STUDS</td>
<td></td>
<td>Page 296</td>
</tr>
<tr>
<td>403 ROT IN ROTARY AXIS</td>
<td></td>
<td>Page 299</td>
</tr>
<tr>
<td>405 ROT IN C AXIS</td>
<td></td>
<td>Page 303</td>
</tr>
<tr>
<td>404 SET BASIC ROTATION</td>
<td></td>
<td>Page 302</td>
</tr>
</tbody>
</table>
Characteristics common to all touch probe cycles for measuring workpiece misalignment

For Cycles 400, 401 and 402 you can define through parameter Q307 Default setting for basic rotation whether the measurement result is to be corrected by a known angle α (see figure at right). This enables you to measure the basic rotation against any straight line 1 of the workpiece and to establish the reference to the actual 0° direction 2.
14.2 BASIC ROTATION (Cycle 400, DIN/ISO: G400)

Cycle run

Touch probe cycle 400 determines a workpiece misalignment by measuring two points, which must lie on a straight surface. With the basic rotation function the TNC compensates the measured value.

1 The TNC positions the touch probe at rapid traverse (value from FMAX column) following the positioning logic (see “Executing touch probe cycles” on page 283) to the programmed starting point 1. The TNC offsets the touch probe by the safety clearance in the direction opposite the defined traverse direction.

2 Then the touch probe moves to the entered measuring height and probes the first touch point at the probing feed rate (column F).

3 Then the touch probe moves to the next starting position 2 and probes the second position.

4 The TNC returns the touch probe to the clearance height and performs the basic rotation.

Please note while programming:

Before a cycle definition you must have programmed a tool call to define the touch probe axis. The TNC will reset an active basic rotation at the beginning of the cycle.
Cycle parameters

- **1st meas. point 1st axis** Q263 (absolute): Coordinate of the first touch point in the reference axis of the working plane. Input range –99999.9999 to 99999.9999

- **1st meas. point 2nd axis** Q264 (absolute): Coordinate of the first touch point in the minor axis of the working plane. Input range –99999.9999 to 99999.9999

- **2nd meas. point 1st axis** Q265 (absolute): Coordinate of the second touch point in the reference axis of the working plane. Input range –99999.9999 to 99999.9999

- **2nd meas. point 2nd axis** Q266 (absolute): Coordinate of the second touch point in the minor axis of the working plane. Input range –99999.9999 to 99999.9999

- **Measuring axis** Q272: Axis in the working plane in which the measurement is to be made:
 1: Reference axis = measuring axis
 2: Minor axis = measuring axis

- **Traverse direction 1** Q267: Direction in which the probe is to approach the workpiece:
 -1: Negative traverse direction
 +1: Positive traverse direction

- **Measuring height in the touch probe axis** Q261 (absolute): Coordinate of the ball tip center (= touch point) in the touch probe axis in which the measurement is to be made. Input range –99999.9999 to 99999.9999

- **Setup clearance** Q320 (incremental): Additional distance between measuring point and ball tip. Q320 is added to SET_UP (touch probe table). Input range 0 to 99999.9999

- **Clearance height** Q260 (absolute): Coordinate in the touch probe axis at which no collision between touch probe and workpiece (fixtures) can occur. Input range -99999.9999 to 99999.9999
14.2 BASIC ROTATION (Cycle 400, DIN/ISO: G400)

- **Traversing to clearance height** Q301: Definition of how the touch probe is to move between the measuring points:
 0: Move at measuring height between measuring points
 1: Move at clearance height between measuring points

- **Default setting for basic rotation** Q307 (absolute): If the misalignment is to be measured against a straight line other than the reference axis, enter the angle of this reference line. The TNC will then calculate the difference between the value measured and the angle of the reference line for the basic rotation. Input range -360.000 to 360.000

- **Preset number in table** Q305: Enter the preset number in the table in which the TNC is to save the determined basic rotation. If you enter Q305=0, the TNC automatically places the determined basic rotation in the ROT menu of the Manual Operation mode. Input range 0 to 2999

Example: NC blocks

| 5 TCH PROBE 400 BASIC ROTATION |
| Q263=+10 ;1ST POINT 1ST AXIS |
| Q264=+3.5 ;1ST POINT 2ND AXIS |
| Q265=+25 ;2ND POINT 1ST AXIS |
| Q266=+2 ;2ND POINT 2ND AXIS |
| Q272=2 ;MEASURING AXIS |
| Q267=+1 ;TRAVERSE DIRECTION |
| Q261=-5 ;MEASURING HEIGHT |
| Q320=0 ;SET-UP CLEARANCE |
| Q260=+20 ;CLEARANCE HEIGHT |
| Q301=0 ;MOVE TO CLEARANCE |
| Q307=0 ;PRESET BASIC ROTATION |
| Q305=0 ;NO. IN TABLE |
14.3 BASIC ROTATION from Two Holes (Cycle 401, DIN/ISO: G401)

Cycle run

The Touch Probe Cycle 401 measures the centers of two holes. Then the TNC calculates the angle between the reference axis in the working plane and the line connecting the two hole centers. With the basic rotation function, the TNC compensates the calculated value. As an alternative, you can also compensate the determined misalignment by rotating the rotary table.

1. The TNC positions the touch probe at rapid traverse (value from column FMAX) following the positioning logic (see “Executing touch probe cycles” on page 283) to the center of the first hole.

2. Then the probe moves to the entered measuring height and probes four points to find the first hole center.

3. The touch probe returns to the clearance height and then to the position entered as center of the second hole.

4. The TNC moves the touch probe to the entered measuring height and probes four points to find the second hole center.

5. Then the TNC returns the touch probe to the clearance height and performs the basic rotation.

Please note while programming:

Before a cycle definition you must have programmed a tool call to define the touch probe axis.

The TNC will reset an active basic rotation at the beginning of the cycle.

If you want to compensate the misalignment by rotating the rotary table, the TNC will automatically use the following rotary axes:
- C for tool axis Z
- B for tool axis Y
- A for tool axis X
Cycle parameters

- **1st hole: Center in 1st axis** Q268 (absolute): Center of the first hole in the reference axis of the working plane. Input range -99999.9999 to 99999.9999
- **1st hole: Center in 2nd axis** Q269 (absolute): Center of the first hole in the minor axis of the working plane. Input range -99999.9999 to 99999.9999
- **2nd hole: Center in 1st axis** Q270 (absolute): Center of the second hole in the reference axis of the working plane. Input range -99999.9999 to 99999.9999
- **2nd hole: Center in 2nd axis** Q271 (absolute): Center of the second hole in the minor axis of the working plane. Input range -99999.9999 to 99999.9999
- **Measuring height in the touch probe axis** Q261 (absolute): Coordinate of the ball tip center (= touch point) in the touch probe axis in which the measurement is to be made. Input range -99999.9999 to 99999.9999
- **Clearance height** Q260 (absolute): Coordinate in the touch probe axis at which no collision between touch probe and workpiece (fixtures) can occur. Input range -99999.9999 to 99999.9999
- **Default setting for basic rotation** Q307 (absolute): If the misalignment is to be measured against a straight line other than the reference axis, enter the angle of this reference line. The TNC will then calculate the difference between the value measured and the angle of the reference line for the basic rotation. Input range -360.000 to 360.000
Preset number in table Q305: Enter the preset number in the table in which the TNC is to save the determined basic rotation. If you enter Q305=0, the TNC automatically places the determined basic rotation in the ROT menu of the Manual Operation mode. The parameter has no effect if the misalignment is to be compensated by a rotation of the rotary table (Q402=1). In this case the misalignment is not saved as an angular value. Input range 0 to 2999.

Basic rotation / alignment Q402: Specify whether the TNC should compensate misalignment with a basic rotation, or by rotating the rotary table:
0: Set basic rotation
1: Rotate the rotary table
When you select rotary table, the TNC does not save the measured misalignment, not even when you have defined a table line in parameter Q305.

Set to zero after alignment Q337: Definition of whether the TNC should set the display of the aligned rotary axis to zero:
0: Do not reset the display of the rotary axis to 0 after alignment
1: Reset the display of the rotary axis to 0 after alignment
The TNC sets the display to 0 only if you have defined Q402=1.

Example: NC blocks

<table>
<thead>
<tr>
<th>5 TCH PROBE 401 ROT OF 2 HOLES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q268=-37 ;1ST CENTER IN 1ST AXIS</td>
</tr>
<tr>
<td>Q269=+12 ;1ST CENTER IN 2ND AXIS</td>
</tr>
<tr>
<td>Q270=+75 ;2ND CENTER IN 1ST AXIS</td>
</tr>
<tr>
<td>Q271=+20 ;2ND CENTER IN 2ND AXIS</td>
</tr>
<tr>
<td>Q261=-5 ;MEASURING HEIGHT</td>
</tr>
<tr>
<td>Q260=+20 ;CLEARANCE HEIGHT</td>
</tr>
<tr>
<td>Q307=0 ;PRESET BASIC ROTATION</td>
</tr>
<tr>
<td>Q305=0 ;NO. IN TABLE</td>
</tr>
<tr>
<td>Q402=0 ;ALIGNMENT</td>
</tr>
<tr>
<td>Q337=0 ;SET TO ZERO</td>
</tr>
</tbody>
</table>
14.4 BASIC ROTATION over Two Studs (Cycle 402, DIN/ISO: G402)

Cycle run

The Touch Probe Cycle 402 measures the centers of two studs. Then the TNC calculates the angle between the reference axis in the working plane and the line connecting the two stud centers. With the basic rotation function, the TNC compensates the calculated value. As an alternative, you can also compensate the determined misalignment by rotating the rotary table.

1. Following the positioning logic (see “Executing touch probe cycles” on page 283), the TNC positions the touch probe in rapid traverse (value from column FMAX) to the starting point of the first stud.

2. Then the probe moves to the entered **measuring height 1** and probes four points to find the center of the first stud. The touch probe moves on a circular arc between the touch points, each of which is offset by 90°.

3. The touch probe returns to the clearance height and then to the starting point for probing the second stud.

4. The TNC moves the touch probe to the entered **measuring height 2** and probes four points to find the center of the second stud.

5. Then the TNC returns the touch probe to the clearance height and performs the basic rotation.

Please note while programming:

Before a cycle definition you must have programmed a tool call to define the touch probe axis.

The TNC will reset an active basic rotation at the beginning of the cycle.

If you want to compensate the misalignment by rotating the rotary table, the TNC will automatically use the following rotary axes:

- C for tool axis Z
- B for tool axis Y
- A for tool axis X
Cycle parameters

- **1st stud: Center in 1st axis** (absolute): Center of the first stud in the reference axis of the working plane. Input range –99999.9999 to 99999.9999

- **1st stud: Center in 2nd axis** Q269 (absolute): Center of the first stud in the minor axis of the working plane. Input range –99999.9999 to 99999.9999

- **Diameter of stud 1** Q313: Approximate diameter of the 1st stud. Enter a value that is more likely to be too large than too small. Input range 0 to 99999.9999

- **Measuring height 1 in the probe axis** Q261 (absolute): Coordinate of the ball tip center (= touch point in the touch probe axis) at which stud 1 is to be measured. Input range –99999.9999 to 99999.9999

- **2nd stud: Center in 1st axis** Q270 (absolute): Center of the second stud in the reference axis of the working plane. Input range –99999.9999 to 99999.9999

- **2nd stud: Center in 2nd axis** Q271 (absolute): Center of the second stud in the minor axis of the working plane. Input range –99999.9999 to 99999.9999

- **Diameter of stud 2** Q314: Approximate diameter of the 2nd stud. Enter a value that is more likely to be too large than too small. Input range 0 to 99999.9999

- **Measuring height 2 in the probe axis** Q315 (absolute): Coordinate of the ball tip center (= touch point in the touch probe axis) at which stud 2 is to be measured. Input range –99999.9999 to 99999.9999

- **Setup clearance** Q320 (incremental): Additional distance between measuring point and ball tip. Q320 is added to SET_UP (touch probe table). Input range 0 to 99999.9999

- **Clearance height** Q260 (absolute): Coordinate in the touch probe axis at which no collision between touch probe and workpiece (fixtures) can occur. Input range –99999.9999 to 99999.9999
14.4 BASIC ROTATION over Two Studs (Cycle 402, DIN/ISO: G402)

- **Traversing to clearance height** Q301: Definition of how the touch probe is to move between the measuring points:
 0: Move at measuring height between measuring points
 1: Move at clearance height between measuring points

- **Default setting for basic rotation** Q307 (absolute): If the misalignment is to be measured against a straight line other than the reference axis, enter the angle of this reference line. The TNC will then calculate the difference between the value measured and the angle of the reference line for the basic rotation. Input range –360.000 to 360.000

- **Preset number in table** Q305: Enter the preset number in the table in which the TNC is to save the determined basic rotation. If you enter Q305=0, the TNC automatically places the determined basic rotation in the ROT menu of the Manual Operation mode. The parameter has no effect if the misalignment is to be compensated by a rotation of the rotary table (Q402=1). In this case the misalignment is not saved as an angular value. Input range 0 to 2999

- **Basic rotation / alignment** Q402: Specify whether the TNC should compensate misalignment with a basic rotation, or by rotating the rotary table:
 0: Set basic rotation
 1: Rotate the rotary table
 When you select rotary table, the TNC does not save the measured misalignment, not even when you have defined a table line in parameter Q305.

- **Set to zero after alignment** Q337: Definition of whether the TNC should set the display of the aligned rotary axis to zero:
 0: Do not reset the display of the rotary axis to 0 after alignment
 1: Reset the display of the rotary axis to 0 after alignment
 The TNC sets the display to 0 only if you have defined Q402=1.

Example: NC blocks

```
5 TCH PROBE 402 ROT OF 2 STUDS
Q268=-37 ;1ST CENTER IN 1ST AXIS
Q269=+12 ;1ST CENTER IN 2ND AXIS
Q313=60 ;DIAMETER OF STUD 1
Q261=-5 ;MEASURING HEIGHT 1
Q270=+75 ;2ND CENTER IN 1ST AXIS
Q271=+20 ;2ND CENTER IN 2ND AXIS
Q314=60 ;DIAMETER OF STUD 2
Q315=-5 ;MEASURING HEIGHT 2
Q320=0 ;SET-UP CLEARANCE
Q260=+20 ;CLEARANCE HEIGHT
Q301=0 ;MOVE TO CLEARANCE
Q307=0 ;PRESET BASIC ROTATION
Q305=0 ;NO. IN TABLE
Q402=0 ;ALIGNMENT
Q337=0 ;SET TO ZERO
```
14.5 BASIC ROTATION compensation via rotary axis (Cycle 403, DIN/ISO: G403)

Cycle run

Touch Probe Cycle 403 determines a workpiece misalignment by measuring two points, which must lie on a straight surface. The TNC compensates the determined misalignment by rotating the A, B or C axis. The workpiece can be clamped in any position on the rotary table.

1 The TNC positions the touch probe at rapid traverse (value from FMAX column) following the positioning logic (see “Executing touch probe cycles” on page 283) to the programmed starting point 1. The TNC offsets the touch probe by the safety clearance in the direction opposite the defined traverse direction.

2 Then the touch probe moves to the entered measuring height and probes the first touch point at the probing feed rate (column F).

3 Then the touch probe moves to the next starting position 2 and probes the second position.

4 The TNC returns the touch probe to the clearance height and moves the rotary axis, which was defined in the cycle, by the measured value. Optionally you can have the display set to 0 after alignment.

Please note while programming:

Danger of collision!
The TNC does not check whether touch points and compensation axis match. This can result in compensation movements offset by 180°.

Before a cycle definition you must have programmed a tool call to define the touch probe axis.
The TNC stores the measured angle in parameter Q150.
Cycle parameters

- **1st meas. point 1st axis** Q263 (absolute): Coordinate of the first touch point in the reference axis of the working plane. Input range -99999.9999 to 99999.9999

- **1st meas. point 2nd axis** Q264 (absolute): Coordinate of the first touch point in the minor axis of the working plane. Input range -99999.9999 to 99999.9999

- **2nd meas. point 1st axis** Q265 (absolute): Coordinate of the second touch point in the reference axis of the working plane. Input range -99999.9999 to 99999.9999

- **2nd meas. point 2nd axis** Q266 (absolute): Coordinate of the second touch point in the minor axis of the working plane. Input range -99999.9999 to 99999.9999

- **Measuring axis** Q272: Axis in which the measurement is to be made:
 1: Reference axis = measuring axis
 2: Minor axis = measuring axis
 3: Touch probe axis = measuring axis

- **Traverse direction 1** Q267: Direction in which the probe is to approach the workpiece:
 -1: Negative traverse direction
 +1: Positive traverse direction

- **Measuring height in the touch probe axis** Q261 (absolute): Coordinate of the ball tip center (= touch point) in the touch probe axis in which the measurement is to be made. Input range -99999.9999 to 99999.9999

- **Setup clearance** Q320 (incremental): Additional distance between measuring point and ball tip. Q320 is added to SET_UP (touch probe table). Input range 0 to 99999.9999
Clearance height Q260 (absolute): Coordinate in the touch probe axis at which no collision between touch probe and workpiece (fixtures) can occur. Input range -99999.9999 to 99999.9999

Traversing to clearance height Q301: Definition of how the touch probe is to move between the measuring points:
- 0: Move at measuring height between measuring points
- 1: Move at clearance height between measuring points

Axis for compensation motion Q312: assignment of the rotary axis in which the TNC is to compensate the measured misalignment:
- 4: Compensate misalignment with rotary axis A
- 5: Compensate misalignment with rotary axis B
- 6: Compensate misalignment with rotary axis C

Set to zero after alignment Q337: Definition of whether the TNC should set the display of the aligned rotary axis to zero:
- 0: Do not reset the display of the rotary axis to 0 after alignment
- 1: Reset the display of the rotary axis to 0 after alignment

Number in table Q305: Enter the number in the preset table/datum table in which the TNC is to set the rotary axis to zero. Only effective if Q337 is set to 1. Input range 0 to 2999

Measured value transfer (0, 1) Q303: Specify if the determined basic rotation is to be saved in the datum table or in the preset table:
- 0: Write the measured basic rotation as a datum shift in the active datum table. The reference system is the active workpiece coordinate system.
- 1: Write the measured basic rotation into the preset table. The reference system is the machine coordinate system (REF system).

Reference angle? (0=ref. axis) Q380: Angle with which the TNC is to align the probed straight line. Only effective if the rotary axis C is selected (Q312=6). Input range -360.000 to 360.000

Example: NC blocks

```
5 TCH PROBE 403 ROT IN C-AXIS
Q263=+0 ;1ST POINT 1ST AXIS
Q264=+0 ;1ST POINT 2ND AXIS
Q265=+20 ;2ND POINT 1ST AXIS
Q266=+30 ;2ND POINT 2ND AXIS
Q272=1 ;MEASURING AXIS
Q267=-1 ;TRAVERSE DIRECTION
Q261=-5 ;MEASURING HEIGHT
Q320=0 ;SET-UP CLEARANCE
Q260=+20 ;CLEARANCE HEIGHT
Q301=0 ;MOVE TO CLEARANCE
Q312=6 ;COMPENSATION AXIS
Q337=0 ;SET TO ZERO
Q305=1 ;NO. IN TABLE
Q303=+1 ;MEAS. VALUE TRANSFER
Q380=+90 ;REFERENCE ANGLE
```
14.6 SET BASIC ROTATION
(Cycle 404, DIN/ISO: G404)

Cycle run

With Touch Probe Cycle 404, you can set any basic rotation automatically during program run. This cycle is intended primarily for resetting a previous basic rotation.

Example: NC blocks

```
5 TCH PROBE 404 BASIC ROTATION
Q307=+0 ;PRESET BASIC ROTATION
Q305=1 ;NO. IN TABLE
```

Cycle parameters

- **Preset value for basic rotation**: Angular value at which the basic rotation is to be set. Input range –360.000 to 360.000

- **Number in table** Q305: Enter the number in the preset table in which the TNC is to save the defined basic rotation. Input range 0 to 2999
14.7 Compensating Workpiece Misalignment by Rotating the C Axis (Cycle 405, DIN/ISO: G405)

Cycle run

With Touch Probe Cycle 405, you can measure

- the angular offset between the positive Y axis of the active coordinate system and the center of a hole, or
- the angular offset between the nominal position and the actual position of a hole center.

The TNC compensates the determined angular offset by rotating the C axis. The workpiece can be clamped in any position on the rotary table, but the Y coordinate of the hole must be positive. If you measure the angular misalignment of the hole with touch probe axis Y (horizontal position of the hole), it may be necessary to execute the cycle more than once because the measuring strategy causes an inaccuracy of approx. 1% of the misalignment.

1 The TNC positions the touch probe at rapid traverse (value from \(F_{\text{MAX}} \) column) following the positioning logic (see “Executing touch probe cycles” on page 283) to the starting point 1. The TNC calculates the touch points from the data in the cycle and the safety clearance from the \(\text{SET_UP} \) column of the touch probe table.

2 Then the touch probe moves to the entered measuring height and probes the first touch point at the probing feed rate (column \(F \)). The TNC derives the probing direction automatically from the programmed starting angle.

3 Then the touch probe moves in a circular arc either at measuring height or at clearance height to the next starting point 2 and probes the second touch point.

4 The TNC positions the probe to starting point 3 and then to starting point 4 to probe the third and fourth touch points and positions the touch probe on the hole centers measured.

5 Finally the TNC returns the touch probe to the clearance height and aligns the workpiece by rotating the table. The TNC rotates the rotary table so that the hole center after compensation lies in the direction of the positive Y axis, or on the nominal position of the hole center—both with a vertical and horizontal touch probe axis. The measured angular misalignment is also available in parameter Q150.
Please note while programming:

Danger of collision!

To prevent a collision between the touch probe and the workpiece, enter a low estimate for the nominal diameter of the pocket (or hole).

If the dimensions of the pocket and the safety clearance do not permit pre-positioning in the proximity of the touch points, the TNC always starts probing from the center of the pocket. In this case the touch probe does not return to the clearance height between the four measuring points.

Before a cycle definition you must have programmed a tool call to define the touch probe axis.

The smaller the angle, the less accurately the TNC can calculate the circle center. Minimum input value: 5°.
14.7 Compensating Workpiece Misalignment by Rotating the C Axis (Cycle 405, DIN/ISO: G405)

Cycle parameters

- **Center in 1st axis** Q321 (absolute): Center of the hole in the reference axis of the working plane. Input range -99999.9999 to 99999.9999

- **Center in 2nd axis** Q322 (absolute value): Center of the hole in the minor axis of the working plane. If you program Q322 = 0, the TNC aligns the hole center to the positive Y axis. If you program Q322 not equal to 0, then the TNC aligns the hole center to the nominal position (angle of the hole center). Input range -99999.9999 to 99999.9999

- **Nominal diameter** Q262: Approximate diameter of the circular pocket (or hole). Enter a value that is more likely to be too small than too large. Input range 0 to 99999.9999

- **Starting angle** Q325 (absolute): Angle between the reference axis of the working plane and the first touch point. Input range -360.000 to 360.000

- **Stepping angle** Q247 (incremental): Angle between two measuring points. The algebraic sign of the stepping angle determines the direction of rotation (negative = clockwise) in which the touch probe moves to the next measuring point. If you wish to probe a circular arc instead of a complete circle, then program the stepping angle to be less than 90°. Input range -120.000 to 120.000
Measuring height in the touch probe axis
Q261 (absolute): Coordinate of the ball tip center (= touch point) in the touch probe axis in which the measurement is to be made. Input range -99999.9999 to 99999.9999

Setup clearance Q320 (incremental): Additional distance between measuring point and ball tip. Q320 is added to SET_UP (touch probe table). Input range 0 to 99999.9999

Clearance height Q260 (absolute): Coordinate in the touch probe axis at which no collision between touch probe and workpiece (fixtures) can occur. Input range –99999.9999 to 99999.9999

Traversing to clearance height Q301: Definition of how the touch probe is to move between the measuring points:
0: Move at measuring height between measuring points
1: Move at clearance height between measuring points

Set to zero after alignment Q337: Definition of whether the TNC should set the display of the C axis to zero, or write the angular offset in column C of the datum table:
0: Set display of C to 0
>0: Write the angular misalignment, including algebraic sign, in the datum table. Line number = value of Q337. If a C-axis shift is registered in the datum table, the TNC adds the measured angular misalignment.

Example: NC blocks

```plaintext
5 TCH PROBE 405 ROT IN C AXIS
Q321=+50 ;CENTER IN 1ST AXIS
Q322=+50 ;CENTER IN 2ND AXIS
Q262=10 ;NOMINAL DIAMETER
Q325=+0 ;STARTING ANGLE
Q247=90 ;STEPPING ANGLE
Q261=-5 ;MEASURING HEIGHT
Q320=0 ;SETUP CLEARANCE
Q260=+20 ;CLEARANCE HEIGHT
Q301=0 ;MOVE TO CLEARANCE
Q337=0 ;SET TO ZERO
```
Example: Determining a basic rotation from two holes

0 BEGIN PGM CYC401 MM
1 TOOL CALL 69 Z
2 TCH PROBE 401 ROT 2 HOLES
 Q268=+25 ;1ST CENTER IN 1ST AXIS Center of the 1st hole: X coordinate
 Q269=+15 ;1ST CENTER IN 2ND AXIS Center of the 1st hole: Y coordinate
 Q270=+80 ;2ND CENTER IN 1ST AXIS Center of the 2nd hole: X coordinate
 Q271=+35 ;2ND CENTER IN 2ND AXIS Center of the 2nd hole: Y coordinate
 Q261=-5 ;MEASURING HEIGHT Coordinate in the touch probe axis in which the measurement is made
 Q260=+20 ;CLEARANCE HEIGHT Height in the touch probe axis at which the probe can traverse without collision
 Q307=+0 ;PRESET BASIC ROTATION Angle of the reference line
 Q402=1 ;ALIGNMENT Compensate misalignment by rotating the rotary table
 Q337=1 ;SET TO ZERO Set the display to zero after the alignment
3 CALL PGM 35K47 Part program call
4 END PGM CYC401 MM
14.7 Compensating Workpiece Misalignment by Rotating the C Axis (Cycle 405, DIN/ISO: G405)
15

Touch Probe Cycles: Automatic Datum Setting
15.1 Fundamentals

Overview

Danger of collision!
When running touch probe cycles, no cycles must be active for coordinate transformation (Cycle 7 DATUM, Cycle 8 MIRROR IMAGE, Cycle 10 ROTATION, Cycles 11 and 26 SCALING and Cycle 19 WORKING PLANE or 3D-ROT).

The TNC must be specially prepared by the machine tool builder for the use of a 3-D touch probe.

The TNC offers twelve cycles for automatically finding reference points and handling them as follows:
- Setting the determined values directly as display values
- Entering the determined values in the preset table
- Entering the determined values in a datum table

<table>
<thead>
<tr>
<th>Cycle</th>
<th>Soft key</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>408 SLOT CENTER REF PT. Measuring the inside width of a slot, and defining the slot center as datum</td>
<td>Page 313</td>
<td></td>
</tr>
<tr>
<td>409 RIDGE CENTER REF PT. Measuring the outside width of a ridge, and defining the ridge center as datum</td>
<td>Page 317</td>
<td></td>
</tr>
<tr>
<td>410 DATUM INSIDE RECTAN. Measuring the inside length and width of a rectangle, and defining the center as datum</td>
<td>Page 320</td>
<td></td>
</tr>
<tr>
<td>411 DATUM OUTSIDE RECTAN. Measuring the outside length and width of a rectangle, and defining the center as datum</td>
<td>Page 324</td>
<td></td>
</tr>
<tr>
<td>412 DATUM INSIDE CIRCLE Measuring any four points on the inside of a circle, and defining the center as datum</td>
<td>Page 328</td>
<td></td>
</tr>
<tr>
<td>413 DATUM OUTSIDE CIRCLE Measuring any four points on the outside of a circle, and defining the center as datum</td>
<td>Page 332</td>
<td></td>
</tr>
</tbody>
</table>
Characteristics common to all touch probe cycles for datum setting

You can also run the Touch Probe Cycles 408 to 419 during an active basic rotation.

The tilting the working plane function is not permitted in combination with Cycles 408 to 419.

Datum point and touch probe axis

From the touch probe axis that you have defined in the measuring program the TNC determines the working plane for the datum:

<table>
<thead>
<tr>
<th>Active touch probe axis</th>
<th>Datum setting in</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z</td>
<td>X and Y</td>
</tr>
<tr>
<td>Y</td>
<td>Z and X</td>
</tr>
<tr>
<td>X</td>
<td>Y and Z</td>
</tr>
</tbody>
</table>
Saving the calculated datum
In all cycles for datum setting you can use the input parameters Q303 and Q305 to define how the TNC is to save the calculated datum:

- **Q305 = 0, Q303 = any value**
 The TNC sets the calculated datum in the display. The new datum is active immediately. At the same time, the TNC saves the datum set in the display by the cycle in line 0 of the preset table.

- **Q305 not equal to 0, Q303 = -1**

 This combination can only occur if you
 - read in programs containing Cycles 410 to 418 created on a TNC 4xx
 - read in programs containing Cycles 410 to 418 created with an older software version on an iTNC 530
 - did not specifically define the measured-value transfer with parameter Q303 when defining the cycle.

 In these cases the TNC outputs an error message, since the complete handling of REF-referenced datum tables has changed. You must define a measured-value transfer yourself with parameter Q303.

- **Q305 not equal to 0, Q303 = 0**
 The TNC writes the calculated reference point in the active datum table. The reference system is the active workpiece coordinate system. The value of parameter Q305 determines the datum number. **Activate datum with Cycle 7 in the part program.**

- **Q305 not equal to 0, Q303 = 1**
 The TNC writes the calculated reference point in the preset table. The reference system is the machine coordinate system (REF coordinates). The value of parameter Q305 determines the preset number. **Activate preset with Cycle 247 in the part program.**

Measurement results in Q parameters
The TNC saves the measurement results of the respective touch probe cycle in the globally effective Q parameters Q150 to Q160. You can use these parameters in your program. Note the table of result parameters that are listed with every cycle description.
15.2 SLOT CENTER REF PT
(Cycle 408, DIN/ISO: G408)

Cycle run

Touch Probe Cycle 408 finds the center of a slot and defines its center as datum. If desired, the TNC can also enter the coordinates into a datum table or the preset table.

1 The TNC positions the touch probe at rapid traverse (value from FMAX column) following the positioning logic (see “Executing touch probe cycles” on page 283) to the starting point 1. The TNC calculates the touch points from the data in the cycle and the safety clearance from the SET_UP column of the touch probe table.

2 Then the touch probe moves to the entered measuring height and probes the first touch point at the probing feed rate (column F).

3 Then the touch probe moves either paraxially at the measuring height or linearly at the clearance height to the next starting point 2 and probes the second touch point.

4 Finally the TNC returns the touch probe to the clearance height and processes the determined datum depending on the cycle parameters Q303 and Q305 (see “Saving the calculated datum” on page 312) and saves the actual values in the Q parameters listed below.

5 If desired, the TNC subsequently measures the datum in the touch probe axis in a separate probing.

<table>
<thead>
<tr>
<th>Parameter number</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q166</td>
<td>Actual value of measured slot width</td>
</tr>
<tr>
<td>Q157</td>
<td>Actual value of the centerline</td>
</tr>
</tbody>
</table>
Please note while programming:

Danger of collision!

To prevent a collision between touch probe and workpiece, enter a **low** estimate for the slot width.

If the slot width and the safety clearance do not permit pre-positioning in the proximity of the touch points, the TNC always starts probing from the center of the slot. In this case the touch probe does not return to the clearance height between the two measuring points.

Before a cycle definition you must have programmed a tool call to define the touch probe axis.

Cycle parameters

- **Center in 1st axis** Q321 (absolute): Center of the slot in the reference axis of the working plane. Input range –99999.9999 to 99999.9999
- **Center in 2nd axis** Q322 (absolute): Center of the slot in the minor axis of the working plane. Input range –99999.9999 to 99999.9999
- **Width of slot** Q311 (incremental): Width of the slot, regardless of its position in the working plane. Input range 0 to 99999.9999
- **Measuring axis (1=1st axis / 2=2nd axis)** Q272: Axis in which the measurement is to be made:
 1: Reference axis = measuring axis
 2: Minor axis = measuring axis
- **Measuring height in the touch probe axis**
 Q261 (absolute): Coordinate of the ball tip center (= touch point) in the touch probe axis in which the measurement is to be made. Input range –99999.9999 to 99999.9999
- **Setup clearance** Q320 (incremental): Additional distance between measuring point and ball tip. Q320 is added to SET_UP (touch probe table). Input range 0 to 99999.9999
- **Clearance height** Q260 (absolute): Coordinate in the touch probe axis at which no collision between touch probe and workpiece (fixtures) can occur. Input range –99999.9999 to 99999.9999
Traversing to clearance height Q301: Definition of how the touch probe is to move between the measuring points:
0: Move at measuring height between measuring points
1: Move at clearance height between measuring points

Number in table Q305: Enter the number in the datum/preset table in which the TNC is to save the coordinates of the slot center. If you enter Q305=0, the TNC automatically sets the display so that the new datum is on the slot center. Input range 0 to 2999

New datum Q405 (absolute): Coordinate in the measuring axis at which the TNC should set the calculated slot center. Default setting = 0. Input range: -99999.9999 to 99999.9999

Measured-value transfer (0, 1) Q303: Specify whether the determined datum is to be saved in the datum table or in the preset table:
0: Write determined datum in the active datum table. The reference system is the active workpiece coordinate system.
1: Write determined datum in the preset table. The reference system is the machine coordinate system (REF system).
Touch Probe Cycles: Automatic Datum Setting

- **Probe in TS axis** Q381: Specify whether the TNC should also set the datum in the touch probe axis:
 0: Do not set datum in the touch probe axis
 1: Set datum in the touch probe axis

- **Probe TS axis: Coord. 1st axis** Q382 (absolute):
 Coordinate of the probe point in the reference axis of the working plane at which point the reference point is to be set in the touch probe axis. Only effective if Q381 = 1. Input range –99999.9999 to 99999.9999

- **Probe TS axis: Coord. 2nd axis** Q383 (absolute):
 Coordinate of the probe point in the minor axis of the working plane at which point the reference point is to be set in the touch probe axis. Only effective if Q381 = 1. Input range –99999.9999 to 99999.9999

- **Probe TS axis: Coord. 3rd axis** Q384 (absolute):
 Coordinate of the probe point in the touch probe axis, at which point the reference point is to be set in the touch probe axis. Only effective if Q381 = 1. Input range –99999.9999 to 99999.9999

- **New datum in TS axis** Q333 (absolute):
 Coordinate in the touch probe axis at which the TNC should set the datum. Default setting = 0. Input range: –99999.9999 to 99999.9999

Example: NC blocks

```
5 TCH PROBE 408 SLOT CENTER REF PT
Q321=+50 ;CENTER IN 1ST AXIS
Q322=+50 ;CENTER IN 2ND AXIS
Q311=25 ;SLOT WIDTH
Q272=1 ;MEASURING AXIS
Q261=-5 ;MEASURING HEIGHT
Q320=0 ;SETUP CLEARANCE
Q260=+20 ;CLEARANCE HEIGHT
Q301=0 ;MOVE TO CLEARANCE
Q305=10 ;NO. IN TABLE
Q405=+0 ;DATUM
Q303=+1 ;MEAS. VALUE TRANSFER
Q381=1 ;PROBE IN TS AXIS
Q382=+85 ;1ST CO. FOR TS AXIS
Q383=+50 ;2ND CO. FOR TS AXIS
Q384=+0 ;3RD CO. FOR TS AXIS
Q333=+1 ;DATUM
```
15.3 DATUM RIDGE CENTER (Cycle 409, DIN/ISO: G409)

Cycle run

Touch Probe Cycle 409 finds the center of a ridge and defines its center as datum. If desired, the TNC can also enter the coordinates into a datum table or the preset table.

1. The TNC positions the touch probe at rapid traverse (value from FMAX column) following the positioning logic (see “Executing touch probe cycles” on page 283) to the starting point 1. The TNC calculates the touch points from the data in the cycle and the safety clearance from the SET_UP column of the touch probe table.

2. Then the touch probe moves to the entered measuring height and probes the first touch point at the probing feed rate (column F).

3. Then the touch probe moves at clearance height to the next touch point 2 and probes the second touch point.

4. Finally the TNC returns the touch probe to the clearance height and processes the determined datum depending on the cycle parameters Q303 and Q305 (see “Saving the calculated datum” on page 312) and saves the actual values in the Q parameters listed below.

5. If desired, the TNC subsequently measures the datum in the touch probe axis in a separate probing.

<table>
<thead>
<tr>
<th>Parameter number</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q166</td>
<td>Actual value of measured ridge width</td>
</tr>
<tr>
<td>Q157</td>
<td>Actual value of the centerline</td>
</tr>
</tbody>
</table>

Please note while programming:

Danger of collision!

To prevent a collision between touch probe and workpiece, enter a high estimate for the ridge width.
Before a cycle definition you must have programmed a tool call to define the touch probe axis.
Cycle parameters

- **Center in 1st axis** Q321 (absolute): Center of the ridge in the reference axis of the working plane. Input range –99999.9999 to 99999.9999

- **Center in 2nd axis** Q322 (absolute): Center of the ridge in the minor axis of the working plane. Input range –99999.9999 to 99999.9999

- **Width of ridge** Q311 (incremental): Width of the ridge, regardless of its position in the working plane. Input range 0 to 99999.9999

- **Measuring axis (1=1st axis / 2=2nd axis)** Q272: Axis in which the measurement is to be made:
 1: Reference axis = measuring axis
 2: Minor axis = measuring axis

- **Measuring height in the touch probe axis** Q261 (absolute): Coordinate of the ball tip center (= touch point) in the touch probe axis in which the measurement is to be made. Input range –99999.9999 to 99999.9999

- **Setup clearance** Q320 (incremental): Additional distance between measuring point and ball tip. Q320 is added to SET_UP (touch probe table). Input range 0 to 99999.9999

- **Clearance height** Q260 (absolute): Coordinate in the touch probe axis at which no collision between touch probe and workpiece (fixtures) can occur. Input range –99999.9999 to 99999.9999

- **Number in table** Q305: Enter the number in the datum/preset table in which the TNC is to save the coordinates of the ridge center. If you enter Q305=0, the TNC automatically sets the display so that the new datum is on the slot center. Input range 0 to 2999

- **New datum** Q405 (absolute): Coordinate in the measuring axis at which the TNC should set the calculated ridge center. Default setting = 0. Input range: -99999.9999 to 99999.9999
测值转移（0, 1）Q303: 指定是否将确定的基准值保存在基准表或在预设基准表中。
0: 将确定的基准值写入活动基准表。基准系为活动工件坐标系。
1: 将确定的基准值写入预设基准表。基准系为机床坐标系（REF系）。

测探轴Q381: 指定是否TNC设置在测探轴上的基准。
0: 不设置基准在测探轴。
1: 设置基准在测探轴。

测探轴：第1轴Q382（绝对）: 指定在工件平面上的参考轴坐标点，该点将在测探轴上设置基准点。仅当Q381=1时生效。输入范围–99999.9999至99999.9999。

测探轴：第2轴Q383（绝对）: 指定在工件平面上的次轴坐标点，该点将在测探轴上设置基准点。仅当Q381=1时生效。输入范围–99999.9999至99999.9999。

测探轴：第3轴Q384（绝对）: 指定在测探轴上的坐标点，该点将在测探轴上设置基准点。仅当Q381=1时生效。输入范围–99999.9999至99999.9999。

新基准在测探轴Q333（绝对）: 指定在测探轴上的坐标点，TNC应设置基准。默认设置=0。
输入范围–99999.9999至99999.9999。

例：NC块

```
5 TCH PROBE 409 SLOT CENTER RIDGE
Q321=+50 ;CENTER IN 1ST AXIS
Q322=+50 ;CENTER IN 2ND AXIS
Q311=25 ;RIDGE WIDTH
Q272=1 ;MEASURING AXIS
Q261=-5 ;MEASURING HEIGHT
Q320=0 ;SETUP CLEARANCE
Q260=+20 ;CLEARANCE HEIGHT
Q305=10 ;NO. IN TABLE
Q405=+0 ;DATUM
Q303=+1 ;MEAS. VALUE TRANSFER
Q381=1 ;PROBE IN TS AXIS
Q382=+85 ;1ST CO. FOR TS AXIS
Q383=+50 ;2ND CO. FOR TS AXIS
Q384=+0 ;3RD CO. FOR TS AXIS
Q333=+1 ;DATUM
```
15.4 DATUM FROM INSIDE OF RECTANGLE (Cycle 410, DIN/ISO: G410)

Cycle run

Touch Probe Cycle 410 finds the center of a rectangular pocket and defines its center as datum. If desired, the TNC can also enter the coordinates into a datum table or the preset table.

1. The TNC positions the touch probe at rapid traverse (value from \(F_{\text{MAX}}\) column) following the positioning logic (see “Executing touch probe cycles” on page 283) to the starting point 1. The TNC calculates the touch points from the data in the cycle and the safety clearance from the SET_UP column of the touch probe table.

2. Then the touch probe moves to the entered measuring height and probes the first touch point at the probing feed rate (column \(F\)).

3. Then the touch probe moves either paraxially at the measuring height or linearly at the clearance height to the next starting point 2 and probes the second touch point.

4. The TNC positions the probe to starting point 3 and then to starting point 4 to probe the third and fourth touch points.

5. Finally the TNC returns the touch probe to the clearance height and processes the determined datum depending on the cycle parameters Q303 and Q305 (see “Saving the calculated datum” on page 312).

6. If desired, the TNC subsequently measures the datum in the touch probe axis in a separate probing and saves the actual values in the following Q parameters.

<table>
<thead>
<tr>
<th>Parameter number</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q151</td>
<td>Actual value of center in reference axis</td>
</tr>
<tr>
<td>Q152</td>
<td>Actual value of center in minor axis</td>
</tr>
<tr>
<td>Q154</td>
<td>Actual value of length in the reference axis</td>
</tr>
<tr>
<td>Q155</td>
<td>Actual value of length in the minor axis</td>
</tr>
</tbody>
</table>
Please note while programming:

Danger of collision!
To prevent a collision between touch probe and workpiece, enter **low** estimates for the lengths of the 1st and 2nd sides.

If the dimensions of the pocket and the safety clearance do not permit pre-positioning in the proximity of the touch points, the TNC always starts probing from the center of the pocket. In this case the touch probe does not return to the clearance height between the four measuring points.

Before a cycle definition you must have programmed a tool call to define the touch probe axis.

Cycle parameters

- **Center in 1st axis** Q321 (absolute): Center of the pocket in the reference axis of the working plane. Input range –99999.9999 to 99999.9999
- **Center in 2nd axis** Q322 (absolute): Center of the pocket in the minor axis of the working plane. Input range –99999.9999 to 99999.9999
- **First side length** Q323 (incremental): Pocket length, parallel to the reference axis of the working plane. Input range 0 to 99999.9999
- **2nd side length** Q324 (incremental): Pocket length, parallel to the minor axis of the working plane. Input range 0 to 99999.9999
- **Measuring height in the touch probe axis** Q261 (absolute): Coordinate of the ball tip center (= touch point) in the touch probe axis in which the measurement is to be made. Input range –99999.9999 to 99999.9999
- **Setup clearance** Q320 (incremental): Additional distance between measuring point and ball tip. Q320 is added to **SET_UP** (touch probe table). Input range 0 to 99999.9999
- **Clearance height** Q260 (absolute): Coordinate in the touch probe axis at which no collision between touch probe and workpiece (fixtures) can occur. Input range –99999.9999 to 99999.9999
Traversing to clearance height Q301: Definition of how the touch probe is to move between the measuring points:
- **0**: Move at measuring height between measuring points
- **1**: Move at clearance height between measuring points

Datum number in table Q305: Enter the number in the datum/preset table in which the TNC is to save the coordinates of the pocket center. If you enter Q305=0, the TNC automatically sets the display so that the new datum is at the center of the pocket. Input range 0 to 2999

New datum for reference axis Q331 (absolute): Coordinate in the reference axis at which the TNC should set the pocket center. Default setting = 0. Input range: –99999.9999 to 99999.9999

New datum for minor axis Q332 (absolute): Coordinate in the minor axis at which the TNC should set the pocket center. Default setting = 0. Input range: –99999.9999 to 99999.9999

Measured-value transfer (0, 1) Q303: Specify whether the determined datum is to be saved in the datum table or in the preset table:
- **-1**: Do not use. Is entered by the TNC when old programs are read in (see “Saving the calculated datum” on page 312).
- **0**: Write determined datum in the active datum table. The reference system is the active workpiece coordinate system.
- **1**: Write determined datum in the preset table. The reference system is the machine coordinate system (REF system).
Probe in TS axis Q381: Specify whether the TNC should also set the datum in the touch probe axis:
0: Do not set datum in the touch probe axis
1: Set datum in the touch probe axis

Probe TS axis: Coord. 1st axis Q382 (absolute):
Coordinate of the probe point in the reference axis of the working plane at which point the reference point is to be set in the touch probe axis. Only effective if Q381 = 1. Input range –99999.9999 to 99999.9999

Probe TS axis: Coord. 2nd axis Q383 (absolute):
Coordinate of the probe point in the minor axis of the working plane at which point the reference point is to be set in the touch probe axis. Only effective if Q381 = 1. Input range –99999.9999 to 99999.9999

Probe TS axis: Coord. 3rd axis Q384 (absolute):
Coordinate of the probe point in the touch probe axis, at which point the reference point is to be set in the touch probe axis. Only effective if Q381 = 1. Input range –99999.9999 to 99999.9999

New datum in TS axis Q333 (absolute):
Coordinate in the touch probe axis at which the TNC should set the datum. Default setting = 0. Input range: –99999.9999 to 99999.9999

Example: NC blocks

```
5 TCH PROBE 410 DATUM INSIDE RECTAN.
Q321=+50 ;CENTER IN 1ST AXIS
Q322=+50 ;CENTER IN 2ND AXIS
Q323=60 ;FIRST SIDE LENGTH
Q324=20 ;2ND SIDE LENGTH
Q261=-5 ;MEASURING HEIGHT
Q260=+20 ;CLEARANCE HEIGHT
Q301=0 ;MOVE TO CLEARANCE
Q305=10 ;NO. IN TABLE
Q331=+0 ;DATUM
Q332=+0 ;DATUM
Q303=+1 ;MEAS. VALUE TRANSFER
Q381=1 ;PROBE IN TS AXIS
Q382=+85 ;1ST CO. FOR TS AXIS
Q383=+50 ;2ND CO. FOR TS AXIS
Q384=+0 ;3RD CO. FOR TS AXIS
Q333=+1 ;DATUM
```
15.5 DATUM FROM OUTSIDE OF RECTANGLE (Cycle 411, DIN/ISO: G411)

Cycle run

Touch Probe Cycle 411 finds the center of a rectangular stud and defines its center as datum. If desired, the TNC can also enter the coordinates into a datum table or the preset table.

1. The TNC positions the touch probe at rapid traverse (value from \textit{FMAX} column) following the positioning logic (see “Executing touch probe cycles” on page 283) to the starting point 1. The TNC calculates the touch points from the data in the cycle and the safety clearance from the \textit{SET_UP} column of the touch probe table.

2. Then the touch probe moves to the entered measuring height and probes the first touch point at the probing feed rate (column \textit{F}).

3. Then the touch probe moves either paraxially at the measuring height or linearly at the clearance height to the next starting point 2 and probes the second touch point.

4. The TNC positions the probe to starting point 3 and then to starting point 4 to probe the third and fourth touch points.

5. Finally the TNC returns the touch probe to the clearance height and processes the determined datum depending on the cycle parameters Q303 and Q305 (see “Saving the calculated datum” on page 312).

6. If desired, the TNC subsequently measures the datum in the touch probe axis in a separate probing and saves the actual values in the following Q parameters.

<table>
<thead>
<tr>
<th>Parameter number</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q151</td>
<td>Actual value of center in reference axis</td>
</tr>
<tr>
<td>Q152</td>
<td>Actual value of center in minor axis</td>
</tr>
<tr>
<td>Q154</td>
<td>Actual value of length in the reference axis</td>
</tr>
<tr>
<td>Q155</td>
<td>Actual value of length in the minor axis</td>
</tr>
</tbody>
</table>
Please note while programming:

Danger of collision!
To prevent a collision between the touch probe and workpiece, enter **high** estimates for the lengths of the 1st and 2nd sides.

Before a cycle definition you must have programmed a tool call to define the touch probe axis.

Cycle parameters

- **Center in 1st axis** Q321 (absolute): Center of the stud in the reference axis of the working plane. Input range –99999.9999 to 99999.9999
- **Center in 2nd axis** Q322 (absolute): Center of the stud in the minor axis of the working plane. Input range –99999.9999 to 99999.9999
- **First side length** Q323 (incremental): Stud length, parallel to the reference axis of the working plane. Input range 0 to 99999.9999
- **2nd side length** Q324 (incremental): Stud length, parallel to the minor axis of the working plane. Input range 0 to 99999.9999
- **Measuring height in the touch probe axis** Q261 (absolute): Coordinate of the ball tip center (= touch point) in the touch probe axis in which the measurement is to be made. Input range –99999.9999 to 99999.9999
- **Setup clearance** Q320 (incremental): Additional distance between measuring point and ball tip. Q320 is added to **SET_UP** (touch probe table). Input range 0 to 99999.9999
- **Clearance height** Q260 (absolute): Coordinate in the touch probe axis at which no collision between touch probe and workpiece (fixtures) can occur. Input range –99999.9999 to 99999.9999
Traversing to clearance height Q301: Definition of how the touch probe is to move between the measuring points:
0: Move at measuring height between measuring points
1: Move at clearance height between measuring points

Datum number in table Q305: Enter the datum number in the table in which the TNC is to save the coordinates of the pocket center. If you enter Q305 = 0, the TNC automatically sets the display so that the new datum is on the stud center. Input range 0 to 2999

New datum for reference axis Q331 (absolute): Coordinate in the reference axis at which the TNC should set the stud center. Default setting = 0. Input range: –99999.9999 to 99999.9999

New datum for minor axis Q332 (absolute): Coordinate in the minor axis at which the TNC should set the stud center. Default setting = 0. Input range: –99999.9999 to 99999.9999

Measured-value transfer (0, 1) Q303: Specify whether the determined datum is to be saved in the datum table or in the preset table:
-1: Do not use. Is entered by the TNC when old programs are read in (see “Saving the calculated datum” on page 312).
0: Write determined datum in the active datum table. The reference system is the active workpiece coordinate system.
1: Write determined datum in the preset table. The reference system is the machine coordinate system (REF system).
Probe in TS axis Q381: Specify whether the TNC should also set the datum in the touch probe axis:
- 0: Do not set datum in the touch probe axis
- 1: Set datum in the touch probe axis

Probe TS axis: Coord. 1st axis Q382 (absolute): Coordinate of the probe point in the reference axis of the working plane at which point the reference point is to be set in the touch probe axis. Only effective if Q381 = 1. Input range –99999.9999 to 99999.9999

Probe TS axis: Coord. 2nd axis Q383 (absolute): Coordinate of the probe point in the minor axis of the working plane at which point the reference point is to be set in the touch probe axis. Only effective if Q381 = 1. Input range –99999.9999 to 99999.9999

Probe TS axis: Coord. 3rd axis Q384 (absolute): Coordinate of the probe point in the touch probe axis, at which point the reference point is to be set in the touch probe axis. Only effective if Q381 = 1. Input range –99999.9999 to 99999.9999

New datum in TS axis Q333 (absolute): Coordinate in the touch probe axis at which the TNC should set the datum. Default setting = 0. Input range: –99999.9999 to 99999.9999

Example: NC blocks

```
5 TCH PROBE 411 DATUM OUTS. RECTAN.
Q321=+50 ;CENTER IN 1ST AXIS
Q322=+50 ;CENTER IN 2ND AXIS
Q323=60 ;FIRST SIDE LENGTH
Q324=20 ;2ND SIDE LENGTH
Q261=-5 ;MEASURING HEIGHT
Q320=0 ;SETUP CLEARANCE
Q260=+20 ;CLEARANCE HEIGHT
Q301=0 ;MOVE TO CLEARANCE
Q305=0 ;NO. IN TABLE
Q331=+0 ;DATUM
Q332=+0 ;DATUM
Q303=+1 ;MEAS. VALUE TRANSFER
Q381=1 ;PROBE IN TS AXIS
Q382=+85 ;1ST CO. FOR TS AXIS
Q383=+50 ;2ND CO. FOR TS AXIS
Q384=+0 ;3RD CO. FOR TS AXIS
Q333=+1 ;DATUM
```
15.6 DATUM FROM INSIDE OF CIRCLE (Cycle 412, DIN/ISO: G412)

Cycle run

Touch Probe Cycle 412 finds the center of a circular pocket (or of a hole) and defines its center as datum. If desired, the TNC can also enter the coordinates into a datum table or the preset table.

1 The TNC positions the touch probe at rapid traverse (value from FMAX column) following the positioning logic (see “Executing touch probe cycles” on page 283) to the starting point 1. The TNC calculates the touch points from the data in the cycle and the safety clearance from the SET_UP column of the touch probe table.

2 Then the touch probe moves to the entered measuring height and probes the first touch point at the probing feed rate (column F). The TNC derives the probing direction automatically from the programmed starting angle.

3 Then the touch probe moves in a circular arc either at measuring height or at clearance height to the next starting point 2 and probes the second touch point.

4 The TNC positions the probe to starting point 3 and then to starting point 4 to probe the third and fourth touch points.

5 Finally the TNC returns the touch probe to the clearance height and processes the determined datum depending on the cycle parameters Q303 and Q305 (see “Saving the calculated datum” on page 312) and saves the actual values in the Q parameters listed below.

6 If desired, the TNC subsequently measures the datum in the touch probe axis in a separate probing.

<table>
<thead>
<tr>
<th>Parameter number</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q151</td>
<td>Actual value of center in reference axis</td>
</tr>
<tr>
<td>Q152</td>
<td>Actual value of center in minor axis</td>
</tr>
<tr>
<td>Q153</td>
<td>Actual value of diameter</td>
</tr>
</tbody>
</table>
Please note while programming:

Danger of collision!

To prevent a collision between the touch probe and the workpiece, enter a low estimate for the nominal diameter of the pocket (or hole).

If the dimensions of the pocket and the safety clearance do not permit pre-positioning in the proximity of the touch points, the TNC always starts probing from the center of the pocket. In this case the touch probe does not return to the clearance height between the four measuring points.

The smaller the angle increment Q247, the less accurately the TNC can calculate the datum. Minimum input value: 5°

Before a cycle definition you must have programmed a tool call to define the touch probe axis.

Cycle parameters

- **Center in 1st axis** Q321 (absolute): Center of the pocket in the reference axis of the working plane. Input range –99999.9999 to 99999.9999
- **Center in 2nd axis** Q322 (absolute): Center of the pocket in the minor axis of the working plane. If you program Q322 = 0, the TNC aligns the hole center to the positive Y axis. If you program Q322 not equal to 0, then the TNC aligns the hole center to the nominal position. Input range –99999.9999 to 99999.9999
- **Nominal diameter** Q262: Approximate diameter of the circular pocket (or hole). Enter a value that is more likely to be too small than too large. Input range 0 to 99999.9999
- **Starting angle** Q325 (absolute): Angle between the reference axis of the working plane and the first touch point. Input range –360.0000 to 360.0000
- **Stepping angle** Q247 (incremental): Angle between two measuring points. The algebraic sign of the stepping angle determines the direction of rotation (negative = clockwise) in which the touch probe moves to the next measuring point. If you wish to probe a circular arc instead of a complete circle, then program the stepping angle to be less than 90°. Input range –120.0000 to 120.0000
Measuring height in the touch probe axis
Q261 (absolute): Coordinate of the ball tip center (= touch point) in the touch probe axis in which the measurement is to be made. Input range –99999.9999 to 99999.9999

Setup clearance Q320 (incremental): Additional distance between measuring point and ball tip. Q320 is added to SET_UP (touch probe table). Input range 0 to 99999.9999

Clearance height Q260 (absolute): Coordinate in the touch probe axis at which no collision between touch probe and workpiece (fixtures) can occur. Input range –99999.9999 to 99999.9999

Traversing to clearance height Q301: Definition of how the touch probe is to move between the measuring points:
0: Move at measuring height between measuring points
1: Move at clearance height between measuring points

Datum number in table Q305: Enter the number in the datum/preset table in which the TNC is to save the coordinates of the pocket center. If you enter Q305=0, the TNC automatically sets the display so that the new datum is at the center of the pocket. Input range 0 to 2999

New datum for reference axis Q331 (absolute): Coordinate in the reference axis at which the TNC should set the pocket center. Default setting = 0. Input range: –99999.9999 to 99999.9999

New datum for minor axis Q332 (absolute): Coordinate in the minor axis at which the TNC should set the pocket center. Default setting = 0. Input range: –99999.9999 to 99999.9999

Measured-value transfer (0, 1) Q303: Specify whether the determined datum is to be saved in the datum table or in the preset table:
-1: Do not use. Is entered by the TNC when old programs are read in (see “Saving the calculated datum” on page 312).
0: Write determined datum in the active datum table. The reference system is the active workpiece coordinate system.
1: Write determined datum in the preset table. The reference system is the machine coordinate system (REF system).
Probe in TS axis Q381: Specify whether the TNC should also set the datum in the touch probe axis:
- 0: Do not set datum in the touch probe axis
- 1: Set datum in the touch probe axis

Probe TS axis: Coord. 1st axis Q382 (absolute):
Coordinate of the probe point in the reference axis of the working plane at which point the reference point is to be set in the touch probe axis. Only effective if Q381 = 1. Input range –99999.9999 to 99999.9999

Probe TS axis: Coord. 2nd axis Q383 (absolute):
Coordinate of the probe point in the minor axis of the working plane at which point the reference point is to be set in the touch probe axis. Only effective if Q381 = 1. Input range –99999.9999 to 99999.9999

Probe TS axis: Coord. 3rd axis Q384 (absolute):
Coordinate of the probe point in the touch probe axis, at which point the reference point is to be set in the touch probe axis. Only effective if Q381 = 1. Input range –99999.9999 to 99999.9999

New datum in TS axis Q333 (absolute):
Coordinate in the touch probe axis at which the TNC should set the datum. Default setting = 0. Input range: –99999.9999 to 99999.9999

No. of measuring points (4/3) Q423: Specify whether the TNC should measure the hole with 4 or 3 probing points:
- 4: Use 4 measuring points (standard setting)
- 3: Use 3 measuring points

Type of traverse? Line=0/Arc=1 Q365: Definition of the path function with which the tool is to move between the measuring points if “traverse to clearance height” (Q301=1) is active.
- 0: Move between operations on a straight line
- 1: Move between operations on the pitch circle

Example: NC blocks

```
5 TCH PROBE 412 DATUM INSIDE CIRCLE
Q321=+50 ;CENTER IN 1ST AXIS
Q322=+50 ;CENTER IN 2ND AXIS
Q262=75 ;NOMINAL DIAMETER
Q325=+0 ;STARTING ANGLE
Q247=+60 ;STEPPING ANGLE
Q261=-5 ;MEASURING HEIGHT
Q320=0 ;SETUP CLEARANCE
Q260=+20 ;CLEARANCE HEIGHT
Q301=0 ;MOVE TO CLEARANCE
Q305=12 ;NO. IN TABLE
Q331=+0 ;DATUM
Q332=+0 ;DATUM
Q333=+1 ;DATUM
Q303=+1 ;MEAS. VALUE TRANSFER
Q381=1 ;PROBE IN TS AXIS
Q382=+85 ;1ST CO. FOR TS AXIS
Q383=+50 ;2ND CO. FOR TS AXIS
Q384=+0 ;3RD CO. FOR TS AXIS
Q333=+1 ;DATUM
Q423=4 ;NO. OF MEAS. POINTS
Q365=1 ;TYPE OF TRAVERSE
```
15.7 DATUM FROM OUTSIDE OF CIRCLE (Cycle 413, DIN/ISO: G413)

Cycle run

Touch Probe Cycle 413 finds the center of a circular stud and defines it as datum. If desired, the TNC can also enter the coordinates into a datum table or the preset table.

1. The TNC positions the touch probe at rapid traverse (value from \textit{FMAX} column) following the positioning logic (see “Executing touch probe cycles” on page 283) to the starting point 1. The TNC calculates the touch points from the data in the cycle and the safety clearance from the \textit{SET_UP} column of the touch probe table.

2. Then the touch probe moves to the entered measuring height and probes the first touch point at the probing feed rate (column \textit{F}). The TNC derives the probing direction automatically from the programmed starting angle.

3. Then the touch probe moves in a circular arc either at measuring height or at clearance height to the next starting point 2 and probes the second touch point.

4. The TNC positions the probe to starting point 3 and then to starting point 4 to probe the third and fourth touch points.

5. Finally the TNC returns the touch probe to the clearance height and processes the determined datum depending on the cycle parameters Q303 and Q305 (see “Saving the calculated datum” on page 312) and saves the actual values in the Q parameters listed below.

6. If desired, the TNC subsequently measures the datum in the touch probe axis in a separate probing.

<table>
<thead>
<tr>
<th>Parameter number</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q151</td>
<td>Actual value of center in reference axis</td>
</tr>
<tr>
<td>Q152</td>
<td>Actual value of center in minor axis</td>
</tr>
<tr>
<td>Q153</td>
<td>Actual value of diameter</td>
</tr>
</tbody>
</table>
Please note while programming:

Danger of collision!

To prevent a collision between touch probe and workpiece, enter a high estimate for the nominal diameter of the stud.

Before a cycle definition you must have programmed a tool call to define the touch probe axis.

The smaller the angle increment Q247, the less accurately the TNC can calculate the datum. Minimum input value: 5°.

Cycle parameters

- **Center in 1st axis** Q321 (absolute): Center of the stud in the reference axis of the working plane. Input range –99999.9999 to 99999.9999
- **Center in 2nd axis** Q322 (absolute): Center of the stud in the minor axis of the working plane. If you program Q322 = 0, the TNC aligns the hole center to the positive Y axis. If you program Q322 not equal to 0, then the TNC aligns the hole center to the nominal position. Input range –99999.9999 to 99999.9999
- **Nominal diameter** Q262: Approximate diameter of the stud. Enter a value that is more likely to be too large than too small. Input range 0 to 99999.9999
- **Starting angle** Q325 (absolute): Angle between the reference axis of the working plane and the first touch point. Input range –360.0000 to 360.0000
- **Stepping angle** Q247 (incremental): Angle between two measuring points. The algebraic sign of the stepping angle determines the direction of rotation (- = clockwise) in which the touch probe moves to the next measuring point. If you wish to probe a circular arc instead of a complete circle, then program the stepping angle to be less than 90°. Input range –120.0000 to 120.0000
Measuring height in the touch probe axis
Q261 (absolute): Coordinate of the ball tip center (= touch point) in the touch probe axis in which the measurement is to be made. Input range −99999.9999 to 99999.9999

Setup clearance Q320 (incremental): Additional distance between measuring point and ball tip. Q320 is added to SET_UP (touch probe table). Input range 0 to 99999.9999

Clearance height Q260 (absolute): Coordinate in the touch probe axis at which no collision between touch probe and workpiece (fixtures) can occur. Input range −99999.9999 to 99999.9999

Traversing to clearance height Q301: Definition of how the touch probe is to move between the measuring points:
0: Move at measuring height between measuring points
1: Move at clearance height between measuring points

Datum number in table Q305: Enter the datum number in the table in which the TNC is to save the coordinates of the pocket center. If you enter Q305=0, the TNC automatically sets the display so that the new datum is on the stud center. Input range 0 to 2999

New datum for reference axis Q331 (absolute):
Coordinate in the reference axis at which the TNC should set the stud center. Default setting = 0. Input range: −99999.9999 to 99999.9999

New datum for minor axis Q332 (absolute):
Coordinate in the minor axis at which the TNC should set the stud center. Default setting = 0. Input range: −99999.9999 to 99999.9999

Measured-value transfer (0, 1) Q303: Specify whether the determined datum is to be saved in the datum table or in the preset table:
-1: Do not use. Is entered by the TNC when old programs are read in (see “Saving the calculated datum” on page 312).
0: Write determined datum in the active datum table. The reference system is the active workpiece coordinate system.
1: Write determined datum in the preset table. The reference system is the machine coordinate system (REF system).
Probe in TS axis Q381: Specify whether the TNC should also set the datum in the touch probe axis:
0: Do not set datum in the touch probe axis
1: Set datum in the touch probe axis

Probe TS axis: Coord. 1st axis Q382 (absolute): Coordinate of the probe point in the reference axis of the working plane at which point the reference point is to be set in the touch probe axis. Only effective if Q381 = 1. Input range –99999.9999 to 99999.9999

Probe TS axis: Coord. 2nd axis Q383 (absolute): Coordinate of the probe point in the minor axis of the working plane at which point the reference point is to be set in the touch probe axis. Only effective if Q381 = 1. Input range –99999.9999 to 99999.9999

Probe TS axis: Coord. 3rd axis Q384 (absolute): Coordinate of the probe point in the touch probe axis, at which point the reference point is to be set in the touch probe axis. Only effective if Q381 = 1. Input range –99999.9999 to 99999.9999

New datum in TS axis Q333 (absolute): Coordinate in the touch probe axis at which the TNC should set the datum. Basic setting = 0

No. of measuring points (4/3) Q423: Specify whether the TNC should measure the stud with 4 or 3 probing points:
4: Use 4 measuring points (standard setting)
3: Use 3 measuring points

Type of traverse? Line=0/Arc=1 Q365: Definition of the path function with which the tool is to move between the measuring points if “traverse to clearance height” (Q301=1) is active.
0: Move between operations on a straight line
1: Move between operations on the pitch circle

Example: NC blocks

```
5 TCH PROBE 413 DATUM OUTSIDE CIRCLE
Q321=+50 ;CENTER IN 1ST AXIS
Q322=+50 ;CENTER IN 2ND AXIS
Q262=75 ;NOMINAL DIAMETER
Q325=+0 ;STARTING ANGLE
Q247=+60 ;STEPPING ANGLE
Q261=-5 ;MEASURING HEIGHT
Q260=+20 ;CLEARANCE HEIGHT
Q301=0 ;MOVE TO CLEARANCE
Q305=15 ;NO. IN TABLE
Q331=+0 ;DATUM
Q332=+0 ;DATUM
Q303=+1 ;MEAS. VALUE TRANSFER
Q381=1 ;PROBE IN TS AXIS
Q382=+85 ;1ST CO. FOR TS AXIS
Q383=+50 ;2ND CO. FOR TS AXIS
Q384=+0 ;3RD CO. FOR TS AXIS
Q333=+1 ;DATUM
Q423=4 ;NO. OF MEAS. POINTS
Q365=1 ;TYPE OF TRAVERSE
```
15.8 DATUM FROM OUTSIDE OF CORNER (Cycle 414, DIN/ISO: G414)

Cycle run

Touch Probe Cycle 414 finds the intersection of two lines and defines it as the datum. If desired, the TNC can also enter the intersection into a datum table or preset table.

1. The TNC positions the touch probe at rapid traverse (value from \(F_{MAX}\) column) following the positioning logic (see “Executing touch probe cycles” on page 283) to the first touch point (see figure at upper right). The TNC offsets the touch probe by the safety clearance in the direction opposite the respective traverse direction.

2. Then the touch probe moves to the entered measuring height and probes the first touch point at the probing feed rate (column \(F\)). The TNC derives the probing direction automatically from the programmed 3rd measuring point.

3. Then the touch probe moves to the next starting position and probes the second position.

4. The TNC positions the probe to starting point and then to starting point to probe the third and fourth touch points.

5. Finally the TNC returns the touch probe to the clearance height and processes the determined datum depending on the cycle parameters Q303 and Q305 (see “Saving the calculated datum” on page 312) and saves the coordinates of the determined corner in the Q parameters listed below.

6. If desired, the TNC subsequently measures the datum in the touch probe axis in a separate probing.

<table>
<thead>
<tr>
<th>Parameter number</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q151</td>
<td>Actual value of corner in reference axis</td>
</tr>
<tr>
<td>Q152</td>
<td>Actual value of corner in minor axis</td>
</tr>
</tbody>
</table>
Please note while programming:

Before a cycle definition you must have programmed a tool call to define the touch probe axis.

The TNC always measures the first line in the direction of the minor axis of the working plane.

By defining the positions of the measuring points 1 and 3 you also determine the corner at which the TNC sets the datum (see figure at right and table at lower right).

<table>
<thead>
<tr>
<th>Corner</th>
<th>X coordinate</th>
<th>Y coordinate</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Point 1 greater</td>
<td>Point 1 less than</td>
</tr>
<tr>
<td></td>
<td>than point 3</td>
<td>point 3</td>
</tr>
<tr>
<td>B</td>
<td>Point 1 less than</td>
<td>Point 1 less than</td>
</tr>
<tr>
<td></td>
<td>point 3</td>
<td>point 3</td>
</tr>
<tr>
<td>C</td>
<td>Point 1 less than</td>
<td>Point 1 greater</td>
</tr>
<tr>
<td></td>
<td>point 3</td>
<td>than point 3</td>
</tr>
<tr>
<td>D</td>
<td>Point 1 greater</td>
<td>Point 1 greater</td>
</tr>
<tr>
<td></td>
<td>than point 3</td>
<td>than point 3</td>
</tr>
</tbody>
</table>
Cycle parameters

- **1st meas. point 1st axis** Q263 (absolute): Coordinate of the first touch point in the reference axis of the working plane. Input range \(-99999.9999\) to \(99999.9999\)

- **1st meas. point 2nd axis** Q264 (absolute): Coordinate of the first touch point in the minor axis of the working plane. Input range \(-99999.9999\) to \(99999.9999\)

- **Spacing in 1st axis** Q326 (incremental): Distance between the first and second measuring points in the reference axis of the working plane. Input range \(0\) to \(99999.9999\)

- **3rd meas. point 1st axis** Q296 (absolute): Coordinate of the third touch point in the reference axis of the working plane. Input range \(-99999.9999\) to \(99999.9999\)

- **3rd meas. point 2nd axis** Q297 (absolute): Coordinate of the third touch point in the minor axis of the working plane. Input range \(-99999.9999\) to \(99999.9999\)

- **Spacing in 2nd axis** Q327 (incremental): Distance between third and fourth measuring points in the minor axis of the working plane. Input range \(0\) to \(99999.9999\)

- **Measuring height in the touch probe axis** Q261 (absolute): Coordinate of the ball tip center (= touch point) in the touch probe axis in which the measurement is to be made. Input range \(-99999.9999\) to \(99999.9999\)

- **Setup clearance** Q320 (incremental): Additional distance between measuring point and ball tip. Q320 is added to SET_UP (touch probe table). Input range \(0\) to \(99999.9999\)

- **Clearance height** Q260 (absolute): Coordinate in the touch probe axis at which no collision between touch probe and workpiece (fixtures) can occur. Input range \(-99999.9999\) to \(99999.9999\)
Traversing to clearance height Q301: Definition of how the touch probe is to move between the measuring points:
0: Move at measuring height between measuring points
1: Move at clearance height between measuring points

Execute basic rotation Q304: Definition of whether the TNC should compensate workpiece misalignment with a basic rotation:
0: No basic rotation
1: Basic rotation

Datum number in table Q305: Enter the datum number in the datum or preset table in which the TNC is to save the coordinates of the corner. If you enter Q305=0, the TNC automatically sets the display so that the new datum is on the corner. Input range 0 to 2999

New datum for reference axis Q331 (absolute): Coordinate in the reference axis at which the TNC should set the corner. Default setting = 0. Input range: –99999.9999 to 99999.9999

New datum for minor axis Q332 (absolute): Coordinate in the minor axis at which the TNC should set the calculated corner. Default setting = 0. Input range: –99999.9999 to 99999.9999

Measured-value transfer (0, 1) Q303: Specify whether the determined datum is to be saved in the datum table or in the preset table:
-1: Do not use. Is entered by the TNC when old programs are read in (see “Saving the calculated datum” on page 312).
0: Write determined datum in the active datum table. The reference system is the active workpiece coordinate system.
1: Write determined datum in the preset table. The reference system is the machine coordinate system (REF system).
15.8 DATUM FROM OUTSIDE OF CORNER (Cycle 414, DIN/ISO: G414)

- **Probe in TS axis** Q381: Specify whether the TNC should also set the datum in the touch probe axis:
 0: Do not set datum in the touch probe axis
 1: Set datum in the touch probe axis

- **Probe TS axis: Coord. 1st axis** Q382 (absolute):
 Coordinate of the probe point in the reference axis of the working plane at which point the reference point is to be set in the touch probe axis. Only effective if Q381 = 1. Input range –99999.9999 to 99999.9999

- **Probe TS axis: Coord. 2nd axis** Q383 (absolute):
 Coordinate of the probe point in the minor axis of the working plane at which point the reference point is to be set in the touch probe axis. Only effective if Q381 = 1. Input range –99999.9999 to 99999.9999

- **Probe TS axis: Coord. 3rd axis** Q384 (absolute):
 Coordinate of the probe point in the touch probe axis, at which point the reference point is to be set in the touch probe axis. Only effective if Q381 = 1. Input range –99999.9999 to 99999.9999

- **New datum in TS axis** Q333 (absolute):
 Coordinate in the touch probe axis at which the TNC should set the datum. Default setting = 0. Input range: –99999.9999 to 99999.9999

Example: NC blocks

```
5 TCH PROBE 414 DATUM INSIDE CORNER
Q263=+37 ;1ST POINT 1ST AXIS
Q264=+7 ;1ST POINT 2ND AXIS
Q326=50 ;SPACING IN 1ST AXIS
Q296=+95 ;3RD POINT 1ST AXIS
Q297=+25 ;3RD POINT 2ND AXIS
Q327=45 ;SPACING IN 2ND AXIS
Q261=-5 ;MEASURING HEIGHT
Q320=0 ;SETUP CLEARANCE
Q260=+20 ;CLEARANCE HEIGHT
Q301=0 ;MOVE TO CLEARANCE
Q304=0 ;BASIC ROTATION
Q305=7 ;NO. IN TABLE
Q331=+0 ;DATUM
Q332=+0 ;DATUM
Q303=+1 ;MEAS. VALUE TRANSFER
Q381=1 ;PROBE IN TS AXIS
Q382=+85 ;1ST CO. FOR TS AXIS
Q383=+50 ;2ND CO. FOR TS AXIS
Q384=+0 ;3RD CO. FOR TS AXIS
Q333=+1 ;DATUM
```
15.9 DATUM FROM INSIDE OF CORNER (Cycle 415, DIN/ISO: G415)

Cycle run

Touch Probe Cycle 415 finds the intersection of two lines and defines it as the datum. If desired, the TNC can also enter the intersection into a datum table or preset table.

1 The TNC positions the touch probe at rapid traverse (value from FMAX column) following the positioning logic (see “Executing touch probe cycles” on page 283) to the first touch point 1 (see figure at upper right) that you have defined in the cycle. The TNC offsets the touch probe by the safety clearance in the direction opposite the respective traverse direction.

2 Then the touch probe moves to the entered measuring height and probes the first touch point at the probing feed rate (column F). The probing direction is derived from the number by which you identify the corner.

3 Then the touch probe moves to the next starting position 2 and probes the second position.

4 The TNC positions the probe to starting point 3 and then to starting point 4 to probe the third and fourth touch points.

5 Finally the TNC returns the touch probe to the clearance height and processes the determined datum depending on the cycle parameters Q303 and Q305 (see “Saving the calculated datum” on page 312) and saves the coordinates of the determined corner in the Q parameters listed below.

6 If desired, the TNC subsequently measures the datum in the touch probe axis in a separate probing.

<table>
<thead>
<tr>
<th>Parameter number</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q151</td>
<td>Actual value of corner in reference axis</td>
</tr>
<tr>
<td>Q152</td>
<td>Actual value of corner in minor axis</td>
</tr>
</tbody>
</table>
Please note while programming:

Before a cycle definition you must have programmed a tool call to define the touch probe axis.
The TNC always measures the first line in the direction of the minor axis of the working plane.

Cycle parameters

- **1st meas. point 1st axis** Q263 (absolute): Coordinate of the first touch point in the reference axis of the working plane. Input range –99999.9999 to 99999.9999

- **1st meas. point 2nd axis** Q264 (absolute): Coordinate of the first touch point in the minor axis of the working plane. Input range –99999.9999 to 99999.9999

- **Spacing in 1st axis** Q326 (incremental): Distance between the first and second measuring points in the reference axis of the working plane. Input range 0 to 99999.9999

- **Spacing in 2nd axis** Q327 (incremental): Distance between third and fourth measuring points in the minor axis of the working plane. Input range 0 to 99999.9999

- **Corner** Q308: Number identifying the corner which the TNC is to set as datum. Input range 1 to 4

- **Measuring height in the touch probe axis** Q261 (absolute): Coordinate of the ball tip center (= touch point) in the touch probe axis in which the measurement is to be made. Input range –99999.9999 to 99999.9999

- **Setup clearance** Q320 (incremental): Additional distance between measuring point and ball tip. Q320 is added to SET_UP (touch probe table). Input range 0 to 99999.9999

- **Clearance height** Q260 (absolute): Coordinate in the touch probe axis at which no collision between touch probe and workpiece (fixtures) can occur. Input range –99999.9999 to 99999.9999
Traversing to clearance height Q301: Definition of how the touch probe is to move between the measuring points:
0: Move at measuring height between measuring points
1: Move at clearance height between measuring points

Execute basic rotation Q304: Definition of whether the TNC should compensate workpiece misalignment with a basic rotation:
0: No basic rotation
1: Basic rotation

Datum number in table Q305: Enter the datum number in the datum or preset table in which the TNC is to save the coordinates of the corner. If you enter Q305=0, the TNC automatically sets the display so that the new datum is on the corner. Input range 0 to 2999

New datum for reference axis Q331 (absolute):
Coordinate in the reference axis at which the TNC should set the corner. Default setting = 0. Input range: –99999.9999 to 99999.9999

New datum for minor axis Q332 (absolute):
Coordinate in the minor axis at which the TNC should set the calculated corner. Default setting = 0. Input range: –99999.9999 to 99999.9999

Measured-value transfer (0, 1) Q303: Specify whether the determined datum is to be saved in the datum table or in the preset table:
-1: Do not use. Is entered by the TNC when old programs are read in (see “Saving the calculated datum” on page 312).
0: Write determined datum in the active datum table. The reference system is the active workpiece coordinate system.
1: Write determined datum in the preset table. The reference system is the machine coordinate system (REF system).
Probe in TS axis Q381: Specify whether the TNC should also set the datum in the touch probe axis:
- 0: Do not set datum in the touch probe axis
- 1: Set datum in the touch probe axis

Probe TS axis: Coord. 1st axis Q382 (absolute):
Coordinate of the probe point in the reference axis of the working plane at which point the reference point is to be set in the touch probe axis. Only effective if Q381 = 1. Input range –99999.9999 to 99999.9999

Probe TS axis: Coord. 2nd axis Q383 (absolute):
Coordinate of the probe point in the minor axis of the working plane at which point the reference point is to be set in the touch probe axis. Only effective if Q381 = 1. Input range –99999.9999 to 99999.9999

Probe TS axis: Coord. 3rd axis Q384 (absolute):
Coordinate of the probe point in the touch probe axis, at which point the reference point is to be set in the touch probe axis. Only effective if Q381 = 1. Input range –99999.9999 to 99999.9999

New datum in TS axis Q333 (absolute):
Coordinate in the touch probe axis at which the TNC should set the datum. Default setting = 0. Input range: –99999.9999 to 99999.9999

Example: NC blocks

```
5 TCH PROBE 415 DATUM OUTSIDE CORNER
Q263=+37 ;1ST POINT 1ST AXIS
Q264=+7 ;1ST POINT 2ND AXIS
Q326=50 ;SPACING IN 1ST AXIS
Q296=+95 ;3RD POINT 1ST AXIS
Q297=+25 ;3RD POINT 2ND AXIS
Q327=+45 ;SPACING IN 2ND AXIS
Q261= -5 ;MEASURING HEIGHT
Q320=0 ;SETUP CLEARANCE
Q260=+20 ;CLEARANCE HEIGHT
Q301=0 ;MOVE TO CLEARANCE
Q304=0 ;BASIC ROTATION
Q305=7 ;NO. IN TABLE
Q331=+0 ;DATUM
Q332=+0 ;DATUM
Q303=+1 ;MEAS. VALUE TRANSFER
Q381=1 ;PROBE IN TS AXIS
Q382=+85 ;1ST CO. FOR TS AXIS
Q383=+50 ;2ND CO. FOR TS AXIS
Q384=+0 ;3RD CO. FOR TS AXIS
Q333=+1 ;DATUM
```
15.10 DATUM CIRCLE CENTER
(Cycle 416, DIN/ISO: G416)

Cycle run

Touch Probe Cycle 416 finds the center of a bolt hole circle and defines its center as datum. If desired, the TNC can also enter the coordinates into a datum table or the preset table.

1 The TNC positions the touch probe at rapid traverse (value from column FMAX) following the positioning logic (see “Executing touch probe cycles” on page 283) to the center of the first hole.
2 Then the probe moves to the entered measuring height and probes four points to find the first hole center.
3 The touch probe returns to the clearance height and then to the position entered as center of the second hole.
4 The TNC moves the touch probe to the entered measuring height and probes four points to find the second hole center.
5 The touch probe returns to the clearance height and then to the position entered as center of the third hole.
6 The TNC moves the touch probe to the entered measuring height and probes four points to find the third hole center.
7 Finally the TNC returns the touch probe to the clearance height and processes the determined datum depending on the cycle parameters Q303 and Q305 (see “Saving the calculated datum” on page 312) and saves the actual values in the Q parameters listed below.
8 If desired, the TNC subsequently measures the datum in the touch probe axis in a separate probing.

<table>
<thead>
<tr>
<th>Parameter number</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q151</td>
<td>Actual value of center in reference axis</td>
</tr>
<tr>
<td>Q152</td>
<td>Actual value of center in minor axis</td>
</tr>
<tr>
<td>Q153</td>
<td>Actual value of bolt hole circle diameter</td>
</tr>
</tbody>
</table>
Please note while programming:

Before a cycle definition you must have programmed a tool call to define the touch probe axis.

Cycle parameters

- **Center in 1st axis** Q273 (absolute): Bolt hole circle center (nominal value) in the reference axis of the working plane. Input range –99999.9999 to 99999.9999

- **Center in 2nd axis** Q274 (absolute): Bolt hole circle center (nominal value) in the minor axis of the working plane. Input range –99999.9999 to 99999.9999

- **Nominal diameter** Q262: Enter the approximate bolt hole circle diameter. The smaller the hole diameter, the more exact the nominal diameter must be. Input range –0 to 99999.9999

- **Angle of 1st hole** Q291 (absolute): Polar coordinate angle of the first hole center in the working plane. Input range –360.0000 to 360.0000

- **Angle of 2nd hole** Q292 (absolute): Polar coordinate angle of the second hole center in the working plane. Input range –360.0000 to 360.0000

- **Angle of 3rd hole** Q293 (absolute): Polar coordinate angle of the third hole center in the working plane. Input range –360.0000 to 360.0000

- **Measuring height in the touch probe axis** Q261 (absolute): Coordinate of the ball tip center (= touch point) in the touch probe axis in which the measurement is to be made. Input range –99999.9999 to 99999.9999

- **Clearance height** Q260 (absolute): Coordinate in the touch probe axis at which no collision between touch probe and workpiece (fixtures) can occur. Input range –99999.9999 to 99999.9999
\section*{15.10 Datum Circle Center (Cycle 416, DIN/ISO: G416)}

- **Datum number in table** Q305: Enter the number in the datum or preset table in which the TNC is to save the coordinates of the bolt-hole circle center. If you enter Q305=0, the TNC automatically sets the display so that the new datum is on the bolt hole center. Input range 0 to 2999

- **New datum for reference axis** Q331 (absolute): Coordinate in the reference axis at which the TNC should set the bolt-hole center. Default setting = 0. Input range: –99999.9999 to 99999.9999

- **New datum for minor axis** Q332 (absolute): Coordinate in the minor axis at which the TNC should set the bolt-hole center. Default setting = 0. Input range: –99999.9999 to 99999.9999

- **Measured-value transfer (0, 1)** Q303: Specify whether the determined datum is to be saved in the datum table or in the preset table:
 - 0: Write determined datum in the active datum table. The reference system is the active workpiece coordinate system.
 - 1: Write determined datum in the preset table. The reference system is the machine coordinate system (REF system).
 - -1: Do not use. Is entered by the TNC when old programs are read in (see “Saving the calculated datum” on page 312).
Probe in TS axis Q381: Specify whether the TNC should also set the datum in the touch probe axis:
- 0: Do not set datum in the touch probe axis
- 1: Set datum in the touch probe axis

Probe TS axis: Coord. 1st axis Q382 (absolute):
Coordinate of the probe point in the reference axis of the working plane at which point the reference point is to be set in the touch probe axis. Only effective if Q381 = 1. Input range –99999.9999 to 99999.9999

Probe TS axis: Coord. 2nd axis Q383 (absolute):
Coordinate of the probe point in the minor axis of the working plane at which point the reference point is to be set in the touch probe axis. Only effective if Q381 = 1. Input range –99999.9999 to 99999.9999

Probe TS axis: Coord. 3rd axis Q384 (absolute):
Coordinate of the probe point in the touch probe axis, at which point the reference point is to be set in the touch probe axis. Only effective if Q381 = 1. Input range –99999.9999 to 99999.9999

New datum in TS axis Q333 (absolute):
Coordinate in the touch probe axis at which the TNC should set the datum. Default setting = 0. Input range: –99999.9999 to 99999.9999

Setup clearance Q320 (incremental): Additional distance between measuring point and ball tip. Q320 is added to SET_UP (touch probe table), and is only effective when the datum is probed in the touch probe axis. Input range 0 to 99999.9999

Example: NC blocks

```plaintext
5 TCH PROBE 416 DATUM CIRCLE CENTER
Q273=+50 ;CENTER IN 1ST AXIS
Q274=+50 ;CENTER IN 2ND AXIS
Q262=90 ;NOMINAL DIAMETER
Q291=+34 ;ANGLE OF 1ST HOLE
Q292=+70 ;ANGLE OF 2ND HOLE
Q293=+210 ;ANGLE OF 3RD HOLE
Q261=-5 ;MEASURING HEIGHT
Q260=+20 ;CLEARANCE HEIGHT
Q305=12 ;NO. IN TABLE
Q331=+0 ;DATUM
Q332=+0 ;DATUM
Q303=+1 ;MEAS. VALUE TRANSFER
Q381=1 ;PROBE IN TS AXIS
Q382=+85 ;1ST CO. FOR TS AXIS
Q383=+50 ;2ND CO. FOR TS AXIS
Q384=0 ;3RD CO. FOR TS AXIS
Q333=+1 ;DATUM
Q320=0 ;SETUP CLEARANCE
```
15.11 DATUM IN TOUCH PROBE AXIS
(Cycle 417, DIN/ISO: G417)

Cycle run

Touch Probe Cycle 417 measures any coordinate in the touch probe axis and defines it as datum. If desired, the TNC can also enter the measured coordinate in a datum table or preset table.

1. The TNC positions the touch probe at rapid traverse (value from FMAX column) following the positioning logic (see “Executing touch probe cycles” on page 283) to the programmed starting point 1. The TNC offsets the touch probe by the safety clearance in the positive direction of the touch probe axis.

2. Then the touch probe moves in its own axis to the coordinate entered as starting point 1 and measures the actual position with a simple probing movement.

3. Finally the TNC returns the touch probe to the clearance height and processes the determined datum depending on the cycle parameters Q303 and Q305 (see “Saving the calculated datum” on page 312) and saves the actual values in the Q parameters listed below:

<table>
<thead>
<tr>
<th>Parameter number</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q160</td>
<td>Actual value of measured point</td>
</tr>
</tbody>
</table>

Please note while programming:

Before a cycle definition you must have programmed a tool call to define the touch probe axis. The TNC then sets the datum in this axis.
Cycle parameters

- **1st meas. point 1st axis** Q263 (absolute): Coordinate of the first touch point in the reference axis of the working plane. Input range –99999.9999 to 99999.9999

- **1st meas. point 2nd axis** Q264 (absolute): Coordinate of the first touch point in the minor axis of the working plane. Input range –99999.9999 to 99999.9999

- **1st meas. point 3rd axis** Q294 (absolute): Coordinate of the first touch point in the touch probe axis. Input range –99999.9999 to 99999.9999

- **Setup clearance** Q320 (incremental): Additional distance between measuring point and ball tip. Q320 is added to SET_UP (touch probe table). Input range 0 to 99999.9999

- **Clearance height** Q260 (absolute): Coordinate in the touch probe axis at which no collision between touch probe and workpiece (fixtures) can occur. Input range –99999.9999 to 99999.9999

- **Datum number in table** Q305: Enter the number in the datum or preset table in which the TNC is to save the coordinate. If you enter Q305=0, the TNC automatically sets the display so that the new datum is on the probed surface. Input range 0 to 2999

- **New datum in TS axis** Q333 (absolute): Coordinate in the touch probe axis at which the TNC should set the datum. Default setting = 0. Input range: –99999.9999 to 99999.9999

- **Measured-value transfer (0, 1)** Q303: Specify whether the determined datum is to be saved in the datum table or in the preset table:
 - 1: Do not use. Is entered by the TNC when old programs are read in (see “Saving the calculated datum” on page 312).
 - 0: Write determined datum in the active datum table. The reference system is the active workpiece coordinate system.
 - 1: Write determined datum in the preset table. The reference system is the machine coordinate system (REF system).

Example: NC blocks

```
5 TCH PROBE 417 DATUM IN TS AXIS
Q263=+25  ;1ST POINT 1ST AXIS
Q264=+25  ;1ST POINT 2ND AXIS
Q294=+25  ;1ST POINT 3RD AXIS
Q320=0    ;SETUP CLEARANCE
Q260=+50  ;CLEARANCE HEIGHT
Q305=0    ;NO. IN TABLE
Q333=+0   ;DATUM
Q303=+1   ;MEAS. VALUE TRANSFER
```
15.12 DATUM AT CENTER OF 4 HOLES (Cycle 418, DIN/ISO: G418)

Cycle run

Touch Probe Cycle 418 calculates the intersection of the lines connecting opposite holes and sets the datum at the intersection. If desired, the TNC can also enter the intersection into a datum table or preset table.

1. The TNC positions the touch probe at rapid traverse (value from column FMAX) following the positioning logic (see “Executing touch probe cycles” on page 283) to the center of the first hole 1.

2. Then the probe moves to the entered measuring height and probes four points to find the first hole center.

3. The touch probe returns to the clearance height and then to the position entered as center of the second hole 2.

4. The TNC moves the touch probe to the entered measuring height and probes four points to find the second hole center.

5. The TNC repeats steps 3 and 4 for the holes 3 and 4.

6. Finally the TNC returns the touch probe to the clearance height and processes the determined datum depending on the cycle parameters Q303 and Q305 (see “Saving the calculated datum” on page 312). The TNC calculates the datum as the intersection of the lines connecting the centers of holes 1/3 and 2/4 and saves the actual values in the Q parameters listed below.

7. If desired, the TNC subsequently measures the datum in the touch probe axis in a separate probing.

<table>
<thead>
<tr>
<th>Parameter number</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q151</td>
<td>Actual value of intersection point in reference axis</td>
</tr>
<tr>
<td>Q152</td>
<td>Actual value of intersection point in minor axis</td>
</tr>
</tbody>
</table>
Please note while programming:

Before a cycle definition you must have programmed a tool call to define the touch probe axis.

Cycle parameters

- **First center in 1st axis** Q268 (absolute): center of the 1st hole in the reference axis of the working plane. Input range –99999.9999 to 99999.9999
- **First center in 2nd axis** Q269 (absolute): center of the 1st hole in the minor axis of the working plane. Input range –99999.9999 to 99999.9999
- **First center in 1st axis** Q270 (absolute): center of the 2nd hole in the reference axis of the working plane. Input range –99999.9999 to 99999.9999
- **First center in 2nd axis** Q271 (absolute): center of the 2nd hole in the minor axis of the working plane. Input range –99999.9999 to 99999.9999
- **First center in 1st axis** Q316 (absolute): center of the 3rd hole in the reference axis of the working plane. Input range –99999.9999 to 99999.9999
- **3rd center in 2nd axis** Q317 (absolute): center of the 3rd hole in the minor axis of the working plane. Input range –99999.9999 to 99999.9999
- **4th center in 1st axis** Q318 (absolute): center of the 4th hole in the reference axis of the working plane. Input range –99999.9999 to 99999.9999
- **4th center in 2nd axis** Q319 (absolute): center of the 4th hole in the minor axis of the working plane. Input range –99999.9999 to 99999.9999
- **Measuring height in the touch probe axis** Q261 (absolute): Coordinate of the ball tip center (= touch point) in the touch probe axis in which the measurement is to be made. Input range –99999.9999 to 99999.9999
- **Clearance height** Q260 (absolute): Coordinate in the touch probe axis at which no collision between touch probe and workpiece (fixtures) can occur. Input range –99999.9999 to 99999.9999
Datum number in table Q305: Enter the number in the datum or preset table in which the TNC is to save the coordinates of the line intersection. If you enter Q305=0, the TNC automatically sets the display so that the new datum is at the intersection of the connecting lines. Input range 0 to 2999

New datum for reference axis Q331 (absolute): Coordinate in the reference axis at which the TNC should set the calculated intersection of the connecting lines. Default setting = 0. Input range: -99999.9999 to 99999.9999

New datum for minor axis Q332 (absolute): Coordinate in the minor axis at which the TNC should set the calculated intersection of the connecting lines. Default setting = 0. Input range: -99999.9999 to 99999.9999

Measured-value transfer (0, 1) Q303: Specify whether the determined datum is to be saved in the datum table or in the preset table:
- **0**: Write determined datum in the active datum table. The reference system is the active workpiece coordinate system.
- **1**: Write determined datum in the preset table. The reference system is the machine coordinate system (REF system).
Probes in TS axis Q81: Specify whether the TNC should also set the datum in the touch probe axis:
- **0**: Do not set datum in the touch probe axis
- **1**: Set datum in the touch probe axis

Probes TS axis: Coord. 1st axis Q82 (absolute):
Coordinate of the probe point in the reference axis of the working plane at which point the reference point is to be set in the touch probe axis. Only effective if Q81 = 1.

Probes TS axis: Coord. 2nd axis Q83 (absolute):
Coordinate of the probe point in the minor axis of the working plane at which point the reference point is to be set in the touch probe axis. Only effective if Q81 = 1. Input range –99999.9999 to 99999.9999

Probes TS axis: Coord. 3rd axis Q84 (absolute):
Coordinate of the probe point in the touch probe axis, at which point the reference point is to be set in the touch probe axis. Only effective if Q81 = 1. Input range –99999.9999 to 99999.9999

New datum in TS axis Q33 (absolute):
Coordinate in the touch probe axis at which the TNC should set the datum. Default setting = 0. Input range: –99999.9999 to 99999.9999

Example: NC blocks

```
5 TCH PROBE 418 DATUM FROM 4 HOLES
Q268=+20 ;1ST CENTER IN 1ST AXIS
Q269=+25 ;1ST CENTER IN 2ND AXIS
Q270=+150 ;2ND CENTER IN 1ST AXIS
Q271=+25 ;2ND CENTER IN 2ND AXIS
Q316=+150 ;3RD CENTER IN 1ST AXIS
Q317=+85 ;3RD CENTER IN 2ND AXIS
Q318=+22 ;4TH CENTER IN 1ST AXIS
Q319=+80 ;4TH CENTER IN 2ND AXIS
Q261=-5 ;MEASURING HEIGHT
Q260=+10 ;CLEARANCE HEIGHT
Q305=12 ;NO. IN TABLE
Q331=+0 ;DATUM
Q332=+0 ;DATUM
Q303=+1 ;MEAS. VALUE TRANSFER
Q381=1 ;PROBE IN TS AXIS
Q382=+85 ;1ST CO. FOR TS AXIS
Q383=+50 ;2ND CO. FOR TS AXIS
Q384=+0 ;3RD CO. FOR TS AXIS
Q333=+0 ;DATUM
```
15.13 DATUM IN ONE AXIS
(Cycle 419, DIN/ISO: G419)

Cycle run

Touch Probe Cycle 419 measures any coordinate in any axis and defines it as datum. If desired, the TNC can also enter the measured coordinate in a datum table or preset table.

1 The TNC positions the touch probe at rapid traverse (value from FMAX column) following the positioning logic (see “Executing touch probe cycles” on page 283) to the programmed starting point 1. The TNC offsets the touch probe by the safety clearance in the direction opposite the programmed probing direction.

2 Then the touch probe moves to the programmed measuring height and measures the actual position with a simple probing movement.

3 Finally the TNC returns the touch probe to the clearance height and processes the determined datum depending on the cycle parameters Q303 and Q305 (see “Saving the calculated datum” on page 312).

Please note while programming:

Before a cycle definition you must have programmed a tool call to define the touch probe axis.

If you use Cycle 419 several times in succession to save the datum in more than one axis in the preset table, you must activate the preset number last written to by Cycle 419 after every execution of Cycle 419 (this is not required if you overwrite the active preset).
15.13 DATUM IN ONE AXIS (Cycle 419, DIN/ISO: G419)

Cycle parameters

- **1st meas. point 1st axis** Q263 (absolute): Coordinate of the first touch point in the reference axis of the working plane. Input range –99999.9999 to 99999.9999
- **1st meas. point 2nd axis** Q264 (absolute): Coordinate of the first touch point in the minor axis of the working plane. Input range –99999.9999 to 99999.9999
- **Measuring height in the touch probe axis** Q261 (absolute): Coordinate of the ball tip center (= touch point) in the touch probe axis in which the measurement is to be made. Input range –99999.9999 to 99999.9999
- **Setup clearance** Q320 (incremental): Additional distance between measuring point and ball tip. Q320 is added to SET_UP (touch probe table). Input range 0 to 99999.9999
- **Clearance height** Q260 (absolute): Coordinate in the touch probe axis at which no collision between touch probe and workpiece (fixtures) can occur. Input range –99999.9999 to 99999.9999
- **Measuring axis (1...3: 1=reference axis)** Q272: Axis in which the measurement is to be made:
 1: Reference axis = measuring axis
 2: Minor axis = measuring axis
 3: Touch probe axis = measuring axis

Axis assignment

<table>
<thead>
<tr>
<th>Active touch probe axis: Q272= 3</th>
<th>Corresponding reference axis: Q272 = 1</th>
<th>Corresponding minor axis: Q272 = 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z</td>
<td>X</td>
<td>Y</td>
</tr>
<tr>
<td>Y</td>
<td>Z</td>
<td>X</td>
</tr>
<tr>
<td>X</td>
<td>Y</td>
<td>Z</td>
</tr>
</tbody>
</table>

Diagram:

- **SET_UP(TCHPROBE.TP)**
- Q267
- Q260
- Q261
- Q264
- Q263
- Q272=1
- Q272=2
- Q272=3
Traverse direction Q267: Direction in which the probe is to approach the workpiece:
- **-1**: Negative traverse direction
- **+1**: Positive traverse direction

Datum number in table Q305: Enter the number in the datum or preset table in which the TNC is to save the coordinate. If you enter Q305=0, the TNC automatically sets the display so that the new datum is on the probed surface. Input range 0 to 2999

New datum Q333 (absolute): Coordinate at which the TNC should set the datum. Default setting = 0. Input range: –99999.9999 to 99999.9999

Measured-value transfer (0, 1) Q303: Specify whether the determined datum is to be saved in the datum table or in the preset table:
- **-1**: Do not use. See “Saving the calculated datum” on page 312
- **0**: Write determined datum in the active datum table. The reference system is the active workpiece coordinate system.
- **1**: Write determined datum in the preset table. The reference system is the machine coordinate system (REF system).

Example: NC blocks

<table>
<thead>
<tr>
<th>Q263</th>
<th>1ST POINT 1ST AXIS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q264</td>
<td>1ST POINT 2ND AXIS</td>
</tr>
<tr>
<td>Q261</td>
<td>MEASURING HEIGHT</td>
</tr>
<tr>
<td>Q320</td>
<td>SETUP CLEARANCE</td>
</tr>
<tr>
<td>Q260</td>
<td>CLEARANCE HEIGHT</td>
</tr>
<tr>
<td>Q272</td>
<td>MEASURING AXIS</td>
</tr>
<tr>
<td>Q267</td>
<td>TRAVERSE DIRECTION</td>
</tr>
<tr>
<td>Q305</td>
<td>NO. IN TABLE</td>
</tr>
<tr>
<td>Q333</td>
<td>DATUM</td>
</tr>
<tr>
<td>Q303</td>
<td>MEAS. VALUE TRANSFER</td>
</tr>
</tbody>
</table>
Example: Datum setting in center of a circular segment and on top surface of workpiece

```
0 BEGIN PGM CYC413 MM
1 TOOL CALL 69 Z
```

Call tool 0 to define the touch probe axis
<table>
<thead>
<tr>
<th>2 TCH PROBE 413 DATUM OUTSIDE CIRCLE</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Q321=+25 ;CENTER IN 1ST AXIS</td>
<td>Center of circle: X coordinate</td>
</tr>
<tr>
<td>Q322=+25 ;CENTER IN 2ND AXIS</td>
<td>Center of circle: Y coordinate</td>
</tr>
<tr>
<td>Q262=30 ;NOMINAL DIAMETER</td>
<td>Circle diameter</td>
</tr>
<tr>
<td>Q325=+90 ;STARTING ANGLE</td>
<td>Polar coordinate angle for 1st touch point</td>
</tr>
<tr>
<td>Q247=+45 ;STEPPING ANGLE</td>
<td>Stepping angle for calculating the starting points 2 to 4</td>
</tr>
<tr>
<td>Q261=-5 ;MEASURING HEIGHT</td>
<td>Coordinate in the touch probe axis in which the measurement is made</td>
</tr>
<tr>
<td>Q320=2 ;SETUP CLEARANCE</td>
<td>Safety clearance in addition to SET_UP column</td>
</tr>
<tr>
<td>Q260=+10 ;CLEARANCE HEIGHT</td>
<td>Height in the touch probe axis at which the probe can traverse without collision</td>
</tr>
<tr>
<td>Q301=0 ;MOVE TO CLEARANCE</td>
<td>Do not move to clearance height between measuring points</td>
</tr>
<tr>
<td>Q305=0 ;NO. IN TABLE</td>
<td>Set display</td>
</tr>
<tr>
<td>Q331=+0 ;DATUM</td>
<td>Set the display in X to 0</td>
</tr>
<tr>
<td>Q332=+10 ;DATUM</td>
<td>Set the display in Y to 10</td>
</tr>
<tr>
<td>Q303=+0 ;MEAS. VALUE TRANSFER</td>
<td>Without function, since display is to be set</td>
</tr>
<tr>
<td>Q381=1 ;PROBE IN TS AXIS</td>
<td>Also set datum in the touch probe axis</td>
</tr>
<tr>
<td>Q382=+25 ;1ST CO. FOR TS AXIS</td>
<td>X coordinate of touch point</td>
</tr>
<tr>
<td>Q383=+25 ;2ND CO. FOR TS AXIS</td>
<td>Y coordinate of touch point</td>
</tr>
<tr>
<td>Q384=+25 ;3RD CO. FOR TS AXIS</td>
<td>Z coordinate of touch point</td>
</tr>
<tr>
<td>Q333=+0 ;DATUM</td>
<td>Set the display in Z to 0</td>
</tr>
<tr>
<td>Q423=4 ;NO. OF MEAS. POINTS</td>
<td>Measure circle with 4 probes</td>
</tr>
<tr>
<td>Q365=0 ;TYPE OF TRAVERSE</td>
<td>Move circular path between measuring points</td>
</tr>
<tr>
<td>3 CALL PGM 35K47</td>
<td>Part program call</td>
</tr>
<tr>
<td>4 END PGM CYC413 MM</td>
<td></td>
</tr>
</tbody>
</table>
Example: Datum setting on top surface of workpiece and in center of a bolt hole circle

The measured bolt hole center shall be written in the preset table so that it may be used at a later time.

```
O BEGIN PGM CYC416 MM
1 TOOL CALL 69 Z
2 TCH PROBE 417 DATUM IN TS AXIS
   Q263=+7.5 ;1ST POINT 1ST AXIS
   Q264=+7.5 ;1ST POINT 2ND AXIS
   Q294=+25 ;1ST POINT 3RD AXIS
   Q320=0 ;SETUP CLEARANCE
   Q260=+50 ;CLEARANCE HEIGHT
   Q305=1 ;NO. IN TABLE
   Q333=0 ;DATUM
   Q303=+1 ;MEAS. VALUE TRANSFER
```

- Call tool 0 to define the touch probe axis
- Cycle definition for datum setting in the touch probe axis
- Touch point: X coordinate
- Touch point: Y coordinate
- Touch point: Z coordinate
- Safety clearance in addition to SET_UP column
- Height in the touch probe axis at which the probe can traverse without collision
- Write Z coordinate in line 1
- Set touch-probe axis to 0
- In the preset table PRESSET.PR, save the calculated datum referenced to the machine-based coordinate system (REF system)
3 TCH PROBE 416 DATUM CIRCLE CENTER

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q273:+35</td>
<td>CENTER IN 1ST AXIS Center of the bolt hole circle: X coordinate</td>
</tr>
<tr>
<td>Q274:+35</td>
<td>CENTER IN 2ND AXIS Center of the bolt hole circle: Y coordinate</td>
</tr>
<tr>
<td>Q262=50</td>
<td>NOMINAL DIAMETER Diameter of the bolt hole circle</td>
</tr>
<tr>
<td>Q291:+90</td>
<td>ANGLE OF 1ST HOLE Polar coordinate angle for 1st hole center 1</td>
</tr>
<tr>
<td>Q292:+180</td>
<td>ANGLE OF 2ND HOLE Polar coordinate angle for 2nd hole center 2</td>
</tr>
<tr>
<td>Q293:+270</td>
<td>ANGLE OF 3RD HOLE Polar coordinate angle for 3rd hole center 3</td>
</tr>
<tr>
<td>Q261:+15</td>
<td>MEASURING HEIGHT Coordinate in the touch probe axis in which the measurement is made</td>
</tr>
<tr>
<td>Q260:+10</td>
<td>CLEARANCE HEIGHT Height in the touch probe axis at which the probe can traverse without collision</td>
</tr>
<tr>
<td>Q305=1</td>
<td>NO. IN TABLE Enter center of bolt hole circle (X and Y) in line 1</td>
</tr>
<tr>
<td>Q331=+0</td>
<td>DATUM</td>
</tr>
<tr>
<td>Q332=+0</td>
<td>DATUM</td>
</tr>
<tr>
<td>Q303=+1</td>
<td>MEAS. VALUE TRANSFER In the preset table PRESET.PR, save the calculated datum referenced to the machine-based coordinate system (REF system)</td>
</tr>
<tr>
<td>Q381=0</td>
<td>PROBE IN TS AXIS Do not set a datum in the touch probe axis</td>
</tr>
<tr>
<td>Q382=+0</td>
<td>1ST CO. FOR TS AXIS No function</td>
</tr>
<tr>
<td>Q383=+0</td>
<td>2ND CO. FOR TS AXIS No function</td>
</tr>
<tr>
<td>Q384=+0</td>
<td>3RD CO. FOR TS AXIS No function</td>
</tr>
<tr>
<td>Q333=+0</td>
<td>DATUM No function</td>
</tr>
<tr>
<td>Q320=0</td>
<td>SETUP CLEARANCE Safety clearance in addition to SET_UP column</td>
</tr>
</tbody>
</table>

4 CYCL DEF 247 DATUM SETTING Activate new preset with Cycle 247

Q339=1 ;DATUM NUMBER

6 CALL PGM 35KLZ Part program call

7 END PGM CYC416 MM
15.13 DATUM IN ONE AXIS (Cycle 419, DIN/ISO: G419)
Touch Probe Cycles: Automatic Workpiece Inspection
16.1 Fundamentals

Overview

Danger of collision!
When running touch probe cycles, no cycles must be active for coordinate transformation (Cycle 7 DATUM, Cycle 8 MIRROR IMAGE, Cycle 10 ROTATION, Cycles 11 and 26 SCALING and Cycle 19 WORKING PLANE or 3D-ROT).

The TNC must be specially prepared by the machine tool builder for the use of a 3-D touch probe.

The TNC offers twelve cycles for measuring workpieces automatically.

<table>
<thead>
<tr>
<th>Cycle</th>
<th>Soft key</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 REFERENCE PLANE Measuring a coordinate in a selectable axis</td>
<td></td>
<td>Page 370</td>
</tr>
<tr>
<td>1 POLAR DATUM PLANE Measuring a point in a probing direction</td>
<td></td>
<td>Page 371</td>
</tr>
<tr>
<td>420 MEASURE ANGLE Measuring an angle in the working plane</td>
<td></td>
<td>Page 373</td>
</tr>
<tr>
<td>421 MEASURE HOLE Measuring the position and diameter of a hole</td>
<td></td>
<td>Page 376</td>
</tr>
<tr>
<td>422 MEAS. CIRCLE OUTSIDE Measuring the position and diameter of a circular stud</td>
<td></td>
<td>Page 380</td>
</tr>
<tr>
<td>423 MEAS. RECTAN. INSIDE Measuring the position, length and width of a rectangular pocket</td>
<td></td>
<td>Page 384</td>
</tr>
<tr>
<td>424 MEAS. RECTAN. OUTSIDE Measuring the position, length and width of a rectangular stud</td>
<td></td>
<td>Page 388</td>
</tr>
<tr>
<td>425 MEASURE INSIDE WIDTH (2nd soft-key row) Measuring slot width</td>
<td></td>
<td>Page 392</td>
</tr>
<tr>
<td>426 MEASURE RIDGE WIDTH (2nd soft-key row) Measuring the width of a ridge</td>
<td></td>
<td>Page 395</td>
</tr>
<tr>
<td>427 MEASURE COORDINATE (2nd soft-key level) Measuring any coordinate in a selectable axis</td>
<td></td>
<td>Page 398</td>
</tr>
</tbody>
</table>
16.1 Fundamentals

Recording the results of measurement

For all cycles in which you automatically measure workpieces (with the exception of Cycles 0 and 1), you can have the TNC record the measurement results. In the respective probing cycle you can define if the TNC is to

- Save the measuring log to a file.
- Interrupt the program run and display the measuring log on the screen.
- Create no measuring log.

If you want to save the measuring log to a file, the TNC, by default, saves the data as an ASCII file in the directory TNC:\..

Use the HEIDENHAIN data transfer software TNCremo if you wish to output the measuring log via the data interface.

<table>
<thead>
<tr>
<th>Cycle</th>
<th>Soft key</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>430 MEAS. BOLT HOLE CIRC. (2nd soft-key level) Measuring position and diameter of a bolt hole circle</td>
<td></td>
<td>Page 401</td>
</tr>
<tr>
<td>431 MEASURE PLANE (2nd soft-key level) Measuring the A and B axis angles of a plane</td>
<td></td>
<td>Page 405</td>
</tr>
</tbody>
</table>
Example: Measuring log for touch probe cycle 421:

Measuring log for Probing Cycle 421 Hole Measuring

Date: 30-06-2005
Time: 6:55:04
Measuring program: TNC\GEH35712\CHECK1.H

Nominal values:
- Center in reference axis: 50.0000
- Center in minor axis: 65.0000
- Diameter: 12.0000

Given limit values:
- Maximum dimension for center in reference axis: 50.1000
- Minimum limit for center in reference axis: 49.9000
- Maximum limit for center in minor axis: 65.1000
- Minimum limit for center in minor axis: 64.9000
- Maximum dimension for hole: 12.0450
- Minimum dimension for hole: 12.0000

Actual values:
- Center in reference axis: 50.0810
- Center in minor axis: 64.9530
- Diameter: 12.0259

Deviations:
- Center in reference axis: 0.0810
- Center in minor axis: -0.0470
- Diameter: 0.0259

Further measuring results:
- Measuring height: -5.0000

End of measuring log
Measurement results in Q parameters

The TNC saves the measurement results of the respective touch probe cycle in the globally effective Q parameters Q150 to Q160. Deviations from the nominal value are saved in the parameters Q161 to Q166. Note the table of result parameters that are listed with every cycle description.

During cycle definition the TNC also shows the result parameters for the respective cycle in a help graphic (see figure at upper right). The highlighted result parameter belongs to that input parameter.

Classification of results

For some cycles you can inquire the status of measuring results through the globally effective Q parameters Q180 to Q182:

<table>
<thead>
<tr>
<th>Class of results</th>
<th>Parameter value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measurement results are within tolerance</td>
<td>Q180 = 1</td>
</tr>
<tr>
<td>Rework is required</td>
<td>Q181 = 1</td>
</tr>
<tr>
<td>Scrap</td>
<td>Q182 = 1</td>
</tr>
</tbody>
</table>

The TNC sets the rework or scrap marker as soon as one of the measuring values falls outside of tolerance. To determine which of the measuring results lies outside of tolerance, check the measuring log, or compare the respective measuring results (Q150 to Q160) with their limit values.

In Cycle 427 the TNC assumes that you are measuring an outside dimension (stud). However, you can correct the status of the measurement by entering the correct maximum and minimum dimension together with the probing direction.

The TNC also sets the status markers if you have not defined any tolerance values or maximum/minimum dimensions.
Tolerance monitoring

For most of the cycles for workpiece inspection you can have the TNC perform tolerance monitoring. This requires that you define the necessary limit values during cycle definition. If you do not wish to monitor for tolerances, simply leave the 0 (the default value) in the monitoring parameters.

Tool monitoring

For some cycles for workpiece inspection you can have the TNC perform tool monitoring. The TNC then monitors whether

- The tool radius should be compensated because of the deviations from the nominal value (values in Q16x).
- The deviations from the nominal value (values in Q16x) are greater than the tool breakage tolerance.

Tool compensation

This function works only:

- If the tool table is active.
- If tool monitoring is switched on in the cycle (enter a tool name or Q330 unequal to 0). Select the tool name input by soft key. The TNC no longer displays the right single quotation mark.

If you perform several compensation measurements, the TNC adds the respective measured deviation to the value stored in the tool table.

The TNC always compensates the tool radius in the DR column of the tool table, even if the measured deviation lies within the given tolerance. You can inquire whether re-working is necessary via Parameter Q181 in the NC program (Q181=1: must be reworked).

For Cycle 427:

- If an axis of the active working plane is defined as measuring axis (Q272 = 1 or 2), the TNC compensates the tool radius as described above. From the defined traversing direction (Q267) the TNC determines the direction of compensation.
- If the touch probe axis is defined as measuring axis (Q272 = 3), the TNC compensates the tool length.
16.1 Fundamentals

Tool breakage monitoring

This function works only:
- If the tool table is active.
- If tool monitoring is switched on in the cycle (enter Q330 not equal to 0).
- If the breakage tolerance RBREAK for the tool number entered in the table is greater than 0 (see also the User’s Manual, section 5.2 “Tool Data”).

The TNC will output an error message and stop program run if the measured deviation is greater than the breakage tolerance of the tool. At the same time the tool will be deactivated in the tool table (column TL = L).

Reference system for measurement results

The TNC transfers all the measurement results to the result parameters and the protocol file in the active coordinate system, or as the case may be, the shifted or/and rotated/tilted coordinate system.
16.2 REF. PLANE (Cycle 0, DIN/ISO: G55)

Cycle run

1. The touch probe moves at rapid traverse (value from FMAX column) to the starting position 1 programmed in the cycle.
2. Then the touch probe runs the probing process at the probing feed rate (column F). The probing direction is to be defined in the cycle.
3. After the TNC has saved the position, the probe retracts to the starting point and saves the measured coordinate in a Q parameter. The TNC also stores the coordinates of the touch probe position at the time of the triggering signal in the parameters Q115 to Q119. For the values in these parameters the TNC does not account for the stylus length and radius.

Please note while programming:

Danger of collision!
Pre-position the touch probe in order to avoid a collision when the programmed pre-positioning point is approached.

Cycle parameters

- **Parameter number for result**: Enter the number of the Q parameter to which you want to assign the coordinate. Input range 0 to 1999
- **Probing axis/Probing direction**: Enter the probing axis with the axis selection keys or ASCII keyboard and the algebraic sign for the probing direction. Confirm your entry with the ENT key. Input range: All NC axes
- **Nominal position value**: Use the axis selection keys or the ASCII keyboard to enter all coordinates of the nominal pre-positioning point values for the touch probe. Input range –99999.9999 to 99999.9999
- **To conclude the input, press the ENT key.**

Example: NC blocks

```
67 TCH PROBE 0.0 REF. PLANE Q5 X-
68 TCH PROBE 0.1 X+5 Y+0 Z-5
```
16.3 POLAR REFERENCE PLANE (Cycle 1)

Cycle run

Touch Probe Cycle 1 measures any position on the workpiece in any direction.

1. The touch probe moves at rapid traverse (value from F_{MAX} column) to the starting position programmed in the cycle.
2. Then the touch probe runs the probing process at the probing feed rate (column F). During probing the TNC moves simultaneously in 2 axes (depending on the probing angle). The scanning direction is defined by the polar angle entered in the cycle.
3. After the TNC has saved the position, the probe returns to the starting point. The TNC also stores the coordinates of the touch probe position at the time of the triggering signal in parameters Q115 to Q119.

Please note while programming:

- **Danger of collision!**
 Pre-position the touch probe in order to avoid a collision when the programmed pre-positioning point is approached.

- The probing axis defined in the cycle specifies the probing plane:
 - Probing axis X: X/Y plane
 - Probing axis Y: Y/Z plane
 - Probing axis Z: Z/X plane
Cycle parameters

- **Probing axis**: Enter the probing axis with the axis selection keys or ASCII keyboard. Confirm your entry with the ENT key. Input range: X, Y or Z

- **Probing angle**: Angle, measured from the probing axis, at which the touch probe is to move. Input range –180.0000 to 180.0000

- **Nominal position value**: Use the axis selection keys or the ASCII keyboard to enter all coordinates of the nominal pre-positioning point values for the touch probe. Input range –99999.9999 to 99999.9999

- To conclude the input, press the ENT key.

Example: NC blocks

67 TCH PROBE 1.0 POLAR REFERENCE PLANE

68 TCH PROBE 1.1 X ANGLE: +30

69 TCH PROBE 1.2 X+5 Y+0 Z-5
16.4 MEASURE ANGLE (Cycle 420, DIN/ISO: G420)

Cycle run

Touch Probe Cycle 420 measures the angle that any straight surface on the workpiece describes with respect to the reference axis of the working plane.

1. The TNC positions the touch probe at rapid traverse (value from \textit{FMAX} column) following the positioning logic (see “Executing touch probe cycles” on page 283) to the programmed starting point 1. The TNC offsets the touch probe by the safety clearance in the direction opposite the defined traverse direction.

2. Then the touch probe moves to the entered measuring height and probes the first touch point at the probing feed rate (column \textit{F}).

3. Then the touch probe moves to the next starting position 2 and probes the second position.

4. The TNC returns the touch probe to the clearance height and saves the measured angle in the following Q parameter:

<table>
<thead>
<tr>
<th>Parameter number</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q150</td>
<td>The measured angle is referenced to the reference axis of the machining plane.</td>
</tr>
</tbody>
</table>

Please note while programming:

Before a cycle definition you must have programmed a tool call to define the touch probe axis.

If touch probe axis = measuring axis, set Q263 equal to Q265 if the angle about the A axis is to be measured; set Q263 not equal to Q265 if the angle is to be measured about the B axis.
Cycle parameters

- **1st meas. point 1st axis** Q263 (absolute): Coordinate of the first touch point in the reference axis of the working plane. Input range –99999.9999 to 99999.9999

- **1st meas. point 2nd axis** Q264 (absolute): Coordinate of the first touch point in the minor axis of the working plane. Input range –99999.9999 to 99999.9999

- **2nd meas. point 1st axis** Q265 (absolute): Coordinate of the second touch point in the reference axis of the working plane. Input range –99999.9999 to 99999.9999

- **2nd meas. point 2nd axis** Q266 (absolute): Coordinate of the second touch point in the minor axis of the working plane. Input range –99999.9999 to 99999.9999

- **Measuring axis** Q272: Axis in which the measurement is to be made:
 1: Reference axis = measuring axis
 2: Minor axis = measuring axis
 3: Touch probe axis = measuring axis
 Traverse direction 1 Q267: Direction in which the probe is to approach the workpiece:
-1: Negative traverse direction
+1: Positive traverse direction

 Measuring height in the touch probe axis Q261 (absolute): Coordinate of the ball tip center (= touch point) in the touch probe axis in which the measurement is to be made. Input range –99999.9999 to 99999.9999

 Setup clearance Q320 (incremental): Additional distance between measuring point and ball tip. Q320 is added to SET UP (touch probe table). Input range 0 to 99999.9999

 Clearance height Q260 (absolute): Coordinate in the touch probe axis at which no collision between touch probe and workpiece (fixtures) can occur. Input range –99999.9999 to 99999.9999

 Traversing to clearance height Q301: Definition of how the touch probe is to move between the measuring points:
0: Move at measuring height between measuring points
1: Move at clearance height between measuring points

 Measuring log Q281: Definition of whether the TNC is to create a measuring log:
0: No measuring log
1: Generate measuring log: the TNC saves the log file TCHPR420.TXT by default in the directory TNC:\
2: Interrupt the program run and display the measuring log on the screen. Resume program run with NC Start.

Example: NC blocks

<table>
<thead>
<tr>
<th>5 TCH PROBE 420 MEASURE ANGLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q263=+10 ;1ST POINT 1ST AXIS</td>
</tr>
<tr>
<td>Q264=+10 ;1ST POINT 2ND AXIS</td>
</tr>
<tr>
<td>Q265=+15 ;2ND POINT 1ST AXIS</td>
</tr>
<tr>
<td>Q266=+95 ;2ND POINT 2ND AXIS</td>
</tr>
<tr>
<td>Q272=1 ;MEASURING AXIS</td>
</tr>
<tr>
<td>Q267=-1 ;TRAVERSE DIRECTION</td>
</tr>
<tr>
<td>Q261=-5 ;MEASURING HEIGHT</td>
</tr>
<tr>
<td>Q320=0 ;SETUP CLEARANCE</td>
</tr>
<tr>
<td>Q260=+10 ;CLEARANCE HEIGHT</td>
</tr>
<tr>
<td>Q301=1 ;MOVE TO CLEARANCE</td>
</tr>
<tr>
<td>Q281=1 ;MEASURING LOG</td>
</tr>
</tbody>
</table>
16.5 MEASURE HOLE (Cycle 421, DIN/ISO: G421)

Cycle run

Touch Probe Cycle 421 measures the center and diameter of a hole (or circular pocket). If you define the corresponding tolerance values in the cycle, the TNC makes a nominal-to-actual value comparison and saves the deviation value in system parameters.

1. The TNC positions the touch probe at rapid traverse (value from FMAX column) following the positioning logic (see “Executing touch probe cycles” on page 283) to the starting point 1. The TNC calculates the touch points from the data in the cycle and the safety clearance from the SET_UP column of the touch probe table.

2. Then the touch probe moves to the entered measuring height and probes the first touch point at the probing feed rate (column F). The TNC derives the probing direction automatically from the programmed starting angle.

3. Then the touch probe moves in a circular arc either at measuring height or at clearance height to the next starting point 2 and probes the second touch point.

4. The TNC positions the probe to starting point 3 and then to starting point 4 to probe the third and fourth touch points.

5. Finally the TNC returns the touch probe to the clearance height and saves the actual values and the deviations in the following Q parameters:

<table>
<thead>
<tr>
<th>Parameter number</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q151</td>
<td>Actual value of center in reference axis</td>
</tr>
<tr>
<td>Q152</td>
<td>Actual value of center in minor axis</td>
</tr>
<tr>
<td>Q153</td>
<td>Actual value of diameter</td>
</tr>
<tr>
<td>Q161</td>
<td>Deviation at center of reference axis</td>
</tr>
<tr>
<td>Q162</td>
<td>Deviation at center of minor axis</td>
</tr>
<tr>
<td>Q163</td>
<td>Deviation from diameter</td>
</tr>
</tbody>
</table>

Please note while programming:

Before a cycle definition you must have programmed a tool call to define the touch probe axis.

The smaller the angle, the less accurately the TNC can calculate the hole dimensions. Minimum input value: 5°.
Cycle parameters

- **Center in 1st axis** Q273 (absolute): Center of the hole in the reference axis of the working plane. Input range –99999.9999 to 99999.9999

- **Center in 2nd axis** Q274 (absolute value): Center of the hole in the minor axis of the working plane. Input range –99999.9999 to 99999.9999

- **Nominal diameter** Q262: Enter the diameter of the hole. Input range 0 to 99999.9999

- **Starting angle** Q325 (absolute): Angle between the reference axis of the working plane and the first touch point. Input range –360.0000 to 360.0000

- **Stepping angle** Q247 (incremental): Angle between two measuring points. The algebraic sign of the stepping angle determines the direction of rotation (negative = clockwise). If you wish to probe a circular arc instead of a complete circle, then program the stepping angle to be less than 90°. Input range: -120.0000 to 120.0000
16.5 MEASURE HOLE (Cycle 421, DIN/ISO: G421)

- **Measuring height in the touch probe axis**
 Q261 (absolute): Coordinate of the ball tip center (= touch point) in the touch probe axis in which the measurement is to be made.
 Input range –99999.9999 to 99999.9999

- **Setup clearance** Q320 (incremental): Additional distance between measuring point and ball tip. Q320 is added to SET_UP (touch probe table). Input range 0 to 99999.9999

- **Clearance height** Q260 (absolute): Coordinate in the touch probe axis at which no collision between touch probe and workpiece (fixtures) can occur. Input range –99999.9999 to 99999.9999

- **Traversing to clearance height** Q301: Definition of how the touch probe is to move between the measuring points:
 0: Move at measuring height between measuring points
 1: Move at clearance height between measuring points

- **Maximum limit of size for hole** Q275: Maximum permissible diameter for the hole (circular pocket).
 Input range 0 to 99999.9999

- **Minimum limit of size for hole** Q276: Minimum permissible diameter for the hole (circular pocket).
 Input range 0 to 99999.9999

- **Tolerance for center 1st axis** Q279: Permissible position deviation in the reference axis of the working plane.
 Input range 0 to 99999.9999

- **Tolerance for center 2nd axis** Q280: Permissible position deviation in the minor axis of the working plane.
 Input range 0 to 99999.9999
Measuring log Q281: Definition of whether the TNC is to create a measuring log:
0: No measuring log
1: Generate measuring log: the TNC saves the log file TCHPR421.TXT by default in the directory TNC:\.
2: Interrupt the program run and display the measuring log on the screen. Resume program run with NC Start.

PGM stop if tolerance error Q309: Definition of whether in the event of a violation of tolerance limits the TNC is to interrupt the program run and output an error message:
0: Do not interrupt program run, no error message
1: Interrupt program run, output an error message

Tool number for monitoring Q330: Definition of whether the TNC is to monitor the tool (see “Tool monitoring” on page 368). Input range: 0 to 32767.9, alternatively tool name with max. 16 characters
0: Monitoring not active
>0: Tool number in the tool table TOOL.T

No. of measuring points (4/3) Q423: Specify whether the TNC should measure the stud with 4 or 3 probing points:
4: Use 4 measuring points (standard setting)
3: Use 3 measuring points

Type of traverse? Line=0/Arc=1 Q365: Definition of the path function with which the tool is to move between the measuring points if “traverse to clearance height” (Q301=1) is active.
0: Move between operations on a straight line
1: Move between operations on the pitch circle

Example: NC blocks

<table>
<thead>
<tr>
<th>NC blocks</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 TCH PROBE 421 MEASURE HOLE</td>
</tr>
<tr>
<td>Q273=+50 ;CENTER IN 1ST AXIS</td>
</tr>
<tr>
<td>Q274=+50 ;CENTER IN 2ND AXIS</td>
</tr>
<tr>
<td>Q262=75 ;NOMINAL DIAMETER</td>
</tr>
<tr>
<td>Q325=+0 ;STARTING ANGLE</td>
</tr>
<tr>
<td>Q247=+60 ;STEPPING ANGLE</td>
</tr>
<tr>
<td>Q261=-5 ;MEASURING HEIGHT</td>
</tr>
<tr>
<td>Q320=0 ;SETUP CLEARANCE</td>
</tr>
<tr>
<td>Q260=+20 ;CLEARANCE HEIGHT</td>
</tr>
<tr>
<td>Q301=1 ;MOVE TO CLEARANCE</td>
</tr>
<tr>
<td>Q275=75.12 ;MAX. LIMIT</td>
</tr>
<tr>
<td>Q276=74.95 ;MIN. LIMIT</td>
</tr>
<tr>
<td>Q279=0.1 ;TOLERANCE 1ST CENTER</td>
</tr>
<tr>
<td>Q280=0.1 ;TOLERANCE 2ND CENTER</td>
</tr>
<tr>
<td>Q281=1 ;MEASURING LOG</td>
</tr>
<tr>
<td>Q309=0 ;PGM STOP IF ERROR</td>
</tr>
<tr>
<td>Q330= ;TOOL</td>
</tr>
<tr>
<td>Q423=4 ;NO. OF MEAS. POINTS</td>
</tr>
<tr>
<td>Q365=1 ;TYPE OF TRAVERSE</td>
</tr>
</tbody>
</table>
16.6 MEAS. CIRCLE OUTSIDE
(Cycle 422, DIN/ISO: G422)

Cycle run

Touch Probe Cycle 422 measures the center and diameter of a circular stud. If you define the corresponding tolerance values in the cycle, the TNC makes a nominal-to-actual value comparison and saves the deviation value in system parameters.

1. The TNC positions the touch probe at rapid traverse (value from \textit{FMAX} column) following the positioning logic (see “Executing touch probe cycles” on page 283) to the starting point \textit{1}. The TNC calculates the touch points from the data in the cycle and the safety clearance from the \textit{SET_UP} column of the touch probe table.

2. Then the touch probe moves to the entered measuring height and probes the first touch point at the probing feed rate (column \textit{F}). The TNC derives the probing direction automatically from the programmed starting angle.

3. Then the touch probe moves in a circular arc either at measuring height or at clearance height to the next starting point \textit{2} and probes the second touch point.

4. The TNC positions the probe to starting point \textit{3} and then to starting point \textit{4} to probe the third and fourth touch points.

5. Finally the TNC returns the touch probe to the clearance height and saves the actual values and the deviations in the following Q parameters:

<table>
<thead>
<tr>
<th>Parameter number</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q151</td>
<td>Actual value of center in reference axis</td>
</tr>
<tr>
<td>Q152</td>
<td>Actual value of center in minor axis</td>
</tr>
<tr>
<td>Q153</td>
<td>Actual value of diameter</td>
</tr>
<tr>
<td>Q161</td>
<td>Deviation at center of reference axis</td>
</tr>
<tr>
<td>Q162</td>
<td>Deviation at center of minor axis</td>
</tr>
<tr>
<td>Q163</td>
<td>Deviation from diameter</td>
</tr>
</tbody>
</table>

Please note while programming:

Before a cycle definition you must have programmed a tool call to define the touch probe axis.

The smaller the angle, the less accurately the TNC can calculate the dimensions of the stud. Minimum input value: 5°
Cycle parameters

- **Center in 1st axis** Q273 (absolute): Center of the stud in the reference axis of the working plane. Input range -99999.9999 to 99999.9999
- **Center in 2nd axis** Q274 (absolute): Center of the stud in the minor axis of the working plane. Input range -99999.9999 to 99999.9999
- **Nominal diameter** Q262: Enter the diameter of the stud. Input range 0 to 99999.9999
- **Starting angle** Q325 (absolute): Angle between the reference axis of the working plane and the first touch point. Input range -360.0000 to 360.0000
- **Stepping angle** Q247 (incremental): Angle between two measuring points. The algebraic sign of the stepping angle determines the direction of rotation (negative = clockwise). If you wish to probe a circular arc instead of a complete circle, then program the stepping angle to be less than 90°. Input range: -120.0000 to 120.0000
- **Measuring height in the touch probe axis**
 Q261 (absolute): Coordinate of the ball tip center (= touch point) in the touch probe axis in which the measurement is to be made. Input range –99999.9999 to 99999.9999

- **Setup clearance** Q320 (incremental): Additional distance between measuring point and ball tip. Q320 is added to **SET_UP** (touch probe table). Input range 0 to 99999.9999

- **Clearance height** Q260 (absolute): Coordinate in the touch probe axis at which no collision between touch probe and workpiece (fixtures) can occur. Input range –99999.9999 to 99999.9999

- **Traversing to clearance height** Q301: Definition of how the touch probe is to move between the measuring points:
 0: Move at measuring height between measuring points
 1: Move at clearance height between measuring points

- **Maximum limit of size for stud** Q277: Maximum permissible diameter for the stud. Input range 0 to 99999.9999

- **Minimum limit of size for the stud** Q278: Minimum permissible diameter for the stud. Input range 0 to 99999.9999

- **Tolerance for center 1st axis** Q279: Permissible position deviation in the reference axis of the working plane. Input range 0 to 99999.9999

- **Tolerance for center 2nd axis** Q280: Permissible position deviation in the minor axis of the working plane. Input range 0 to 99999.9999
Measuring log Q281: Definition of whether the TNC is to create a measuring log:
0: No measuring log
1: Generate measuring log: the TNC saves the log file TCHPR422.TXT by default in the directory TNC:
2: Interrupt the program run and display the measuring log on the screen. Resume program run with NC Start.

PGM stop if tolerance error Q309: Definition of whether in the event of a violation of tolerance limits the TNC is to interrupt the program run and output an error message:
0: Do not interrupt program run, no error message
1: Interrupt program run, output an error message

Tool number for monitoring Q330: Definition of whether the TNC is to monitor the tool (see “Tool monitoring” on page 368): Input range: 0 to 32767.9, alternatively tool name with max. 16 characters
0: Monitoring not active
>0: Tool number in the tool table TOOL.T

No. of measuring points (4/3) Q423: Specify whether the TNC should measure the stud with 4 or 3 probing points:
4: Use 4 measuring points (standard setting)
3: Use 3 measuring points

Type of traverse? Line=0/Arc=1 Q365: Definition of the path function with which the tool is to move between the measuring points if “traverse to clearance height” (Q301=1) is active.
0: Move between operations on a straight line
1: Move between operations on the pitch circle

Example: NC blocks

| Q273=+50 ;CENTER IN 1ST AXIS |
| Q274=+50 ;CENTER IN 2ND AXIS |
| Q262=75 ;NOMINAL DIAMETER |
| Q325=+90 ;STARTING ANGLE |
| Q247=+30 ;STEPPING ANGLE |
| Q261=-5 ;MEASURING HEIGHT |
| Q320=0 ;SETUP CLEARANCE |
| Q260=+10 ;CLEARANCE HEIGHT |
| Q301=0 ;MOVE TO CLEARANCE |
| Q275=35.15 ;MAX. LIMIT |
| Q276=34.9 ;MIN. LIMIT |
| Q279=0.05 ;TOLERANCE 1ST CENTER |
| Q280=0.05 ;TOLERANCE 2ND CENTER |
| Q281=1 ;MEASURING LOG |
| Q309=0 ;PGM STOP IF ERROR |
| Q330= ;TOOL |
| Q423=4 ;NO. OF MEAS. POINTS |
| Q365=1 ;TYPE OF TRAVERSE |
16.7 MEAS. RECTAN. INSIDE
(Cycle 423, DIN/ISO: G423)

Cycle run

Touch Probe Cycle 423 finds the center, length and width of a rectangular pocket. If you define the corresponding tolerance values in the cycle, the TNC makes a nominal-to-actual value comparison and saves the deviation value in system parameters.

1 The TNC positions the touch probe at rapid traverse (value from FMAX column) following the positioning logic (see “Executing touch probe cycles” on page 283) to the starting point 1. The TNC calculates the touch points from the data in the cycle and the safety clearance from the SET_UP column of the touch probe table.

2 Then the touch probe moves to the entered measuring height and probes the first touch point at the probing feed rate (column F).

3 Then the touch probe moves either paraxially at the measuring height or linearly at the clearance height to the next starting point 2 and probes the second touch point.

4 The TNC positions the probe to starting point 3 and then to starting point 4 to probe the third and fourth touch points.

5 Finally the TNC returns the touch probe to the clearance height and saves the actual values and the deviations in the following Q parameters:

<table>
<thead>
<tr>
<th>Parameter number</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q151</td>
<td>Actual value of center in reference axis</td>
</tr>
<tr>
<td>Q152</td>
<td>Actual value of center in minor axis</td>
</tr>
<tr>
<td>Q154</td>
<td>Actual value of length in the reference axis</td>
</tr>
<tr>
<td>Q155</td>
<td>Actual value of length in the minor axis</td>
</tr>
<tr>
<td>Q161</td>
<td>Deviation at center of reference axis</td>
</tr>
<tr>
<td>Q162</td>
<td>Deviation at center of minor axis</td>
</tr>
<tr>
<td>Q164</td>
<td>Deviation of side length in reference axis</td>
</tr>
<tr>
<td>Q165</td>
<td>Deviation of side length in minor axis</td>
</tr>
</tbody>
</table>
Please note while programming:

Before a cycle definition you must have programmed a tool call to define the touch probe axis.

If the dimensions of the pocket and the safety clearance do not permit pre-positioning in the proximity of the touch points, the TNC always starts probing from the center of the pocket. In this case the touch probe does not return to the clearance height between the four measuring points.

Cycle parameters

- **Center in 1st axis** Q273 (absolute): Center of the pocket in the reference axis of the working plane. Input range –99999.9999 to 99999.9999
- **Center in 2nd axis** Q274 (absolute): Center of the pocket in the minor axis of the working plane. Input range –99999.9999 to 99999.9999
- **First side length** Q282: Pocket length, parallel to the reference axis of the working plane. Input range 0 to 99999.9999
- **2nd side length** Q283: Pocket length, parallel to the minor axis of the working plane. Input range 0 to 99999.9999
- **Measuring height in the touch probe axis** Q261 (absolute): Coordinate of the ball tip center (= touch point) in the touch probe axis in which the measurement is to be made. Input range –99999.9999 to 99999.9999
Setup clearance Q320 (incremental): Additional distance between measuring point and ball tip. Q320 is added to SET_UP (touch probe table). Input range 0 to 99999.9999

Clearance height Q260 (absolute): Coordinate in the touch probe axis at which no collision between touch probe and workpiece (fixtures) can occur. Input range –99999.9999 to 99999.9999

Traversing to clearance height Q301: Definition of how the touch probe is to move between the measuring points:
0: Move at measuring height between measuring points
1: Move at clearance height between measuring points

Max. size limit 1st side length Q284: Maximum permissible length of the pocket. Input range 0 to 99999.9999

Min. size limit 1st side length Q285: Minimum permissible length of the pocket. Input range 0 to 99999.9999

Max. size limit 2nd side length Q286: Maximum permissible width of the pocket. Input range 0 to 99999.9999

Min. size limit 2nd side length Q287: Minimum permissible width of the pocket. Input range 0 to 99999.9999

Tolerance for center 1st axis Q279: Permissible position deviation in the reference axis of the working plane. Input range 0 to 99999.9999

Tolerance for center 2nd axis Q280: Permissible position deviation in the minor axis of the working plane. Input range 0 to 99999.9999
Measuring log Q281: Definition of whether the TNC is to create a measuring log:
0: No measuring log
1: Generate measuring log: the TNC saves the log file TCHPR423.TXT by default in the directory TNC/
2: Interrupt the program run and display the measuring log on the screen. Resume program run with NC Start.

PGM stop if tolerance error Q309: Definition of whether in the event of a violation of tolerance limits the TNC is to interrupt the program run and output an error message:
0: Do not interrupt program run, no error message
1: Interrupt program run, output an error message

Tool number for monitoring Q330: Definition of whether the TNC is to monitor the tool (see “Tool monitoring” on page 368). Input range: 0 to 32767.9, alternatively tool name with max. 16 characters
0: Monitoring not active
>0: Tool number in the tool table TOOL.T

Example: NC blocks

```
5 TCH PROBE 423 MEAS. RECTAN. INSIDE
Q273=+50 ;CENTER IN 1ST AXIS
Q274=+50 ;CENTER IN 2ND AXIS
Q282=80 ;FIRST SIDE LENGTH
Q283=60 ;2ND SIDE LENGTH
Q261=-5 ;MEASURING HEIGHT
Q320=0 ;SETUP CLEARANCE
Q260=+10 ;CLEARANCE HEIGHT
Q301=1 ;MOVE TO CLEARANCE
Q284=0 ;MAX. LIMIT 1ST SIDE
Q285=0 ;MIN. LIMIT 1ST SIDE
Q286=0 ;MAX. LIMIT 2ND SIDE
Q287=0 ;MIN. LIMIT 2ND SIDE
Q279=0 ;TOLERANCE 1ST CENTER
Q280=0 ;TOLERANCE 2ND CENTER
Q281=1 ;MEASURING LOG
Q309=0 ;PGM STOP IF ERROR
Q330= ;TOOL
```
16.8 MEAS. RECTAN. OUTSIDE
(Cycle 424, ISO: G424)

Cycle run

Touch Probe Cycle 424 finds the center, length and width of a rectangular stud. If you define the corresponding tolerance values in the cycle, the TNC makes a nominal-to-actual value comparison and saves the deviation value in system parameters.

1. The TNC positions the touch probe at rapid traverse (value from \textbf{FMAX} column) following the positioning logic (see “Executing touch probe cycles” on page 283) to the starting point 1. The TNC calculates the touch points from the data in the cycle and the safety clearance from the \textbf{SET_UP} column of the touch probe table.

2. Then the touch probe moves to the entered measuring height and probes the first touch point at the probing feed rate (column \textbf{F}).

3. Then the touch probe moves either paraxially at the measuring height or linearly at the clearance height to the next starting point 2 and probes the second touch point.

4. The TNC positions the probe to starting point 3 and then to starting point 4 to probe the third and fourth touch points.

5. Finally the TNC returns the touch probe to the clearance height and saves the actual values and the deviations in the following \textbf{Q} parameters:

\begin{table}[h]
\centering
\begin{tabular}{|c|p{10cm}|}
\hline
\textbf{Parameter number} & \textbf{Meaning} \\
\hline
Q151 & Actual value of center in reference axis \\
\hline
Q152 & Actual value of center in minor axis \\
\hline
Q154 & Actual value of length in the reference axis \\
\hline
Q155 & Actual value of length in the minor axis \\
\hline
Q161 & Deviation at center of reference axis \\
\hline
Q162 & Deviation at center of minor axis \\
\hline
Q164 & Deviation of side length in reference axis \\
\hline
Q165 & Deviation of side length in minor axis \\
\hline
\end{tabular}
\end{table}
Please note while programming:

Before a cycle definition you must have programmed a tool call to define the touch probe axis.

Cycle parameters

- **Center in 1st axis** Q273 (absolute): Center of the stud in the reference axis of the working plane. Input range –99999.9999 to 99999.9999
- **Center in 2nd axis** Q274 (absolute): Center of the stud in the minor axis of the working plane. Input range –99999.9999 to 99999.9999
- **First side length** Q282: Stud length, parallel to the reference axis of the working plane. Input range 0 to 99999.9999
- **2nd side length** Q283: Stud length, parallel to the minor axis of the working plane. Input range 0 to 99999.9999
- **Measuring height in the touch probe axis**
 Q261 (absolute): Coordinate of the ball tip center (= touch point) in the touch probe axis in which the measurement is to be made. Input range –99999.9999 to 99999.9999
- Setup clearance Q320 (incremental): Additional distance between measuring point and ball tip. Q320 is added to SET_UP (touch probe table). Input range 0 to 99999.9999

- Clearance height Q260 (absolute): Coordinate in the touch probe axis at which no collision between touch probe and workpiece (fixtures) can occur. Input range –99999.9999 to 99999.9999

- Traversing to clearance height Q301: Definition of how the touch probe is to move between the measuring points:
 0: Move at measuring height between measuring points
 1: Move at clearance height between measuring points

- Max. size limit 1st side length Q284: Maximum permissible length of the stud. Input range 0 to 99999.9999

- Min. size limit 1st side length Q285: Minimum permissible length of the stud. Input range 0 to 99999.9999

- Max. size limit 2nd side length Q286: Maximum permissible width of the stud. Input range 0 to 99999.9999

- Min. size limit 2nd side length Q287: Minimum permissible width of the stud. Input range 0 to 99999.9999

- Tolerance for center 1st axis Q279: Permissible position deviation in the reference axis of the working plane. Input range 0 to 99999.9999

- Tolerance for center 2nd axis Q280: Permissible position deviation in the minor axis of the working plane. Input range 0 to 99999.9999
Measuring log Q281: Definition of whether the TNC is to create a measuring log:
0: No measuring log
1: Generate measuring log: the TNC saves the log file TCHPR424.TXT by default in the directory TNC.
2: Interrupt the program run and display the measuring log on the screen. Resume program run with NC Start.

PGM stop if tolerance error Q309: Definition of whether in the event of a violation of tolerance limits the TNC is to interrupt the program run and output an error message:
0: Do not interrupt program run, no error message
1: Interrupt program run, output an error message

Tool number for monitoring Q330: Definition of whether the TNC is to monitor the tool (see “Tool monitoring” on page 368). Input range: 0 to 32767.9, alternatively tool name with max. 16 characters:
0: Monitoring not active
>0: Tool number in the tool table TOOL.T

Example: NC blocks

<table>
<thead>
<tr>
<th>5 TCH PROBE 424 MEAS. RECTAN. OUTS.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q273=+50 ;CENTER IN 1ST AXIS</td>
</tr>
<tr>
<td>Q274=+50 ;CENTER IN 2ND AXIS</td>
</tr>
<tr>
<td>Q282=75 ;FIRST SIDE LENGTH</td>
</tr>
<tr>
<td>Q283=35 ;2ND SIDE LENGTH</td>
</tr>
<tr>
<td>Q261=-5 ;MEASURING HEIGHT</td>
</tr>
<tr>
<td>Q320=0 ;SETUP CLEARANCE</td>
</tr>
<tr>
<td>Q260=+20 ;CLEARANCE HEIGHT</td>
</tr>
<tr>
<td>Q301=0 ;MOVE TO CLEARANCE</td>
</tr>
<tr>
<td>Q284=75.1 ;MAX. LIMIT 1ST SIDE</td>
</tr>
<tr>
<td>Q285=74.9 ;MIN. LIMIT 1ST SIDE</td>
</tr>
<tr>
<td>Q286=35 ;MAX. LIMIT 2ND SIDE</td>
</tr>
<tr>
<td>Q287=34.95 ;MIN. LIMIT 2ND SIDE</td>
</tr>
<tr>
<td>Q279=0.1 ;TOLERANCE 1ST CENTER</td>
</tr>
<tr>
<td>Q280=0.1 ;TOLERANCE 2ND CENTER</td>
</tr>
<tr>
<td>Q281=1 ;MEASURING LOG</td>
</tr>
<tr>
<td>Q309=0 ;PGM STOP IF ERROR</td>
</tr>
<tr>
<td>Q330= ;TOOL</td>
</tr>
</tbody>
</table>
16.9 MEASURE INSIDE WIDTH
(Cycle 425, DIN/ISO: G425)

Cycle run

Touch Probe Cycle 425 measures the position and width of a slot (or pocket). If you define the corresponding tolerance values in the cycle, the TNC makes a nominal-to-actual value comparison and saves the deviation value in a system parameter.

1 The TNC positions the touch probe at rapid traverse (value from \texttt{FMAX} column) following the positioning logic (see “Executing touch probe cycles” on page 283) to the starting point 1. The TNC calculates the touch points from the data in the cycle and the safety clearance from the \texttt{SET_UP} column of the touch probe table.

2 Then the touch probe moves to the entered measuring height and probes the first touch point at the probing feed rate (column F). The first probing is always in the positive direction of the programmed axis.

3 If you enter an offset for the second measurement, the TNC then moves the touch probe (if required, at clearance height) to the next starting point 2 and probes the second touch point. If the nominal length is large, the TNC moves the touch probe to the second touch point at rapid traverse. If you do not enter an offset, the TNC measures the width in the exact opposite direction.

4 Finally the TNC returns the touch probe to the clearance height and saves the actual values and the deviation in the following Q parameters:

<table>
<thead>
<tr>
<th>Parameter number</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q156</td>
<td>Actual value of measured length</td>
</tr>
<tr>
<td>Q157</td>
<td>Actual value of the centerline</td>
</tr>
<tr>
<td>Q166</td>
<td>Deviation of the measured length</td>
</tr>
</tbody>
</table>

Please note while programming:

Before a cycle definition you must have programmed a tool call to define the touch probe axis.
Cycle parameters

- **Starting point in 1st axis** Q328 (absolute): Starting point for probing in the reference axis of the working plane. Input range –99999.9999 to 99999.9999
- **Starting point in 2nd axis** Q329 (absolute): Starting point for probing in the minor axis of the working plane. Input range –99999.9999 to 99999.9999
- **Offset for 2nd measurement** Q310 (incremental): Distance by which the touch probe is displaced before the second measurement. If you enter 0, the TNC does not offset the touch probe. Input range –99999.9999 to 99999.9999
- **Measuring axis** Q272: Axis in the working plane in which the measurement is to be made:
 1: Reference axis = measuring axis
 2: Minor axis = measuring axis
- **Measuring height in the touch probe axis** Q261 (absolute): Coordinate of the ball tip center (= touch point) in the touch probe axis in which the measurement is to be made. Input range –99999.9999 to 99999.9999
- **Clearance height** Q260 (absolute): Coordinate in the touch probe axis at which no collision between touch probe and workpiece (fixtures) can occur. Input range –99999.9999 to 99999.9999
- **Nominal length** Q311: Nominal value of the length to be measured. Input range 0 to 99999.9999
- **Maximum dimension** Q288: Maximum permissible length. Input range 0 to 99999.9999
- **Minimum dimension** Q289: Minimum permissible length. Input range 0 to 99999.9999
Measuring log Q281: Definition of whether the TNC is to create a measuring log:
- **0:** No measuring log
- **1:** Generate measuring log: the TNC saves the log file TCHPR425.TXT by default in the directory TNC:\.
- **2:** Interrupt the program run and display the measuring log on the screen. Resume program run with NC Start.

PGM stop if tolerance error Q309: Definition of whether in the event of a violation of tolerance limits the TNC is to interrupt the program run and output an error message:
- **0:** Do not interrupt program run, no error message
- **1:** Interrupt program run, output an error message

Tool number for monitoring Q330: Definition of whether the TNC is to monitor the tool (see “Tool monitoring” on page 368): Input range: 0 to 32767.9, alternatively tool name with max. 16 characters
- **0:** Monitoring not active
- **>0:** Tool number in the tool table TOOL.T

Setup clearance Q320 (incremental): Additional distance between measuring point and ball tip. Q320 is added to SET_UP (touch probe table). Input range 0 to 99999.9999

Traversing to clearance height Q301: Definition of how the touch probe is to move between the measuring points:
- **0:** Move at measuring height between measuring points
- **1:** Move at clearance height between measuring points

Example: NC blocks

```
5 TCH PROBE 425 MEASURE INSIDE WIDTH
Q328=+75 ;STARTING PNT 1ST AXIS
Q329=-12.5;STARTING PNT 2ND AXIS
Q310=+0 ;OFFS. 2ND MEASUREMENT
Q272=1 ;MEASURING AXIS
Q261=-5 ;MEASURING HEIGHT
Q260=+10 ;CLEARANCE HEIGHT
Q311=25 ;NOMINAL LENGTH
Q288=25.05;MAX. LIMIT
Q289=25 ;MIN. LIMIT
Q281=1 ;MEASURING LOG
Q309=0 ;PGM STOP IF ERROR
Q330= ;TOOL
Q320=0 ;SETUP CLEARANCE
Q301=0 ;MOVE TO CLEARANCE
```
16.10 MEASURE RIDGE WIDTH
(Cycle 426, ISO: G426)

Cycle run

Touch Probe Cycle 426 measures the position and width of a ridge. If you define the corresponding tolerance values in the cycle, the TNC makes a nominal-to-actual value comparison and saves the deviation value in system parameters.

1. The TNC positions the touch probe at rapid traverse (value from \texttt{FMAX} column) following the positioning logic (see “Executing touch probe cycles” on page 283) to the starting point 1. The TNC calculates the touch points from the data in the cycle and the safety clearance from the \texttt{SET_UP} column of the touch probe table.

2. Then the touch probe moves to the entered measuring height and probes the first touch point at the probing feed rate (column \texttt{F}). The first probing is always in the negative direction of the programmed axis.

3. Then the touch probe moves at clearance height to the next starting position and probes the second touch point.

4. Finally the TNC returns the touch probe to the clearance height and saves the actual values and the deviation in the following Q parameters:

<table>
<thead>
<tr>
<th>Parameter number</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q156</td>
<td>Actual value of measured length</td>
</tr>
<tr>
<td>Q157</td>
<td>Actual value of the centerline</td>
</tr>
<tr>
<td>Q166</td>
<td>Deviation of the measured length</td>
</tr>
</tbody>
</table>

Please note while programming:

Before a cycle definition you must have programmed a tool call to define the touch probe axis.
Cycle parameters

- **1st meas. point 1st axis** Q263 (absolute): Coordinate of the first touch point in the reference axis of the working plane. Input range –99999.9999 to 99999.9999

- **1st meas. point 2nd axis** Q264 (absolute): Coordinate of the first touch point in the minor axis of the working plane. Input range –99999.9999 to 99999.9999

- **2nd meas. point 1st axis** Q265 (absolute): Coordinate of the second touch point in the reference axis of the working plane. Input range –99999.9999 to 99999.9999

- **2nd meas. point 2nd axis** Q266 (absolute): Coordinate of the second touch point in the minor axis of the working plane. Input range –99999.9999 to 99999.9999

- **Measuring axis** Q272: Axis in the working plane in which the measurement is to be made:
 1: Reference axis = measuring axis
 2: Minor axis = measuring axis

- **Measuring height in the touch probe axis** Q261 (absolute): Coordinate of the ball tip center (= touch point) in the touch probe axis in which the measurement is to be made. Input range –99999.9999 to 99999.9999

- **Setup clearance** Q320 (incremental): Additional distance between measuring point and ball tip. Q320 is added to SET_UP (touch probe table). Input range 0 to 99999.9999

- **Clearance height** Q260 (absolute): Coordinate in the touch probe axis at which no collision between touch probe and workpiece (fixtures) can occur. Input range –99999.9999 to 99999.9999

- **Nominal length** Q311: Nominal value of the length to be measured. Input range 0 to 99999.9999

- **Maximum dimension** Q288: Maximum permissible length. Input range 0 to 99999.9999

- **Minimum dimension** Q289: Minimum permissible length. Input range 0 to 99999.9999
Measuring log Q281: Definition of whether the TNC is to create a measuring log:
- **0:** No measuring log
- **1:** Generate measuring log: The TNC saves the log file TCHPR426.TXT by default in the directory TNC:
- **2:** Interrupt the program run and display the measuring log on the screen. Resume program run with NC Start.

PGM stop if tolerance error Q309: Definition of whether in the event of a violation of tolerance limits the TNC is to interrupt the program run and output an error message:
- **0:** Do not interrupt program run, no error message
- **1:** Interrupt program run, output an error message

Tool number for monitoring Q330: Definition of whether the TNC is to monitor the tool (see “Tool monitoring” on page 368). Input range: 0 to 32767.9, alternatively tool name with max. 16 characters
- **0:** Monitoring not active
- **>0:** Tool number in the tool table TOOL.T

Example: NC blocks

```
5 TCH PROBE 426 MEASURE RIDGE WIDTH
Q263=+50 ;1ST POINT 1ST AXIS
Q264=+25 ;1ST POINT 2ND AXIS
Q265=+50 ;2ND POINT 1ST AXIS
Q266=+85 ;2ND POINT 2ND AXIS
Q272=2 ;MEASURING AXIS
Q261=-5 ;MEASURING HEIGHT
Q320=0 ;SET-UP CLEARANCE
Q260=+20 ;CLEARANCE HEIGHT
Q311=45 ;NOMINAL LENGTH
Q288=45 ;MAX. LIMIT
Q289=44.95;MIN. LIMIT
Q281=1 ;MEASURING LOG
Q309=0 ;PGM STOP IF ERROR
Q330= ;TOOL
```
16.11 MEASURE COORDINATE
(Cycle 427, DIN/ISO: G427)

Cycle run

Touch probe cycle 427 finds a coordinate in a selectable axis and saves the value in a system parameter. If you define the corresponding tolerance values in the cycle, the TNC makes a nominal-to-actual value comparison and saves the deviation value in system parameters.

1 The TNC positions the touch probe at rapid traverse (value from FMAX column) following the positioning logic (see “Executing touch probe cycles” on page 283) to the starting point 1. The TNC offsets the touch probe by the safety clearance in the direction opposite the defined traverse direction.

2 Then the TNC positions the touch probe to the entered touch point 1 in the working plane and measures the actual value in the selected axis.

3 Finally the TNC returns the touch probe to the clearance height and saves the measured coordinate in the following Q parameter:

<table>
<thead>
<tr>
<th>Parameter number</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q160</td>
<td>Measured coordinate</td>
</tr>
</tbody>
</table>

Please note while programming:

Before a cycle definition you must have programmed a tool call to define the touch probe axis.
Cycle parameters

- **1st meas. point 1st axis** Q263 (absolute): Coordinate of the first touch point in the reference axis of the working plane. Input range –99999.9999 to 99999.9999

- **1st meas. point 2nd axis** Q264 (absolute): Coordinate of the first touch point in the minor axis of the working plane. Input range –99999.9999 to 99999.9999

- **Measuring height in the touch probe axis** Q261 (absolute): Coordinate of the ball tip center (= touch point) in the touch probe axis in which the measurement is to be made. Input range –99999.9999 to 99999.9999

- **Setup clearance** Q320 (incremental): Additional distance between measuring point and ball tip. Q320 is added to SET_UP (touch probe table). Input range 0 to 99999.9999

- **Measuring axis (1..3: 1=reference axis)** Q272: Axis in which the measurement is to be made:
 1: Reference axis = measuring axis
 2: Minor axis = measuring axis
 3: Touch probe axis = measuring axis

- **Traverse direction 1** Q267: Direction in which the probe is to approach the workpiece:
 -1: Negative traverse direction
 +1: Positive traverse direction

- **Clearance height** Q260 (absolute): Coordinate in the touch probe axis at which no collision between touch probe and workpiece (fixtures) can occur. Input range –99999.9999 to 99999.9999
Measuring log Q281: Definition of whether the TNC is to create a measuring log:
0: No measuring log
1: Generate measuring log: the TNC saves the log file TCHPR427.TXT by default in the directory TNC:\.
2: Interrupt the program run and display the measuring log on the screen. Resume program run with NC Start.

Maximum limit of size Q288: Maximum permissible measured value. Input range 0 to 99999.9999

Minimum limit of size Q289: Minimum permissible measured value. Input range 0 to 99999.9999

PGM stop if tolerance error Q309: Definition of whether in the event of a violation of tolerance limits the TNC is to interrupt the program run and output an error message:
0: Do not interrupt program run, no error message
1: Interrupt program run, output an error message

Tool number for monitoring Q330: Definition of whether the TNC is to monitor the tool (see “Tool monitoring” on page 368). Input range: 0 to 32767.9, alternatively tool name with max. 16 characters:
0: Monitoring not active
>0: Tool number in the tool table TOOL.T

Example: NC blocks

```
5 TCH PROBE 427 MEASURE COORDINATE
Q263=+35 ;1ST POINT 1ST AXIS
Q264=+45 ;1ST POINT 2ND AXIS
Q261=+5 ;MEASURING HEIGHT
Q320=0 ;SET-UP CLEARANCE
Q272=3 ;MEASURING AXIS
Q267=-1 ;TRaverse DIRECTION
Q260=+20 ;CLEARANCE HEIGHT
Q281=1 ;MEASURING LOG
Q288=5.1 ;MAX. LIMIT
Q289=4.95 ;MIN. LIMIT
Q309=0 ;PGM STOP IF ERROR
Q330= ;TOOL
```
Cycle run

Touch Probe Cycle 430 finds the center and diameter of a bolt hole circle by probing three holes. If you define the corresponding tolerance values in the cycle, the TNC makes a nominal-to-actual value comparison and saves the deviation value in system parameters.

1. The TNC positions the touch probe at rapid traverse (value from column FMAX) following the positioning logic (see “Executing touch probe cycles” on page 283) to the center of the first hole.
2. Then the probe moves to the entered measuring height and probes four points to find the first hole center.
3. The touch probe returns to the clearance height and then to the position entered as center of the second hole.
4. The TNC moves the touch probe to the entered measuring height and probes four points to find the second hole center.
5. The touch probe returns to the clearance height and then to the position entered as center of the third hole.
6. The TNC moves the touch probe to the entered measuring height and probes four points to find the third hole center.
7. Finally the TNC returns the touch probe to the clearance height and saves the actual values and the deviations in the following Q parameters:

<table>
<thead>
<tr>
<th>Parameter number</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q151</td>
<td>Actual value of center in reference axis</td>
</tr>
<tr>
<td>Q152</td>
<td>Actual value of center in minor axis</td>
</tr>
<tr>
<td>Q153</td>
<td>Actual value of bolt hole circle diameter</td>
</tr>
<tr>
<td>Q161</td>
<td>Deviation at center of reference axis</td>
</tr>
<tr>
<td>Q162</td>
<td>Deviation at center of minor axis</td>
</tr>
<tr>
<td>Q163</td>
<td>Deviation of bolt hole circle diameter</td>
</tr>
</tbody>
</table>

Please note while programming:

Before a cycle definition you must have programmed a tool call to define the touch probe axis.

Cycle 430 only monitors for tool breakage, no automatic tool compensation.
Cycle parameters

- **Center in 1st axis** Q273 (absolute): Bolt hole circle center (nominal value) in the reference axis of the working plane. Input range –99999.9999 to 99999.9999
- **Center in 2nd axis** Q274 (absolute): Bolt hole circle center (nominal value) in the minor axis of the working plane. Input range –99999.9999 to 99999.9999
- **Nominal diameter** Q262: Enter the bolt hole circle diameter. Input range 0 to 99999.9999
- **Angle of 1st hole** Q291 (absolute): Polar coordinate angle of the first hole center in the working plane. Input range –360.0000 to 360.0000
- **Angle of 2nd hole** Q292 (absolute): Polar coordinate angle of the second hole center in the working plane. Input range –360.0000 to 360.0000
- **Angle of 3rd hole** Q293 (absolute): Polar coordinate angle of the third hole center in the working plane. Input range –360.0000 to 360.0000
> **Measuring height in the touch probe axis**
> Q261 (absolute): Coordinate of the ball tip center (= touch point) in the touch probe axis in which the measurement is to be made. Input range –99999.9999 to 99999.9999

> **Clearance height** Q260 (absolute): Coordinate in the touch probe axis at which no collision between touch probe and workpiece (fixtures) can occur. Input range –99999.9999 to 99999.9999

> **Maximum limit of size** Q288: Maximum permissible diameter of bolt hole circle. Input range 0 to 99999.9999

> **Minimum limit of size** Q289: Minimum permissible diameter of bolt hole circle. Input range 0 to 99999.9999

> **Tolerance for center 1st axis** Q279: Permissible position deviation in the reference axis of the working plane. Input range 0 to 99999.9999

> **Tolerance for center 2nd axis** Q280: Permissible position deviation in the minor axis of the working plane. Input range 0 to 99999.9999
Measuring log Q281: Definition of whether the TNC is to create a measuring log:
0: No measuring log
1: Generate measuring log: the TNC saves the log file TCHPR430.TXT by default in the directory TNC:\.
2: Interrupt the program run and display the measuring log on the screen. Resume program run with NC Start.

PGM stop if tolerance error Q309: Definition of whether in the event of a violation of tolerance limits the TNC is to interrupt the program run and output an error message:
0: Do not interrupt program run, no error message
1: Interrupt program run, output an error message

Tool number for monitoring Q330: Definition of whether the TNC is to monitor for tool breakage (see “Tool monitoring” on page 368): Input range: 0 to 32767.9, alternatively tool name with max. 16 characters.
0: Monitoring not active
>0: Tool number in the tool table TOOL.T

Example: NC blocks

```
5 TCH PROBE 430 MEAS. BOLT HOLE CIRC
Q273=+50 ;CENTER IN 1ST AXIS
Q274=+50 ;CENTER IN 2ND AXIS
Q262=80 ;NOMINAL DIAMETER
Q291=+0 ;ANGLE OF 1ST HOLE
Q292=+90 ;ANGLE OF 2ND HOLE
Q293=+180 ;ANGLE OF 3RD HOLE
Q261=-5 ;MEASURING HEIGHT
Q260=+10 ;CLEARANCE HEIGHT
Q288=80.1 ;MAX. LIMIT
Q289=79.9 ;MIN. LIMIT
Q279=0.15 ;TOLERANCE 1ST CENTER
Q280=0.15 ;TOLERANCE 2ND CENTER
Q281=1 ;MEASURING LOG
Q309=0 ;PGM STOP IF ERROR
Q330= ;TOOL
```
16.13 MEASURE PLANE (Cycle 431, DIN/ISO: G431)

Cycle run

Touch Probe Cycle 431 finds the angle of a plane by measuring three points. It saves the measured values in system parameters.

1. The TNC positions the touch probe at rapid traverse (value from FMAX column) following the positioning logic (see “Executing touch probe cycles” on page 283) to the programmed starting point 1 and measures the first touch point of the plane. The TNC offsets the touch probe by the safety clearance in the direction opposite to the direction of probing.

2. The touch probe returns to the clearance height and then moves in the working plane to starting point 2 and measures the actual value of the second touch point of the plane.

3. The touch probe returns to the clearance height and then moves in the working plane to starting point 3 and measures the actual value of the third touch point.

4. Finally the TNC returns the touch probe to the clearance height and saves the measured angle values in the following Q parameters:

<table>
<thead>
<tr>
<th>Parameter number</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q158</td>
<td>Projection angle of the A axis</td>
</tr>
<tr>
<td>Q159</td>
<td>Projection angle of the B axis</td>
</tr>
<tr>
<td>Q170</td>
<td>Spatial angle A</td>
</tr>
<tr>
<td>Q171</td>
<td>Spatial angle B</td>
</tr>
<tr>
<td>Q172</td>
<td>Spatial angle C</td>
</tr>
<tr>
<td>Q173 to Q175</td>
<td>Measured values in the touch probe axis (first to third measurement)</td>
</tr>
</tbody>
</table>
Please note while programming:

Before a cycle definition you must have programmed a tool call to define the touch probe axis.

For the TNC to be able to calculate the angular values, the three measuring points must not be positioned on one straight line.

The spatial angles that are needed for tilting the working plane are saved in parameters Q170 – Q172. With the first two measuring points you also specify the direction of the reference axis when tilting the working plane.

The third measuring point determines the direction of the tool axis. Define the third measuring point in the direction of the positive Y axis to ensure that the position of the tool axis in a clockwise coordinate system is correct.

Cycle parameters

- **1st meas. point 1st axis** Q263 (absolute): Coordinate of the first touch point in the reference axis of the working plane. Input range –99999.9999 to 99999.9999
- **1st meas. point 2nd axis** Q264 (absolute): Coordinate of the first touch point in the minor axis of the working plane. Input range –99999.9999 to 99999.9999
- **1st meas. point 3rd axis** Q294 (absolute): Coordinate of the first touch point in the touch probe axis. Input range –99999.9999 to 99999.9999
- **2nd meas. point 1st axis** Q265 (absolute): Coordinate of the second touch point in the reference axis of the working plane. Input range –99999.9999 to 99999.9999
- **2nd meas. point 2nd axis** Q266 (absolute): Coordinate of the second touch point in the minor axis of the working plane. Input range –99999.9999 to 99999.9999
- **2nd meas. point 3rd axis** Q295 (absolute): Coordinate of the second touch point in the touch probe axis. Input range –99999.9999 to 99999.9999
- **3rd meas. point 1st axis** Q296 (absolute): Coordinate of the third touch point in the reference axis of the working plane. Input range –99999.9999 to 99999.9999
- **3rd meas. point 2nd axis** Q297 (absolute): Coordinate of the third touch point in the minor axis of the working plane. Input range –99999.9999 to 99999.9999
- **3rd meas. point 3rd axis** Q298 (absolute): Coordinate of the third touch point in the touch probe axis. Input range –99999.9999 to 99999.9999
- **3rd meas. point 3rd axis** Q298 (absolute): Coordinate of the third touch point in the touch probe axis. Input range –99999.9999 to 99999.9999

- **Setup clearance** Q320 (incremental): Additional distance between measuring point and ball tip. Q320 is added to **SET_UP** (touch probe table). Input range 0 to 99999.9999

- **Clearance height** Q260 (absolute): Coordinate in the touch probe axis at which no collision between touch probe and workpiece (fixtures) can occur. Input range –99999.9999 to 99999.9999

- **Measuring log** Q281: Definition of whether the TNC is to create a measuring log:
 0: No measuring log
 1: Generate measuring log; the TNC saves the log file **TCHPR431.TXT** by default in the directory TNC:\.
 2: Interrupt the program run and display the measuring log on the screen. Resume program run with NC Start.

Example: NC blocks

<table>
<thead>
<tr>
<th>TCH PROBE 431 MEASURE PLANE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q263=+20 ;1ST POINT 1ST AXIS</td>
</tr>
<tr>
<td>Q264=+20 ;1ST POINT 2ND AXIS</td>
</tr>
<tr>
<td>Q265=+50 ;2ND POINT 1ST AXIS</td>
</tr>
<tr>
<td>Q266=+80 ;2ND POINT 2ND AXIS</td>
</tr>
<tr>
<td>Q265=+50 ;2ND POINT 1ST AXIS</td>
</tr>
<tr>
<td>Q266=+80 ;2ND POINT 2ND AXIS</td>
</tr>
<tr>
<td>Q295=+0 ;2ND POINT 3RD AXIS</td>
</tr>
<tr>
<td>Q296=+90 ;3RD POINT 1ST AXIS</td>
</tr>
<tr>
<td>Q297=+35 ;3RD POINT 2ND AXIS</td>
</tr>
<tr>
<td>Q298=+12 ;3RD POINT 3RD AXIS</td>
</tr>
<tr>
<td>Q320=0 ;SET-UP CLEARANCE</td>
</tr>
<tr>
<td>Q260=+5 ;CLEARANCE HEIGHT</td>
</tr>
<tr>
<td>Q281=1 ;MEASURING LOG</td>
</tr>
</tbody>
</table>
Example: Measuring and reworking a rectangular stud

Program sequence:
- Roughing with 0.5 mm finishing allowance
- Measuring
- Rectangular stud finishing in accordance with the measured values

```
0 BEGIN PGM BEAMS MM
1 TOOL CALL 69 Z
2 L Z+100 R0 FMAX
3 FN 0: Q1 = +81
4 FN 0: Q2 = +61
5 CALL LBL 1
6 L Z+100 R0 FMAX
7 TOOL CALL 99 Z
8 TCH PROBE 424 MEAS. RECTAN. OUTS.
    Q273=+50 ;CENTER IN 1ST AXIS
    Q274=+50 ;CENTER IN 2ND AXIS
    Q282=80 ;FIRST SIDE LENGTH
    Q283=60 ;2ND SIDE LENGTH
    Q261=-5 ;MEASURING HEIGHT
    Q320=0 ;SETUP CLEARANCE
    Q260=+30 ;CLEARANCE HEIGHT
    Q301=0 ;MOVE TO CLEARANCE
    Q284=0 ;MAX. LIMIT 1ST SIDE
```
Q285=0 ;MIN. LIMIT 1ST SIDE
Q286=0 ;MAX. LIMIT 2ND SIDE
Q287=0 ;MIN. LIMIT 2ND SIDE
Q279=0 ;TOLERANCE 1ST CENTER
Q280=0 ;TOLERANCE 2ND CENTER
Q281=0 ;MEASURING LOG
Q309=0 ;PGM STOP IF ERROR
Q330=0 ;TOOL NUMBER

9 FN 2: Q1 = +Q1 - +Q164
10 FN 2: Q2 = +Q2 - +Q165
11 L Z+100 R0 FMAX
12 TOOL CALL 1 Z S5000
13 CALL LBL 1
14 L Z+100 R0 FMAX M2
15 LBL 1
16 CYCL DEF 213 STUD FINISHING

17 CYCL CALL M3
18 LBL 0
19 END PGM BEAMS MM
Example: Measuring a rectangular pocket and recording the results

```
0 BEGIN PGM BSMEAS MM
1 TOOL CALL 1 Z           Tool call for touch probe
2 L Z+100 R0 FMAX         Retract the touch probe
3 TCH PROBE 423 MEAS. RECTAN. INSIDE
    Q273=+50 ;CENTER IN 1ST AXIS
    Q274=+40 ;CENTER IN 2ND AXIS
    Q282=90 ;FIRST SIDE LENGTH Nominal length in X
    Q283=70  ;2ND SIDE LENGTH  Nominal length in Y
    Q261=-5 ;MEASURING HEIGHT
    Q320=0  ;SET-UP CLEARANCE
    Q260=+20 ;CLEARANCE HEIGHT
    Q301=0  ;MOVE TO CLEARANCE
```
<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q284=90.15</td>
<td>Maximum limit in X</td>
</tr>
<tr>
<td>Q285=89.95</td>
<td>Minimum limit in X</td>
</tr>
<tr>
<td>Q286=70.1</td>
<td>Maximum limit in Y</td>
</tr>
<tr>
<td>Q287=69.9</td>
<td>Minimum limit in Y</td>
</tr>
<tr>
<td>Q279=0.15</td>
<td>Permissible position deviation in X</td>
</tr>
<tr>
<td>Q280=0.1</td>
<td>Permissible position deviation in Y</td>
</tr>
<tr>
<td>Q281=1</td>
<td>Save measuring log to a file</td>
</tr>
<tr>
<td>Q309=0</td>
<td>Do not display an error message in case of a tolerance violation</td>
</tr>
<tr>
<td>Q330=0</td>
<td>No tool monitoring</td>
</tr>
<tr>
<td>4 L Z+100 R0 FMAX M2</td>
<td>Retract in the tool axis, end program</td>
</tr>
<tr>
<td>5 END PGM BSMEAS MM</td>
<td></td>
</tr>
</tbody>
</table>
16.14 Programming Examples
Touch Probe Cycles:
Special Functions
17.1 Fundamentals

Overview

The TNC must be specially prepared by the machine tool builder for the use of a 3-D touch probe.

The TNC provides a cycle for the following special purpose:

<table>
<thead>
<tr>
<th>Cycle</th>
<th>Soft key</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 MEASURING Cycle for defining OEM cycles</td>
<td></td>
<td>415</td>
</tr>
</tbody>
</table>
17.2 MEASURING (Cycle 3)

Cycle run

Touch Probe Cycle 3 measures any position on the workpiece in a selectable direction. Unlike other measuring cycles, Cycle 3 enables you to enter the measuring path DIST and feed rate F directly. Also, the touch probe retracts by a definable value after determining the measured value MB.

1. The touch probe moves from the current position at the entered feed rate in the defined probing direction. The probing direction must be defined in the cycle as a polar angle.

2. After the TNC has saved the position, the touch probe stops. The TNC saves the X, Y, Z coordinates of the probe-tip center in three successive Q parameters. The TNC does not conduct any length or radius compensations. You define the number of the first result parameter in the cycle.

3. Finally, the TNC moves the touch probe back by that value against the probing direction that you defined in the parameter MB.

Please note while programming:

The exact behavior of touch probe cycle 3 is defined by your machine tool builder or a software manufacturer who uses it within specific touch probe cycles.

The machine parameters DIST (maximum traverse to touch point) and F (probing feed rate), which are effective in other measuring cycles, do not apply in Touch Probe Cycle 3.

Remember that the TNC always writes to 4 successive Q parameters.

If the TNC was not able to determine a valid touch point, the program is run without error message. In this case the TNC assigns the value –1 to the 4th result parameter so that you can deal with the error yourself.

The TNC retracts the touch probe by no more than the retraction distance MB and does not pass the starting point of the measurement. This rules out any collision during retraction.

With function FN17: SYSWRITE ID 990 NR 6 you can set whether the cycle runs through the probe input X12 or X13.
Cycle parameters

- **Parameter number for result**: Enter the number of the Q parameter to which you want the TNC to assign the first measured coordinate (X). The values Y and Z are in the immediately following Q parameters. Input range 0 to 1999

- **Probing angle**: Enter the angle in whose direction the probe is to move and confirm with the ENT key. Input range: X, Y or Z

- **Probing angle**: Angle, measured from the defined probing axis in which the touch probe is to move. Confirm with ENT. Input range –180.0000 to 180.0000

- **Maximum measuring path**: Enter the maximum distance from the starting point by which the touch probe is to move. Confirm with ENT. Input range –999999.9999 to 999999.9999

- **Feed rate for measurement**: Enter the measuring feed rate in mm/min. Input range 0 to 3000.000

- **Maximum retraction path**: Traverse path in the direction opposite the probing direction, after the stylus was deflected. The TNC returns the touch probe to a point no farther than the starting point, so that there can be no collision. Input range 0 to 999999.9999

- **Reference system? (0=ACT/1=REF)**: Specify whether the probing direction and the result of measurement are to be referenced to the actual coordinate system (ACT, can be shifted or rotated), or to the machine coordinate system (REF):
 - 0: Probe in the current system and save measurement result in the ACT system
 - 1: Probe in the machine-based REF system and save measurement result in the REF system

- **Error mode (0=OFF/1=ON)**: Specify whether the TNC is to issue an error message if the stylus is deflected at cycle start. If you select mode 1, the TNC saves the value 2.0 in the 4th result parameter value and continues the cycle.

- **Error mode (0=OFF/1=ON)**: Specify whether the TNC is to issue an error message if the stylus is deflected at cycle start. If you select mode 1, the TNC saves the value 2.0 in the 4th result parameter and continues the cycle.
 - 0: Issue error message
 - 1: Do not issue error message

Example: NC blocks
```
4 TCH PROBE 3.0 MEASURING
5 TCH PROBE 3.1 Q1
6 TCH PROBE 3.2 X ANGLE: +15
7 TCH PROBE 3.3 DIST +10 F100 MB1 REFERENCE SYSTEM:0
8 TCH PROBE 3.4 ERRORMODE1
```
Touch Probe Cycles: Automatic Tool Measurement
18.1 Fundamentals

Overview

The TNC and the machine tool must be set up by the machine tool builder for use of the TT touch probe.

Some cycles and functions may not be provided on your machine tool. Refer to your machine tool manual.

In conjunction with the TNC’s tool measurement cycles, the tool touch probe enables you to measure tools automatically. The compensation values for tool length and radius can be stored in the central tool file TOOL.T and are accounted for at the end of the touch probe cycle. The following types of tool measurement are provided:

- Tool measurement while the tool is at standstill.
- Tool measurement while the tool is rotating.
- Measuring individual teeth.

You can program the cycles for tool measurement in the Programming and Editing mode of operation via the TOUCH PROBE key. The following cycles are available:

<table>
<thead>
<tr>
<th>Cycle</th>
<th>New format</th>
<th>Old format</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calibrating the TT, Cycles 30 and 480</td>
<td>608</td>
<td>30</td>
<td>Page 423</td>
</tr>
<tr>
<td>Measuring the tool length, Cycles 31 and 481</td>
<td>481</td>
<td>31</td>
<td>Page 424</td>
</tr>
<tr>
<td>Measuring the tool radius, Cycles 32 and 482</td>
<td>482</td>
<td>32</td>
<td>Page 426</td>
</tr>
<tr>
<td>Measuring the tool length and radius, Cycles 33 and 483</td>
<td>483</td>
<td>33</td>
<td>Page 428</td>
</tr>
</tbody>
</table>

The measuring cycles can be used only when the central tool file TOOL.T is active.

Before working with the measuring cycles, you must first enter all the required data into the central tool file and call the tool to be measured with **TOOL CALL**.
Differences between Cycles 31 to 33 and Cycles 481 to 483

The features and the operating sequences are absolutely identical. There are only two differences between Cycles 31 to 33 and Cycles 481 to 483:

- Cycles 481 to 483 are also available in controls for ISO programming under G481 to G483.
- Instead of a selectable parameter for the status of the measurement, the new cycles use the fixed parameter Q199.
Setting the machine parameters

Before you start work with the TT cycles, inspect all machine parameters defined in ProbSettings > CfgToolMeasurement and CfgTTRoundStylus.

The TNC uses the feed rate for probing defined in probingFeed when measuring a tool at standstill.

When measuring a rotating tool, the TNC automatically calculates the spindle speed and feed rate for probing.

The spindle speed is calculated as follows:

\[
n = \frac{\text{maxPeriphSpeedMeas}}{r \times 0.0063}
\]

where

- \(n \) Spindle speed [rpm]
- \(\text{maxPeriphSpeedMeas} \) Maximum permissible cutting speed in m/min
- \(r \) Active tool radius in mm

The feed rate for probing is calculated from:

\[
v = \text{meas. tolerance} \times n
\]

where

- \(v \) Feed rate for probing in mm/min
- \(\text{meas. tolerance} \) Measuring tolerance [mm], depending on maxPeriphSpeedMeas
- \(n \) Speed in rpm

probingFeedCalc determines the calculation of the probing feed rate:

- **probingFeedCalc = ConstantTolerance:**

The measuring tolerance remains constant regardless of the tool radius. With very large tools, however, the feed rate for probing is reduced to zero. The smaller you set the maximum permissible rotational speed (maxPeriphSpeedMeas) and the permissible tolerance (measureTolerance1), the sooner you will encounter this effect.

- **probingFeedCalc = VariableTolerance:**

The measuring tolerance is adjusted relative to the size of the tool radius. This ensures a sufficient feed rate for probing even with large tool radii. The TNC adjusts the measuring tolerance according to the following table:

<table>
<thead>
<tr>
<th>Tool radius</th>
<th>Measuring tolerance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Up to 30 mm</td>
<td>measureTolerance1</td>
</tr>
<tr>
<td>30 to 60 mm</td>
<td>2 * measureTolerance1</td>
</tr>
<tr>
<td>60 to 90 mm</td>
<td>3 * measureTolerance1</td>
</tr>
<tr>
<td>90 to 120 mm</td>
<td>4 * measureTolerance1</td>
</tr>
</tbody>
</table>
probingFeedCalc = ConstantFeed:

The feed rate for probing remains constant, the error of measurement, however, rises linearly with the increase in tool radius:

\[
\text{Measuring tolerance} = \frac{r \cdot \text{measureTolerance1}}{5} \text{ mm, where}
\]

- \(r \)
 Active tool radius in mm
- \(\text{measureTolerance1} \)
 Maximum permissible error of measurement

Entries in the tool table TOOL.T

<table>
<thead>
<tr>
<th>Abbr.</th>
<th>Inputs</th>
<th>Dialog</th>
</tr>
</thead>
<tbody>
<tr>
<td>CUT</td>
<td>Number of teeth (20 teeth maximum)</td>
<td>Number of teeth?</td>
</tr>
<tr>
<td>LTOL</td>
<td>Permissible deviation from tool length (L) for wear detection. If the entered value is exceeded, the TNC locks the tool (status (L)). Input range: 0 to 0.9999 mm</td>
<td>Wear tolerance: length?</td>
</tr>
<tr>
<td>RTOL</td>
<td>Permissible deviation from tool radius (R) for wear detection. If the entered value is exceeded, the TNC locks the tool (status (I)). Input range: 0 to 0.9999 mm</td>
<td>Wear tolerance: radius?</td>
</tr>
<tr>
<td>DIRECT.</td>
<td>Cutting direction of the tool for measuring the tool during rotation</td>
<td>Cutting direction (M3 = –)?</td>
</tr>
<tr>
<td>R_OFFS</td>
<td>For tool length measurement: Tool offset between stylus center and tool center. Default setting: No value entered (offset = tool radius)</td>
<td>Tool offset: radius?</td>
</tr>
<tr>
<td>L_OFFS</td>
<td>Tool radius measurement: tool offset in addition to (\text{offsetToolAxis}) between upper surface of stylus and lower surface of tool. Default: 0</td>
<td>Tool offset: length?</td>
</tr>
<tr>
<td>LBREAK</td>
<td>Permissible deviation from tool length (L) for breakage detection. If the entered value is exceeded, the TNC locks the tool (status (L)). Input range: 0 to 0.9999 mm</td>
<td>Breakage tolerance: length?</td>
</tr>
<tr>
<td>RBREAK</td>
<td>Permissible deviation from tool radius (R) for breakage detection. If the entered value is exceeded, the TNC locks the tool (status (I)). Input range: 0 to 0.9999 mm</td>
<td>Breakage tolerance: radius?</td>
</tr>
</tbody>
</table>
Input examples for common tool types

<table>
<thead>
<tr>
<th>Tool type</th>
<th>CUT</th>
<th>TT_R_OFFS</th>
<th>TT_L_OFFS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drill</td>
<td>– (no function)</td>
<td>0 (no offset required because tool tip is to be measured)</td>
<td></td>
</tr>
<tr>
<td>End mill with diameter of < 19 mm</td>
<td>4 (4 teeth)</td>
<td>0 (no offset required because tool diameter is smaller than the contact plate diameter of the TT)</td>
<td>0 (no additional offset required for radius calibration; offset from offsetToolAxis is used)</td>
</tr>
<tr>
<td>End mill with diameter of > 19 mm</td>
<td>4 (4 teeth)</td>
<td>R (offset required because tool diameter is larger than the contact plate diameter of the TT)</td>
<td>0 (no additional offset required for radius calibration; offset from offsetToolAxis is used)</td>
</tr>
<tr>
<td>Radius cutter</td>
<td>4 (4 teeth)</td>
<td>0 (no offset required because the south pole of the ball is to be measured)</td>
<td>5 (always define the tool radius as the offset so that the diameter is not measured in the radius)</td>
</tr>
</tbody>
</table>
18.2 Calibrating the TT (Cycle 30 or 480, DIN/ISO: G480)

Cycle run

The TT is calibrated with the measuring cycle TCH PROBE 30 or TCH PROBE 480 (see also “Differences between Cycles 31 to 33 and Cycles 481 to 483” on page 419). The calibration process is automatic. The TNC also measures the center misalignment of the calibrating tool automatically by rotating the spindle by 180° after the first half of the calibration cycle.

The calibrating tool must be a precisely cylindrical part, for example a cylinder pin. The resulting calibration values are stored in the TNC memory and are accounted for during subsequent tool measurement.

Please note while programming:

The functioning of the calibration cycle is dependent on machine parameter CfgToolMeasurement. Refer to your machine tool manual.

Before calibrating the touch probe, you must enter the exact length and radius of the calibrating tool into the tool table TOOL.T.

The position of the TT within the machine working space must be defined by setting the Machine Parameters centerPos > [0] to [2].

If you change the setting of any of the Machine Parameters centerPos > [0] to [2], you must recalibrate.

Cycle parameters

- Clearance height: Enter the position in the spindle axis at which there is no danger of collision with the workpiece or fixtures. The clearance height is referenced to the active workpiece datum. If you enter such a small clearance height that the tool tip would lie below the level of the probe contact, the TNC automatically positions the tool above the level of the probe contact (safety zone from safetyDistStylus). Input range: -99999.9999 to 99999.9999

Example: NC blocks in old format

6 TOOL CALL 1 Z
7 TCH PROBE 30.0 CALIBRATE TT
8 TCH PROBE 30.1 HEIGHT: +90

Example: NC blocks in new format

6 TOOL CALL 1 Z
7 TCH PROBE 480 CALIBRATE TT
Q260=+100 ;CLEARANCE HEIGHT
18.3 Measuring the Tool Length
(Cycle 31 or 481, DIN/ISO: G481)

Cycle run
To measure the tool length, program the measuring cycle TCH PROBE 31 or TCH PROBE 480 (see also “Differences between Cycles 31 to 33 and Cycles 481 to 483” on page 419). Via input parameters you can measure the length of a tool by three methods:

- If the tool diameter is larger than the diameter of the measuring surface of the TT, you can measure the tool while it is rotating.
- If the tool diameter is smaller than the diameter of the measuring surface of the TT, or if you are measuring the length of a drill or spherical cutter, you can measure the tool while it is at standstill.
- If the tool diameter is larger than the diameter of the measuring surface of the TT, you can measure the individual teeth of the tool while it is at standstill.

Cycle for measuring a tool during rotation
The control determines the longest tooth of a rotating tool by positioning the tool to be measured at an offset to the center of the touch probe system and then moving it toward the measuring surface until it contacts the surface. The offset is programmed in the tool table under Tool offset: Radius (TT: R_OFFS).

Cycle for measuring a tool during standstill (e.g. for drills)
The control positions the tool to be measured over the center of the measuring surface. It then moves the non-rotating tool toward the measuring surface of the TT until it touches the surface. To activate this function, enter zero for the tool offset: Radius (TT: R_OFFS) in the tool table.

Cycle for measuring individual teeth
The TNC pre-positions the tool to be measured to a position at the side of the touch probe head. The distance from the tip of the tool to the upper edge of the touch probe head is defined in offsetToolAxis. You can enter an additional offset with tool offset: Length (TT: L_OFFS) in the tool table. The TNC probes the tool radially during rotation to determine the starting angle for measuring the individual teeth. It then measures the length of each tooth by changing the corresponding angle of spindle orientation. To activate this function, program TCH PROBE 31 = 1 for CUTTER MEASUREMENT.
Please note while programming:

Before measuring a tool for the first time, enter the following data on the tool into the tool table TOOL.T: the approximate radius, the approximate length, the number of teeth, and the cutting direction.

You can run an individual tooth measurement of tools with up to 20 teeth.

Cycle parameters

- **Measure tool=0 / Check tool=1**: Select whether the tool is to be measured for the first time or whether a tool that has already been measured is to be inspected. If the tool is being measured for the first time, the TNC overwrites the tool length L in the central tool file TOOL.T by the delta value DL = 0. If you wish to inspect a tool, the TNC compares the measured length with the tool length L that is stored in TOOL.T. It then calculates the positive or negative deviation from the stored value and enters it into TOOL.T as the delta value DL. The deviation can also be used for Q parameter Q115. If the delta value is greater than the permissible tool length tolerance for wear or break detection, the TNC will lock the tool (status L in TOOL.T).

- **Parameter number for result?**: Parameter number in which the TNC stores the status of the measurement:
 - 0.0: Tool is within the tolerance
 - 1.0: Tool is worn (LTOL exceeded)
 - 2.0: Tool is broken (LBREAK exceeded). If you do not wish to use the result of measurement within the program, answer the dialog prompt with NO ENT.

- **Clearance height**: Enter the position in the spindle axis at which there is no danger of collision with the workpiece or fixtures. The clearance height is referenced to the active workpiece datum. If you enter such a small clearance height that the tool tip would lie below the level of the probe contact, the TNC automatically positions the tool above the level of the probe contact (safety zone from safetyDistStylus). Input range –99999.9999 to 99999.9999

- **Cutter measurement? 0=No / 1=Yes**: Choose whether the control is to measure the individual teeth (maximum of 20 teeth)

Example: Measuring a rotating tool for the first time; old format

```plaintext
6 TOOL CALL 12 Z
7 TCH PROBE 31.0 TOOL LENGTH
8 TCH PROBE 31.1 CHECK: 0
9 TCH PROBE 31.2 HEIGHT: +120
10 TCH PROBE 31.3 PROBING THE TEETH: 0
```

Example: Inspecting a tool and measuring the individual teeth and saving the status in Q5; old format

```plaintext
6 TOOL CALL 12 Z
7 TCH PROBE 31.0 TOOL LENGTH
8 TCH PROBE 31.1 CHECK: 1 Q5
9 TCH PROBE 31.2 HEIGHT: +120
10 TCH PROBE 31.3 PROBING THE TEETH: 1
```

Example: NC blocks in new format

```plaintext
6 TOOL CALL 12 Z
7 TCH PROBE 481 TOOL LENGTH
   Q340=1 ;CHECK
   Q260=+100 ;CLEARANCE HEIGHT
   Q341=1 ;PROBING THE TEETH
```
18.4 Measuring the Tool Radius
(Cycle 32 or 482, ISO: G482)

Cycle run

To measure the tool radius, program the cycle TCH PROBE 32 or TCH PROBE 482 (see also “Differences between Cycles 31 to 33 and Cycles 481 to 483” on page 419). Via input parameters you can measure the radius of a tool by two methods:

- Measuring the tool while it is rotating.
- Measuring the tool while it is rotating and subsequently measuring the individual teeth.

The TNC pre-positions the tool to be measured to a position at the side of the touch probe head. The distance from the tip of the milling tool to the upper edge of the touch probe head is defined in offsetToolAxis. The TNC probes the tool radially while it is rotating. If you have programmed a subsequent measurement of individual teeth, the control measures the radius of each tooth with the aid of oriented spindle stops.

Please note while programming:

Before measuring a tool for the first time, enter the following data on the tool into the tool table TOOL.T: the approximate radius, the approximate length, the number of teeth, and the cutting direction.

Cylindrical tools with diamond surfaces can be measured with stationary spindle. To do so, define the number of teeth (CUT) with 0 in the tool table and adjust the machine parameter CfgToolMeasurement. Refer to your machine tool manual.
Cycle parameters

- **Measure tool=0 / Check tool=1**: Select whether the tool is to be measured for the first time or whether a tool that has already been measured is to be inspected. If the tool is being measured for the first time, the TNC overwrites the tool radius R in the central tool file TOOL.T by the delta value DR = 0. If you wish to inspect a tool, the TNC compares the measured radius with the tool radius R that is stored in TOOL.T. It then calculates the positive or negative deviation from the stored value and enters it into TOOL.T as the delta value DR. The deviation can also be used for Q parameter Q116. If the delta value is greater than the permissible tool radius tolerance for wear or break detection, the TNC will lock the tool (status L in TOOL.T).

- **Parameter number for result?**: Parameter number in which the TNC stores the status of the measurement:
 - 0.0: Tool is within the tolerance
 - 1.0: Tool is worn (RTOL exceeded)
 - 2.0: Tool is broken (RBREAK exceeded). If you do not wish to use the result of measurement within the program, answer the dialog prompt with NO ENT.

- **Clearance height**: Enter the position in the spindle axis at which there is no danger of collision with the workpiece or fixtures. The clearance height is referenced to the active workpiece datum. If you enter such a small clearance height that the tool tip would lie below the level of the probe contact, the TNC automatically positions the tool above the level of the probe contact (safety zone from safetyDistStylus). Input range –99999.9999 to 99999.9999

- **Cutter measurement? 0=No / 1=Yes**: Choose whether the control is also to measure the individual teeth (maximum of 20 teeth)

Example: Measuring a rotating tool for the first time; old format

```plaintext
6 TOOL CALL 12 Z
7 TCH PROBE 32.0 TOOL RADIUS
8 TCH PROBE 32.1 CHECK: 0
9 TCH PROBE 32.2 HEIGHT: +120
10 TCH PROBE 32.3 PROBING THE TEETH: 0
```

Example: Inspecting a tool and measuring the individual teeth and saving the status in Q5; old format

```plaintext
6 TOOL CALL 12 Z
7 TCH PROBE 32.0 TOOL RADIUS
8 TCH PROBE 32.1 CHECK: 1 Q5
9 TCH PROBE 32.2 HEIGHT: +120
10 TCH PROBE 32.3 PROBING THE TEETH: 1
```

Example: NC blocks in new format

```plaintext
6 TOOL CALL 12 Z
7 TCH PROBE 482 TOOL RADIUS
Q340=1 ;CHECK
Q260=+100 ;CLEARANCE HEIGHT
Q341=1 ;PROBING THE TEETH
```
18.5 Measuring Tool Length and Radius (Cycle 33 or 483, ISO: G483)

Cycle run

To measure both the length and radius of a tool, program the measuring cycle TCH PROBE 33 or TCH PROBE 482 (see also “Differences between Cycles 31 to 33 and Cycles 481 to 483” on page 419). This cycle is particularly suitable for the first measurement of tools, as it saves time when compared with individual measurement of length and radius. In input parameters you can select the desired type of measurement:

- Measuring the tool while it is rotating.
- Measuring the tool while it is rotating and subsequently measuring the individual teeth.

The TNC measures the tool in a fixed programmed sequence. First it measures the tool radius, then the tool length. The sequence of measurement is the same as for measuring cycles 31 and 32.

Please note while programming:

Before measuring a tool for the first time, enter the following data on the tool into the tool table TOOL.T: the approximate radius, the approximate length, the number of teeth, and the cutting direction.

Cylindrical tools with diamond surfaces can be measured with stationary spindle. To do so, define the number of teeth (CUT) with 0 in the tool table and adjust the machine parameter CfgToolMeasurement. Refer to your machine tool manual.
Cycle parameters

» Measure tool=0 / Check tool=1: Select whether the tool is to be measured for the first time or whether a tool that has already been measured is to be inspected. If the tool is being measured for the first time, the TNC overwrites the tool radius R and the tool length L in the central tool file TOOL.T by the delta values DR = 0 and DL = 0. If you wish to inspect a tool, the TNC compares the measured data with the tool data stored in TOOL.T. The TNC calculates the deviations and enters them as positive or negative delta values DR and DL in TOOL.T. The deviations are also available in the Q parameters Q115 and Q116. If the delta values are greater than the permissible tool tolerances for wear or break detection, the TNC will lock the tool (status L in TOOL.T).

» Parameter number for result?: Parameter number in which the TNC stores the status of the measurement:
 0.0: Tool is within the tolerance
 1.0: Tool is worn (LTOL or/and RTOL exceeded)
 2.0: Tool is broken (LBREAK or/and RBREAK exceeded).
If you do not wish to use the result of measurement within the program, answer the dialog prompt with NO ENT.

» Clearance height: Enter the position in the spindle axis at which there is no danger of collision with the workpiece or fixtures. The clearance height is referenced to the active workpiece datum. If you enter such a small clearance height that the tool tip would lie below the level of the probe contact, the TNC automatically positions the tool above the level of the probe contact (safety zone from safetyDistStylus). Input range –99999.9999 to 99999.9999

» Cutter measurement? 0=No / 1=Yes: Choose whether the control is also to measure the individual teeth (maximum of 20 teeth)

Example: Measuring a rotating tool for the first time; old format

```
6 TOOL CALL 12 Z
7 TCH PROBE 33.0 MEASURE TOOL
8 TCH PROBE 33.1 CHECK: 0
9 TCH PROBE 33.2 HEIGHT: +120
10 TCH PROBE 33.3 PROBING THE TEETH: 0
```

Example: Inspecting a tool and measuring the individual teeth and saving the status in Q5; old format

```
6 TOOL CALL 12 Z
7 TCH PROBE 33.0 MEASURE TOOL
8 TCH PROBE 33.1 CHECK: 1 Q5
9 TCH PROBE 33.2 HEIGHT: +120
10 TCH PROBE 33.3 PROBING THE TEETH: 1
```

Example: NC blocks in new format

```
6 TOOL CALL 12 Z
7 TCH PROBE 483 MEASURE TOOL
Q340=1 ;CHECK
Q260=+100 ;CLEARANCE HEIGHT
Q341=1 ;PROBING THE TEETH
```
18.5 Measuring Tool Length and Radius (Cycle 33 or 483, ISO: G483)
Symbole
3-D touch probes ... 36, 278

A
Angle of a plane, measuring ... 405
Angle, measuring in a plane ... 405
Automatic tool measurement ... 421
Axis-specific scaling ... 256

B
Back boring ... 73
Basic rotation
 Measuring during program run ... 288
 Setting directly ... 302
Bolt hole circle ... 159
Bolt hole circle, measuring ... 401
Bore milling ... 81
Boring ... 65

C
Centering ... 59
Circle, measuring from inside ... 376
Circle, measuring from outside ... 380
Circular pocket
 Roughing+finishing ... 132
 Roughing+finishing ... 141
Circular slot
 Roughing+finishing ... 132
 Roughing+finishing ... 141
Circular stud ... 150
Classification of results ... 367
Compensating workpiece misalignment
 By measuring two points of a line ... 290
 Over two holes ... 293
 Over two studs ... 296
 Via rotary axis ... 299, 303
Confidence range ... 282
Consider basic rotation ... 278
Contour cycles ... 168
Contour train ... 186
Coordinate transformation ... 242
Coordinate, measuring a single ... 398
Cycle
 Calling ... 42
 Defining ... 41
Cycles and point tables ... 55
Cylinder surface
 Contour machining ... 197
 Ridge machining ... 203
 Slot machining ... 200

D
Datum shift
 With datum tables ... 244
 Within the program ... 243
Deepened starting point for drilling ... 80, 85
Drilling ... 61, 69, 77
 Deepened starting point ... 80, 85
Drilling cycles ... 58
Dwell time ... 269

E
External thread milling ... 118

F
Face milling ... 233
FCL function ... 6
Feature content level ... 6
Floor finishing ... 183

H
Helical thread drilling/milling ... 114
Hole, measuring ... 376

K
Key-way milling
 Roughing+finishing ... 136

M
Machine parameters for 3-D touch probes ... 281
Machining patterns ... 44
Measurement results in Q parameters ... 312, 367
Measuring angles ... 373
Mirror image ... 250
Multiple measurements ... 282

O
Oriented spindle stop ... 272

P
Pattern definition ... 44
Pecking ... 77, 94
 Deepened starting point ... 80, 85
Point pattern
 Circular ... 159
 Linear ... 162
 Overview ... 158
Point patterns
Point tables ... 52
Positioning logic ... 283
Preset table ... 312
Presetting automatically ... 310
 Center of 4 holes ... 351
 Center of bolt hole circle ... 345
 Center of circular pocket (or hole) ... 328
 Center of circular stud ... 332
 Center of rectangular pocket ... 320
 Center of rectangular stud ... 324
 In any axis ... 355
 In inside corner ... 341
 In the touch probe axis ... 349
 Outside corner ... 336
 Ridge center ... 317
 Slot center ... 313
 Probing feed rate ... 282
 Program call
 Via cycle ... 270

R
Raming ... 63
Recording the results of measurement ... 365
Rectangular pocket
 Roughing+finishing ... 127
Rectangular pocket measurement ... 388
Rectangular stud ... 146
Rectangular stud, measuring ... 384
Reference point
 Save in a datum table ... 312
 Save in the preset table ... 312
Result parameters ... 312, 367
Ridge, measuring from outside ... 395
Rotation ... 252
Rough out: See SL Cycles: Rough-out
Ruled surface ... 229
Index

S
Scaling factor ... 254
Side finishing ... 184
Single-fluted deep-hole drilling ... 84
SL Cycles
SL cycles
 Contour data ... 176
 Contour geometry cycle ... 171
 Contour train ... 186
 Floor finishing ... 183
 Fundamentals ... 168, 222
 Overlapping contours ... 172, 216
 Pilot drilling ... 178
 Rough-out ... 180
 Side finishing ... 184
SL Cycles with Complex Contour
 Formula
SL cycles with simple contour
 formula ... 222
Slot width, measuring ... 392

T
Tapping
 With a floating tap holder ... 93
 With chip breaking ... 98
 Without floating tap holder ... 95, 98
Thread drilling/milling ... 110
Thread milling, fundamentals ... 101
Thread milling, internal ... 103
Thread milling/countersinking ... 106
Tilting the working plane ... 258
Tolerance monitoring ... 368
Tool compensation ... 368
Tool measurement ... 421
 Calibrating the TT ... 423
 Machine parameters ... 420
 Measuring tool length and radius ... 428
 Tool length ... 424
 Tool radius ... 426
Tool monitoring ... 368
Touch probe cycles
 Touch probe cycles for automatic operation ... 280
Touch probe data ... 285
Touch probe table ... 284

U
Universal drilling ... 69, 77

W
Width, measuring from inside ... 392
Width, measuring from outside ... 395
Working plane, tilting the 258
 Cycle ... 258
 Guide ... 264
Workpiece measurement ... 364
Overview

Fixed Cycles

<table>
<thead>
<tr>
<th>Cycle number</th>
<th>Cycle designation</th>
<th>DEF-active</th>
<th>CALL-active</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Datum shift</td>
<td></td>
<td></td>
<td>Page 243</td>
</tr>
<tr>
<td>8</td>
<td>Mirror image</td>
<td></td>
<td></td>
<td>Page 250</td>
</tr>
<tr>
<td>9</td>
<td>Dwell time</td>
<td></td>
<td></td>
<td>Page 269</td>
</tr>
<tr>
<td>10</td>
<td>Rotation</td>
<td></td>
<td></td>
<td>Page 252</td>
</tr>
<tr>
<td>11</td>
<td>Scaling factor</td>
<td></td>
<td></td>
<td>Page 254</td>
</tr>
<tr>
<td>12</td>
<td>Program call</td>
<td></td>
<td></td>
<td>Page 270</td>
</tr>
<tr>
<td>13</td>
<td>Oriented spindle stop</td>
<td></td>
<td></td>
<td>Page 272</td>
</tr>
<tr>
<td>14</td>
<td>Contour definition</td>
<td></td>
<td></td>
<td>Page 171</td>
</tr>
<tr>
<td>19</td>
<td>Tilting the working plane</td>
<td></td>
<td></td>
<td>Page 258</td>
</tr>
<tr>
<td>20</td>
<td>Contour data SL II</td>
<td></td>
<td></td>
<td>Page 176</td>
</tr>
<tr>
<td>21</td>
<td>Pilot drilling SL II</td>
<td></td>
<td></td>
<td>Page 178</td>
</tr>
<tr>
<td>22</td>
<td>Rough out SL II</td>
<td></td>
<td></td>
<td>Page 180</td>
</tr>
<tr>
<td>23</td>
<td>Floor finishing SL II</td>
<td></td>
<td></td>
<td>Page 183</td>
</tr>
<tr>
<td>24</td>
<td>Side finishing SL II</td>
<td></td>
<td></td>
<td>Page 184</td>
</tr>
<tr>
<td>25</td>
<td>Contour train</td>
<td></td>
<td></td>
<td>Page 186</td>
</tr>
<tr>
<td>26</td>
<td>Axis-specific scaling</td>
<td></td>
<td></td>
<td>Page 256</td>
</tr>
<tr>
<td>27</td>
<td>Cylinder surface</td>
<td></td>
<td></td>
<td>Page 197</td>
</tr>
<tr>
<td>28</td>
<td>Cylindrical surface slot</td>
<td></td>
<td></td>
<td>Page 200</td>
</tr>
<tr>
<td>29</td>
<td>Cylinder surface ridge</td>
<td></td>
<td></td>
<td>Page 203</td>
</tr>
<tr>
<td>32</td>
<td>Tolerance</td>
<td></td>
<td></td>
<td>Page 273</td>
</tr>
<tr>
<td>200</td>
<td>Drilling</td>
<td></td>
<td></td>
<td>Page 61</td>
</tr>
<tr>
<td>201</td>
<td>Reaming</td>
<td></td>
<td></td>
<td>Page 63</td>
</tr>
<tr>
<td>202</td>
<td>Boring</td>
<td></td>
<td></td>
<td>Page 65</td>
</tr>
<tr>
<td>203</td>
<td>Universal drilling</td>
<td></td>
<td></td>
<td>Page 69</td>
</tr>
<tr>
<td>204</td>
<td>Back boring</td>
<td></td>
<td></td>
<td>Page 73</td>
</tr>
<tr>
<td>205</td>
<td>Universal pecking</td>
<td></td>
<td></td>
<td>Page 77</td>
</tr>
<tr>
<td>Cycle number</td>
<td>Cycle designation</td>
<td>DEF-active</td>
<td>CALL-active</td>
<td>Page</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
<td>------------</td>
<td>-------------</td>
<td>--------</td>
</tr>
<tr>
<td>206</td>
<td>Tapping with a floating tap holder, new</td>
<td></td>
<td></td>
<td>Page 93</td>
</tr>
<tr>
<td>207</td>
<td>Rigid tapping, new</td>
<td></td>
<td></td>
<td>Page 95</td>
</tr>
<tr>
<td>208</td>
<td>Bore milling</td>
<td></td>
<td></td>
<td>Page 81</td>
</tr>
<tr>
<td>209</td>
<td>Tapping with chip breaking</td>
<td></td>
<td></td>
<td>Page 98</td>
</tr>
<tr>
<td>220</td>
<td>Circular point pattern</td>
<td></td>
<td></td>
<td>Page 159</td>
</tr>
<tr>
<td>221</td>
<td>Linear point pattern</td>
<td></td>
<td></td>
<td>Page 162</td>
</tr>
<tr>
<td>230</td>
<td>Multipass milling</td>
<td></td>
<td></td>
<td>Page 227</td>
</tr>
<tr>
<td>231</td>
<td>Ruled surface</td>
<td></td>
<td></td>
<td>Page 229</td>
</tr>
<tr>
<td>232</td>
<td>Face milling</td>
<td></td>
<td></td>
<td>Page 233</td>
</tr>
<tr>
<td>240</td>
<td>Centering</td>
<td></td>
<td></td>
<td>Page 59</td>
</tr>
<tr>
<td>241</td>
<td>Single-fluted deep-hole drilling</td>
<td></td>
<td></td>
<td>Page 84</td>
</tr>
<tr>
<td>247</td>
<td>Datum setting</td>
<td></td>
<td></td>
<td>Page 249</td>
</tr>
<tr>
<td>251</td>
<td>Rectangular pocket (complete machining)</td>
<td></td>
<td></td>
<td>Page 127</td>
</tr>
<tr>
<td>252</td>
<td>Circular pocket (complete machining)</td>
<td></td>
<td></td>
<td>Page 132</td>
</tr>
<tr>
<td>253</td>
<td>Key-way milling</td>
<td></td>
<td></td>
<td>Page 136</td>
</tr>
<tr>
<td>254</td>
<td>Circular slot</td>
<td></td>
<td></td>
<td>Page 141</td>
</tr>
<tr>
<td>256</td>
<td>Rectangular stud (complete machining)</td>
<td></td>
<td></td>
<td>Page 146</td>
</tr>
<tr>
<td>257</td>
<td>Circular stud (complete machining)</td>
<td></td>
<td></td>
<td>Page 150</td>
</tr>
<tr>
<td>262</td>
<td>Thread milling</td>
<td></td>
<td></td>
<td>Page 103</td>
</tr>
<tr>
<td>263</td>
<td>Thread milling/countersinking</td>
<td></td>
<td></td>
<td>Page 106</td>
</tr>
<tr>
<td>264</td>
<td>Thread drilling/milling</td>
<td></td>
<td></td>
<td>Page 110</td>
</tr>
<tr>
<td>265</td>
<td>Helical thread drilling/milling</td>
<td></td>
<td></td>
<td>Page 114</td>
</tr>
<tr>
<td>267</td>
<td>Outside thread milling</td>
<td></td>
<td></td>
<td>Page 118</td>
</tr>
</tbody>
</table>
Touch probe cycles

<table>
<thead>
<tr>
<th>Cycle number</th>
<th>Cycle designation</th>
<th>DEF-active</th>
<th>CALL-active</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Reference plane</td>
<td></td>
<td></td>
<td>Page 370</td>
</tr>
<tr>
<td>1</td>
<td>Polar datum</td>
<td></td>
<td></td>
<td>Page 371</td>
</tr>
<tr>
<td>3</td>
<td>Measuring</td>
<td></td>
<td></td>
<td>Page 415</td>
</tr>
<tr>
<td>30</td>
<td>Calibrating the TT</td>
<td></td>
<td></td>
<td>Page 423</td>
</tr>
<tr>
<td>31</td>
<td>Measure/Inspect the tool length</td>
<td></td>
<td></td>
<td>Page 424</td>
</tr>
<tr>
<td>32</td>
<td>Measure/Inspect the tool radius</td>
<td></td>
<td></td>
<td>Page 426</td>
</tr>
<tr>
<td>33</td>
<td>Measure/Inspect the tool length and the tool radius</td>
<td></td>
<td></td>
<td>Page 428</td>
</tr>
<tr>
<td>400</td>
<td>Basic rotation using two points</td>
<td></td>
<td></td>
<td>Page 290</td>
</tr>
<tr>
<td>401</td>
<td>Basic rotation from two holes</td>
<td></td>
<td></td>
<td>Page 293</td>
</tr>
<tr>
<td>402</td>
<td>Basic rotation from two studs</td>
<td></td>
<td></td>
<td>Page 296</td>
</tr>
<tr>
<td>403</td>
<td>Compensate misalignment with rotary axis</td>
<td></td>
<td></td>
<td>Page 299</td>
</tr>
<tr>
<td>404</td>
<td>Set basic rotation</td>
<td></td>
<td></td>
<td>Page 302</td>
</tr>
<tr>
<td>405</td>
<td>Compensate misalignment with the C axis</td>
<td></td>
<td></td>
<td>Page 303</td>
</tr>
<tr>
<td>408</td>
<td>Reference point at slot center (FCL 3 function)</td>
<td></td>
<td></td>
<td>Page 313</td>
</tr>
<tr>
<td>409</td>
<td>Reference point at ridge center (FCL 3 function)</td>
<td></td>
<td></td>
<td>Page 317</td>
</tr>
<tr>
<td>410</td>
<td>Datum from inside of rectangle</td>
<td></td>
<td></td>
<td>Page 320</td>
</tr>
<tr>
<td>411</td>
<td>Datum from outside of rectangle</td>
<td></td>
<td></td>
<td>Page 324</td>
</tr>
<tr>
<td>412</td>
<td>Datum from inside of circle (hole)</td>
<td></td>
<td></td>
<td>Page 328</td>
</tr>
<tr>
<td>413</td>
<td>Datum from outside of circle (stud)</td>
<td></td>
<td></td>
<td>Page 332</td>
</tr>
<tr>
<td>414</td>
<td>Datum from outside of corner</td>
<td></td>
<td></td>
<td>Page 336</td>
</tr>
<tr>
<td>415</td>
<td>Datum from inside of corner</td>
<td></td>
<td></td>
<td>Page 341</td>
</tr>
<tr>
<td>416</td>
<td>Datum from circle center</td>
<td></td>
<td></td>
<td>Page 345</td>
</tr>
<tr>
<td>417</td>
<td>Datum in touch probe axis</td>
<td></td>
<td></td>
<td>Page 349</td>
</tr>
<tr>
<td>418</td>
<td>Datum at center between four holes</td>
<td></td>
<td></td>
<td>Page 351</td>
</tr>
<tr>
<td>419</td>
<td>Datum in any one axis</td>
<td></td>
<td></td>
<td>Page 355</td>
</tr>
<tr>
<td>420</td>
<td>Workpiece—measure angle</td>
<td></td>
<td></td>
<td>Page 373</td>
</tr>
<tr>
<td>421</td>
<td>Workpiece—measure hole (center and diameter of hole)</td>
<td></td>
<td></td>
<td>Page 376</td>
</tr>
<tr>
<td>422</td>
<td>Workpiece—measure circle from outside (diameter of circular stud)</td>
<td></td>
<td></td>
<td>Page 380</td>
</tr>
<tr>
<td>Cycle number</td>
<td>Cycle designation</td>
<td>DEF-active</td>
<td>CALL-active</td>
<td>Page</td>
</tr>
<tr>
<td>--------------</td>
<td>---</td>
<td>------------</td>
<td>------------</td>
<td>--------</td>
</tr>
<tr>
<td>423</td>
<td>Workpiece—measure rectangle from inside</td>
<td></td>
<td></td>
<td>Page 384</td>
</tr>
<tr>
<td>424</td>
<td>Workpiece—measure rectangle from outside</td>
<td></td>
<td></td>
<td>Page 388</td>
</tr>
<tr>
<td>425</td>
<td>Workpiece—measure inside width (slot)</td>
<td></td>
<td></td>
<td>Page 392</td>
</tr>
<tr>
<td>426</td>
<td>Workpiece—measure outside width (ridge)</td>
<td></td>
<td></td>
<td>Page 395</td>
</tr>
<tr>
<td>427</td>
<td>Workpiece—measure in any selectable axis</td>
<td></td>
<td></td>
<td>Page 398</td>
</tr>
<tr>
<td>430</td>
<td>Workpiece—measure bolt hole circle</td>
<td></td>
<td></td>
<td>Page 401</td>
</tr>
<tr>
<td>431</td>
<td>Workpiece—measure plane</td>
<td></td>
<td></td>
<td>Page 401</td>
</tr>
<tr>
<td>480</td>
<td>Calibrating the TT</td>
<td></td>
<td></td>
<td>Page 423</td>
</tr>
<tr>
<td>481</td>
<td>Measure/Inspect the tool length</td>
<td></td>
<td></td>
<td>Page 424</td>
</tr>
<tr>
<td>482</td>
<td>Measure/Inspect the tool radius</td>
<td></td>
<td></td>
<td>Page 426</td>
</tr>
<tr>
<td>483</td>
<td>Measure/Inspect the tool length and the tool radius</td>
<td></td>
<td></td>
<td>Page 428</td>
</tr>
</tbody>
</table>
3-D Touch Probe Systems from HEIDENHAIN
help you to reduce non-cutting time:

For example in

- workpiece alignment
- datum setting
- workpiece measurement
- digitizing 3-D surfaces

with the workpiece touch probes

TS 220 with cable

TS 640 with infrared transmission

- tool measurement
- wear monitoring
- tool breakage monitoring

with the tool touch probe

TT 140