

#### 0 . HEIDENHAIN Simulation 🖹 Werkzeug-Editor 00 盘♥ 曲 Z+- 🔶 ₩+-395 H38 395 X 118,898 Z 235,888 0 10 Era 14:24 98° Zurück 0 3 6 0 0 F9 F10 F11 F12 ERR CALL PRT L = Q WERTY U 1 0 P { } { 7 8 9 🖾 4 5 6 ZXCVBNM Û 1 2 3 CTRL ALT CE 0 . -/+ INS HOME PG UP END PG DN (4)

## HEIDENHAIN

User's Manual

### MANUALplus 620 CNC PILOT 640 smart.Turn and DIN Programming

NC Software 548430-04 548431-04 688946-04 688947-04

English (en) 1/2016

# smart.Turn and DIN PLUS programming

This manual describes functions and features provided by lathe controls as of the following NC software numbers.

| Control                   | NC software number |
|---------------------------|--------------------|
| MANUALplus 620 (HEROS 5)  | 548430-04          |
| MANUALplus 620E (HEROS 5) | 548431-04          |
| CNC PILOT 640 (HEROS 5)   | 688946-04          |
| CNC PILOT 640E (HEROS 5)  | 688947-04          |

The suffix **E** indicates the export version of the control. The export version of the control has the following limitations:

Simultaneous linear movement in up to 4 axes

HEROS 5 identifies the new operating system of HSCI-based controls.

Machine operation and cycle programming are described in the MANUALplus 620 (ID 634864-xx) and CNC PILOT 640 (ID 730870-xx) User's Manuals. Please contact HEIDENHAIN if you require a copy of one of these manuals.

The machine manufacturer adapts the features offered by the control to the capabilities of the specific machine tool by setting machine parameters. Therefore, some of the functions described in this manual may not be among the features provided by the Control on your machine tool.

Some of the Control's functions that are not available on every machine are:

- Positioning of spindle (M19) and driven tool
- Operations with the C or Y axis

Please contact your machine manufacturer for detailed information on the features that are supported by your machine tool.

Many machine manufacturers and HEIDENHAIN offer programming courses. We recommend these courses as an effective way of improving your programming skill and sharing information and ideas with other Control users.

HEIDENHAIN also offers the DataPilot programming station for PCs, which is designed for use with the respective control. The DataPilot is excellently suited for both shop-floor programming as well as offlocation program creation and production planning. It is also ideal for training purposes. The DataPilot can be run on PCs with WINDOWS operating systems.

| Control        | Programming station | NC software |
|----------------|---------------------|-------------|
| MANUALplus 620 | DataPilot MP620     | 634132-08   |
| CNC PILOT 640  | DataPilot CP640     | 729666-04   |

#### Intended place of operation

The MANUALplus 620, CNC PILOT 640 complies with the limits for a Class A device in accordance with the specifications in EN 55022, and is intended for use primarily in industrially-zoned areas.

#### Legal information

This product uses open source software. Further information is available on the control under

- Organization mode of operation
- Second soft-key row
- ▶ LICENSE INFO SOFT KEY

3

## New functions of software 54843x-01 and 68894x-01

- On machines with a B axis it is now also possible to drill, bore, and mill in oblique planes. In addition to this, the B axis enables you to use tools even more flexibly during turning (see "Tilted working plane" on page 586).
- The control now provides numerous touch probe cycles for various applications (see "General information on touch probe cycles (software option)" on page 456):
  - Calibrating a touch trigger probe
  - Measuring circles, circle segments, angle and position of the C axis
  - Misalignment compensation
  - Single-point and double-point measurement
  - Finding a hole or stud
  - Zero point setting in the Z or C axis
  - Automatic tool measurement
- The new TURN PLUS function automatically generates NC programs for turning and milling operations based on a fixed machining sequence (see "The TURN PLUS function" on page 554).
- G940 now provides a way to calculate the tool lengths in the basic (definition) position of the B axis (see "Calculate variables automatically G940" on page 388)
- For machining operations that require rechucking, you can define a separation point on the contour description with G44 (see "Separation point G44" on page 229).
- G927 enables you to convert tool lengths to the reference position of the tool (B axis = 0) (see "Convert lengths G927" on page 387).
- Recesses that were defined with G22 can now be machined with the new Cycle 870 ICP Recessing (see ""ICP recessing" unit" on page 85).

### New functions of software 68894x-02 and 54843x-02

- The miscellaneous function "Shift zero point" was introduced in ICP (see User's Manual)
- In ICP contours, you can now calculate fit sizes and internal threads using an input form (see User's Manual)
- The miscellaneous functions "Duplicate in linear/circular series, and by mirroring" were introduced in ICP (see User's Manual)
- The system time can now be set using an input form (see User's Manual)
- The parameters K, SD and U have been added to parting cycle G859 (see User's Manual)
- The angle of approach and departure can now be defined for ICP recess turning (see User's Manual)
- With TURN PLUS you can now also create programs for machining on the opposing spindle and for multipoint tools (see "Full-surface machining with TURN PLUS" on page 580)
- It is now also possible to select a milling contour in G797 "Area milling" (see "Area milling, face G797" on page 358)
- The parameter Y was added to G720 (see "Spindle synchronization G720" on page 395)
- The parameters O and U were added to G860 (see "Recessing G860" on page 288)

5

## New functions of software 68894x-03 and 54843x-03

- The parameter WE was added to G32 (see "Single thread cycle G32" on page 311)
- The parameters U, V and W were added to G51, G56 and G59 (see "Zero point shifts" on page 266)
- Parameters ensuring maximum compatibility with the ICP contour description were added to G0, G1, G12/G13, G101, G102/G103, G110, G111, G112/G113, G170, G171, G172/G173, G180, G181 and G182/G183 (see "Basic contour elements" on page 208) (see "Front and rear face contours" on page 237) (see "Lateral surface contours" on page 246) (see "Contours in the XY plane" on page 505) (see "Contours in the YZ plane" on page 514)
- The parameter C was added to G808 (see "Hobbing G808" on page 545)
- The parameter U was added to G810 and G820 (see "Contour-based turning cycles" on page 277)
- The parameter D was added to G4 and G860 (see "Recessing G860" on page 288) (see "Period of dwell G4" on page 383)
- The parameter B was added to G890 (see "Finish contour G890" on page 295)
- The parameter RB was added to the units G840 "Contour milling, figures" and G84X "Pocket milling, figures" (see "The Global form" on page 70) (see ""Contour milling, figures, face" unit" on page 145) (see ""Pocket milling, figures, face" unit" on page 148) (see ""Contour milling, figures, lateral surface" unit" on page 157) (see ""Pocket milling, figures, lateral surface" unit" on page 160)
- The parameters SP and SI were added to all tapping units (see "Units—Centric drilling" on page 86) (see "Units—Drilling in C axis" on page 90) (see ""ICP tapping, Y axis" unit" on page 175)
- G48 was introduced to allow limiting the rapid traverse rate for rotary and linear axes (see "Reduce rapid traverse G48" on page 260)
- G53, G54 and G55 were introduced for zero point shifts using offset values (see "Zero point offsets—Shift G53/G54/G55" on page 268)
- The functions for superimposing axis movements G725 "Eccentric turning", G726 "Transition to eccentric" and G727 "Eccentric X" were introduced (see "Eccentric turning G725" on page 402) (see "Transition to eccentric G726" on page 404) (see "Eccentric X G727" on page 406)
- The load monitoring functions G995 "Monitoring zone definition" and G996 "Type of load monitoring" were introduced (see "Monitoring zone G995" on page 391) (see "Load monitoring G996" on page 392)
- The AWG submode now also supports tools with quick-change holders (see "Tool selection, turret assignment" on page 569)
- A tree view is available in the smart.Turn operating mode (see "Editing with active tree view" on page 42)
- Skip levels can be defined in the smart.Turn operating mode (see "Skip level" on page 429)
- A function was introduced to query information on the tool status (see "Reading diagnostic bits" on page 416)

- In the Teach-In submode, the parameter RB was added to the cycles "Figure, axial", "Figure, radial", "ICP contour, axial" and "ICP contour, radial" (see User's Manual)
- In the Teach-In submode, the parameters SP and SI were added to all tapping cycles (see User's Manual)
- In the Simulation submode, the 3-D view provides additional features (see User's Manual)
- Tool control graphics were introduced in the Tool Editor mode of operation (see User's Manual)
- An ID number can be entered directly in the turret list (see User's Manual)
- The tool list provides additional filter options (see User's Manual)
- The Transfer submode provides enhanced tool backup functionality (see User's Manual)
- The Transfer submode provides enhanced tool import functionality (see User's Manual)
- The Set Axis Values menu item now also enables you to define offset values for shifts using G53, G54 and G55 (see User's Manual)
- Load monitoring was introduced in the Program Run submode (see User's Manual)
- The definition of skip levels was introduced in the Program Run submode (see User's Manual)
- A function was introduced to query information on the tool status (see User's Manual)
- A user parameter was introduced to enable you to activate and deactivate the software limit switches for the Simulation submode (see User's Manual)
- A user parameter was introduced to enable you to suppress the error message for the software limit switches (see User's Manual)
- A user parameter was introduced to enable you to use NC Start for executing a tool change programmed in the T,S,F dialog (see User's Manual)
- A user parameter was introduced to divide the T,S,F dialog into separate dialogs (see User's Manual)
- A user parameter was introduced to enable you to prevent the zero point shift G59 that is automatically output in TURN PLUS (see User's Manual)

7

#### New functions of software 68894x-04

- In the Simulation submode, the "Contour measurement" function was introduced (see User's Manual)
- In the Simulation submode, the "Save contours" function was enhanced (see User's Manual)
- In the Simulation submode, display of the B head is supported (see User's Manual)
- In the Teach-In submode, the workpiece blank is also updated with centric drilling (see User's Manual)
- In the Teach-In submode, the GK parameter can now also be negatively programmed with taper threads (see User's Manual)
- In the ICP Editor submode, contour groups are supported. The number of the contour group is displayed at top left in the graphic window (see User's Manual)
- The option 133 Remote Desktop Manager was introduced (see User's Manual)
- Machine parameter 602414 is now evaluated in the Teach-In submode so that the "Divide floor element" and "Move through and lift-off" options are also available here (see User's Manual)
- New machine parameter 602023 for converting ICP contours (see User's Manual)
- The machining parameters for approach and departure have been adapted (see User's Manual)
- The reamer tool type (type 43 from CNC PILOT 4290) is supported (see User's Manual)
- The navigation and tool parameters view have been improved in the tool list (see User's Manual)
- The pocket type tool parameter was introduced (see User's Manual)
- Magazine pocket systems are supported (see User's Manual)
- Tool compensations can now be entered with the handwheel or in a dialog (see User's Manual)
- When configuring the C axis, you can set a defined value on the current position (see User's Manual)
- It is now possible to sequentially run several main programs automatically. A program list is generated for this purpose. With each program, you can specify how often it is run before the next program is started (see User's Manual)
- The continuous run status is also kept if the control is restarted in the Program Run submode (see User's Manual)
- Programs can be deleted in the file manager even though they are selected in the Program Run submode, after program block display is deselected (see User's Manual)
- For systems with a C axis, the position display in the machine data display (axis letter and index) can be configured by the machine manufacturer
- The functions G0, G1 and G701 have been enhanced with parameters for auxiliary axes
- Programming with variables in the smart.Turn operating mode is now possible with soft keys (see "Programming variables" on page 410)

- The number of local variables was increased from 30 to 99 (see "Variable types" on page 411)
- In the NC program, the status of shifts G920/G921 can now be queried with the variable #n920(G) (see "Reading the current NC information" on page 417)
- In the smart.Turn operating mode, the number of an M function can now also be defined with a variable (see "Variable types" on page 411)
- In the smart.Turn operating mode, up to four contour groups are supported (see "CONTOURGROUP section" on page 53)
- In a program generated by the AWG submode, the tool traverses to the tool change position after the parting working step
- In a program generated by the AWG submode, machining is now also possible with simplified geometry programming (see "Address parameters" on page 201)
- The TURNPLUS function can now also be used in INCH mode
- The CW parameter has been changed to a Reverse Tool yes/no query (see "The Tool form" on page 67)
- The Q parameter in G99 is supported (see "Transformations of contours G99" on page 394)
- The parameter "DO Flow" was added to the G860 ICP Contour Recessing and Direct Contour Recessing cycles (see ""ICP contour recessing" unit" on page 79), (see ""Contour recessing with direct contour input" unit" on page 81)
- The "Type of tool access" parameter can now also be modified via the machining parameters in the smart. Turn operating mode (see "Tool selection, turret assignment" on page 569)
- The G code "G154 Short Path in C" was introduced (see "C-axis commands" on page 343)
- The parameter "O Flow" was added to G741 (see "Repeat recessing cycle G740/G741" on page 290)
- Parameter A of G845 has been enhanced with the input option for pilot drilling in the reference point of the figure (see "Pocket milling, roughing G845" on page 370), (see "Pocket milling—roughing G845 (Y axis)" on page 533)
- The input range was expanded for drilling depth in the G74 drilling cycle
- No error message is displayed anymore in the paraxial turning cycles if the task is carried out with the secondary cutting edge of the tool
- Machining parameters are displayed in millimeters or inches according to the CfgUnitOfMeasure parameter



### About this manual

The symbols used in this manual are described below.



This symbol indicates that important information about the function described must be considered.



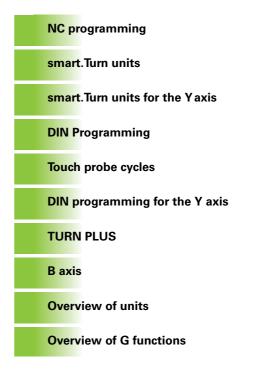
This symbol indicates that there is one or more of the following risks when using the described function:

- Danger to workpiece
- Danger to fixtures
- Danger to tool
- Danger to machine
- Danger to operator



This symbol indicates that the described function must be adapted by the machine tool builder. The function described may therefore vary depending on the machine.




This symbol indicates that you can find detailed information about a function in another manual.

## Would you like any changes, or have you found any errors?

We are continuously striving to improve our documentation for you. Please help us by sending your requests to the following e-mail address: **tnc-userdoc@heidenhain.de**.

About this manual

### Contents





#### 1 NC programming ..... 35

1.1 smart.Turn and DIN (ISO) programming ..... 36 Contour follow-up ..... 36 Structured NC program ..... 37 Linear and rotary axes ..... 38 Units of measure ..... 38 Elements of an NC program ..... 39 1.2 The smart.Turn editor ..... 40 Menu structure ..... 40 Parallel editing ..... 41 Screen layout ..... 41 Selecting the editor functions ..... 42 Editing with active tree view ..... 42 Shared menu items ..... 43 1.3 Program section code ..... 50 HEADER section ..... 51 CLAMPS section ..... 52 TURRET / MAGAZINE section ..... 53 CONTOURGROUP section ..... 53 BLANK section ..... 53 AUXIL BLANK section ..... 53 FINISHED section ..... 54 AUXIL\_CONTOUR section ..... 54 FACE\_C, REAR\_C sections ..... 54 LATERAL\_C section ..... 54 FACE\_Y, REAR\_Y sections ..... 54 LATERAL Y section ..... 55 MACHINING section ..... 56 END code ..... 56 SUBPROGRAM section ..... 56 RETURN code ..... 56 CONST code ..... 57 VAR code ..... 57 1.4 Tool programming ..... 58 Set up turret list ..... 59 Editing tool entries ..... 60 Multipoint tools ..... 60 Replacement tools ..... 61 1.5 Automatic job ..... 62 Opening a job ..... 62 Editing a job ..... 63

2.1 smart.Turn units ..... 66 "Units" menu item ..... 66 The smart.Turn unit ..... 66 2.2 Units-Roughing ..... 73 "Longitudinal roughing in ICP" unit ..... 73 "Transverse roughing in ICP" unit ..... 74 "Contour-parallel roughing in ICP" unit ..... 75 "Bidirectional roughing in ICP" unit ..... 76 "Longitudinal roughing with direct contour input" unit ..... 77 "Transverse roughing with direct contour input" unit ..... 78 2.3 Units-Recessing ..... 79 "ICP contour recessing" unit ..... 79 "ICP recess turning" unit ..... 80 "Contour recessing with direct contour input" unit ..... 81 "Recess turning with direct contour input" unit ..... 82 "Parting" unit ..... 83 "Undercutting (H, K, U)" unit ..... 84 "ICP recessing" unit ..... 85 2.4 Units-Centric drilling ..... 86 "Centric drilling" unit ..... 86 "Centric tapping" unit ..... 88 "Boring, centric countersinking" unit ..... 89 2.5 Units—Drilling in C axis ..... 90 "Single hole, face" unit ..... 90 "Linear pattern drilling, face" unit ..... 92 "Circular pattern drilling, face" unit ..... 94 "Tapping, face" unit ..... 96 "Linear tapping pattern, face" unit ..... 97 "Circular tapping pattern, face" unit ..... 98 "Single hole, lateral surface" unit ..... 99 "Linear pattern drilling, lateral surface" unit ..... 101 "Circular pattern drilling, lateral surface" unit ..... 103 "Tap hole, lateral surface" unit ..... 105 "Linear tapping pattern, lateral surface" unit ..... 106 "Circular tapping pattern, lateral surface" unit ..... 107 "ICP drilling, C axis" unit ..... 108 "ICP tapping, C axis" unit ..... 110 "ICP boring/countersinking, C axis" unit ..... 111

2.6 Units-Predrilling in C axis ..... 112 "Predrill, contour mill, figures on face" unit ..... 112 "Predrill, contour mill, ICP on face" unit ..... 114 "Predrill, pocket mill, figures on face" unit ..... 115 "Predrill, pocket mill, ICP on face" unit ..... 117 "Predrill, contour mill, figures on lateral surface" unit ..... 118 "Predrill, contour mill, ICP on lateral surface" unit ..... 120 "Predrill, pocket mill, figures on lateral surface" unit ..... 121 "Predrill, pocket mill, ICP on lateral surface" unit ..... 123 2.7 Units-Finishing ..... 124 "ICP contour finishing" unit ..... 124 "Longitudinal finishing with direct contour input" unit ..... 126 "Transverse finishing with direct contour input" unit ..... 127 "Relief turns (undercut) type E, F, DIN76" unit ..... 128 "Measuring cut" unit ..... 130 2.8 Units—Threads ..... 131 Overview of thread units ..... 131 Handwheel superimposition ..... 131 Parameter V: Type of infeed ..... 132 "Thread, direct" unit ..... 133 "ICP thread" unit ..... 135 "API thread" unit ..... 137 "Tapered thread" unit ..... 138 2.9 Units-Milling, face ..... 139 "Slot, face" unit ..... 139 "Linear slot pattern, face" unit ..... 140 "Circular slot pattern, face" unit ..... 141 "Face milling" unit ..... 142 "Face milling ICP" unit ..... 143 "Thread milling" unit ..... 144 "Contour milling, figures, face" unit ..... 145 "ICP contour milling, face" unit ..... 147 "Pocket milling, figures, face" unit ..... 148 "ICP pocket milling, face" unit ..... 150 "Engraving, face" unit ..... 151 "Deburring, face" unit ..... 152

2.10 Units-Milling, lateral surface ..... 153 "Slot, lateral surface" unit ..... 153 "Linear slot pattern, lateral surface" unit ..... 154 "Circular slot pattern, lateral surface" unit ..... 155 "Helical slot milling" unit ..... 156 "Contour milling, figures, lateral surface" unit ..... 157 "ICP contour milling, lateral surface" unit ..... 159 "Pocket milling, figures, lateral surface" unit ..... 160 "ICP pocket milling, lateral surface" unit ..... 162 "Engraving, lateral surface" unit ..... 163 "Deburring, lateral surface" unit ..... 164 2.11 Units—Special operations ..... 165 "Program beginning (START)" unit ..... 165 "C axis ON" unit ..... 167 "C axis OFF" unit ..... 167 "Subprogram call" unit ..... 168 "Program section repeat" unit ..... 169 "Program end" unit ..... 170 "Tilt plane" unit ..... 171

#### 3 smart. Turn units for the Y axis ..... 173

3.1 Units—Drilling in the Y axis ..... 174 "ICP drilling, Y axis" unit ..... 174 "ICP tapping, Y axis" unit ..... 175 "ICP boring/countersinking, Y axis" unit ..... 176 3.2 Units—Predrilling in Y axis ..... 177 "Predrill, contour mill, ICP in XY plane" unit ..... 177 "Predrill, pocket mill, ICP in XY plane" unit ..... 178 "Predrill, contour mill, ICP in YZ plane" unit ..... 179 "Predrill, pocket mill, ICP in YZ plane" unit ..... 180 3.3 Units-Milling in Y axis ..... 181 "ICP contour milling in XY plane" unit ..... 181 "ICP pocket milling in XY plane" unit ..... 182 "Single-surface milling, XY plane" unit ..... 183 "Centric polygon milling, XY plane" unit ..... 184 "Engraving in XY plane" unit ..... 185 "Deburring in XY plane" unit ..... 186 "Thread milling in XY plane" unit ..... 187 "ICP contour milling in YZ plane" unit ..... 188 "ICP pocket milling in YZ plane" unit ..... 189 "Single-surface milling, YZ plane" unit ..... 190 "Centric polygon milling, YZ plane" unit ..... 191 "Engraving in YZ plane" unit ..... 192 "Deburring in YZ plane" unit ..... 193 "Thread milling in YZ plane" unit ..... 194

#### 4 DIN Programming ..... 195

4.1 Programming in DIN/ISO mode ..... 196 Geometry and machining commands ..... 196 Contour programming ..... 197 NC blocks of the DIN program ..... 199 Creating, editing and deleting NC blocks ..... 200 Address parameters ..... 201 Fixed cycles ..... 202 Subprograms, expert programs ..... 203 NC program conversion ..... 203 DIN/ISO programs of predecessor controls ..... 204 "Geometry" menu item ..... 206 "Machining" menu item ..... 206 4.2 Definition of workpiece blank ..... 207 Chuck part bar/tube G20-Geo ..... 207 Cast part G21-Geo ..... 207 4.3 Basic contour elements ..... 208 Starting point of turning contour GO-Geo ..... 208 Machining attributes for form elements ..... 208 Line segment in a contour G1-Geo ..... 209 Circular arc of turning contour G2/G3-Geo ..... 211 Circular arc of turning contour G12/G13-Geo ..... 212 4.4 Contour form elements ..... 214 Recess (standard) G22-Geo ..... 214 Recess (general) G23-Geo ..... 216 Thread with undercut G24-Geo ..... 218 Undercut contour G25-Geo ..... 219 Thread (standard) G34-Geo ..... 223 Thread (general) G37-Geo ..... 224 Bore hole (centric) G49-Geo ..... 226 4.5 Attributes for contour description ..... 227 Feed rate reduction G38-Geo ..... 227 Attributes for superimposed elements G39-Geo ..... 228 Separation point G44 ..... 229 Oversize G52-Geo ..... 229 Feed per revolution G95-Geo ..... 230 Additive compensation G149-Geo ..... 230 4.6 C-axis contours—Fundamentals ..... 231 Milling contour position ..... 231 Circular pattern with circular slots ..... 234

4.7 Front and rear face contours ..... 237 Starting point of front/rear face contour G100-Geo ..... 237 Line segment in front/rear face contour G101-Geo ..... 238 Circular arc in front/rear face contour G102/G103-Geo ..... 239 Bore hole on front/rear face G300-Geo ..... 240 Linear slot on front/rear face G301-Geo ..... 241 Circular slot on front/rear face G302/G303-Geo ..... 241 Full circle on front/rear face G304-Geo ..... 242 Rectangle on front/rear face G305-Geo ..... 242 Eccentric polygon on front/rear face G307-Geo ..... 243 Linear pattern on front/rear face G401-Geo ..... 244 Circular pattern on front/rear face G402-Geo ..... 245 4.8 Lateral surface contours ..... 246 Starting point of lateral surface contour G110-Geo ..... 246 Line segment in a lateral surface contour G111-Geo ..... 247 Circular arc in lateral surface contour G112/G113-Geo ..... 248 Hole on lateral surface G310-Geo ..... 249 Linear slot on lateral surface G311-Geo ..... 250 Circular slot on lateral surface G312/G313-Geo ..... 250 Full circle on lateral surface G314-Geo ..... 251 Rectangle on lateral surface G315-Geo ..... 251 Eccentric polygon on lateral surface G317-Geo ..... 252 Linear pattern on lateral surface G411-Geo ..... 253 Circular pattern on lateral surface G412-Geo ..... 254 4.9 Tool positioning ..... 255 Rapid traverse G0 ..... 255 Rapid traverse to machine coordinates G701 ..... 255 Approach tool change point G14 ..... 256 Definition of tool-change point G140 ..... 256 4.10 Linear and circular movements ..... 257 Linear movement G1 ..... 257 Circular path G2/G3 ..... 258 Circular path G12/G13 ..... 259 4.11 Feed rate, shaft speed ..... 260 Speed limitation G26 ..... 260 Reduce rapid traverse G48 ..... 260 Interrupted feed G64 ..... 261 Feed per tooth Gx93 ..... 261 Constant feed rate G94 (feed per minute) ..... 262 Feed per revolution Gx95 ..... 262 Constant surface speed Gx96 ..... 263 Speed Gx97 ..... 263 4.12 Tool-tip and cutter radius compensation ..... 264 G40: Switch off TRC/MCRC ..... 264 G41/G42: Switch on TRC/MCRC ..... 265

4.13 Zero point shifts ..... 266 Zero point shift G51 ..... 267 Zero point offsets-Shift G53/G54/G55 ..... 268 Additive zero point shift G56 ..... 268 Absolute zero point shift G59 ..... 269 4.14 Oversizes ..... 270 Switch off oversize G50 ..... 270 Axis-parallel oversize G57 ..... 270 Contour-parallel oversize (equidistant) G58 ..... 271 4.15 Safety clearances ..... 272 Safety clearance G47 ..... 272 Safety clearance G147 ..... 272 4.16 Tools, compensations ..... 273 Tool call T ..... 273 Correction of cut (switching the tool edge compensation) G148 ..... 274 Additive compensation G149 ..... 275 Compensation of right-hand tool tip G150 Compensation of left-hand tool tip G151 ..... 276 4.17 Contour-based turning cycles ..... 277 Working with contour-based cycles ..... 277 Longitudinal roughing G810 ..... 278 Face roughing G820 ..... 281 Contour-parallel roughing G830 ..... 284 Contour cycle, bidirectional (contour-parallel with neutral tool) G835 ..... 286 Recessing G860 ..... 288 Repeat recessing cycle G740/G741 ..... 290 Recess turning cycle G869 ..... 291 Recessing cycle G870 ..... 294 Finish contour G890 ..... 295 Measuring cut G809 ..... 298 4.18 Contour definitions in the machining section ..... 299 Cycle end / Simple contour G80 ..... 299 Linear slot on front/rear face G301 ..... 300 Circular slot on front/rear face G302/G303 ..... 300 Full circle on front/rear face G304 ..... 301 Rectangle on front/rear face G305 ..... 301 Eccentric polygon on front/rear face G307 ..... 302 Linear slot on lateral surface G311 ..... 302 Circular slot on lateral surface G312/G313 ..... 303 Full circle on lateral surface G314 ..... 303 Rectangle, lateral surface G315 ..... 304 Eccentric polygon, lateral surface G317 ..... 304

4.19 Thread cycles ..... 305 Overview of threading cycles ..... 305 Handwheel superimposition ..... 305 Parameter V: Type of infeed ..... 306 Thread cycle G31 ..... 307 Single thread cycle G32 ..... 311 Thread single path G33 ..... 313 Metric ISO thread G35 ..... 315 Tapered API thread G352 ..... 316 Metric ISO thread G38 ..... 318 4.20 Parting cycle ..... 319 Cut-off cycle G859 ..... 319 4.21 Undercut cycles ..... 320 Undercut cycle G85 ..... 320 Undercut according to DIN 509 E with cylinder machining G851 ..... 322 Undercut according to DIN 509 F with cylinder machining G852 ..... 323 Undercut according to DIN 76 with cylinder machining G853 ..... 324 Undercut type U G856 ..... 325 Undercut type H G857 ..... 326 Undercut type K G858 ..... 327 4.22 Drilling cycles ..... 328 Overview of drilling and boring cycles and contour reference ..... 328 Drilling cycle G71 ..... 329 Boring, countersinking G72 ..... 331 Tapping G73 ..... 332 Tapping G36—Single path ..... 334 Deep-hole drilling G74 ..... 335 Linear pattern, face G743 ..... 338 Circular pattern, face G745 ..... 339 Linear pattern, lateral surface G744 ..... 340 Circular pattern, lateral surface G746 ..... 341 Thread milling, axial G799 ..... 342 4.23 C-axis commands ..... 343 Reference diameter G120 ..... 343 Zero point shift, C axis G152 ..... 343 Standardize C axis G153 ..... 344 Short path in C G154 ..... 344 4.24 Front/rear-face machining ..... 345 Rapid traverse on front/rear face G100 ..... 345 Line segment on front/rear face G101 ..... 346 Circular arc on front/rear face G102/G103 ..... 347 4.25 Lateral surface machining ..... 348 Rapid traverse, lateral surface G110 ..... 348 Line segment on lateral surface G111 ..... 349 Circular arc on lateral surface G112/G113 ..... 350

4.26 Milling cycles ..... 351 Overview of milling cycles ..... 351 Linear slot on face G791 ..... 352 Linear slot on lateral surface G792 ..... 353 Contour and figure milling cycle, face G793 ..... 354 Contour and figure milling cycle, lateral surface G794 ..... 356 Area milling, face G797 ..... 358 Helical-slot milling G798 ..... 360 Contour milling G840 ..... 361 Pocket milling, roughing G845 ..... 370 Pocket milling, finishing G846 ..... 376 4.27 Engraving cycles ..... 378 Character set ..... 378 Engraving on front face G801 ..... 380 Engraving on lateral surface G802 ..... 381 4.28 Contour follow-up ..... 382 Saving/loading contour follow-up G702 ..... 382 Contour follow-up on/off G703 ..... 382

4.29 Other G codes ..... 383

Chucking equipment in simulation G65 ..... 383 Workpiece blank contour G67 (for graphics) ..... 383 Period of dwell G4 ..... 383 Precision stop G7 ..... 383 Precision stop off G8 ..... 384 Precision stop G9 ..... 384 Switch off protection zone G60 ..... 384 Actual values in variables G901 ..... 384 Zero-point shift in variables G902 ..... 384 Lag error in variables G903 ..... 384 Read interpolation information G904 ..... 385 Feed rate override 100 % G908 ..... 385 Interpreter stop G909 ..... 385 Spindle override 100 % G919 ..... 385 Deactivate zero-point shifts G920 ..... 386 Deactivate zero-point shifts, tool lengths G921 ..... 386 End position of tool G922 ..... 386 Fluctuating spindle speed G924 ..... 386 Convert lengths G927 ..... 387 Calculate variables automatically G940 ..... 388 Misalignment compensation G976 ..... 390 Activate zero-point shifts G980 ..... 390 Activate zero-point shifts, tool lengths G981 ..... 390 Monitoring zone G995 ..... 391 Load monitoring G996 ..... 392 Activate direct program-run continuation G999 ..... 392 Converting and mirroring G30 ..... 393 Transformations of contours G99 ..... 394 Spindle synchronization G720 ..... 395 C-angle offset G905 ..... 396 Traversing to a fixed stop G916 ..... 397 Controlled parting using lag error monitoring G917 ..... 399 Force reduction G925 ..... 400 Sleeve monitoring G930 ..... 401 Eccentric turning G725 ..... 402 Transition to eccentric G726 ..... 404 Eccentric X G727 ..... 406 4.30 Data input and data output ..... 408 "WINDOW"—Output window for variables ..... 408 "WINDOW"-Output file for variables ..... 408 "INPUT"-Input of variables ..... 409 "PRINT"—Output of # variables ..... 409

4.31 Programming variables ..... 410 Variable types ..... 411 Reading tool data ..... 413 Reading diagnostic bits ..... 416 Reading the current NC information ..... 417 Reading general NC information ..... 419 Reading configuration data—PARA ..... 421 Determining the index of a parameter element—PARA ..... 422 Expanded variable syntax CONST - VAR ..... 423 4.32 Conditional block run ..... 425 Program branching IF..THEN..ELSE..ENDIF ..... 425 Requesting variables and constants ..... 426 WHILE. ENDWHILE program repeat ..... 427 SWITCH..CASE—program branching ..... 428 Skip level ..... 429 4.33 Subprograms ..... 430 Subprogram call: L"xx" V1 ..... 430 Dialog texts in subprogram call ..... 431 Help graphics for subprogram calls ..... 431 4.34 M commands ..... 432 M commands for program-run control ..... 432 Machine commands ..... 433 4.35 G codes from previous controls ..... 434 Contour definitions in the machining section ..... 434 Simple turning cycles ..... 436 Thread cycles (4110) ..... 441 4.36 DINplus program example ..... 443 Example of a subprogram with contour repetitions ..... 443 4.37 Connection between geometry and machining commands ..... 446 Turning Operations ..... 446 C-axis machining-front/rear face ..... 447 C-axis machining—lateral surface ..... 447 4.38 Full-surface machining ..... 448 Fundamentals of full-surface machining ..... 448 Programming of full-surface machining ..... 449 Full-surface machining with opposing spindle ..... 450 Full-surface machining with single spindle ..... 452

#### 5 Touch probe cycles ..... 455

| 5.1 General information on touch probe cycles (software option) 456                              |
|--------------------------------------------------------------------------------------------------|
| Principle of function of touch probe cycles 456                                                  |
| Touch probe cycles for automatic operation 457                                                   |
| 5.2 Touch probe cycles for single-point measurement 459                                          |
| Single-point measurement for tool compensation G770 459                                          |
| Single-point measurement for zero point G771 461                                                 |
| Zero point C axis, single-point measurement G772 463                                             |
| Zero point C-axis object center G773 465                                                         |
| 5.3 Touch probe cycles for two-point measurement 467                                             |
| Two-point measurement G18 transverse G775 467                                                    |
| Two-point measurement G18 longitudinal G776 469                                                  |
| Two-point measurement G17 longitudinal G777 471                                                  |
| Two-point measurement G19 longitudinal G778 473                                                  |
| 5.4 Calibrating the touch probe 475                                                              |
| Calibrate touch probe standard G747 475                                                          |
| Calibrate touch probe via two points G748 477                                                    |
| 5.5 Measuring with touch probe cycles 478                                                        |
| Paraxial probing G764 478                                                                        |
| Probing in C axis G765 479                                                                       |
| Probing in two axes G766 480                                                                     |
| Probing in two axes G768 481                                                                     |
| Probing in two axes G769 482                                                                     |
| 5.6 Search cycles 483                                                                            |
| Find hole in C face G780 483                                                                     |
| Find hole in C lateral surface G781 485                                                          |
| Find stud in C face G782 487                                                                     |
| Find stud in C lateral surface G783 489                                                          |
| 5.7 Circular measurement 491                                                                     |
| Circular measurement G785 491                                                                    |
| Determine pitch circle G786 493                                                                  |
| 5.8 Angular measurement 495                                                                      |
| Angular measurement G787 495                                                                     |
| Misalignment compensation after angle measurement G788 497                                       |
| 5.9 In-process measurement 498                                                                   |
| Measure workpieces (option) 498                                                                  |
| Switch on measurement G910 498                                                                   |
| Measuring path monitoring G911 499                                                               |
| Measured value capture G912 499                                                                  |
| End in-process measuring G913 499                                                                |
| Switch off measuring-path monitoring G914 499                                                    |
| In-process measurement example: Measuring and compensating workpieces 500                        |
| In-process measurement example: Measuring and compensating workpieces (measure_pos_move.ncs) 501 |

#### 6 DIN programming for the Y axis ..... 503

| 6.1 Y-axis contours—Fundamentals 504               |
|----------------------------------------------------|
| Position of milling contours 504                   |
| Cutting limit 504                                  |
| 6.2 Contours in the XY plane 505                   |
| Starting point of contour in XY plane G170-Geo 505 |
| Line segment in XY plane G171-Geo 505              |
| Circular arc in XY plane G172-Geo/G173-Geo 506     |
| Hole in XY plane G370-Geo 507                      |
| Linear slot in XY plane G371-Geo 508               |
| Circular slot in XY plane G372-Geo/G373-Geo 509    |
| Full circle in XY plane G374-Geo 509               |
| Rectangle in XY plane G375-Geo 510                 |
| Eccentric polygon in XY plane G377-Geo 510         |
| Linear pattern in XY plane G471-Geo 511            |
| Circular pattern in XY plane G472-Geo 512          |
| Single surface in XY plane G376-Geo 513            |
| Centric polygon in XY plane G477-Geo 513           |
| 6.3 Contours in the YZ plane 514                   |
| Starting point of contour in YZ plane G180-Geo 514 |
| Line segment in YZ plane G181-Geo 514              |
| Circular arc in YZ plane G182-Geo/G183-Geo 515     |
| Hole in YZ plane G380-Geo 516                      |
| Linear slot in YZ plane G381-Geo 516               |
| Circular slot in YZ plane G382-Geo/G383-Geo 517    |
| Full circle in YZ plane G384-Geo 517               |
| Rectangle in YZ plane G385-Geo 518                 |
| Eccentric polygon in YZ plane G387-Geo 518         |
| Linear pattern in YZ plane G481-Geo 519            |
| Circular pattern in YZ plane G482-Geo 520          |
| Single surface in YZ plane G386-Geo 521            |
| Centric polygon in YZ plane G487-Geo 521           |
| 6.4 Working planes 522                             |
| Y-axis machining 522                               |
| G17 XY plane (front or rear face) 522              |
| G18 XZ plane (turning) 522                         |
| G19 YZ plane (lateral view / lateral surface) 522  |
| Tilting the working plane G16 523                  |
| 6.5 Tool positioning in the Y axis 524             |
| Rapid traverse G0 524                              |
| Approach tool change point G14 524                 |
| Rapid traverse to machine coordinates G701 525     |
| •                                                  |

6.6 Linear and circular movements in the Y axis ..... 526 Milling: Linear movement G1 ..... 526 Milling: Circular movement G2, G3-incremental center coordinates ..... 527 Milling: Circular movement G12, G13—absolute center coordinates ..... 528 6.7 Milling cycles for the Y axis ..... 529 Area milling—roughing G841 ..... 529 Area milling-finishing G842 ..... 530 Centric polygon milling-roughing G843 ..... 531 Centric polygon milling—finishing G844 ..... 532 Pocket milling-roughing G845 (Y axis) ..... 533 Pocket milling-finishing G846 (Yaxis) ..... 539 Engraving in XY plane G803 ..... 541 Engraving in the YZ plane G804 ..... 542 Thread milling in XY plane G800 ..... 543 Thread milling in YZ plane G806 ..... 544 Hobbing G808 ..... 545 6.8 Example program ..... 546 Machining with the Y axis ..... 546

#### 7 TURN PLUS ..... 553

| 7.1 The TURN PLUS function 554                                               |
|------------------------------------------------------------------------------|
| TURN PLUS concept 554                                                        |
| 7.2 Automatic Working Plan Generation (AWG) submode 555                      |
| Generating a working plan 556                                                |
| Machining sequence—Fundamentals 557                                          |
| Editing and managing machining sequences 559                                 |
| Overview of machining sequences 560                                          |
| 7.3 AWG control graphic 568                                                  |
| Setting the AWG control graphic 568                                          |
| 7.4 Machining information 569                                                |
| Tool selection, turret assignment 569                                        |
| Contour recessing, recess turning 571                                        |
| Drilling 571                                                                 |
| Cutting data, coolant 572                                                    |
| Inside contours 573                                                          |
| Shaft machining 575                                                          |
| 7.5 Example 577                                                              |
| Creating a program 577                                                       |
| Workpiece blank definition 577                                               |
| Defining the basic contour 578                                               |
| Defining form elements 578                                                   |
| Preparing the machining process, chucking 579                                |
| Generating and saving a working plan 579                                     |
| 7.6 Full-surface machining with TURN PLUS 580                                |
| Rechucking the workpiece 580                                                 |
| Defining the chucking equipment for full-surface machining 581               |
| Automatic program creation for full-surface machining 582                    |
| Rechucking the workpiece in the main spindle 582                             |
| Transferring the workpiece from the main spindle to the opposing spindle 583 |
| Parting and picking-off the workpiece with the opposing spindle 583          |

#### 8 B axis ..... 585

8.1 Fundamentals ..... 586 Tilted working plane ..... 586
8.2 Compensation with the B axis ..... 588 Compensation during program run ..... 588
8.3 Simulation ..... 589 Simulation of the tilted plane ..... 589 Displaying the coordinate system ..... 590 Position display with the B and Y axes ..... 590 9.1 Units—"Turning" group ..... 592 "Roughing" group ..... 592 "Finishing" group ..... 592 "Recessing" group ..... 593 "Thread" group ..... 593 9.2 Units-"Drilling" group ..... 594 "Centric drilling" group ..... 594 "ICP drilling, C axis" group ..... 594 "C-axis face drilling" group ..... 594 "C-axis lateral surface drilling" group ..... 595 9.3 Units—"Predrilling in C axis" group ..... 596 "Predrilling in C-axis, face" group ..... 596 "Predrilling in C-axis, lateral surface" group ..... 596 9.4 Units—"Milling in C axis" group ..... 597 "Milling in C-axis, face" group ..... 597 "ICP milling in C axis, face" group ..... 597 "C-axis lateral surface milling" group ..... 598 "ICP milling in C axis, lateral surface" group ..... 598 9.5 Units—"Drilling, predrilling in Y axis" group ..... 599 "ICP drilling, Y axis" group ..... 599 "Predrilling in Y axis" group ..... 599 9.6 Units—"Milling in Y axis" group ..... 600 "Milling in front face" group (XY plane) ..... 600 "Milling in lateral surface" group (YZ plane) ..... 601 9.7 Units—"Special units" group ..... 602

#### 10 Overview of G functions ..... 603

10.1 Section codes ..... 604
10.2 Overview of G commands in the CONTOUR section ..... 605 G commands for turning contours ..... 605 G commands for C-axis contours ..... 606
10.3 Overview of G commands in the MACHINING section ..... 607 G commands for turning ..... 607 Cycles for turning ..... 608 C-axis machining ..... 609 Y-axis machining ..... 610 Variable programming, program branches ..... 610 Other G codes ..... 611







### NC programming

# 1.1 smart.Turn and DIN (ISO) programming

The Control supports the following types of NC programming:

- Conventional DIN/ISO programming: You program the basic contour with line segments, circular arcs and simple turning cycles. Use the smart.Turn editor in ISO mode.
- "DIN PLUS" (ISO) programming: The geometrical description of the workpiece and the machining process are separated. You first program the geometry of the blank and finished part. Then you machine the workpiece, using contour-related turning cycles. Use the smart.Turn editor in ISO mode.
- smart.Turn programming: The geometrical description of the workpiece and the machining process are separated. You program the geometry of the blank and finished part, and you program the machining blocks as units. Use the smart.Turn editor in unit mode.

Depending on the type and complexity of your machining task, you can use either simple DIN/ISO programming, "DIN PLUS" (ISO) programming or smart.Turn programming. All three named programming modes can be combined in one NC program.

In DIN PLUS and smart.Turn programming, contours can be described with ICP interactive graphics. ICP saves the contour descriptions as G codes in the NC program.

**Parallel operation:** While you are editing and testing programs, your machine can run **another** NC program.



In the editor you can create a program list (automatic job), which is then executed automatically in the Program Run submode.

#### **Contour follow-up**

The Control uses the **contour follow-up** function in DIN PLUS and smart.Turn programs. The Control takes the blank part as a basis and accounts for each cut and each cycle when regenerating the contour. Thus you can inspect the current contour of the workpiece during each machining stage. With the "contour follow-up" function, the Control optimizes the paths for approach and departure and avoids air cuts.

Contour regeneration is only available for turning operations when a blank part has been programmed. It also works with auxiliary contours.

# Structured NC program

smart.Turn and DIN PLUS programs are structured in fixed sections. The following program sections are created automatically in a new NC program:

- **Program head:** Contains information on the material of the workpiece, the unit of measure as well as further organizational data and setup information as a comment.
- Chucking equipment: Description of the workpiece clamping situation.
- **Blank:** The workpiece blank is stored. Programming a blank activates contour follow-up.
- Finished part: The finished part is stored. It is advisable to describe the complete workpiece as a finished part. The units or fixed cycles use NS and NE to indicate the workpiece section to be machined.
- Machining: Use units or cycles to program the individual machining steps. In a smart. Turn program, the START unit is located at the beginning of the machining process, and the END unit at the end.
- **End:** Indicates the end of the NC program.

If required, for example for machining with the C axis or when programming with variables, you add further program sections.

 $\bigcirc$ 

Use ICP (Interactive Contour Programming) for describing blank and finished parts.

Beispiel: "Structured smart.Turn program"

| HEADER         |                 |
|----------------|-----------------|
| #MEASURE_UNITS | METRIC          |
| #MATERIAL      | Steel           |
| #MACHINE       | Automatic lathe |
| #DRAWING       | 356_787.9       |
| #CLAMP. PRESS. | 20              |
| #COMPANY       | Turn & Co       |

TURRET

T1 ID"038\_111\_01"

T2 ID"006\_151\_A"

**CLAMPS 1** 

H0 D0 Z200 B20 O-100 X120 K12 Q4

# **BLANK**

N1 G20 X120 Z120 K2

**FINISHED** 

N2 G0 X0 Z0

N3 G1 X20 BR3

N4 G1 Z-24

### . . .

### MACHINING

N50 UNIT ID"START" [Program beginning]

N52 G26 S4000

N53 G59 Z320

N54 G14 Q0

N25 END\_OF\_UNIT

### . . .

[Machining commands]

# . . .

N9900 UNIT ID"END" [End of program]

N9902 M30

N9903 END\_OF\_UNIT

END

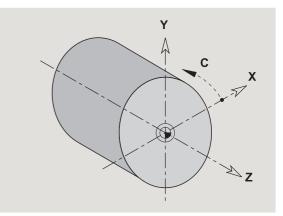
# Linear and rotary axes

**Principal axes:** Coordinates of the X, Y and Z axes refer to the workpiece zero point.

# C axis as reference axis:

- Angle data are with given respect to the zero point of the C axis.
- C-axis contours and C-axis operations:
  - Positions on the front/rear face are entered in Cartesian coordinates (XK, YK), or polar coordinates (X, C)
  - Positions on the lateral surface are entered in polar coordinates (Z, C). Instead of C, the **linear value CY** can be used ("unrolled" reference diameter).




The smart.Turn editor respects only address letters of the configured axes.

# Units of measure

You write NC programs in metric or inch values. The unit of measure is defined in the "Unit" box (See "HEADER section" on page 51.).



Once the unit of measure has been defined, it cannot be edited any longer.



# **Elements of an NC program**

An NC program consists of the following elements:

- Program name
- Program section codes
- Units
- NC blocks
- Commands for program structuring
- Comment blocks

The **program name** begins with "%" followed by up to 40 characters (numbers, uppercase letters or underscore; no diacritical marks) and the extension "nc" for main programs or "ncs" for subprograms. The first character must be a number or a letter.

**Program section codes:** When you create a new NC program, certain program section codes are already entered. You can add new codes or delete existing ones, depending on your program requirements. An NC program must contain at least the MACHINING and END section codes.

The **unit** begins with this keyword followed by the identification of the unit (ID"G..."). The following lines contain the G, M and T functions of this machining block. The unit ends with END\_OF\_UNIT followed by a check digit.

**NC blocks** begin with an N followed by a block number (with up to five digits). The block numbers do not affect the sequence in which the program blocks are executed. They are only intended for identifying the individual NC blocks.

The NC blocks of the HEADER and TURRET or MAGAZINE sections are not included in the block number organization of the editor.

**Program branches**, **program repeats** and **subprograms** can be used to structure the program (example: machining the front/back of a bar, etc.).

**Input and output:** With "input" you can influence the flow of the NC program. Using "output," you can communicate with the machinist. Example: The machinist is required to check measuring points and update compensation values.

**Comments** are enclosed in brackets "[...]." They are located at the end of an NC block or in a separate NC block. Press the key combination **CTRL+K** to convert an existing block into a comment (and vice versa).

You can also enclose more than one program line in square brackets to mark them as a comment. To do this, enter a comment containing the character "[" and conclude the section by entering another comment containing the character "]".

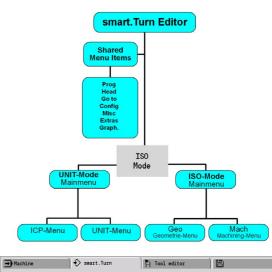
# 1.2 The smart.Turn editor

# Menu structure

You can select the following editor modes in the smart.Turn editor:

- Unit programming (standard)
- DIN/ISO mode (DIN PLUS and DIN 66025)

The menu structure of the smart. Turn editor is shown in the illustration at right. Many menu items are used in both modes. The menus differ in the area of geometry and part programming. In DIN/ISO mode the menu items "Geo(metry)" and "Mach(ining)" are displayed instead of the menu items "ICP" and "Units" (see illustrations at lower right). You can switch between the editor modes by soft key.




Switches between the Unit mode and DIN/ISO mode

For special cases you can change to the text-editor mode in order to edit character-by-character without syntax checking. The setting is made in the Configuration / Input mode menu item.

For a description of the functions, please refer to the following chapters:

- Shared menu items: See "Menu structure" on page 40.
- ICP functions: Chapter 5 in the User's Manual
- Units for turning and C-axis machining: See "smart.Turn units" on page 65.
- Units for Y-axis machining: See "smart.Turn units for the Y axis" on page 173.
- G codes for turning and C-axis machining (geometry and machining): See "DIN Programming" on page 195.
- G codes for Y-axis machining (geometry and machining): See "DIN programming for the Y axis" on page 503.

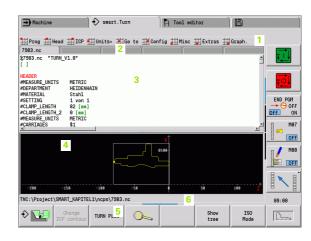


| Prog Head                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ICP Unit                                                                   | s» 💻 Go to 💷 🤇  | Config 📰 Misc | Extras       | Graph.      |              |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|-----------------|---------------|--------------|-------------|--------------|
| 7983.nc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                            |                 |               |              |             |              |
| %7983.nc "TURN_"<br>[]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | V1.0"                                                                      |                 |               |              | *           |              |
| HEADER<br>#MEASURE_UNITS<br>#DEPARTMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | METRIC<br>HEIDENHAIN                                                       |                 |               |              | _           |              |
| #MATERIAL<br>#SETTING<br>#CLAMP_LENGTH<br>#CLAMP_LENGTH_2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Stahl<br>1 von 1<br>82 [mm]<br>0 [mm]                                      |                 |               |              |             | END PGM      |
| #MEASURE_UNITS<br>#CARRIAGES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | METRIC<br>\$1                                                              |                 |               |              |             | M97          |
| TURRET 1<br>T1 ID*342-40<br>T2 ID*111-80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                            |                 |               |              |             |              |
| T3 ID*007*<br>T4 ID*003*<br>T5 ID*004AP1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                            |                 |               |              | l           |              |
| T6 ID*020*<br>T7 ID*037*<br>T9 ID*04mtes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                            |                 |               |              | ۲.          |              |
| TNC:\Project\SMA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | RT_KAPITEL1\ncp                                                            | s\7983.nc       |               |              | <u>.</u>    | 09:00        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Change TURN                                                                | PLUS            |               | Show<br>tree | ISO<br>Mode | ſ <u>Ŀ</u> _ |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                            |                 |               |              |             |              |
| ➡ Machine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>  ∲</b> s                                                               | mart.Turn       | 🏳 Tool edi    | itor         | B           |              |
| Prog 📕 Head                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Geo» 👖 Mac                                                                 | :h» 📕 Go to 📕 ( | onfig 拱 Misc  | Extras       | Graph.      |              |
| 7983.nc<br>%7983.nc "TURN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                            |                 |               | Ì            | -           | T I          |
| ∎ 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                            |                 |               |              |             |              |
| HEADER<br>#MEASURE_UNITS<br>#DEPARTMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | METRIC                                                                     |                 |               |              |             |              |
| MATERTAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | HEIDENHAIN                                                                 |                 |               |              |             | 린            |
| #MATERIAL<br>#SETTING<br>#CLAMP_LENGTH<br>#CLAMP_LENGTH_2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Stahl<br>1 von 1<br>82 [mm]<br>0 [mm]                                      |                 |               |              |             |              |
| #SETTING<br>#CLAMP_LENGTH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Stahl<br>1 von 1<br>82 [mm]                                                |                 |               |              |             |              |
| WSETTING<br>WCLAMP_LENGTH<br>WCLAMP_LENGTH_2<br>MMEASURE_UNITS<br>WCARRIAGES<br>TURRET 1<br>T1 ID"342-40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Stahl<br>1 von 1<br>82 [mm]<br>0 [mm]<br>METRIC<br>\$1<br>0.1"             |                 |               |              |             |              |
| #SETING<br>#CLAMP_LENGTH<br>#CLAMP_LENGTH_2<br>#MEASURE_UNITS<br>#CARFIAGES<br>TURRET 1<br>T1 ID*3422-40<br>T2 ID*111-80<br>T3 ID*007*<br>T4 ID*003*<br>T5 ID*004AP1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Stahl<br>1 von 1<br>82 [mm]<br>0 [mm]<br>METRIC<br>\$1<br>0.1"<br>-880.1"  |                 |               |              |             |              |
| WSETTING           WCLAMP_LENGTH_2           WCLAMP_LENGTH_2           WMEASURE_UNITS           TURRET 1           T1           ID*342-40           T2           ID*312-40           T3           W087*           T4           ID*087*           T5           T6           T0*082*           T7           ID*080*           T7           T0*087*           T3           T4           T0*087*           T6           T7           T0*087*           T6           T0*087*           T6           T6           T0*087*           T6           T1           T6           T7           T0*084           T6           T6           T6           T6           T6           T0*087*           T6           T7           T7           T7           T0*084           T7           T6 | Stahl<br>1 von 1<br>82 [mm]<br>0 [mm]<br>METRIC<br>\$1<br>0.1"<br>-680.1"  |                 |               |              | 1           |              |
| #SETTING<br>#CLAMP_LENGTH<br>#CLAMP_LENGTH_2<br>#MEASURE_UNITS<br>#CARRIAGES<br>TURRET 1<br>T1 ID*342-40<br>T2 ID*111-80<br>T3 ID*007*<br>T4 ID*003*<br>T5 ID*004AP1<br>T6 ID*0203*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Stahl<br>1 von 1<br>82 [mm]<br>0 [mm]<br>#1<br>0.1"<br>-880.1"<br>"<br>t5" | s\7983.nc       |               |              | الا<br>م    |              |

# **Parallel editing**

Up to 6 NC programs can be opened simultaneously in the smart.Turn editor. The editor shows the names of the open programs in the tab bar. If you have changed the NC program, the editor displays the name in red.

You can program in the smart.Turn editor while the machine is running a program in the automatic mode.




The smart.Turn editor saves all open programs with every mode change.

The program running in the automatic mode cannot be edited.

# **Screen layout**

- 1 Menu bar
- 2 NC program bar with the names of the loaded NC programs. The selected program is marked.
- 3 Program window
- 4 Contour display or large program window
- 5 Soft keys
- 6 Status bar



# Selecting the editor functions

The functions of the smart. Turn editor are contained in the main menu and various submenus.

- The submenus can be called by:
- selecting the desired menu item
- positioning the cursor in the respective program section

You can access the higher-level menu:

▶ by pressing the ESC key



▶ by using the menu item

**Soft keys:** Soft keys are available for fast switching to "neighboring operating modes," for changing the editing window or program view, and for activating the graphics.

| Soft keys             | with active program window                                      |
|-----------------------|-----------------------------------------------------------------|
| ◆                     | Starts the current program in the <b>Simulation</b> submode.    |
| Change<br>ICP contour | Opens the contour, in which the cursor is located, in ICP.      |
|                       | Activates the zoom function in the contour display.             |
|                       | Switches between the DINplus view and the tree view.            |
| ISO<br>Mode           | Switches between the Unit mode and DIN/ISO mode.                |
|                       | Activates the contour display and starts redrawing the contour. |

# Editing with active tree view

- Press the right arrow key to expand the program sections.
- Position the cursor on the program line you want to edit and press the right arrow key once again.
- ▶ The control automatically changes to the DINplus view. Make the required changes.
- Use the left arrow key to return to the tree view and to collapse the program section.



You can adapt the tree view in the MACHINING section to suit your requirements; for example, you can combine multiple units to create a custom range of blocks. Define the new range of blocks by inserting the DINplus word BLOCKSTART at the beginning of the selected program section and the DINplus word BLOCKEND at the end. The DINplus words are available in the Extras menu > "Insert DINplus word."

| Programme-Anfang           Vizabitizen - zestlisch - 10"-342-229           11 Sitest F#.3           m - plan - elitosotitg - 10"-342           7 G628 Schumpen Jan CF           7 J2 S228 F8.3           12 Sitest F#.3           17 J2 S228 F8.4           10 - Jange - Janee - 10"-C508"1"           27 G62 Schumpen Jan CF           17 S228 F8.4           1. Jange - Janee - 10"-C508"1"           27 G62 Schumpen Jange T0"           17 S159 F8.5           27 J2 S228 F8.4           1. Jange - Janee - 10"-C508"1"           27 G63 Schumpen Jange T0"           17 S159 F8.5           20 G62 Schumpen Jange T0"           21 G61 Schumpen Jange T0"           22 S159 F8.5           23 G61 Schumpen Jange T0"           24 G61 Schumpen Jange T0"           25 G61 Schumpen Jange T0"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Doku/Healse.nc         TOWE         Dokuru           1         1         1           >         PODOWNMOOF         1         1           >         SYAMMETTE 1         1         1           >         SYAMMETTE 1         1         1           >         SYAMMETTE 1         1         1           >         STATUS         1         1         1           STATUS         STATUS         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Status (Hellen.no: "THRU/1.0"         Description           1         I         I           1         I         I           1         I         I           1         I         I           1         I         I           1         I         I           1         I         I           1         I         I           1         I         I           1         I         I           1         I         I           1         I         I           1         I         I           1         I         I           1         I         I           0         I         I           0         I         I           0         I         I           0         I         I           0         I         I           0         I         I           0         I         I           0         I         I           0         I         I           0         I         I           0         I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Doku_  | _Huelse                                                                                      |                                         | *1) |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----------------------------------------------------------------------------------------------|-----------------------------------------|-----|
| Programe-Antamy           Vizabilizmo - z-contisish - 10"342-129           10 Badenic contisish - 10"342-129           11 SiB44 F#.3           m - plan - altimontify - 10"341"1           7 GB2 Schompen Jim E/F           12 SiZ24 F8.3           10 - mainer Jim F10'           12 SiZ24 F8.3           11 - mainer Jim F10'           12 SiZ24 F8.4           11 - Jim Faller 10'           12 SiZ24 F8.4           11 - Jim Faller 10'           12 SiZ24 F8.5           2 SiZ24 F8.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | I         Image: Im                            | I     Impostment       PHOLEWOOFF       ROVURD 1       SAVANTITL 1       NOTTLI       FORTONE       FORTONE       UTT STATUT       Impost       UTT STATUT       Impost       UTT STATUT       Impost       Impost <t< th=""><th>Section Details</th><th></th><th></th><th>Details 🔺 🕇</th><th>-+</th></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Section Details                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |                                                                                              | Details 🔺 🕇                             | -+  |
| Programs-Anfang         END PSM           Wrankhern - zwatrich - 10"342-270         1           Wrankhern - zwatrich - 10"342-270         1           Wrankhern - zwatrich - 10"342-170         1           Wrankhern - zwatrich - 10"342-170         1           Y Gd28 Schrougen Jan D/P         12           Y Gd28 Schrougen Jan D/P         17           Y S228 F8.4         1           Y Gd28 Schrougen Jan D/P         17           Y Gd28 Schrougen Jan D/P         17           Y S558 F8.5         0           Y Gd28 Schrougen Jan D/P         17           Y Gd28 Schrougen Jan D/P         17 <t< td=""><td>Proceasesoff     REVOURS 1     Second 1     Second</td><td>PHOGONAMMOOF           ROULVED 1           SAWANTTEL 1           NOTIFIL           POTIFIC 1           BEAST TOMOS           U/T STATT Programs-Anfang           [// actr.v.v.bachran zentrisch - 10°347-328           U/T STATT Programs-Anfang           [// actr.v.v.bachran zentrisch - 10°347-328           U/T STATT Programs-Anfang           [// scitus/point - ]ang - andresitig - 10°487-1           U/T GRELOP GEB Schwappen plan LPP           T S2228 F8.3           [// Scitus/point - 100°5419-10°487-1           U/T GRELOP GEB Schwappen plan LPP           T S2228 F8.4           [// Scitus/point - 100°5419-10°487-1           U/T GRELOP GEB Schwappen plan LPP           T S2228 F8.4           [// Scitus/point LPP]           U/T GRELOP GEB Schwappen Ling LPP           T S155 F8.5           [// Scitus/point-parkethtum - schwappen Lings LPP           T S155 F8.5</td><td></td><td></td><td></td><td></td><td>_</td></t<>                                                                                                                                                                                                                                                                       | Proceasesoff     REVOURS 1     Second   | PHOGONAMMOOF           ROULVED 1           SAWANTTEL 1           NOTIFIL           POTIFIC 1           BEAST TOMOS           U/T STATT Programs-Anfang           [// actr.v.v.bachran zentrisch - 10°347-328           U/T STATT Programs-Anfang           [// actr.v.v.bachran zentrisch - 10°347-328           U/T STATT Programs-Anfang           [// scitus/point - ]ang - andresitig - 10°487-1           U/T GRELOP GEB Schwappen plan LPP           T S2228 F8.3           [// Scitus/point - 100°5419-10°487-1           U/T GRELOP GEB Schwappen plan LPP           T S2228 F8.4           [// Scitus/point - 100°5419-10°487-1           U/T GRELOP GEB Schwappen plan LPP           T S2228 F8.4           [// Scitus/point LPP]           U/T GRELOP GEB Schwappen Ling LPP           T S155 F8.5           [// Scitus/point-parkethtum - schwappen Lings LPP           T S155 F8.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |                                                                                              |                                         | _   |
| Programs-Anfang         END FSM           Withhitsmon - zenitisch - 10"342-270         I           Mitshohtsmon - zenitisch - 10"342-270         I           Mitshohtsmon - zenitisch - 10"342-170         I           Mitshohtsmon - zenitisch - 10"342-170         I           Mitshohtsmon - zenitisch - 10"342-170         I           Mitshohtsmon - 10"342-170         I           Mitshohtsmon - 10"342-170         II           Mitshohtsmon - 10"342-170         II           Mitshohtsmon - 10"342-170         II           Mitshohtsmon - 10"342-170         III           Mitshohtsmon - 10"342-170         IIII SISF #6.5           Mitshohtsmon - 10"342-170         IIII SISF #6.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | → SPONUTS 1           → SPON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RPOUND 1         File                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |                                                                                              |                                         | -   |
| Programs-Anfang         END FSM           Withhitsmon - zenitisch - 10"342-270         I           Mitshohtsmon - zenitisch - 10"342-270         I           Mitshohtsmon - zenitisch - 10"342-170         I           Mitshohtsmon - zenitisch - 10"342-170         I           Mitshohtsmon - zenitisch - 10"342-170         I           Mitshohtsmon - 10"342-170         I           Mitshohtsmon - 10"342-170         II           Mitshohtsmon - 10"342-170         II           Mitshohtsmon - 10"342-170         II           Mitshohtsmon - 10"342-170         III           Mitshohtsmon - 10"342-170         IIII SISF #6.5           Mitshohtsmon - 10"342-170         IIII SISF #6.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SeparateTTL 1     Separat | SouverTitte 1<br>NorTELL<br>FRYTTGTLL<br>BEVARETINGE<br>UIT STATE Programs-Anfang<br>[// actr. Vuchehran zentrisch - 10°317-328<br>UIT GAL_2OHT Behran zentrisch - 10°317-328<br>UIT GAL_2OHT Behran zentrisch - 10°317-<br>1// Schrungen - plan - Stirnestig - 10°48'1<br>UIT GERL GPC GER Schruppen plan ICP TZ 5228 F8.3<br>[// Schruppen - Lings - nume - 10°2639"]<br>UIT GERL GPC GER Schruppen Iang ICP TZ 5228 F8.4<br>[// Schruppen - Lings - nume - 10°2639"]<br>UIT GERL GPC GER Schruppen Iang ICP TZ 5328 F8.5<br>[// Kontruspathelum - Schruppen Iang ICP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4      |                                                                                              |                                         | 51  |
| Programs-Anfang         END FSM           Withhitsmon - zenitisch - 10"342-270         I           Mitshohtsmon - zenitisch - 10"342-270         I           Mitshohtsmon - zenitisch - 10"342-170         I           Mitshohtsmon - zenitisch - 10"342-170         I           Mitshohtsmon - zenitisch - 10"342-170         I           Mitshohtsmon - 10"342-170         I           Mitshohtsmon - 10"342-170         II           Mitshohtsmon - 10"342-170         II           Mitshohtsmon - 10"342-170         II           Mitshohtsmon - 10"342-170         III           Mitshohtsmon - 10"342-170         IIII SISF #6.5           Mitshohtsmon - 10"342-170         IIII SISF #6.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <ul> <li>→ NorTELL</li> <li>→ FORTIDELL</li> <li>→ SCAPETING</li> <li>→ SCAPETI</li></ul>                                                                                                                                                                                                                                                                                                                           | NONTLL<br>FORTIOTLI         END FSM<br>EXECTIVAL           BOASETIVAL         TO "31"-378           ULIT STATU         To "31"-378           ULIT GIAL [30" GET Schwapen Jan 15"         T2 5228 F8.3           ULIT GIAL [30" GET Schwapen Jan 15"         T2 5228 F8.3           ULIT GIAL [30" GET Schwapen Jan 15"         T2 5228 F8.3           ULIT GIAL [30" GET Schwapen Jan 15"         T2 5258 F8.5           ULIT GIAL [30" GET Schwapen Jan 15"         T3 555 F8.5           ULIT GIAL [30" GET Schwapen Jang 10"         T3 555 F8.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PROGRAMKOPF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        |                                                                                              | I 🚺                                     | _   |
| Programe-Anima         Ti SiBMi FR.3           Wurdohten zwitzisch - 10°342-320         Ti SiBMi FR.3           Off Bohrman zentrisch         Ti SiBMi FR.3           m Bohrman zentrisch         Ti SiBMi FR.3           m Index - Linear Linear Direction         Ti SiBMi FR.3           m Bohrman Direction         Ti SiBMi FR.3           m Index - Linear Direction         Ti SiBMi FR.3           m Index - Linear Direction         Ti SiBMi FR.3           m Index - Linear Direction         Ti SiBMi FR.3           m State Schrappen Lings ICP         Ti SiBMi FR.5           mathetium - Machterzallal - and Minary Linear Direction         Ti SiBMi FR.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <ul> <li>PerilineTL</li> <li>METTORITUS</li> <li>METTORITUS</li></ul>                                                                                                                                                                                                                                                                                                                                             | Ferritorial       BEND FORM         BEAR TIMES       BUD FORM         UIT STAFF       Programs-Animo         1// solt.voldshumzoitlisch - ID*312-328       Million Staff FR.3         UIT GAZ, DORD Bohnes zenitisch       TI S1884 FR.3         1// Solt.underson - Jains - simerilia - ID*88*1       TI S222 FR.3         VI// Solt.uppon - Jains - simerilia - ID*88*1       TI S1258 FR.3         VI// Solt.uppon - Lings - maine - ID*6548*1       TI S1258 FR.5         VI// Solt.uppon - Lings - Inder - ID*0549*1       TI S1558 FR.5         VI// Solt.uppon Lings 10P       TI S1558 FR.5         VI// Solt.uppon Lings 10P       TI S1558 FR.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | P      |                                                                                              |                                         | _   |
| Programs-Andrag         → ○ Or         OEE         O           Wurdnhem zwitisch - 10°342-328         Ti Si884 F8.3         Im         Im <tdi< td=""><td><ul> <li>restructure</li> <li>GRANGTTOMS</li> <li>GRANGTTOMS</li></ul></td><td>Total Line       Total Line       Total Line       Total Line         BLARE TIMOR       BLARE TIMOR       Total Line       Total Line       Total Line         UIT STATT Programme-And and<br/>UIT Statt. Voldatum zentrisch - ID*342-378       Ti Si884 F8.3       Total Line       Total</td><td>I LI FICALMAROFF</td><td>P</td><td></td><td>END</td><td>PGM</td></tdi<>                                                                                                                                     | <ul> <li>restructure</li> <li>GRANGTTOMS</li> <li>GRANGTTOMS</li></ul>                                                                                                                                                                                                                                                                                                                                            | Total Line       Total Line       Total Line       Total Line         BLARE TIMOR       BLARE TIMOR       Total Line       Total Line       Total Line         UIT STATT Programme-And and<br>UIT Statt. Voldatum zentrisch - ID*342-378       Ti Si884 F8.3       Total Line       Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | I LI FICALMAROFF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | P      |                                                                                              | END                                     | PGM |
| Triggramm Valing<br>(TR) Boltzmann zantrisch – 10°342-228<br>(TR) Boltzmann zantrisch – 11°342-328<br>(TR) Boltzmann zantrisch – 11°5481 [8.3<br>m - plan - stimszentige – 10°481 [<br>)° GEB Schruppen Jam (TC) – 12 5228 [8.4<br>m - lings - slame – 10°4581 [<br>)° GEB Schruppen Jam (TC) – 12 5228 [8.4<br>m - lings - lingen – 10°4581 [<br>)° GEB Schruppen Jam (TC) – 12 5528 [8.5<br>m - lings - lingen – 10°4581 [<br>)° GEB Schruppen Jam (TC) – 17 5158 [8.5<br>m - lings - lingen – 10°4581 [<br>)° GEB Schruppen Jam (TC) – 17 5158 [8.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | D         UIIT STATT         Programs-datage           1/2 zoits: Vorbaham a - zustisch = 10"312-328         TI S1894 F8.3           >         UIIT GF2_ZOND Advanz zustisch = 10"312-328         TI S1894 F8.3           >         UIIT GF2_ZOND Advanz zustisch = 10"312-328         TI S1894 F8.3           >         UIIT GF2_LOP GF3 Schnupsen plan IDP         TF S228 F8.3           >         UIIT GF2_LOP GF3 Schnupsen plan IDP*         TF S228 F8.4           1/5 Schnupsen - lines - Inne - IDPCS1997         TF S228 F8.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | UIIT STATI Program-folion         DF31-728           U// activ         Yuddham - 2 and Zitsche - 10"317-728           UIIT GAZ, DORD Behaves zentrische         TI S1894 FR.3           // // Schurgen - plan - Stirnestig - 10"48"1         TI S1894 FR.3           UIIT GAZ, DOR Behaves zentrische         TI S1894 FR.3           // // Schurgen - plan - Stirnestig - 10"48"1         TI S128 FR.3           // // Schurgen - Lings - Inder - I0"481"1         TI S128 FR.4           // // Schurgen - Lings - Inder - I0"451"1         TI S128 FR.5           // // Schurgen - Lings - Inder - I0"451"1         TI S158 FR.5           // // Schurgen Lings 10P         TI S158 FR.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | I LI MORENE I LI M                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | P      |                                                                                              |                                         |     |
| Arabakrma - zenitisch - D*342-328<br>IRR Behram zentrisch - D*342-328<br>IRR Behram zentrisch - D*881*]<br>* GEP Schruppen plan 10*<br>* GEP Schruppen längs 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | /// Zantr. Workhown - reartisch : DP347-228           > UNIT G47_2DRN Bohram zentrisch : DP347-228           > UNIT G47_2DRN Bohram zentrisch : DP347-228           I// Schuppen - plan - stimsstlig - DP347           UNIT G47_2DRN Bohram : DP347           UNIT G47_2DRN Bohram : DP347           UNIT G47_2DRN = Dinn - DP347           U// Schuppen - Dinn - DP347                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | [// zentr. Vurbehrum zentrisch ID-342-328         UMIT 674_20HR Behrum zentrisch III S1884 F8.3         [// Schungen - plan - stimmettig - ID*881"]         UMIT 674_20HR Behrum zentrisch III S1884 F8.3         [// Schungen - plan - stimmettig - ID*881"]         UMIT 668_10* 668 Schungen plan IC*         12 S228 F8.3         [// Schungen - längs - änden - ID*6581"]         UMIT 6618_10* 668 Schungen IBmg IC*         17 S189 F8.5         [// Schungen - längs - inden - ID*6581"]         UMIT 6618_10* 668 Schungen IBmg IC*         T3 S189 F8.5         [// Schungen Lings IC*         T3 S189 F8.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | I I I I I I I I I I I I I I I I I I I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |                                                                                              | OFF                                     | c   |
| GRB Behrma zantzisch         Tis S1884 F6.3           m = plan = stimscriftig. = 10*881*1         Tis S284 F6.3           p* GRB Schrappen plan IGP         Tis S282 F6.4           pr: GRB Schrappen Lings ICP         Tis S282 F6.4           p* GRB Schrappen Lings ICP         Tis S282 F6.4           p* GRB Schrappen Lings ICP         Tis S158 F6.5           p* GRB Schrappen Lings ICP         Tis S158 F6.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | >         UIIT 074_200H Bokma zentrisch<br>1//5 shtmpsm = plan = sitmstilla = 10 <sup>-100</sup> H         TI 5188 F8.3           >         UIIT 022_UEP 025 shtmpsm plan IDP         TZ 5222 F8.3           >         UIIT 022_UEP 035 shtmpsm plan IDP         TZ 5222 F8.3           >         UIIT 021_UEP 045 shtmpsm lans IDP         TZ 5222 F8.4           >         UIIT 0411_UEP 0415 shtmpsm lans IDP         TZ 522 F8.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | UIT 6/1_20/IR Behaves zentrisch         TI 5/884 F8.3           /// Schurgen - plan - Stirnestig - 10"88"1         TY 5222 F8.3           /// Schurgen - Lings - Inder - 10"88"1         TY 5222 F8.3           UIT 6618 (JP' 6618 Schurgen Ling ICP'         TY 5222 F8.4           /// Schurgen - Lings - Inder - 10"2618"1         TY 5535 F8.5           UIT 6618 (JP' 6618 Schurgen Ling ICP'         TY 5535 F8.5           UIT 6618 (JP' 6618 Schurgen Ling ICP'         TY 5535 F8.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |                                                                                              |                                         |     |
| 29 GE2 Schuppen plan 10° 12 S222 F9.3     10° 110° 12 S222 F9.3     10° 110° 12° S22 F9.4     10° 110° 110° 110° 12° S22 F9.4     10° 110° 10° 10° 10° 10° 10° 10° 10°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | >         ULTT GER_LCPF GER2 Schwappen plan 107         T         52228 F8.3           1// Schwappen -lings - automen _ DUTRET         T         52228 F8.3           >         ULTT GER_LCPF GER3 Schwappen lings ICP         T         52228 F8.4           1// Schwappen - lings - schwappen lings ICP         T         52228 F8.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | UttT GERL CPG GER Schungen plan 10° T2 5228 F8.3<br>(// Schungen - Lings - subme - IU-984) <sup>1</sup><br>UttT GERL CPG GER Schungen Lings 10° T2 5228 F8.4<br>(// Schungen - Lings - Inne - IU-55498) <sup>2</sup><br>UttT GERL CPG GER Schungen Lings 10° T3 5158 F8.5<br>(// Schungenzheitum - Schungen Lings 10°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | III     INFORMATION PERFORMANCE     INFORMATION     INFO                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Þ      |                                                                                              | T1 S1894 F8 3                           | ME  |
| 29 GE2 Schuppen plan 10° 12 S222 F9.3     10° 110° 12 S222 F9.3     10° 110° 12° S22 F9.4     10° 110° 110° 110° 12° S22 F9.4     10° 110° 10° 10° 10° 10° 10° 10° 10°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | >         ULTT GER_LCPC GER2 Schwappen plan 107         T         S228 F8.3           1// Schwappen -lings - automen _ DUTRET         T         S228 F8.3           >         ULTT GER_LCPC GER3 Schwappen lings ICP         T         T         S228 F8.4           1// Schwappen - lings - sume - DUTRET         T         S228 F8.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | UttT GERL CPG GER Schungen plan 10° T2 5228 F8.3<br>(// Schungen - Lings - subme - IU-984) <sup>1</sup><br>UttT GERL CPG GER Schungen Lings 10° T2 5228 F8.4<br>(// Schungen - Lings - Inne - IU-55498) <sup>2</sup><br>UttT GERL CPG GER Schungen Lings 10° T3 5158 F8.5<br>(// Schungenzheitum - Schungen Lings 10°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | I     Image: State St                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                                                              | × • • • • • • • • • • • • • • • • • • • | _   |
| an - Jiang - Sadian - 10*881*1<br>27 G818 Astrongen Jiangs 10° T2 5228 F8.4<br>n - Jiang - Jiang - 10°-5381*1<br>29 G818 Astrongen Jiangs 10° T3 5158 F8.5<br>arbeitum - Kontenzal Jol - avalen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | // Schruppen - Jängs - außen - ID*881* <br>> WITT Gäll_ICP Gälä Schruppen Jängs 10P<br>[// Schruppen - Jängs - innen - ID*05581*]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | [// Schruppen - Jiangs - Janden - 10"9481"]           UNIT Gitta [CP GB18 Schruppen Jiangs TCP         T2 5228 F8.4           [// Schruppen - Jiangs - Iange - Ian                                                                                                                                                                                                                                                                                                                                                                                                                                             | I.I.     INFORMATION PARAMETERS       REVUNDED I     Southern Parameters       Southern III.I.     Exposure for formation parameters       Post of South Parameters     Exposure for formation parameters       UT of Column Data Parameters     It States F.B.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Þ      |                                                                                              | T2 S228 F8.3                            | OF  |
| 29         6818         Schruppen längs IOP         T2         S228         F8.4           mn         Längs         Lings         LSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | UNIT G818_ICP         G818 Schruppen längs ICP         T2 \$228 F8.4           [// Schruppen - längs - innen - ID*C45981*]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Util Gelig (Jor Gelis Schruppen Lings (D*)         TZ 5222 F8.4           // Schruppen Lings 1 cm = 107 C51987 F1         TS 515 F8.5           Util Gelig (Jor Gelis Schruppen Lings (D*)         TS 515 F8.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | I     PROJUMPROPF       PROJUKP 1     SPAGETTEL 1       DMTLL     FATIONELL       referent TMG     Listed FR.3       U// Status values     Jisted FR.3       U// Status values     Jisted FR.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |                                                                                              |                                         |     |
| CP 0818 Schzuppen längs ICP     T3 \$158 F8.5       earbeitung - konturparallel - außen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | WIIT G818 JCP G818 Schruppen längs ICP T3 S158 F8.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | I     Image: Second Seco                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Þ      |                                                                                              | T2 \$228 F8.4                           | ME  |
| P G818 Schruppen langs ICP 13 S158 F8.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | UNIT G818_ICP G818 Schruppen längs ICP T3 \$158 F8.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (// Konturbearbeitung - konturparallel - außen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | I         1           PROJUMENDOPF         1           SPARETTEL 1         1           DOTTIL         1           PROJUMENT TOUS         1           DITI STATE TOUS         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        | [// Schruppen - längs - innen - ID"C45901"]                                                  |                                         | -   |
| arbeitung - konturparallel - außen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | I.I.         INFORMATION CONTRIBUTION OF CONTRUCTURA ON CONTRIBUTION OF CONTRUCTURA ON CONTRIBUTION OF CONTRU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Þ      | UNIT G818_ICP G818 Schruppen längs ICP                                                       | T3 \$150 F0.5                           | OF  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | [// Konturbearbeitung - konturparallel - außen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | UNIT G898_ICP G898 Konturbearbeitung ICP T2 S248 F8.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | I         Image: Control of the state                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        | [// Konturbearbeitung - konturparallel - außen                                               |                                         |     |
| P G898 Konturbearbeitung ICP T2 S248 F8.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | UNIT G898_ICP G898 Konturbearbeitung ICP T2 S248 F8.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | I         I           INCOMPARAMENT         INCOMPARAMENT           Systematic I         Incompare And mag           Systematic I         Incompare And mag           IV/ 2 contr. Vorbation - 2 contribution - ID*242-220         Incompare And mag           IV/ 2 contr. Vorbation - 2 contribution - ID*242-220         Incompare And mag           IV/ 2 contr. Vorbation - 2 contribution - ID*242-220         Incompare And mag           IV/ 2 contr. Vorbation - 2 contribution - ID*242-220         Incompare And mag           IV/ 2 contr. Vorbation - 2 contribution - ID*242-220         Incompare And mag           IV/ 5 charper - Incompare And mag         Incompare And mag           IV/ 5 charper - Incompare And mag         Incompare And mag           IV/ 5 charper - Incompare And mag         Incompare And mag           IV/ 5 charper - Incompare And mag         Incompare And mag           IV/ 5 charper - Incompare And mag         Incompare And mag           IV/ 5 charper - Incompare                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | b.     | UNIT G898_ICP G898 Konturbearbeitung ICP                                                     | T2 \$248 F8.25                          |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | [// Konturbearbeitung - konturparallel - innen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | [// Konturbearbeitung - konturparallel - innen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | I         I           INCOMPARAMENT         INCOMPARAMENT           Systematic I         Incompare And mag           Systematic I         Incompare And mag           IV/ 2 contr. Vorbation - 2 contribution - ID*242-220         Incompare And mag           IV/ 2 contr. Vorbation - 2 contribution - ID*242-220         Incompare And mag           IV/ 2 contr. Vorbation - 2 contribution - ID*242-220         Incompare And mag           IV/ 2 contr. Vorbation - 2 contribution - ID*242-220         Incompare And mag           IV/ 2 contr. Vorbation - 2 contribution - ID*242-220         Incompare And mag           IV/ 5 charper - Incompare And mag         Incompare And mag           IV/ 5 charper - Incompare And mag         Incompare And mag           IV/ 5 charper - Incompare And mag         Incompare And mag           IV/ 5 charper - Incompare And mag         Incompare And mag           IV/ 5 charper - Incompare And mag         Incompare And mag           IV/ 5 charper - Incompare                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        | I// Kenturheerheitung - kenturnerellel - innen -                                             |                                         |     |
| earbeitung - konturparallel - innen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | UNIT G898_ICP G898 Konturbearbeitung ICP T3 \$288 F8.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | INTE COOR TOD, COOR Martineterstations TOD, TO COOR TO OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | I         I           INCOMPARAMENT         INCOMPARAMENT           Systematic I         Incompare And mag           Systematic I         Incompare And mag           IV/ 2 contr. Vorbation - 2 contribution - ID*242-220         Incompare And mag           IV/ 2 contr. Vorbation - 2 contribution - ID*242-220         Incompare And mag           IV/ 2 contr. Vorbation - 2 contribution - ID*242-220         Incompare And mag           IV/ 2 contr. Vorbation - 2 contribution - ID*242-220         Incompare And mag           IV/ 2 contr. Vorbation - 2 contribution - ID*242-220         Incompare And mag           IV/ 5 charper - Incompare And mag         Incompare And mag           IV/ 5 charper - Incompare And mag         Incompare And mag           IV/ 5 charper - Incompare And mag         Incompare And mag           IV/ 5 charper - Incompare And mag         Incompare And mag           IV/ 5 charper - Incompare And mag         Incompare And mag           IV/ 5 charper - Incompare                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        | 1// Noncorportonicong - Koncorparatiei - Innen                                               |                                         |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | WIIT 6898_ICP 6898 Kenturbearbeitung ICP T2 5248 F8.25<br>I// Kenturbearbeitung - kenturparallel - innen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | It         Hordradesoff           HYDOLARSOFF         Systematic training           Systematic training         Systematic training           Systematic training         Fill Systematic training           Hydolarsoft training         Fill Systematic training                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        | [// Konturbearbeitung - konturparallel - außen<br>UNIT G898_ICP G898 Konturbearbeitung ICP   |                                         |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | I         I           INCOMPARAMENT         INCOMPARAMENT           Systematic I         Incompare And mag           Systematic I         Incompare And mag           IV/ 2 contr. Vorbation - 2 contribution - ID*242-220         Incompare And mag           IV/ 2 contr. Vorbation - 2 contribution - ID*242-220         Incompare And mag           IV/ 2 contr. Vorbation - 2 contribution - ID*242-220         Incompare And mag           IV/ 2 contr. Vorbation - 2 contribution - ID*242-220         Incompare And mag           IV/ 2 contr. Vorbation - 2 contribution - ID*242-220         Incompare And mag           IV/ 5 charper - Incompare And mag         Incompare And mag           IV/ 5 charper - Incompare And mag         Incompare And mag           IV/ 5 charper - Incompare And mag         Incompare And mag           IV/ 5 charper - Incompare And mag         Incompare And mag           IV/ 5 charper - Incompare And mag         Incompare And mag           IV/ 5 charper - Incompare                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        |                                                                                              |                                         |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | UNIT G898_ICP G898 Konturbearbeitung ICP T3 \$288 F8.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | I     Image: Second Seco                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                                                              |                                         |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | I         I           INCOMPARAMENT         INCOMPARAMENT           Systematic I         Incompare And mag           Systematic I         Incompare And mag           IV/ 2 contr. Vorbation - 2 contribution - ID*242-220         Incompare And mag           IV/ 2 contr. Vorbation - 2 contribution - ID*242-220         Incompare And mag           IV/ 2 contr. Vorbation - 2 contribution - ID*242-220         Incompare And mag           IV/ 2 contr. Vorbation - 2 contribution - ID*242-220         Incompare And mag           IV/ 2 contr. Vorbation - 2 contribution - ID*242-220         Incompare And mag           IV/ 5 charper - Incompare And mag         Incompare And mag           IV/ 5 charper - Incompare And mag         Incompare And mag           IV/ 5 charper - Incompare And mag         Incompare And mag           IV/ 5 charper - Incompare And mag         Incompare And mag           IV/ 5 charper - Incompare And mag         Incompare And mag           IV/ 5 charper - Incompare                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        | I// Kenturbeerheitung - kenturmerallel - innen -                                             |                                         |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | [// Konturbearbeitung - konturparallel - außen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | UNIT 6899_ICP 6898 Konturbearbeitung ICP T2 \$248 F8.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | F1           F00/UMM000F           RVDUXB1           S9400TTL1           S9400TTL1           B01           F0TIONEL           S01           ULTI S10T           F0TIONEL           F0T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        | UNIT G818_ICP G818 Schruppen längs ICP<br>[// Konturbearbeitung – konturparallel – außen – … |                                         | 2   |
| P USIE Schruppen langs ICP 13 S158 F8.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | IIT G818_ICP G818 Schruppen längs ICP T3 \$158 F8.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | II GBIB_CCP GBIB Senzuppen langs ICP 13 S150 F8.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Suppression<br>AUX96000/F<br>AUX99 1<br>WHITEL 1<br>ITTEL<br>ITTEL<br>ITTEL<br>ITTEL<br>VALUE VIDABLED - realizable 10"342-328<br>ITT GAL VIDABLED - realizable 10"342-328                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        |                                                                                              | 12 3220 10.4                            |     |
| CP G818 Schruppen längs ICP T3 \$159 F8.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | WIIT G818 JCP G818 Schruppen längs ICP T3 S158 F8.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | I     Image: Second Seco                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Þ      |                                                                                              | T2 S228 F8.4                            | MO  |
| en - längs - innen - ID*C45981*) P G818 Schruppen längs ICP T3 S158 F8.5 szhotlung - kontrarszallo   - aufen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | [// Schruppen - längs - innen - ID"C45901"]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | I// Schruppen - längs - innen - DTC45081*]       Will Göts_CPC - Göts Schruppen längs ICP       T3 S156 F8.5       I// Konturbarbaitung - Nonturparallal - außen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | I.I.         INFORMATION CONTRACTOR OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | b      |                                                                                              | T9 \$998 E8 4                           | MB  |
| en - längs - innen - ID*C45981*1<br>2P G818 Schruppen längs ICP<br>zarbeitung - kontorrazralle j - aufen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | [// Schruppen - längs - innen - ID"C45901"]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | I// Schruppen - längs - innen - ID*C45981*]<br>UMIT GBULCPF GBUS Schruppen längs ICP T3 S159 F8.5<br>I// Kontrubanektung - kontryarazille - außen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | I.I.         INFORMATION CONTRACTOR OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        |                                                                                              |                                         | ME  |
| OB18 Schruppen längs ICP         T2 S228 F8.4           nn - Längs - innen - ID/C45811]         Im/E6           26 6818 Schruppen längs ICP         T3 S158 F8.5           argeitumg - kontragrallel - aufen         Im/E6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | >         UNIT G818_ICP         G818 Schruppen längs ICP         T2 S228 F8.4           [// Schruppen - längs - innen - ID"C45981"]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Util Gelig Lofe Gelig Schruppen Lings (P)         TZ 5222 F8.4           /// Schruppen Lings 1 cm         IUC 55197 (F)           Util Gelig Lofe Gelig Schruppen Lings (P)         T3 555 F8.5           /// Konturbandeltum - kenturparallel - autometima -         IUC 56197 (F)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | I     PROJUMPROPF       PROJUKP 1     SPAGETTEL 1       DMTLL     FATIONELL       referent TMG     Listed FR.3       U// Status values     JI Stade FR.3       U// Status values     JI Stade FR.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        |                                                                                              |                                         |     |
| OB18 Schruppen längs ICP         T2 S228 F8.4           nn - Längs - innen - ID/C45811]         Im/E6           26 6818 Schruppen längs ICP         T3 S158 F8.5           argeitumg - kontragrallel - aufen         Im/E6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | >         UNIT G818_ICP         G818 Schruppen längs ICP         T2 S228 F8.4           [// Schruppen - längs - innen - ID"C45981"]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Util Gelig Lofe Gelig Schruppen Lings (P)         TZ 5222 F8.4           /// Schruppen Lings 1 cm         IUC 55197 (F)           Util Gelig Lofe Gelig Schruppen Lings (P)         T3 555 F8.5           /// Konturbandeltum - kenturparallel - autometima -         IUC 56197 (F)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | I     PROJUMPROPF       PROJUKP 1     SPAGETTEL 1       DMTLL     FATIONELL       referent TMG     Listed FR.3       U// Status values     JI Stade FR.3       U// Status values     JI Stade FR.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | P      |                                                                                              | T2 S228 F8.3                            |     |
| OB18 Schruppen längs ICP         T2 S228 F8.4           nn - Längs - innen - ID/C45811]         Im/E6           26 6818 Schruppen längs ICP         T3 S158 F8.5           argeitumg - kontragrallel - aufen         Im/E6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | >         UNIT G818_ICP         G818 Schruppen längs ICP         T2 S228 F8.4           [// Schruppen - längs - innen - ID"C45981"]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Util Gelig Lofe Gelig Schruppen Lings (P)         TZ 5222 F8.4           /// Schruppen Lings 1 cm         IUC 55197 (F)           Util Gelig Lofe Gelig Schruppen Lings (P)         T3 555 F8.5           /// Konturbandeltum - kenturparallel - autometima -         IUC 56197 (F)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | I.I.     INFORMATION PARAMETERS       REVUNDED I     Southern Parameters       Southern III.I.     Exposure for formation parameters       Post of South Parameters     Exposure for formation parameters       UT of Column Data Parameters     It S1894 FP.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | P      |                                                                                              | T2 \$228 F8.3                           | U   |
| an - Jiang - Sadian - 10*881*1<br>27 G818 Astrongen Jiangs 10° T2 5228 F8.4<br>n - Jiang - Jiang - 10°-5381*1<br>29 G818 Astrongen Jiangs 10° T3 5158 F8.5<br>arbeitum - Kontervar2101 - ander no -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | // Schruppen - Jings - außen - 10*881*) > UIIT 6618_1CP 0618 Schruppen lings 1CP [// Schruppen - Jings - innem - 10*061981*]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | [// Schruppen - Jiangs - Janden - 107-9818*1]           UNIT Gitta [CP GB18 Schruppen längs 1CP         T2 5228 F8.4           [// Schruppen - Jiangs - Iange - Ia                                                                                                                                                                                                                                                                                                                                                                                                                                             | I.I.     INFORMATION PARAMETERS       REVUNDED I     Southern Parameters       Southern III.I.     Exposure for formation parameters       Post of South Parameters     Exposure for formation parameters       UT of Column Data Parameters     It S1894 FP.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Þ      |                                                                                              | T2 \$228 F8.3                           | OF  |
| 20 Vote Schungen pin 10"         12 S228 10.3           10 Vote Schungen pin 10"         12 S228 10.3           20 Vote Schungen pin 10"         12 S228 10.4           20 Vote Schungen pin 10"         12 S258 10.4           20 Vote Schungen pin 10"         12 S258 10.5           20 Vote Schungen pin 10"         13 S158 10.5           20 Vote Schungen pin 10"         13 S158 10.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | // Schruppen - Jings - außen - 10*881*) > UIIT 6618_1CP 0618 Schruppen lings 1CP [// Schruppen - Jings - innem - 10*061981*]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Out1 Gram. Lor         125 Scattington         12 Scattington         12 Scattington           I// Schungen - Jaings - andie - Direktington         10 Scattington         10 Scattington         10 Scattington           U// Schungen - Jaings - Inne - Diroktington         10 Scattington         17 Scattington         10 Scattington           U// Schungen - Jaings - Inne - Diroktington         10 Scattington         17 Scattington         15 Scattington           U// Scattington         10 Scattington         10 Scattington         10 Scattington         10 Scattington                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | I     Image: State St                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                                                              |                                         | OF  |
| 29 GE2 Schuppen plan 10° 12 S222 F8.3     10° 110° 12 S222 F8.4     10° 110° 12° S22 F8.4     10° 110° 10° 10° 12° S22 F8.4     10° 10° 10° 10° 10° 10° 10° 10° 10°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | b         URIT ODZ#_LOP Grees Schruppen plan LOP         T2 5228 F8.3           1//5 Schruppen lings - admen - DPG#S1         Schruppen lings - admen - DPG#S1           b         UKIT ODE_LOP Grees Schruppen lings LOP         T2 5228 F8.4           1//5 Schruppen lings - men - DPG5898 T1         Scz28 F8.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | UttT GERL (D* GER Schungen plan 10* T2 5228 F8.3<br>(// Schungen - Jäns - ander = 10*88*)<br>UttT GERL (D* GER Schungen längs 10* T2 5228 F8.4<br>(// Schungen - Jäns - Inne - 10*C458**)<br>UttT GERL (D* GER Schungen längs 10* T3 5158 F8.5<br>(// Schungenzheitung - schungen längs 10* T3 5158 F8.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | I     Image: State St                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | [// Schruppen - plan - stirnseitig - ID"801"]                                                |                                         |     |
| 29 GE2 Schuppen plan 10° 12 S222 F8.3     10° 110° 12 S222 F8.4     10° 110° 12° S22 F8.4     10° 110° 10° 10° 12° S22 F8.4     10° 10° 10° 10° 10° 10° 10° 10° 10°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | b         URIT ODZ#_LOP Grees Schruppen plan LOP         T2 5228 F8.3           1//5 Schruppen lings - admen - DPG#S1         Schruppen lings - admen - DPG#S1           b         URIT ODE_LOP Grees Schruppen lings LOP         T2 5228 F8.4           1//5 Schruppen lings - admen - DPG#S1         Scz28 F8.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | UttT GERL (D* GER Schungen plan 10* T2 5228 F8.3<br>(// Schungen - Jäns - ander = 10*88*)<br>UttT GERL (D* GER Schungen längs 10* T2 5228 F8.4<br>(// Schungen - Jäns - Inne - 10*C458**)<br>UttT GERL (D* GER Schungen längs 10* T3 5158 F8.5<br>(// Schungenzheitung - schungen längs 10* T3 5158 F8.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | I     Image: State St                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                                                              | × •••••                                 |     |
| 29 GE2 Schuppen plan 10° 12 S222 F8.3     10° 110° 12 S222 F8.4     10° 110° 12° S22 F8.4     10° 110° 10° 10° 12° S22 F8.4     10° 10° 10° 10° 10° 10° 10° 10° 10°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | b         URIT ODZ#_LOP Grees Schruppen plan LOP         T2 5228 F8.3           1//5 Schruppen lings - admen - DPG#S1         Schruppen lings - admen - DPG#S1           b         URIT ODE_LOP Grees Schruppen lings LOP         T2 5228 F8.4           1//5 Schruppen lings - admen - DPG#S1         Scz28 F8.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | UttT GERL (D* GER Schungen plan 10* T2 5228 F8.3<br>(// Schungen - Jäns - ander = 10*88*)<br>UttT GERL (D* GER Schungen längs 10* T2 5228 F8.4<br>(// Schungen - Jäns - Inne - 10*C458**)<br>UttT GERL (D* GER Schungen längs 10* T3 5158 F8.5<br>(// Schungenzheitung - schungen längs 10* T3 5158 F8.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | I     Image: State St                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | P      |                                                                                              | 11 51894 F8.3                           |     |
| 29 GE2 Schuppen plan 10° 12 S222 F8.3     10° 110° 12 S222 F8.4     10° 110° 12° S22 F8.4     10° 110° 10° 10° 12° S22 F8.4     10° 10° 10° 10° 10° 10° 10° 10° 10°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | b         URIT ODZ#_LOP Grees Schruppen plan LOP         T2 5228 F8.3           1//5 Schruppen lings - admen - DPG#S1         Schruppen lings - admen - DPG#S1           b         URIT ODE_LOP Grees Schruppen lings LOP         T2 5228 F8.4           1//5 Schruppen lings - admen - DPG#S1         Scz28 F8.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | UttT GERL (D* GER Schungen plan 10* T2 5228 F8.3<br>(// Schungen - Jäns - ander = 10*88*)<br>UttT GERL (D* GER Schungen längs 10* T2 5228 F8.4<br>(// Schungen - Jäns - Inne - 10*C458**)<br>UttT GERL (D* GER Schungen längs 10* T3 5158 F8.5<br>(// Schungenzheitung - schungen längs 10* T3 5158 F8.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | I     Image: State St                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Þ      | UNIT G74_ZENTB Bohren zentrisch                                                              | T1 \$1894 F8.3                          | no  |
| 29 GE2 Schuppen plan 10° 12 S222 F8.3     10° 110° 12 S222 F8.4     10° 110° 12° S22 F8.4     10° 110° 10° 10° 12° S22 F8.4     10° 10° 10° 10° 10° 10° 10° 10° 10°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | b         UUIT (d22, LCP Grees Schruppen plan LGP / T2 S228 F4.3           1/// Schruppen - lings - audien - DP04E11           b         UUIT (d12, LCP Grees Schruppen lings LCP / T2 S228 F4.4           1/// Schruppen - lings - linen - DP05E911                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | UttT GERL (D* GER Schungen plan 10* T2 5228 F8.3<br>(// Schungen - Jäns - ander = 10*88*)<br>UttT GERL (D* GER Schungen längs 10* T2 5228 F8.4<br>(// Schungen - Jäns - Inne - 10*C458**)<br>UttT GERL (D* GER Schungen längs 10* T3 5158 F8.5<br>(// Schungenzheitung - schungen längs 10* T3 5158 F8.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | I I<br>PROJUNKANOPF<br>REVUVATI<br>SAVARTTLL 1<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REVEALED<br>REV                                              | Þ      |                                                                                              | T1 \$1894 F8.3                          | MO  |
| 29 GE2 Schuppen plan 10° 12 S222 F9.3     10° 110° 12 S222 F9.3     10° 110° 110° 110° 110° 110° 110° 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | b         URIT ODZ#_LOP Grees Schruppen plan LOP         T2 5228 F8.3           1//5 Schruppen lings - admen - DPG#S1         Schruppen lings - admen - DPG#S1           b         URIT ODE_LOP Grees Schruppen lings LOP         T2 5228 F8.4           1//5 Schruppen lings - admen - DPG#S1         Scz28 F8.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | UttT GERL CPG GER Schungen plan 10° T2 5228 F8.3<br>(// Schungen - Lings - subme - IU-984) <sup>1</sup><br>UttT GERL CPG GER Schungen Lings 10° T2 5228 F8.4<br>(// Schungen - Lings - Inne - IU-55498) <sup>2</sup><br>UttT GERL CPG GER Schungen Lings 10° T3 5158 F8.5<br>(// Schungenzheitum - Schungen Lings 10°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | I I I I I I I I I I I I I I I I I I I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |                                                                                              | B                                       | ME  |
| Off Bohrman zontrisch     Tis Steller F4.3       me jahn = stinssettig = DP'881*]     Tis Steller F4.3       P GEE Schungen plan ICP     Tis Steller F4.3       me lings = stafen = DP'0582*]     Tis Steller F4.4       P GEE Schungen Lings ICP     Tis Steller F4.5       P GEE Schungen Lings ICP     Tis Steller F4.5       P GEE Schungen Lings ICP     Tis Steller F4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | >         UUIT 012%_LCP G228 Schruppen plan 105P         T2 5228 F8.3           /// Schruppen lings - and line - DP0841'         T2 5228 F8.4           /// Schruppen lings - lines - DP05881''         T2 5228 F8.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | UIT 6/L_20/III Boltzma zentrisch         Tr St896 F8.3           (// Schurgen - plan - stirme tig - 10*88*]         Tr St28 F8.3           UIT 6/L_20/II 6/L 5/L 5/L 5/L 5/L 5/L 5/L 5/L 5/L 5/L 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        | [// zentr. Vorbohren zentrisch - ID*342-328                                                  |                                         | -   |
| Offit Bohrman zuntrisch         Tis S1884 F6.3           me - plan - Stirmeritig. = 10°881°]         Tis S284 F6.3           pr - dist - Schrappen plan 10°         Tis S282 F6.3           pr - Lings - Jointon - 10°881°]         Tis S282 F6.4           pr - dist - Schrappen Lings 10°         Tis S282 F6.4           pr - dist - Schrappen Lings 10°         Tis S158 F6.5           pr - dist - Schrappen Lings 10°         Tis S158 F6.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | b UUIT 074 2008 Belows zenitisch<br>1// Schwape – plan = timestig = 10 <sup>-06471</sup><br>b UUIT 0272,10 <sup>0</sup> 0275 Schwapes plan 10 <sup>0</sup> 175 5228 18.3<br>1// Schwape – lings - lande – 10 <sup>-06471</sup><br>b UUIT 0282,10 <sup>0</sup> 0216 Schwapes längs DP<br>1// Schwape – längs - lande – 10 <sup>-06471</sup><br>1// Schwape – längs - lande – 10 <sup>-06471</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | UIT 6/1_20/IR Behaves zentrisch         TI 5/884 F8.3           /// Schurgen - plan - Stirnestig - 10"88"1         TY 5222 F8.3           /// Schurgen - Lings - Inder - 10"88"1         TY 5222 F8.3           UIT 6618 (JP' 6618 Schurgen Ling 1CP'         TY 5222 F8.4           /// Schurgen - Lings - Inder - 10"2618"1         TY 5535 F8.5           UIT 6618 (JP' 6618 Schurgen Ling 1CP'         TY 5535 F8.5           UIT 6618 (JP' 6618 Schurgen Ling 1CP'         TY 5535 F8.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |                                                                                              |                                         |     |
| Offit Bohrman zuntrisch         Tis S1884 F6.3           me - plan - Stirmeritig. = 10°881°]         Tis S284 F6.3           pr - dist - Schrappen plan 10°         Tis S282 F6.3           pr - Lings - Jointon - 10°881°]         Tis S282 F6.4           pr - dist - Schrappen Lings 10°         Tis S282 F6.4           pr - dist - Schrappen Lings 10°         Tis S158 F6.5           pr - dist - Schrappen Lings 10°         Tis S158 F6.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | b UUIT 074 2008 Belows zenitisch<br>1// Schwape – plan = timestig = 10 <sup>-06471</sup><br>b UUIT 0272,10 <sup>0</sup> 0275 Schwapes plan 10 <sup>0</sup> 175 5228 18.3<br>1// Schwape – lings - lande – 10 <sup>-06471</sup><br>b UUIT 0282,10 <sup>0</sup> 0216 Schwapes längs DP<br>1// Schwape – längs - lande – 10 <sup>-06471</sup><br>1// Schwape – längs - lande – 10 <sup>-06471</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | UIT 6/1_20/IR Behaves zentrisch         TI 5/884 F8.3           /// Schurgen - plan - Stirnestig - 10"88"1         TY 5222 F8.3           /// Schurgen - Lings - Inder - 10"88"1         TY 5222 F8.3           UIT 6618 (JP' 6618 Schurgen Ling 1CP'         TY 5222 F8.4           /// Schurgen - Lings - Inder - 10"2618"1         TY 5535 F8.5           UIT 6618 (JP' 6618 Schurgen Ling 1CP'         TY 5535 F8.5           UIT 6618 (JP' 6618 Schurgen Ling 1CP'         TY 5535 F8.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |                                                                                              |                                         | -   |
| Offit Bohrman zuntrisch         Tis S1884 F6.3           me - plan - Stirmeritig. = 10°881°]         Tis S284 F6.3           pr - dist - Schrappen plan 10°         Tis S282 F6.3           pr - Lings - Jointon - 10°881°]         Tis S282 F6.4           pr - dist - Schrappen Lings 10°         Tis S282 F6.4           pr - dist - Schrappen Lings 10°         Tis S158 F6.5           pr - dist - Schrappen Lings 10°         Tis S158 F6.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | >         UUIT 074 (2008) Bekens zestissé         Tis S1008 F6.3           1//5 Schuppen - plan - stimustija - 10°081°]         Tis S228 F6.3           1//5 Schuppen - Lings - studen - 10°081°]         Tis S228 F6.4           1//5 Schuppen - Lings - studen - 10°081°]         Tis S228 F6.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | UIT 6/1_20/IR Behaves zentrisch         TI 5/884 F8.3           /// Schurgen - plan - Stirnestig - 10"88"1         TY 5222 F8.3           /// Schurgen - Lings - Inder - 10"88"1         TY 5222 F8.3           UIT 6618 (JP' 6618 Schurgen Ling ICP'         TY 5222 F8.4           /// Schurgen - Lings - Inder - 10"2618"1         TY 5525 F8.5           UIT 6618 (JP' 6618 Schurgen Ling ICP'         TY 5535 F8.5           UIT 6618 (JP' 6618 Schurgen Ling ICP'         TY 5535 F8.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Þ      |                                                                                              |                                         |     |
| Arabakrma - zenitisch - D"342-328<br>IRR Behram zentrisch - D"342-328<br>IRR Behram zentrisch - D"881"]<br>7 GE28 Schungen plan 107 12 5228 F8.3<br>m längs - salen - D"981"]<br>7 GE28 Schungen längs 107 12 5228 F8.4<br>m längs - salen - D"05381"]<br>7 GE28 Schungen längs 107 13 5158 F8.5<br>arabeitums - Mortegyzallo - genden                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ////zett.Winkerse - zeotisel D'342-282           > UKIT 642_2000 Bohrma zentriset           1//Sokuppen - plan - stimsetting - 10'801']           > UKIT 642_2000 - likes - stimsetting - 10'801']           > UKIT 642_10' 642 Sekuppen plan 10'P 12           > UKIT 642_10' 643 Sekuppen - 10'P 12'           > UKIT 642_10' 643 Sekuppen alm 10'P 12'           > UKIT 643_10'P 614 Sekuppen - 10'P 12'           > UKIT 643_10'P 614 Sekuppen - 10'P 12'P 12'S 220'P 4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | [// zentr. Vurbehrum zentrisch ID-342-328           UMIT 674_ZOHR Behrum zentrisch           TI S1894 F9.3           [// Schungen - plan - stimmeling - ID*981"]           UMIT 662_CPF G628 Schungen plan 10°           [// Schungen - lang - stimmeling - ID*981"]           UMIT 6614_CPF G628 Schungen plan 10°           [// Schungen - lang - stimmeling - ID*981"]           UMIT 6614_CPF G628 Schungen lang 10°           [// Schungen - lang - stimme - ID*6581"]           [// Schungen - Ling - Stimme - ID*6581"]           [// Schungen - Ling - Stimme - ID*6581"]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | I I<br>PYOGUWR00PF<br>REVUWR01 I<br>SAVANTITL I<br>SAVANTITL I<br>DOUTELL<br>FATTOREL<br>PORT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -<br>- |                                                                                              | OFF                                     | C   |
| Triggtarwainag<br>Triggtarwainag<br>TR Behrm zentrisch - 10°342-228<br>TR Behrm zentrisch - 10°342-328<br>TR Behrm zentrisch - 10°841']<br>P° GEB Schruppen plan 10°7 12 5228 F8.3<br>no lings - salmen - 10°841']<br>P° GEB Schruppen lings 10°7 12 5228 F8.4<br>no lings - salme - 10°C5381']<br>P° GEB Schruppen lings 10°7 13 5159 F8.5<br>samblume - schruppen lings 10°7 13 5159 F8.5<br>samblume - schruppen lings 10°7 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <ul> <li>&gt; Out 3 (wint) = vertication = 10°342-328</li> <li>&gt; Out 1 GeV. Vorbahran = - a cuttation = 10°342-328</li> <li>&gt; Out 1 GeV. 2007B determ zentitisch</li> <li>&gt; U// Schwape = plan = timestig = 10°4821</li> <li>&gt; Out 1 GeV. 2007 determine = 10°6421</li> <li>&gt; Out 1 GeV. 2007 determine = 10°643</li> <li></li></ul>                                     | Out1 Synth         Trightmenting           U// antr. Vurbehren         - 20trtisch         Ti Si004 F0.3           U// Sitt. Vurbehren         - 20trtisch         Ti Si004 F0.3           U// Sitt. Vurbehren         - 10*342-328         Ti Si004 F0.3           U// Sitt. Vurbehren         - 10*84."]         Ti Si004 F0.3           U// Sitt. Vurbehren         - 10*84."]         Ti Si228 F0.3           U// Sitt. Vurbehren         - 10*84."]         Ti Si228 F0.3           U// Sitt. Vurbehren         - 10*84."]         Ti Si228 F0.4           U// Sitt. Vurbehren         - 10*24."]         Ti Si258 F0.5           U// Sitt. Vurbehren         Ti Si258 F0.5         Ti Si258 F0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | I I<br>PROJEMENOPF<br>REVOLVER I<br>SPANNTTL 1<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITLI<br>NOVITL |        | BEARBEITUNG                                                                                  |                                         |     |
| Programe-Mafang<br>Avrahutom - zwaitisch - 10°342-228<br>Mrahutom - zwaitisch - 10°342-228<br>Mrahutom zwaitisch - 10°342-128<br>Mrahutom zwaitisch - 10°342-128<br>Mrahutom zwaitisch - 10°342-128<br>Mrahutom zwaitisch - 10°342-128<br>Mrahutom - 10°342                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | IDEAD (1000)         Displayment for any<br>UNIT CHARGE VIEW INFormation         Displayment for any UNIT CHARGE VIEW INFORMATION         Displayment f                                                                                                                                                                                                                   | m.Backet (MG)         Dirg Straff         Fragsmer-Anfang           (J/) Zanitz, Vindelman – zentzisch – 107'342-328         T 3 1884 FR.3           UHT Gift (Zing Constraint) – 107'847')         T 3 1884 FR.3           UHT Gift (Zing Constraint) – 107'847')         T 1 2 222 FR.3           UHT Gift (JOP Gells Schwappen Elam (DP)         T 2 222 FR.3           UHT Gift (JOP Gells Schwappen Elam (DP)         T 2 522 FR.4           UHT Gift (JOP Gells Schwappen Elam (DP)         T 2 522 FR.4           UHT Gift (JOP Gells Schwappen Elam (DP)         T 3 555 FR.5           UHT Gift (JOP Gells Schwappen Elam (DP)         T 3 555 FR.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | L L I<br>PROVINCE I<br>REVUVER 1<br>SPANNITEL 1<br>DECE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        | FERTIGTEIL                                                                                   |                                         |     |
| Programs-Animag         The Signal Science (Section 10°-342-328)           Warbohrem zwatrisch - 10°-342-328         The Signal Science (Section 20°-342-328)           Wirbehrem zwatrisch - 10°-342-328         The Signal Science (Section 20°-342-328)           P GER Schungen plan ISC*         T2 5228 F8.3           n - Iniga - salme - 10°-5382*10         T2 5228 F8.4           n - Iniga - Signal - 10°-5382*10         T3 5558 F8.5           P GER Schungen Lings ICP         T3 5558 F8.5           P GER Schungen Lings ICP         T3 5558 F8.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Pertubicit:         respective:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TerritoitL         BLARE TUNKE         UITT STATT         Programm-Anfang         U// Tatt.         Vit/ Status         Vit/ Status         UIT Git2_COF G28 Schuzgen plan         U// Status         U// Sta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | I LI FICALMAROFF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | •      |                                                                                              | END                                     | DCM |
| Programs-Animag         The Signal Science (Section 10°-342-328)           Warbohrem zwatrisch - 10°-342-328         The Signal Science (Section 20°-342-328)           Wirbehrem zwatrisch - 10°-342-328         The Signal Science (Section 20°-342-328)           P GER Schungen plan ISC*         T2 5228 F8.3           n - Iniga - salme - 10°-5382*10         T2 5228 F8.4           n - Iniga - Signal - 10°-5382*10         T3 5558 F8.5           P GER Schungen Lings ICP         T3 5558 F8.5           P GER Schungen Lings ICP         T3 5558 F8.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Perturbatil<br>BRANETINDE       END FORM         UITI STAFF       Programs-Animag         1// solt.vibabina zoittisch - 10°312-328       TI S1804 FR.3         UITI GAZ, DORD Bohama zentrisch       TI S1804 FR.3         1// Solt.vibabina zoittisch - 10°312-328       TI S1804 FR.3         UITI GAZ, DORD Bohama zentrisch - 10°48.°1       TI S1804 FR.3         UITI GAZ, DOP GAZE Schrappen plan LEP       TZ S222 FR.3         UITI GEBL (DP GBB Schrappen limp ICP)       TZ S159 FR.5         UITI GBL (DP GBB Schrappen limp ICP)       TZ S159 FR.5         UITI GBL (DP GBB Schrappen limp ICP)       TZ S159 FR.5         UITI GBL (DP GBB Schrappen limp ICP)       TS S159 FR.5         UITI GBL (DP GBB Schrappen limp ICP)       TS S159 FR.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |                                                                                              |                                         |     |
| Programs-Anfany         END R2M           Withherm - zearchich - 10"32-228         1           Nithherm - zearchich - 10"32-228         1           No Ref                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | PONTEL     FINITEL     FONTEL     SEASSING     OUTLOAL T Programs-Anian     U// zatt: Vorbakian - zattisch - ID*32-328     U// zatt: Vorbakian - zattisch - ID*32-328     U// Satury - plan - Silensitja - ID*82'     U// Satury - plan - Silensitja - ID*82'     U// Satury - Ibins - Anian - ID*82'     U// Satury - Ibins - Anian - ID*82'     U// Satury - Ibins - Anian - ID*82'     U// Satury - Ibins - Ibins - ID*1'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | NONTELL<br>FORTIOFIL<br>BEAGETING     END FOR<br>UNIT STAFF       UNIT STAFF     Programs-Anfang<br>(// Zentr. Vurbahram - zentrisch III'342-328<br>UNIT Git ZURB Gehram zentrisch<br>UNIT Git ZUP GER Schwappen Jahn 129<br>UNIT Git ZUP GER Schwappen Jahn 129<br>(// Konturgen - Jahn - Imme - IDCASSET)     IS 1884 F8.3<br>IS 1884 F8.3<br>IS 1884 F8.3<br>IS 1894 F8.3<br>IS 189 | PROGRAMKOPF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        |                                                                                              | · · · · · · · · · · · · · · · · · · ·   | _   |
| Programs-Anfany         END R2M           Withherm - zearchich - 10"32-228         1           Nithherm - zearchich - 10"32-228         1           No Ref                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | b      bowTTEL     controllerL     controller     controlerL     controllerL     controllerL     control  | NONTELL<br>FORTIOFIL<br>BEAGETING     END FOR<br>UNIT STAFF       UNIT STAFF     Programs-Anfang<br>(// Zentr. Vurbahram - zentrisch III'342-328<br>UNIT Git ZURB Gehram zentrisch<br>UNIT Git ZUP GER Schwappen Jahn 129<br>UNIT Git ZUP GER Schwappen Jahn 129<br>(// Konturgen - Jahn - Imme - IDCASSET)     IS 1884 F8.3<br>IS 1884 F8.3<br>IS 1884 F8.3<br>IS 1894 F8.3<br>IS 189 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        | REVOLVER 1                                                                                   |                                         |     |
| Frograme-Adramy           Virbablem         - 2 motisch - 10°312-328           (Minderson - 2 motisch - 10°312-328           m - plan - stinnstig - 10°812'           V 6028 schuppen Jahr (7)           11 S228 F8.3           m - line - 10°812'           V 6028 schuppen Jahr (7)           12 S228 F8.4           10 Sechuppen Jahr (7)           12 S228 F8.4           10 Sechuppen Jahr (7)           13 S155 F8.5           10 Sechuppen Jahr (7)           13 S155 F8.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | > Systematriki i           > Bowini III.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SynAmetrini 1           Nonfell           Horizont           Breast Times           Breast Times           Ulf Staff Programs An fang           [// soft, Visibarian zentrisch - 10°312-228           Ulf Staff, Programs An fang           [// soft, Visibarian zentrisch - 10°312-228           Ulf Staff, Visibarian zentrisch - 10°312-228           Ulf Staff, Dense - Jains - Lance - Lance Ling - 10°81)           Ulf Staff, Dense - Lings - Information - 10°81)           Ulf Staff, Dense - Lings - Information - 10°81)           Ulf Staff, Dense - Lings - Information - 10°81)           Ulf Staff, Dense - Lings - Information - 10°81)           Ulf Staff, Dense - Lings - Information - 10°81)           Ulf Staff, Dense - Lings - Information - 10°81           Ulf Staff, Dense - Lings - Information - 10°24           Ulf Staff, Dense - Lings - Information - 10°24           Ulf Staff, Dense - Lings - Information - 10°24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | •      | PROGRAMMKOPF                                                                                 |                                         |     |
| Frograme-Adramy           Virbablem         - 2 motisch - 10°312-328           (Minderson - 2 motisch - 10°312-328           m - plan - stinnstig - 10°812'           V 6028 schuppen Jahr (7)           11 S228 F8.3           m - line - 10°812'           V 6028 schuppen Jahr (7)           12 S228 F8.4           10 Sechuppen Jahr (7)           12 S228 F8.4           10 Sechuppen Jahr (7)           13 S155 F8.5           10 Sechuppen Jahr (7)           13 S155 F8.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ■ RFONUSS 1           ■ SPANNTTL 1 </td <td>RPONUMA 1           SPANNETTLI 1           NONTELL           FOTTOTELL           UITI 5 TATE           BLOD FOR           UITI 5 TATE           TO GE Schumpen - Jane - stimestig           TO GE Schumpen - Jane - stime - TOC4508*1           UITI 5 TATE           TO SCHUMENT - TATE           TO SCHUMENT - TATE           UITI 5 TATE           <td< td=""><td>2Doku Huelse.nc "TURN V1.8"</td><td></td><td>11</td><td></td><td></td></td<></td>                        | RPONUMA 1           SPANNETTLI 1           NONTELL           FOTTOTELL           UITI 5 TATE           BLOD FOR           UITI 5 TATE           TO GE Schumpen - Jane - stimestig           TO GE Schumpen - Jane - stime - TOC4508*1           UITI 5 TATE           TO SCHUMENT - TATE           TO SCHUMENT - TATE           UITI 5 TATE <td< td=""><td>2Doku Huelse.nc "TURN V1.8"</td><td></td><td>11</td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2Doku Huelse.nc "TURN V1.8"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        | 11                                                                                           |                                         |     |
| Program-Anfamy           Withdokmon - zwittisch - 10°-342-220           Th Schwarz - Zartisch - 10°-342-220           Th Schwarz - 2000 - 10°-342-220           Th Schwarz - 2000 - 10°-342-220           Th Schwarz - 2000 - 10°-342-220           Th Schwarz - 10°-342-342           Th Schwarz - 10°-342-342           Th Schwarz - 10°-342-342           Th Schwarz - 10°-342-342           Th Schwarz - 10°-342           Th Schwarz - 10°-342 <t< td=""><td>I.I.         FROMANMOOPT           REVENTED:         International Control of Control o</td><td>I 1         Impose Network           HOGOWARD         HOGOWARD           RNOWURD 1         Shawartini 1           Shawartini 1         Impose Network           UIT 50 FURT         Impose Networ</td><td></td><td>_</td><td>2Doku Huelse og "TIBN V1 8"</td><td></td><td></td></t<> | I.I.         FROMANMOOPT           REVENTED:         International Control of Control o                                                               | I 1         Impose Network           HOGOWARD         HOGOWARD           RNOWURD 1         Shawartini 1           Shawartini 1         Impose Network           UIT 50 FURT         Impose Networ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | _      | 2Doku Huelse og "TIBN V1 8"                                                                  |                                         |     |

# Shared menu items

The menu items described below are used both in smart.Turn mode and in DIN/ISO mode.

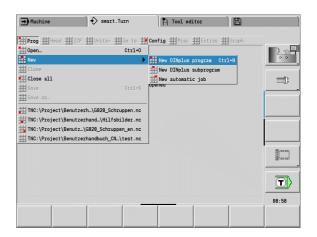
### "Program management" menu item

The **"Prog" menu item** (program management) contains the following functions for NC main and subprograms:

- Open: Load existing programs
- **New:** Create new programs or an automatic job
- Close: The selected program is closed
- Close All: All open programs are closed
- Save: The selected program is saved
- Save As: The selected program is saved under a new name
- Direct opening of the last four programs

When an NC program is opened or when a new NC program is created, the soft-key row is switched to the **sorting and organization functions** See "Sorting, file organization" on page 48..

### "Head" menu item (program head)


The **"Head" menu item** (program head) contains functions for editing the program head and the tool list.

- Program head: Edit the program head
- Go to chucking equipment: Positions the cursor in the "chucking equipment" section
- Insert chucking equipment: Describe how the workpiece is clamped
- Go to tool list: Positions the cursor in the TURRET section
- Set up the tool list: Activates the "Set up tool list" function (see page 59)
- Go to magazine: Positions the cursor in the MAGAZINE section (machine-dependent)
- Set up magazine list: Activates the "Set up magazine list" function (machine-dependent)

### "ICP" menu item

The **"ICP" menu item** (Interactive Contour Programming) contains the following functions:

- **Contour editing:** Change the current contour (cursor position)
- **Workpiece blank:** Edit the description of the workpiece blank
- Finished part: Edit the description of the finished part
- **New auxiliary blank:** Create a new auxiliary workpiece blank
- New aux. contour: Create a new auxiliary contour
- **Caxis** ...: Create patterns and milling contours on the front face and lateral surface
- Y axis ...: Create patterns and milling contours in the XY and YZ planes
- Insert contour: Insert saved blank and finished part contours (only active if you have saved a contour in the Simulation submode)

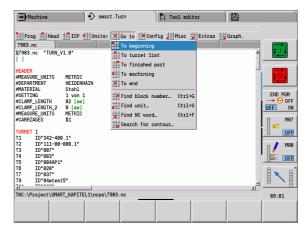


(

# "Goto" menu item

The **"Goto" menu item** contains the following jump and search functions:

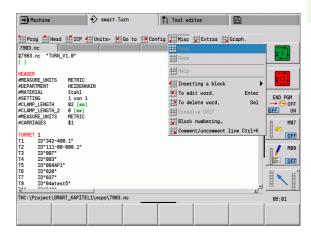
- Jump targets—The editor positions the cursor to the selected jump target:
  - To beginning
  - To tool table
  - To finished part
  - To machining
  - To end
- Search functions
  - Find block number: You specify a certain block number. The editor jumps to this block number if it exists.
  - **Find unit:** The editor opens the list of units available in the program. Select the desired unit.
  - **Find NC word:** The editor opens the dialog for entering the desired NC word. You can use the soft keys to search forward or backward.
  - Search for contour: The editor opens the list of contours available in the program. Select the desired contour.


# "Configuration" menu item

The **"Config" menu item** (Configuration) contains the following functions:

- Input mode ...: Define the input mode
  - ... NC editor (word-by-word): The editor works in the NC mode (word by word)
  - ... Text editor (character): The editor works character by character (no syntax checking)

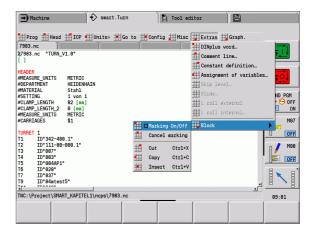
# Settings ...


- **Save:** The editor memorizes the open NC programs and the respective cursor positions.
- Load last saved setting: Restores the last saved condition of the editor.
- Technology data: Starts the technology editor



### "Miscellaneous" menu item

The **"Misc" menu item** (Miscellaneous) contains the following functions:


- Insert block ...
  - ... W/o block no.: The editor inserts an empty line at the cursor position (without block number).
  - ... With block no.: The editor inserts an empty line at the cursor position (with block number). Alternative: When you press the INS key, the editor inserts a block with block number.
  - ... Comment at line end: The editor inserts a comment at the end of the line in which the cursor is located.
- **Edit word:** You can edit the NC word at which the cursor is located.
- **Delete word:** The editor deletes the NC parameter at the cursor position.
- Dissolve unit: Position the cursor to the first line of a unit before selecting this menu item. The editor cancels the brackets around the unit. The unit dialog can no longer be used for this machining block, but you can edit the machining block as desired.
- Block numbering: The block numbering settings are the starting block number and the block-number increment. The first NC block receives the starting block number and the block-number increment is added for each further NC block. The settings for starting block number and block-number increment are tied with the NC program.



# "Extras" menu item

The "Extras" menu item contains the following functions:

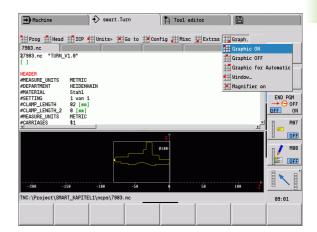
- DIN PLUS word: The editor opens the selection list with all DIN PLUS words in alphabetical order. Select the desired instruction for program structuring or the input/output command. The editor inserts the DIN PLUS word at the cursor position.
- Comment line: The comment is inserted above the position of the cursor.
- Constant definition: The expression is inserted above the position of the cursor. If the DIN PLUS word "CONST" is not present yet, it is also inserted.
- Assignment of variables: Inserts a variable instruction.
- L call external (the subprogram is in a separate file): The editor opens the file selection window for subprograms. Select the subprogram and fill out the subprogram dialog. The control searches for subprograms in the sequence: current project, standard directory and then machine manufacturer directory.
- **L call internal** (the subprogram is contained in the main program): The editor opens the subprogram dialog.
- Block functions. This menu item contains functions for marking, copying and deleting sections.
  - Marking On/Off: Activates/Deactivates the marking mode during cursor movement.
  - **Cancel marking:** After calling the menu item, no part of the program is marked.
  - **Cut:** Deletes the marked part of the program and copies it to the clipboard.
  - **Copy:** Copies the marked part of the program to the clipboard.
  - Insert: Inserts the contents of the clipboard at the cursor position. Any parts of the program that are marked are replaced by the contents of the clipboard.



### "Graphics" menu item

The **"Graph." menu item** contains the following functions (see figure at right):

- Graphic On: Activates the graphic window or updates the displayed contour. As an alternative, you can use the soft key (see table at right).
- Graphic Off: Closes the graphic window.
- Graphic for Automatic: The graphic window is activated when the cursor is located in the contour description.
- Window: Sets the graphic window. During editing, the Control displays programmed contours in up to four graphic windows. Set the desired windows.
- **Magnifier on:** Activates the zoom function. As an alternative, you can use the soft key (see table at right).


The graphic window:

- Colors in contour graphics:
  - White: workpiece blank and auxiliary blank
  - Yellow: finished part
  - Blue: auxiliary contours
  - Red: contour element at the current cursor position. The arrow point indicates the direction of definition.
- When programming fixed cycles, you can use the displayed contour for establishing block references.
- Using the zoom functions, you can magnify, reduce or shift details.
- If you are working with multiple contour groups, the control shows the number of the contour group at the top left in the graphic window.



Additions/changes to the contour will not be considered until the GRAPHICS soft key is pressed again.

Unambiguous NC block numbers are a prerequisite for the contour display!



### Soft keys with active program window



Activates the contour display and starts redrawing the contour.



Opens the soft-key menu for the zoom functions and displays the zoom frame.

# Sorting, file organization

When an NC program is opened or when a new NC program is created, the soft-key row is switched to the sorting and organization functions. Use the soft keys to select the order in which the programs are to be displayed, or use the functions for copying, deleting, etc.

| File mana        | ager soft keys                                                                                                           |
|------------------|--------------------------------------------------------------------------------------------------------------------------|
| Paths /<br>files | Alternate between directory and file window                                                                              |
| Cut<br>out       | Cut marked file                                                                                                          |
| Сору             | Copy marked file                                                                                                         |
| Insert           | Insert the file stored in the buffer memory                                                                              |
| Rename           | Rename marked file                                                                                                       |
| DELETE<br>ALL    | Delete the marked file following confirmation prompt;<br>program block display must not be open in any<br>operating mode |
| Back             | Return to program selection dialog                                                                                       |

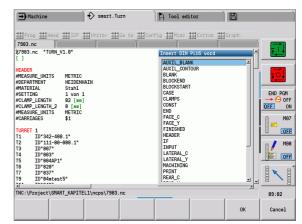
| Other soft             | keys                                                        |
|------------------------|-------------------------------------------------------------|
| INTERNAL<br>INFO       | Display details                                             |
| Cut<br>out             | Mark all files                                              |
| Update                 | Update the marked program                                   |
| Write<br>protection    | Activate/deactivate write protection for the marked program |
| Alphabetic<br>keyboard | Open the alphabetic keyboard                                |
| Back                   | Return to program selection dialog                          |

| ∰Prog ∰                                            | Head 🏭 ICP        | Units» <b>#</b> G                                      | o to 🎹 Con | fig <b>##</b> Misc | ∰Extras ∰              | Graph. |                              |
|----------------------------------------------------|-------------------|--------------------------------------------------------|------------|--------------------|------------------------|--------|------------------------------|
| Open (TNC:                                         | Project\SMAR      | T_KAPITEL1\ncps                                        | ()         |                    |                        |        |                              |
| 7983.nc 7984.nc bar.nc barAsync                    |                   | ØKurbelvelle.r<br>ØMantel.nc<br>Øteil1.nc<br>Øvelle.nc | IC         |                    |                        |        |                              |
| baxG16.n<br>baxG16Bol                              | :<br>iren.nc      | -                                                      |            |                    |                        |        |                              |
| Ø Felge_82<br>Ø Felge_83<br>Ø Helix_Cy:            | .nc<br>L.nc       |                                                        |            |                    |                        |        | END PGM<br>→ ··· OF<br>OFF 0 |
| <pre>Ø Kontur_2</pre>                              | TURN_V1.0"        |                                                        |            |                    |                        | -      | M9                           |
| #MEASURE_UI<br>#DEPARTMEN<br>#MATERIAL<br>#SETTING |                   | NHAIN                                                  |            |                    |                        |        |                              |
| proc 11210                                         | Fi                | le name:<br>as type: NC pr                             |            | - \                |                        |        |                              |
| TNC:\Project                                       |                   | as type: NC pr<br>EL1\ncps\7983.n                      |            | c)                 |                        | 1      | 09:02                        |
| Details                                            | Next<br>file type | File                                                   | Sorting    | Project            | Alphabetic<br>keyboard | Open   | Cancel                       |

i

| Soft keys            | for sorting                                    |
|----------------------|------------------------------------------------|
| INTERNAL<br>INFO     | Displays the file attributes: size, date, time |
| Sort by<br>file name | Sorts by file name                             |
| Sort by<br>size      | Sorts by file size                             |
| Sort<br>by date      | Sorts by creation date or change date          |
| Reverse<br>sorting   | Updates the marked program                     |
| Reverse<br>sorting   | Reverses the sorting direction                 |
| Back                 | Return to program selection dialog             |




# 1.3 Program section code

A new NC program is already provided with section codes. You can add new codes or delete existing ones, depending on your program requirements. An NC program must contain at least the MACHINING and END section codes.

Further program section codes are available in the "Insert DIN PLUS word" selection list ("Extras > DIN PLUS word" menu item). The Control enters the program section code at the correct position or at the current position.

German program section codes are used when German is set as the conversational language. All other languages use English program section codes.

| Overview of program section codes |               |         |  |  |
|-----------------------------------|---------------|---------|--|--|
| German                            | English       |         |  |  |
| Program head                      |               |         |  |  |
| PROGRAMMKOPF                      | HEADER        | Page 51 |  |  |
| SPANNMITTEL                       | CLAMPS        | Page 52 |  |  |
| REVOLVER                          | TURRET        | Page 53 |  |  |
| MAGAZIN                           | MAGAZINE      | Page 53 |  |  |
| Contour definition                |               |         |  |  |
| KONTURGRUPPE                      | CONTOURGROUP  | Page 53 |  |  |
| ROHTEIL                           | BLANK         | Page 53 |  |  |
| FERTIGTEIL                        | FINISHED      | Page 54 |  |  |
| HILFSKONTUR                       | AUXIL_CONTOUR | Page 54 |  |  |
| HILFSROHTEIL                      | AUXIL_BLANK   | Page 53 |  |  |
| C-axis contours                   |               |         |  |  |
| STIRN                             | FACE_C        | Page 54 |  |  |
| RUECKSEITE                        | REAR_C        | Page 54 |  |  |
| MANTEL                            | LATERAL_C     | Page 54 |  |  |
| Y-axis contours                   |               |         |  |  |
| STIRN_Y                           | FACE_Y        | Page 54 |  |  |
| RUECKSEITE_Y                      | REAR_Y        | Page 54 |  |  |
| MANTEL_Y                          | LATERAL_Y     | Page 55 |  |  |



# **Beispiel: Program section codes**

| [Sections of the contour description] |
|---------------------------------------|
| BLANK                                 |
| N1 G20 X100 Z220 K1                   |
|                                       |
| FINISHED                              |
| N2 G0 X60 Z0                          |
| N3 G1 Z-70                            |
|                                       |
| FACE_C Z-25                           |
| N31 G308 ID"01" P-10                  |
| N32 G402 Q5 K110 A0 Wi72 V2 XK0 YK0   |
| N33 G300 B5 P10 W118 A0               |
| N34 G309                              |
|                                       |
| FACE_C Z0                             |
| N35 G308 ID"02" P-6                   |
| N36 G307 XK0 YK0 Q6 A0 K34.641        |
| N37 G309                              |
|                                       |

| <b>Overview of program</b> | n section codes |
|----------------------------|-----------------|
| German                     | English         |
|                            |                 |

Workpiece machining

| BEARBEITUNG   | MACHINING  | Page 56 |
|---------------|------------|---------|
| ENDE          | END        | Page 56 |
| Subprograms   |            |         |
| UNTERPROGRAMM | SUBPROGRAM | Page 56 |
| RETURN        | RETURN     | Page 56 |
| Others        |            |         |
| CONST         | CONST      | Page 57 |
| VAR           | VAR        | Page 57 |
|               |            |         |



For more than one independent contour definition for drilling/milling, use the program section codes (FACE\_C, LATERAL\_C, etc.) each time.

# **HEADER** section

Instructions and information in the program head (HEADER):

- Unit:
  - Select dimensional system in millimeters or inches
  - No entry: The unit set in the machine parameter is used
- The other fields contain organizational information and set-up information, which do not influence the machining process.

Information contained in the program head is preceded by "#" in the NC program.



You can only select a unit when creating a new NC program. It is not possible to post-edit this entry.

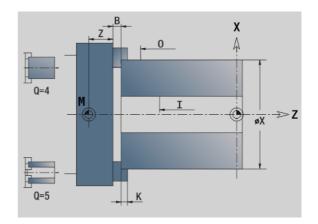
| 820_Schrupp]<br>rogram head edi | .ting     |               |       |               |
|---------------------------------|-----------|---------------|-------|---------------|
| Material                        | Stahl 🔹   | Workpiece     |       |               |
| Slide                           |           | Company       | -     |               |
| Machine                         |           | Author        | -     |               |
| Drawing                         |           | Date          | *     |               |
| Fixture                         | and of    | Unit Metz     | ric 💌 |               |
| Clamping Ø                      | 1st setup | mm 2nd setup  | m     |               |
| Free length                     | 1st setup | mm 2nd setup  | nn    |               |
| Clmpg. press.                   | 1st setup | bar 2nd setup | bar   |               |
| Comment                         |           |               |       | in the second |
|                                 |           |               |       |               |
|                                 |           |               |       | (T)           |

ſ

# **CLAMPS** section

In the CLAMPS program section you describe how the workpiece is clamped. This makes it possible to display the chucking equipment in the **Simulation** submode. In TURN PLUS the chucking equipment information is used to calculate the zero points and cutting limits during automatic program generation.

# **Parameters**


- Chuck number Н
- D Spindle number for AWG R
  - Clamp type
    - 0: Parameter J defines the free length
    - 1: Parameter J defines the clamping length
- Ζ Position of the chuck edge
- В Chuck jaw reference
- J Clamping length or free length of the workpiece (depending on the clamp type R)
- 0 Cutting limit for outside machining
- L Cutting limit for inside machining
- Κ Overlap jaw/workpiece (pay attention to sign)
- Х Clamping diameter of workpiece blank
- Ο Chuck form
  - 4: Outside chucking
  - 5: Inside chucking
  - Shaft machining AWG
    - 0: Chuck: Automatic separation points at largest and smallest diameter
    - 1: Shaft/chuck: Machining also starting from the chuck
    - 2: Shaft/face driver: Outside contour can be machined completely



V

If you do not define the parameters **Z** and **B**, TURN PLUS will use the following machine parameters (see "List of machine parameters" in the User's Manual) in the AWG submode (automatic working plan generation):

- Front chuck edge on spindle / counterspindle
- Jaw width on spindle / counterspindle



# 1.3 Program section co<mark>de</mark>

# **TURRET / MAGAZINE section**

The TURRET or MAGAZINE program section defines the assignment of the tool carrier. For every assigned pocket, the **tool ID number** is entered. For multipoint tools, every cutting edge is entered in the list.



If you program neither the TURRET nor the MAGAZINE, the tools entered in the tool list of the Machine operating mode will be used.

# **Beispiel: Turret table**

... TURRET

T1 ID"342-300.1"

T2 ID"C44003"

. . .

**Beispiel: Magazine table** 

... MAGAZINE

ID"342-300.1"

ID"C44003"

...

# **CONTOURGROUP** section

In this program section, you describe the position of the workpiece in the working space.

The control supports up to four contour groups (workpiece blank, finished part and auxiliary contours) in an NC program. The CONTOURGROUP section code initiates the description of a contour group. G99 assigns the machining operations to a contour group.

# Parameters

- Q Number of the contour group
- X Contour position in graphic
- Z Contour position in graphic
- V Position
  - 0: Machine coordinate system
  - 2: Mirrored machine coordinate system (opposite Z direction)

# **BLANK** section

In this program section, you describe the contour of the workpiece blank.

# AUXIL\_BLANK section

In the AUXIL\_ BLANK section, you define additional workpiece blanks, which can be activated with G702 when required.



# **FINISHED** section

In this program section, you describe the contour of the finished part. After the **FINISHED** section you use additional section codes such as FACE\_C, LATERAL\_C, etc.

# AUXIL\_CONTOUR section

In this program section, you describe the auxiliary turning contours.

# FACE\_C, REAR\_C sections

In this program section you describe the front and rear side contours to be machined with the C axis. The program section defines the position of the contour in Z direction.

# Parameter

Z Position of the front/rear-face contour

# LATERAL\_C section

In this program section you describe the lateral surface contours to be machined with the C axis. The program section defines the position of the contour in X direction.

# Parameter

X Reference diameter of the lateral-surface contour

# FACE\_Y, REAR\_Y sections

For lathes with Y axis, these program section codes define the XY plane (G17) and the position of the contour in Z direction. The spindle angle (C) defines the spindle position.

# Parameters

- X Area diameter (as cutting limit)
- Z Position of the reference plane—default: 0
- C Spindle angle—default: 0

# LATERAL\_Y section

The section code identifies the YZ plane (G19). For machines equipped with a B axis, it defines the tilted plane.

**Without tilted plane:** The reference diameter defines the contour position in the X direction; the C-axis angle defines the position on the workpiece.

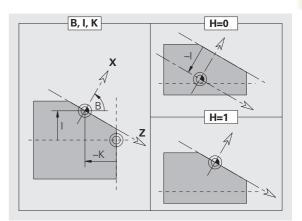
### Parameters

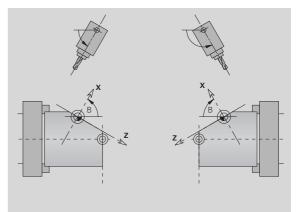
- X Reference diameter
- C C axis angle—Defines the spindle position

With tilted plane (see figures): LATERAL\_Y additionally performs the following transformations and rotations for the tilted plane:

- Shifts the coordinate system to the position I, K
- Rotates the coordinate system by the angle B; reference point: I, K
- H=0: Shifts the rotated coordinate system by –I. The coordinate system is moved "back."

### Parameters


- X Reference diameter
- C C axis angle—Defines the spindle position
- B Plane angle: Positive Z axis
- I Plane reference in X direction (radius)
- K Plane reference in Z direction
- H Automatic shift of the coordinate system (default: 0)
  - 0: The rotated coordinate system is shifted by -I
  - 1: The coordinate system is not shifted


**Shifting "back" the coordinate system:** The control evaluates the reference diameter for the cutting limit. This value is also used as the reference value for the depth that you program for drilling operations and milling contours.

Since the reference diameter is referenced to the current zero point, it is recommended when working in a tilted plane, to shift the rotated coordinate system "back" by the distance -I. If the cutting limits are not needed, for example for drilling holes, you can disable the shift of the coordinate system (H=1) and set the reference diameter to 0.

### Please note:

- X is the infeed axis in a tilted coordinate system. X coordinates are entered as diameter coordinates.
- Mirroring the coordinate system has no effect on the reference axis of the tilt angle ("B-axis angle" of the tool call).





# Beispiel: LATERAL\_Y

| HEADER                        |
|-------------------------------|
|                               |
| CONTOUR Q1 X0 Z600            |
| BLANK                         |
|                               |
| FINISHED                      |
|                               |
| LATERAL_Y X118 C0 B130 I59 K0 |
|                               |
| MACHINING                     |
|                               |

# **MACHINING** section

In the **MACHINING** program section you program the machining operations. This code **must** be included.

# END code

The END code concludes the NC program. This code **must** be included.

# SUBPROGRAM section

If you define a subprogram within your NC program (within the same file), it is designated with **SUBPROGRAM**, followed by the name of the subprogram (max. 40 characters).

# **RETURN code**

The RETURN code concludes the subprogram.

Т

# 1.3 Program section code

# **CONST** code

In the CONST section of the program you define constants. You use constants for the definition of a value.

You enter the value directly or you calculate it. If you use constants in the calculation you must first define them.

The length of the constant name must not exceed 20 characters. Lower case letters and numbers are allowed. Constants always begin with an underscore. See "Expanded variable syntax CONST – VAR" on page 423.

# **Beispiel: CONST**

CONST

\_nvr = 0

\_sd=PARA("","CfgGlobalTechPara","safetyDis tWorkpOut")

\_nws = \_sd-\_nvr

. . .

BLANK

N 1 G20 X120 Z\_nws K2

...

MACHINING

N 6 G0 X100+\_sd

. . .

# VAR code

In the **VAR** program section, you assign names (descriptive text) to variables: See "Expanded variable syntax CONST – VAR" on page 423.

The length of the variable name must not exceed 20 characters. Lower case letters and numbers are allowed. Variables always begin with "#".

# **Beispiel: VAR**

| •                                        |
|------------------------------------------|
| VAR                                      |
| #_inside_dm = #l2                        |
| #_length = #g3                           |
|                                          |
| BLANK                                    |
| N 1 #_length=120                         |
| N 2 #_inside_dm=25                       |
| N 3 G20 X120 Z#_length+2 K2 l#_inside_dm |
|                                          |
| MACHINING                                |
|                                          |

# 1.4 Tool programming

This function is also available on machines with a tool magazine. The control uses the magazine list instead of the turret list.

The designations of the tool pockets are fixed by the machine tool builder. Each tool holder has a unique  $% \left( {{{\rm{D}}_{\rm{B}}}} \right)$ 

# T number.

In the T command (MACHINING section) you program the T number, and therefore the position to which the tool carrier rotates. The Control retrieves the assignment of the tools to the turret position from the turret list of the TURRET section.

You can edit the tool entries individually, or you can call the tool list via the **Set up the turret list** menu item and then edit it.

# Set up turret list



This function is also available on machines with a tool magazine. The control uses the magazine list instead of the turret list.

In the "Set up the turret list" function, the Control provides the turret assignment as a tool list for editing.

You have the following options:

- Editing the turret assignment: Transfer tools from the database, delete entries or move them to other positions (for soft keys see table).
- Loading the turret list of the Machine mode of operation.
- Deleting the current turret assignment of the NC program.

### Loading the turret list of the Machine mode of operation:

Select "Head > Set up the turret list."



Switch to "Special functions."

Transfer machine Load the tool list of the Machine mode of operation into the NC program

### Deleting the turret list:

Select "Head > Set up the turret list."



Switch to "Special functions."

DELETE

Delete all entries of the turret list.

| ID-nu | mber clipboard |          |               | 1     |            | pockets 9        | of 24    | i i i i i i i i i i i i i i i i i i i |
|-------|----------------|----------|---------------|-------|------------|------------------|----------|---------------------------------------|
| r #   | ID number      | Т        | O Designation | RS/DV | EW/BW/AZ : | SW/SB/HG Cutting | g nat. 🔺 |                                       |
| 1     | 342-400.1      | e2 1     |               | 40.00 |            | Hartmet          |          |                                       |
| 2     | 111-80-080.1   |          | 1 roughing    | 0.80  |            | 80.0 Hartmet     |          | <b>=</b> 0↓                           |
| 3     | 007            |          | 5 roughing    | 0.40  |            | 35.0 Hartme      |          |                                       |
| 4     | 003            |          | 1 finishing   | 0.80  |            | 35.0 Hartme      |          | END PGN                               |
| 5     | 004AP1         |          | 7 roughing    | 0.80  |            | 80.0 Hartme      | tall     |                                       |
| 6     | 020            |          | 1 finishing   | 0.40  |            | 35.0 HSS         |          | DEE                                   |
| 7     | 037            | <b>E</b> | 8             | 40.00 | 180.0      | Kerami           | ĸ        | MIC                                   |
| 8     |                |          |               |       |            |                  |          | B N                                   |
| 9     | 04ntest5       | <b>6</b> | B milling     | 10.00 | 4          | HSS              | -        |                                       |
|       |                |          |               |       |            |                  |          | 11 🚺                                  |
|       |                |          |               |       |            |                  |          |                                       |
|       |                |          |               |       |            |                  |          | B/ M                                  |
|       |                |          |               |       |            |                  |          | ' 🖆 👩                                 |
|       |                |          |               |       |            |                  |          |                                       |
|       |                |          |               |       |            |                  |          |                                       |
|       |                |          |               |       |            |                  |          |                                       |

| Soft keys in turret list |                                                                           |  |
|--------------------------|---------------------------------------------------------------------------|--|
| ×                        | Delete entry                                                              |  |
| ł F                      | Paste entry from clipboard                                                |  |
| 5%                       | Cut out entry and save it in the clipboard                                |  |
| Tool<br>list             | Show entries in the tool database                                         |  |
| Save                     | Save the turret assignment                                                |  |
| Cancel                   | Close the tool list. You decide whether the changes made remain in effect |  |
| Editing                  | The input window of the selected tool is opened for editing               |  |

# **Editing tool entries**



This function is also available on machines with a tool magazine. The control uses the magazine list instead of the turret list.

For each entry of the TURRET section you call the Tool dialog box, enter the identification number or use the identification number from the tool database.

### New tool entry



Position the cursor and press the INS (insert) key. The editor opens the Tool dialog box.

Enter the identification number of the tool.



Open the tool database.

Place the cursor on the tool to be loaded.

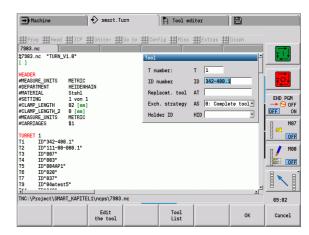
Load tool Transfer the identification number of the tool.

# Editing the tool data

Position the cursor on the entry to be edited and press RETURN.



# **Multipoint tools**


A multipoint tool is a tool with multiple reference points or multiple cutting edges. During T call, the T number is followed by an S to identify the cutting edge.

# T number.S (S=0 to 9)

 $S{=}0$  identifies the main cutting edge, which does not need to be programmed.

# **Examples:**

- T3 or T3.0: Tilted position 3; main cutting edge
- T12.2: Tilted position 12; cutting edge 2



# Parameters of the "Tool" dialog box

| T number                | Position on tool carrier                                                         |
|-------------------------|----------------------------------------------------------------------------------|
| ID number               | ID number (reference to database)                                                |
| Replacement tool        | Identification number of the tool to be used when the previous tool is worn out. |
| Replacement<br>strategy | <ul><li>0: Complete tool</li><li>1: Secondary cutting edge or any</li></ul>      |

# **Replacement tools**

During "simple" tool life monitoring the control stops program run when a tool is worn out. However, the program run is then resumed and concluded.

If you use the **tool life monitoring with replacement tools** function, the Control automatically inserts the "sister tool" as soon as the tool is worn out. The Control does not stop the program run until the last tool of the tool sequence of exchange is worn out.

You can define replacement tools when setting up the turret. The "interchange chain" can contain more than one replacement tool. The interchange chain is a part of the NC program.

In the T commands, you program the first tool to be changed.

# Defining replacement tools:

Place the cursor on the previous tool and press RETURN.

Enter the identification number of the replacement tool (Tool dialog box) and define the replacement strategy.

When using multipoint tools, you define in the **replacement strategy** whether the complete multipoint tool or only the worn-out cutting edge of the tool is to be replaced by a replacement tool:

- 0: Complete tool (default): If a cutting edge of the multipoint tool is worn out, the tool will no longer be used.
- 1: Secondary cutting edge or any: Only the worn-out cutting edge of the multipoint tool is replaced by another tool or another cutting edge. Any other cutting edges of the multipoint tool that are not worn out will continue to be used.

# 1.5 Automatic job

In the **Program Run** submode the control can execute several main programs in succession without you needing to reselect and start these programs. For this purpose, create a program list (automatic job) that is then executed in the **Program Run** submode.

Enter the quantity, i.e. the number of repetitions, for each main program.

All program calls are saved with the complete path. In this way, you can also start project-dependent programs.

| → Progr  | am run                   | J   | 🚯 smart.Tu                                   | rn                 | A (    | Tool edit        | tor               | 8                                        |               |
|----------|--------------------------|-----|----------------------------------------------|--------------------|--------|------------------|-------------------|------------------------------------------|---------------|
| x        | 23.420                   | B   | 0.                                           | 000 C              | 1      |                  | ID                | 0                                        |               |
| Z        | 31.710                   | ω   | 0.                                           | 000 0              | 4      |                  | Т                 | 0 X 0.0000<br>Z 0.0000                   | 0 0           |
| Y        | 0.000                    | 1   | 4 0 0.                                       | 9.0 rpm<br>9 U/min | K I    | U<br>W           | ₩ •               | 0.000                                    |               |
| ដ្ឋា 1 🙋 | 0.200 mm/1<br>0.0 mm/min | 1   | 1 •                                          | 0.0 rpm<br>350.0 ° | i) 2 😐 | 0.0 m<br>0.0 U/m | in <b>1</b> F 100 | <sup>2</sup><br>3<br>3<br>5<br>1<br>100% |               |
| N 1 L"   |                          | Ben | TURN_V1.0"<br>utzerhandbuch<br>utzerhandbuch |                    |        |                  |                   |                                          |               |
|          |                          |     |                                              |                    |        |                  |                   |                                          |               |
| DENDE    |                          |     |                                              |                    |        |                  |                   |                                          |               |
|          |                          | Fil | e name: 💌                                    | _                  |        |                  |                   | ×                                        | <b>9</b> 9:45 |

# Opening a job

In the **smart.Turn** mode of operation, you create an automatic job with the file extension .job. Automatic jobs are project-independent and always stored in the default directory TNC:\nc\_prog\_ncps.

# Creating a new automatic job:

- Select the menu item "Prog > New".
- Select the menu item "New automatic job".
- Enter the file name.

Press the "Save" soft key.

# Opening an existing automatic job:

Select the menu item "Prog > Open".

Next Switch to the ".job" file type.

file type

Save

Press the "Open" soft key.

Open



# Editing a job

In an automatic job, you link main programs in order to execute them successively in the **Program Run** submode.

### Adding a main program:

- Select the "Extras" menu item.
- Select the "Program call" menu item.
- Select the main program.

Open

Press the "Open" soft key.

▶ Enter the number of repetitions in the Q parameter, if required.



If you do not program any repetitions, the control will execute the program once; if you enter 0, the program will not be executed.

# **Beispiel: Automatic job**

%autorun.job "TURN\_V1.0"

N1 L"TNC:\nc\_prog\ncps\234.nc" Q3

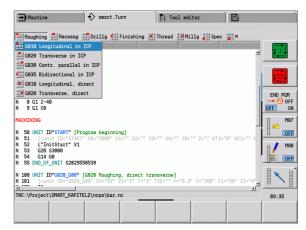
N2 L"TNC:\Project\Project3\ncps\10785.nc"

N3 L"TNC:\nc\_prog\ncps\Huelse.nc" Q12

. . .

1.5 Automatic j<mark>ob</mark>

i


rernen net Smart. Turn 当Prog 鉗Vorsp 鉗ICP 鉗Units» 鉗Goto [// ICP-Stechdrehen radial] 4 UNIT ID"G869\_ICP" [G869 Stechdrehen [<unit ID="G869\_ICP" APP="0" XS="6] G96 S200 G95 F0.35 M3 G47 P1 An G1 X60 Z0 Ant Anfa 11 \*\*\*\* Vo APP= 0 72 Sch Hilfskon s Startsatz Endsatznum ZS maximale ZL smart.Turn units Aufmaß X øxs Aufmaß Z GM03.nc Anfahrvariante bild Werkzeug-

# 2.1 smart.Turn units

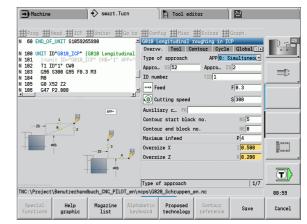
# "Units" menu item

The **"Units" menu item** contains the unit calls grouped by the type of machining operation. Select the Units menu item to access the following menu items:

- Roughing
- Recessing
- Drilling and predrilling (C axis and Y axis)
- Finishing
- Thread
- Milling (C axis and Y axis)
- Special operations



# The smart.Turn unit


A unit describes a complete working block. This means that the unit includes the tool call, the technology data, the cycle call, the approach and departure strategies as well as global data, such as safety clearance, etc. All of these parameters are collected in one, clearly structured dialog box.

# Unit forms

The unit dialog is divided into fillable forms and the forms are divided again into groups. You can navigate between the forms and groups with the **smart keys**.

# Forms in unit dialogs

|          | Overvw. Tool Contour Cycle Global                                                    |  |  |  |  |  |
|----------|--------------------------------------------------------------------------------------|--|--|--|--|--|
| 0verview | Overview form with all necessary settings                                            |  |  |  |  |  |
| Tool     | Tool form with tool selection, technological settings and $\ensuremath{M}$ functions |  |  |  |  |  |
| Contour  | Description or selection of the contour to be machined                               |  |  |  |  |  |
| Cycle    | Description of the machining operation                                               |  |  |  |  |  |
| Global   | View and settings of globally set values                                             |  |  |  |  |  |
| AppDep   | Definition of approach and departure behavior                                        |  |  |  |  |  |
| ToolExt  | Extended tool settings                                                               |  |  |  |  |  |



# The Overview form

The overview form summarizes the most important settings of the unit. These parameters are repeated in the other forms.

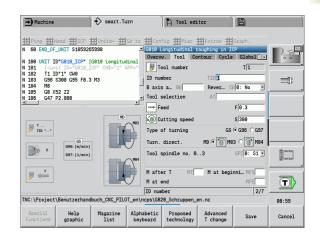
# The Tool form

You program the technological information in this form.

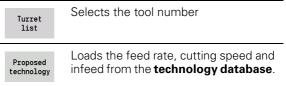
# Tool form

- Tool
- T Tool number (number of turret pocket).
- TID The identification number (tool name) is entered automatically.
- F Feed rate: Feed per revolution (mm/rev) for machining. The tool is moved at the programmed value for each spindle revolution.
- S (Constant) cutting speed (m/min) or constant shaft speed (rev/min). Switchable with **Type of turning GS**.

# Spindle


- GS Type of turning
  - G96: Constant surface speed. The rotational speed changes with the turning diameter.
  - G97: Constant shaft speed. Rotational speed is independent of the turning diameter.
- MD Direction of rotation
  - M03: Clockwise (CW)
  - M04: Counterclockwise (CCW)
- SPI Workpiece spindle number (0 to 3). Spindle that is holding the workpiece (only on machines with more than one spindle).
- SPT Tool spindle number (0 to 3). Spindle of the driven tool.

### **M** functions


- MT M after T: M function that is executed after the tool call T.
- MFS M at beginning: M function that is executed at the beginning of the machining step.
- MFE M at end: M function that is executed at the end of the machining step.



A machining operation is assigned to each unit for access to the technology database. The following description shows the assigned machining mode and the unit parameters that were changed by the technology proposal.



# Soft keys in the tool form



' (

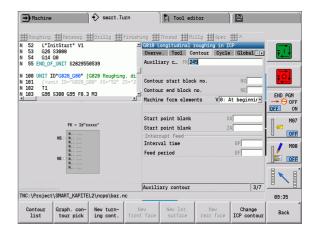
# The Contour form

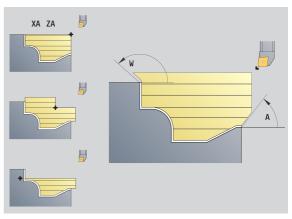
In the contour form you define the contours to be machined. A difference is made between the direct contour definition (G80) and the reference to an **external** contour definition (FINISHED or AUXIL\_CONTOUR program sections).

# **ICP** contour definition parameters

FK Auxiliary contour: Name of the contour to be machined.

You can select an existing contour or describe a new contour with ICP.


- NS Contour start block number: Beginning of contour section.
- NE Contour end block number: End of contour section.
  - NE not programmed: The contour element NS is machined in the direction of contour definition.
  - NS=NE programmed: The contour element NS is machined opposite to the direction of contour definition.
- V Machine form elements (default: 0).


A chamfer/rounding arc is machined:

- O: At start and end of the contour
- 1: At start of the contour
- 2: At end of the contour
- 3: No machining
- 4: Only chamfer/rounding is machined—not the basic element. (Requirement: the contour section consists of a single element)
- XA, ZA Starting point of blank (only effective if no blank was programmed):
  - XA, ZA not programmed: The workpiece blank contour is calculated from the tool position and the ICP contour.
  - XA, ZA programmed: Definition of the corner point of the workpiece blank.
- BP Break duration: Time span for interruption of the feed. The chip is broken by the (intermittent) interruption of the feed.
- BF Feed duration: Time interval until the next break. The chip is broken by the (intermittent) interruption of the feed.

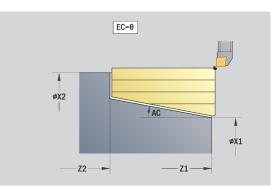


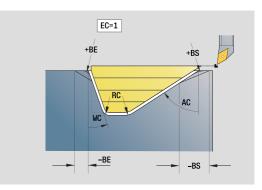
The listed soft keys are **only** selectable if the input cursor is in the **FK** field, or on **NS** or **NE**.





| Soft keys                | in the ICP contour form                                                                       |
|--------------------------|-----------------------------------------------------------------------------------------------|
| Contour<br>list          | Opens the selection list of the contours defined in the program.                              |
| Graph. con-<br>tour pick | Shows all contours in the graphics window. Use the arrow keys for selection.                  |
| New turn-<br>ing cont.   | Starts the <b>ICP editor</b> submode. First, enter the desired contour name in <b>FK</b> .    |
| Change<br>ICP contour    | Starts the <b>ICP editor</b> submode with the currently selected contour.                     |
| Contour<br>reference     | Opens the graphics window for selection of a part of a contour for <b>NS</b> and <b>NE</b> .  |
| New<br>front face        | Starts the <b>ICP editor</b> submode. First,<br>enter the desired contour name in <b>FK</b> . |
| New lat.<br>surface      | Starts the <b>ICP editor</b> submode. First,<br>enter the desired contour name in <b>FK</b> . |


### Navigating between contours


When working with multiple contour groups, you can press the **Contour reference** soft key to select the correct contour. The control shows the number of the contour group and, if applicable, the name of the auxiliary contour at the top left in the graphics window.

| Navigation I | keys .                                                                                                        |
|--------------|---------------------------------------------------------------------------------------------------------------|
| ţ †          | Switches to the next/previous contour<br>(contour group/workpiece blank/auxiliary contour/<br>finished part). |
| + +          | Switches to the next contour element.                                                                         |
| PG DN        | Reduces the displayed workpiece (zoom –).                                                                     |
| PG UP        | Magnifies the displayed workpiece (zoom +).                                                                   |

# Direct contour definition parameters for turning operations

- EC Type of contour
  - 0: Normal contour
  - 1: Plunging contour
- X1, Z1 Contour starting point
- X2, Z2 Contour end point
- RC Rounding: Radius of contour corner
- AC Start angle: Angle of the first contour element (range:  $0^{\circ} < 90^{\circ}$ )
- WC End angle: Angle of the last contour element (range:  $0^{\circ} < 90^{\circ}$ )
- BS –Chamfer/+radius at start:
  - BS>0: Radius of rounding arc
  - BS<0: Section length of chamfer
- BE -Chamfer/+radius at end:
  - BE>0: Radius of rounding arc
  - BE<0: Section length of chamfer
- BP Break duration: Time span for interruption of the feed. The chip is broken by the (intermittent) interruption of the feed.
- BF Feed duration: Time interval until the next break. The chip is broken by the (intermittent) interruption of the feed.

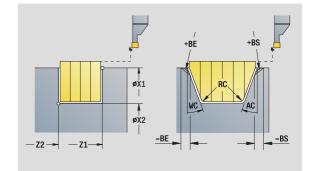




### Direct contour definition parameters for recessing operations

- X1, Z1 Contour starting point
- X2, Z2 Contour end point
- RC Rounding: Radii in the recess base
- AC Start angle: Angle of the first contour element (range:  $0^{\circ} \le 90^{\circ}$ )
- WC End angle: Angle of the last contour element (range:  $0^{\circ} \le 90^{\circ}$ )
- BS –Chamfer/+radius at start:
  - BS>0: Radius of rounding arc
  - BS<0: Section length of chamfer</p>
- BE –Chamfer/+radius at end:
  - BE>0: Radius of rounding arc
  - BE<0: Section length of chamfer

### The Global form


This form contains parameters that were defined as default values in the start unit. You can edit these parameters in the machining units.

### Parameters on the Global form

- G14 Tool change point
  - No axis
  - 0: Simultaneously
  - 1: First X, then Z
  - 2: First Z, then X
  - 3: Only X
  - 4: Only Z
  - 5: Only Y direction
  - 6: Simultaneous with Y (X, Y and Z axes move on a diagonal path)
- CLT Coolant
  - 0: Without
  - 1: Circuit 1 on
  - 2: Circuit 2 on
- G47 Safety clearance: Indicates the distance to the current blank material at which the tool is **not** moved at rapid traverse during turning operations.
- SCK Safety clearance in infeed direction: Safety clearance in infeed direction during drilling and milling operations.
- SCI Safety clearance in plane: Safety clearance in the working plane during drilling and milling operations.
- G60 Protection zone. During drilling and boring the protection zone monitoring is
  - 0: Active
  - 1: Inactive



The units G840 "Contour milling, figures" and G84X "Pocket milling, figures" additionally provide the parameter RB "Retraction plane" on the Global form.





# The AppDep form

Positions and variants of the approach and departure movements are defined in this form.

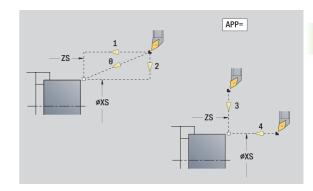
Approach: Influence the approach strategy.

# "Approach" parameters

- APP Type of approach:
  - No axis (switch off the approach function)
  - 0: Simultaneous (X and Z axes approach diagonally)
  - 1: First X, then Z
  - 2: First Z, then X
  - 3: Only X
  - 4: Only Z
- XS, ZS Approach position: Position of the tool point before cycle call

# Additionally with C-axis operations:

CS Approach position: C-axis position that is approached before cycle call with G110.


### "Approach with Y axis" parameters

- APP Type of approach:
  - No axis (switch off the approach function)
  - 0: Simultaneous (X and Z axes approach diagonally)
  - 1: First X, then Z
  - 2: First Z, then X
  - 3: Only X
  - 4: Only Z
  - 5: Only Y direction
  - 6: Simultaneous with Y (X, Y and Z axes approach diagonally)
- XS, YS, Approach position: Position of the tool point before cycle
- ZS call
- CS Approach position: C-axis position that is approached before cycle call with G110.

**Departure:** Influence the departure strategy (also applies for Y-axis functions).

### "Departure" parameters

- DEP Type of departure:
  - No axis (switch off the departure function)
  - 0: Simultaneous (X and Z axes depart diagonally)
  - 1: First X, then Z
  - 2: First Z, then X
  - 3: Only X
  - 4: Only Z
- XE, ZE Departure position: Position of the tool point before the movement to the tool change point.





2.1 smart.Turn <mark>un</mark>its

# The Tool Ext form

In this form you can program additional tool settings.

### Tool Ext form Tool

- T Tool number (number of turret pocket).
- TID The identification number (tool name) is entered automatically.

# B axis

- B Angle in the B axis (machine-dependent function)
- CW Reverse the tool (machine-dependent function)
  - 0: No
  - 1: Yes (180°)

# **Miscellaneous functions**

- HC Shoe brake (machine-dependent function)
  - 0: Automatic
  - 1: Tighten
  - 2: Don't tighten
- DF Additional function: Can be evaluated by the machine manufacturer in a subprogram (machine-dependent function)
- XL, ZL, Values can be evaluated by the machine manufacturer in a
- YL subprogram (machine-dependent function)



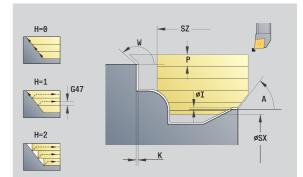
With the **Advanced T change** soft key you can switch quickly and easily between the **Tool** and **Tool Ext** forms.

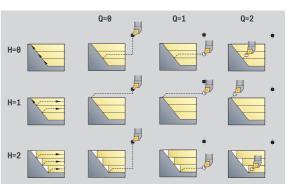


# 2.2 Units-Roughing

# "Longitudinal roughing in ICP" unit

The unit machines the contour described in the FINISHED program section from "NS to NE". Any auxiliary contour defined in FK will be used.


Unit name: G810\_ICP / Cycle: G810 (see page 278)


#### Contour form: see page 68 Cycle form

- I, K Oversize in X, Z direction (I: diameter value)
- P Maximum infeed
- E Plunging behavior
  - E=0: Descending contours are not machined
  - E>0: Plunging feed rate for declining contour elements. Descending contour elements are machined.
  - No input: The plunging feed rate is reduced during machining of declining contour elements by up to 50 %. Descending contour elements are machined.
- SX, SZ Cutting limit (SX: diameter value)—(default: no cutting limit)
- A Approach angle (reference: Z axis)—(default: parallel to Z axis)
- W Departure angle (reference: Z axis)—(default: perpendicular to Z axis)
  - Type of retraction at end of cycle
    - 0: Returns to starting point (first X, then Z direction)
    - 1: Positions in front of the finished contour
    - 2: Retracts to safety clearance and stops
- H Contour smoothing

0

- O: With each cut along the contour (within the infeed range)
- 1: Contour smoothing with the last cut (entire contour); retracts at 45°
- 2: No smoothing; retracts at 45°
- D Omit elements (see figure)
- U Cut line on horizontal element:
  - 0: No (regular proportioning of cuts)
  - 1: Yes (may result in irregular proportioning of cuts)
- O Hide undercutting:
  - 0: Undercuts are machined
  - 1: Undercuts are not machined
- Further forms: see page 66





|     | DIN 76 | DIN509E<br>DIN509F | Form U | Form H<br>Form K | G22 | G23 H0 | G23 H1 |
|-----|--------|--------------------|--------|------------------|-----|--------|--------|
|     |        |                    | Ь      |                  |     |        |        |
| D=0 | ×      | ×                  | ×      | ×                | ×   | ×      | ×      |
| D=1 | ۲      | ۲                  | ٢      | Y                | ×   | ×      | ×      |
| D=2 | ×      | ×                  | ×      | ×                | ×   | ×      | ۲      |
| D=3 | ۲      | r                  | ۲      | Y                | ×   | ×      | ٢      |
| D=4 | ۲      | ×                  | ×      | ۲                | ×   | ×      | ۲      |

dit\Common\Allgemein-03 . p n g

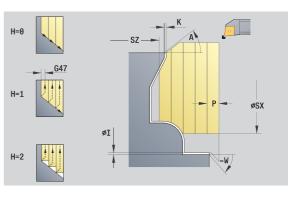
# Access to the technology database:

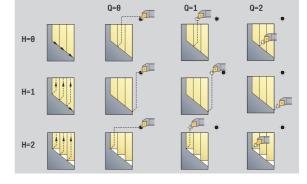
- Machining operation: Roughing
- Affected parameters: F, S, E, P

HEIDENHAIN MANUALplus 620, CNC PILOT 640

# "Transverse roughing in ICP" unit

The unit machines the contour described in the FINISHED program section from "NS to NE". Any auxiliary contour defined in FK will be used.


Unit name: G820\_ICP / Cycle: G820 (see page 281)


# Contour form: see page 68

#### Cycle form

Ρ

- I, K Oversize in X, Z direction (I = diameter value)
  - Maximum infeed
- E Plunging behavior
  - E=0: Descending contours are not machined
  - E>0: Plunging feed rate for declining contour elements. Descending contour elements are machined.
  - No input: The plunging feed rate is reduced during machining of declining contour elements by up to 50 %. Descending contour elements are machined.
- SX, SZ Cutting limit (SX: diameter value)—(default: no cutting limit)
- A Approach angle (reference: Z axis)—(default: perpendicular to Z axis)
- W Departure angle (reference: Z axis)—(default: parallel to Z axis)
- Q Type of retraction at end of cycle
  - 0: Returns to starting point (first X, then Z direction)
  - 1: Positions in front of the finished contour
  - 2: Retracts to safety clearance and stops
- H Contour smoothing
  - O: With each cut along the contour (within the infeed range)
  - 1: Contour smoothing with the last cut (entire contour); retracts at 45°
  - 2: No smoothing; retracts at 45°
- D Hide elements; do not machine form elements (see figure)
- U Cut line on horizontal element:
  - 0: No (regular proportioning of cuts)
  - 1: Yes (may result in irregular proportioning of cuts)
- O Hide undercutting:
  - 0: Undercuts are machined
  - 1: Undercuts are not machined
- Further forms: see page 66





|         | DIN 76 | DIN509E<br>DIN509F | Form U | Form H<br>Form K | G22 | G23 H0 | G23 H1 |
|---------|--------|--------------------|--------|------------------|-----|--------|--------|
| <br>D=0 |        |                    | ×      | ×                | ×   |        | ×      |
| <br>D=1 | v      |                    | ^      | ~                | ×   | ×      | ×      |
| D=2     | ×      | ×                  | ×      | ×                | ×   | ×      | ~      |
|         |        | ~                  | ~      | ^                |     |        | V      |
| D=3     | V      | r                  | ۲      | Y                | ×   | ×      | r      |
| D=4     | ۲      | ×                  | ×      | ۷                | ×   | ×      | v      |

# Access to the technology database:

Machining operation: Roughing
 Affected parameters: F, S, E, P

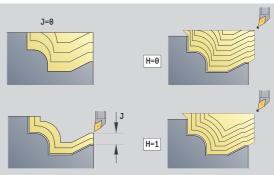
# 2.2 Units—Rou<mark>gh</mark>ing

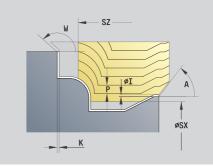
# "Contour-parallel roughing in ICP" unit

The unit machines the contour described in the FINISHED program section from "NS to NE" parallel to the contour. Any auxiliary contour defined in FK will be used.

Unit name: G830\_ICP / Cycle: G830 (see page 284)

#### **Contour form**


- J Workpiece blank oversize (radius value)—active only if **no blank** has been defined.
- B Contour calculation
  - 0: Automatic
  - 1: Tool to the left (G41)
  - 2: Tool to the right (G42)


Further parameters of the contour form: see page 68.

#### Cycle form

- P Maximum infeed
- I, K Oversize in X, Z direction (I: diameter value)
- SX, SZ Cutting limit (SX: diameter value)—(default: no cutting limit)
- A Approach angle (reference: Z axis)—(default: parallel to Z axis)
- W Departure angle (reference: Z axis)—(default: orthogonal to Z axis)
- Q Type of retraction at end of cycle
  - 0: Returns to starting point (first X, then Z direction)
  - 1: Positions in front of the finished contour
  - 2: Retracts to safety clearance and stops
- H Type of cut lines (cutting paths)
  - O: Constant cutting depth: Contour is shifted by a constant infeed value (paraxial)
  - 1: Equidistant cutting lines: Cutting lines run at a constant distance from the contour (contour parallel). The contour is scaled.
- D Hide elements; do not machine form elements (see figure)HR Main machining direction
  - 0: Automatic
  - 1: +Z
  - 2: +X
  - 3: –Z
  - 4: –X

Further forms: see page 66





|     | DIN 76 | DIN509E<br>DIN509F | Form U | Form H<br>Form K | G22 | G23 H0 | G23 H1 |
|-----|--------|--------------------|--------|------------------|-----|--------|--------|
|     |        |                    | Ь      |                  |     |        |        |
| D=0 | ×      | ×                  | ×      | ×                | ×   | ×      | ×      |
| D=1 | ٢      | ۲                  | ٢      | ۲                | ×   | ×      | ×      |
| D=2 | ×      | ×                  | ×      | ×                | ×   | ×      | ۲      |
| D=3 | ٢      | ۲                  | ٢      | ۲                | ×   | ×      | ۲      |
| D=4 | ۲      | ×                  | ×      | ٢                | ×   | ×      | ٢      |

- Machining operation: Roughing
- Affected parameters: F, S, E, P

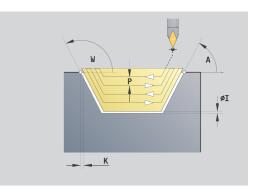
# "Bidirectional roughing in ICP" unit

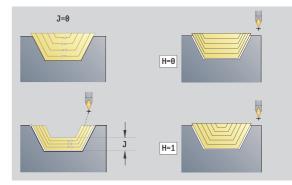
The unit machines the contour described in the FINISHED program section from "NS to NE" parallel to the contour and bidirectionally. Any auxiliary contour defined in FK will be used.

Unit name: G835\_ICP / Cycle: G835 (see page 286)

#### **Contour form**

- J Workpiece blank oversize (radius value)—active only if **no blank** has been defined.
- B Contour calculation
  - 0: Automatic
  - 1: Tool to the left (G41)
  - 2: Tool to the right (G42)


Further parameters of the contour form: see page 68.


#### Cycle form

- P Maximum infeed
- I, K Oversize in X, Z direction (I = diameter value)
- SX, SZ Cutting limit (SX: diameter value)—(default: no cutting limit)
- A Approach angle (reference: Z axis)—(default: parallel to Z axis)
- W Departure angle (reference: Z axis)—(default: orthogonal to Z axis)
- Q Type of retraction at end of cycle
  - 0: Returns to starting point (first X, then Z direction)
  - 1: Positions in front of the finished contour
  - 2: Retracts to safety clearance and stops
- H Type of cut lines (cutting paths)
  - O: Constant cutting depth: Contour is shifted by a constant infeed value (paraxial)
  - 1: Equidistant cutting lines: Cutting lines run at a constant distance from the contour (contour parallel). The contour is scaled.

D Hide elements; do not machine form elements (see figure)

Further forms: see page 66





|     | DIN 76 | DIN509E<br>DIN509F | Form U | Form H<br>Form K | G22 | G23 H0 | G23 H1 |
|-----|--------|--------------------|--------|------------------|-----|--------|--------|
|     |        |                    | Ŀ      |                  |     |        |        |
| D=0 | ×      | ×                  | ×      | ×                | ×   | ×      | ×      |
| D=1 | ٢      | r                  | ٢      | ۲                | ×   | ×      | ×      |
| D=2 | ×      | ×                  | ×      | ×                | ×   | ×      | ۲      |
| D=3 | ۲      | r                  | ٢      | ۲                | ×   | ×      | ٢      |
| D=4 | ۲      | ×                  | ×      | ۲                | ×   | ×      | ۲      |

# Access to the technology database:

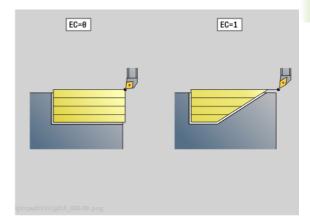
Machining operation: Roughing
 Affected parameters: F, S, E, P

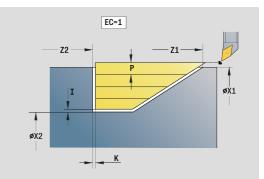
# 2.2 Units–Rou<mark>gh</mark>ing

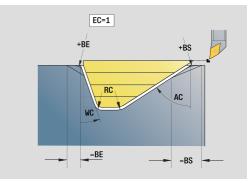
# "Longitudinal roughing with direct contour input" unit

The unit machines the contour defined by the parameters. In EC you define whether you want to machine a normal or a plunging contour.

Unit name: G810\_G80 / Cycle: G810 (see page 278)


| Contour | form                                                                               |
|---------|------------------------------------------------------------------------------------|
| EC      | Type of contour                                                                    |
|         | 0: Normal contour                                                                  |
|         | 1: Plunging contour                                                                |
| X1, Z1  | Contour starting point                                                             |
| X2, Z2  | Contour end point                                                                  |
| RC      | Rounding: Radius of contour corner                                                 |
| AC      | Start angle: Angle of the first contour element (range: $0^{\circ} < 90^{\circ}$ ) |
| WC      | End angle: Angle of the last contour element (range: $0^{\circ} < 90^{\circ}$ )    |
| BS      | -Chamfer/+radius at start:                                                         |
|         | BS>0: Radius of rounding arc                                                       |
|         | BS<0: Section length of chamfer                                                    |
| BE      | -Chamfer/+radius at end                                                            |
|         | BE>0: Radius of rounding arc                                                       |
|         | BE<0: Section length of chamfer                                                    |
| BP      | Break duration: Time span for interruption of th chip breaking.                    |
| BF      | Feed duration: Time interval until the next brea                                   |


- the feed for duration: Time interval until the next break. The B
  - interruption of the feed rate breaks the chip.


# **Cycle form**

- Ρ Maximum infeed
- I, K Oversize in X, Z direction (I: diameter value)
- Е Plunging behavior
  - E>0: Plunging feed rate for declining contour elements. Descending contour elements are machined.
  - No input: The plunging feed rate is reduced during machining of declining contour elements by up to 50 %. Descending contour elements are machined.
- Н Contour smoothing
  - 0: With each cut along the contour (within the infeed range)
  - 1: Contour smoothing with the last cut (entire contour); retracts at 45°
  - 2: No smoothing; retracts at 45°

# Further forms: see page 66





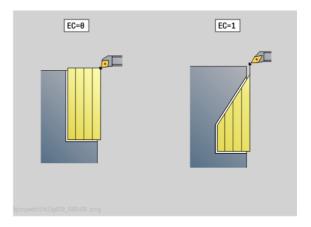


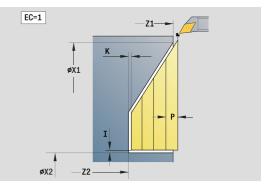
- Machining operation: Roughing
- Affected parameters: F, S, E, P

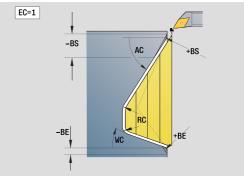
# "Transverse roughing with direct contour input" unit

The unit machines the contour defined by the parameters. In **EC** you define whether you want to machine a normal or a plunging contour.

Unit name: G820\_G80 / Cycle: G820 (see page 281)


#### **Contour form**


- EC Type of contour
  - 0: Normal contour
  - 1: Plunging contour
- X1, Z1 Contour starting point
- X2, Z2 Contour end point
- RC Rounding: Radius of contour corner
- AC Start angle: Angle of the first contour element (range:  $0^{\circ} < AC < 90^{\circ}$ )
- WC End angle: Angle of the last contour element (range:  $0^{\circ} < WC < 90^{\circ}$ )
- BS Chamfer/radius at start
  - BS>0: Radius of rounding arc
  - BS<0: Section length of chamfer
- BE Chamfer/radius at end
  - BE>0: Radius of rounding arc
  - BE<0: Section length of chamfer
- BP Break duration: Time span for interruption of the feed. The chip is broken by the (intermittent) interruption of the feed.
- BF Feed duration: Time interval until the next break. The chip is broken by the (intermittent) interruption of the feed.


#### Cycle form

- P Maximum infeed
- I, K Oversize in X, Z direction (I: diameter value)
- E Plunging behavior
  - E>0: Plunging feed rate for declining contour elements. Descending contour elements are machined.
  - No input: The plunging feed rate is reduced during machining of declining contour elements by up to 50 %. Descending contour elements are machined.
- H Contour smoothing
  - O: With each cut along the contour (within the infeed range)
  - 1: Contour smoothing with the last cut (entire contour); retracts at 45°
  - 2: No smoothing; retracts at 45°

#### Further forms: see page 66







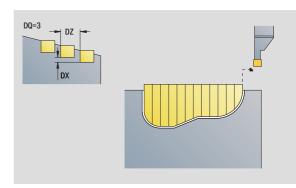
- Machining operation: Roughing
- Affected parameters: F, S, E, P

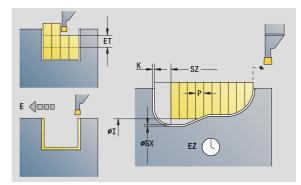
# 2.3 Units-Recessing

# "ICP contour recessing" unit

The unit machines the contour described in the FINISHED program section axially/radially from "NS to NE". Any auxiliary contour defined in FK will be used.

Unit name: G860\_ICP / Cycle: G860 (see page 288)


# **Contour form**


- DQ Number of recessing cycles
- DX, DZ Distance to subsequent recess in X, Z direction (DX: radius value)
- DO Flow (if parameter Q=0 and DQ>1)
  - 0: Complete roughing/finishing
    - Rough-machine all recesses, then finish-machine all recesses
  - 1: Single roughing/finishing
    - Machine each recess completely before machining the next one.

Further parameters of the contour form: see page 68.

# Cycle form

- I, K Oversize in X, Z direction (I: diameter value)
- SX, SZ Cutting limit (SX: diameter value)—(default: no cutting limit)
- ET Recessing depth by which one cut is fed.
- P Cutting width (recessing width)—(default: 0.8 x tool width)
- E Finishing feed rate. Differing feed rate used only for the finishing process.
- EZ Period of dwell after recessing path (default: time for one spindle revolution)
- Q Roughing/finishing (process variants)
  - 0 (SS): Roughing and finishing
  - 1 (SP): Only roughing
  - 2 (SL): Only finishing
- H Type of retraction at end of cycle
  - 0: Return to starting point
    - Axial recess: First Z, then X direction
    - Radial recess: First X, then Z direction
  - 1: Positions in front of the finished contour
  - 2: Retracts to safety clearance and stops
- O End of rough cut
  - 0: Lift-up at rapid
    - 1: Half recessing width 45°
- U End of finishing cut
  - 0: Value from global parameter
  - 1: Parting horizontal element
  - 2: Complete horizontal element
- Further forms: see page 66





- Machining operation: Contour recessing
- Affected parameters: F, S, E

# "ICP recess turning" unit

The unit machines the contour described by ICP axially/radially from "NS to NE". The workpiece is machined by alternate recessing and roughing movements.

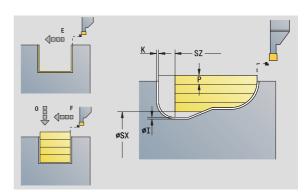
The unit machines the contour described in the FINISHED program section axially/radially from "NS to NE". Any auxiliary contour defined in FK will be used.

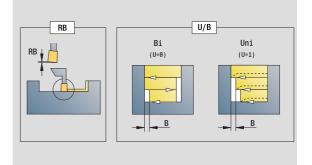
Unit name: G869\_ICP / Cycle: G869 (see page 291)

# Contour form

- X1, Z1 Starting point of blank: Evaluation only if no blank has been defined
- RI, RK Workpiece blank oversize in X and Z direction

SX, SZ Cutting limit (SX: diameter value)—(default: no cutting limit) Further parameters of the contour form: see page 68.


# Cycle form


- P Maximum infeed during rough turning
- I, K Oversize in X, Z direction (I: diameter value)
- RB Turning depth compensation for finishing
- B Offset width
- U Cutting direction
  - 0 (Bi): Bidirectional (in both directions)
  - 1 (Uni): Unidirectional (in direction of contour)
- Q Sequence (roughing/finishing)
  - 0: Roughing and finishing
  - 1: Only roughing
  - 2: Only finishing
- A Approach angle (default: opposite to recessing direction)
- W Departure angle (default: opposite to recessing direction)
- O Recessing feed rate (default: active feed rate)
- E Finishing feed rate (default: active feed rate)
- H Type of retraction at end of cycle
  - 0: Return to starting point
    - Axial recess: First Z, then X direction
    - Radial recess: First X, then Z direction
  - 1: Positions in front of the finished contour
  - 2: Retracts to safety clearance and stops

# Further forms: see page 66

The Control uses the tool definition to distinguish between radial and axial recessing.

**Depth compensation RB:** Depending on factors such as workpiece material or feed rate, the tool tip is displaced during a turning operation. You can correct the resulting infeed error with the turning depth compensation factor. The value is usually determined empirically.







- Machining operation: Recess turning
- Affected parameters: F, S, O, P

2.3 Units-Recessing

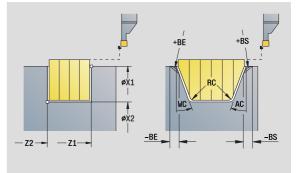
**Offset width B:** After the second infeed movement, during the transition from turning to recessing, the path to be machined is reduced by the offset width B. Each time the system switches on this side, the path is reduced by B—in addition to the previous offset. The total offset is limited to 80 % of the effective cutting width (effective cutting width = cutting width – 2\*cutting radius). If required, the Control reduces the programmed offset width. After clearance roughing, the remaining material is removed with a single cut.

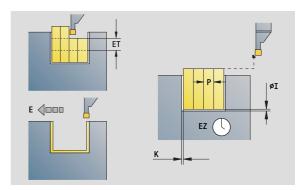
# "Contour recessing with direct contour input" unit

The unit machines the contour defined by the parameters axially/ radially.

Unit name: G860\_G80 / Cycle: G860 (see page 288)

# Contour form:


RI, RK Workpiece blank oversize in X and Z direction Further parameters of the contour form: see page 68.


# Cycle form

- Q Roughing/finishing (process variants)
  - 0: Roughing and finishing
  - 1: Only roughing
  - 2: Only finishing
- I, K Oversize in X, Z direction (I: diameter value)
- ET Recessing depth
- P Cutting width (recessing width)—(default: 0.8 x tool width)
- E Finishing feed rate: Differing feed rate used only for the finishing process
- EZ Period of dwell after recessing path (default: time for one spindle revolution)
- D Revolutions on recessing floor
- DQ Number of recessing cycles
- DX, DZ Distance to subsequent recess in X, Z direction
- DO Flow (if parameter Q=0 and DQ>1)
  - 0: Complete roughing/finishing
    - Rough-machine all recesses, then finish-machine all recesses
  - 1: Single roughing/finishing
  - Machine each recess completely before machining the next one.

# Further forms: see page 66

The Control uses the tool definition to distinguish between radial and axial recessing.





- Machining operation: Contour recessing
- Affected parameters: F, S, E

# "Recess turning with direct contour input" unit

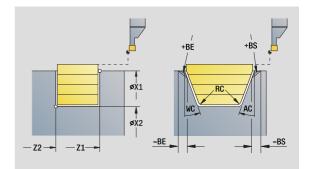
The unit machines the contour defined by the parameters axially/ radially. The workpiece is machined by alternate recessing and roughing movements. The machining process requires a minimum of retraction and infeed movements.

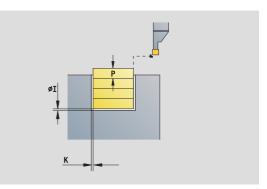
Unit name: G869\_G80 / Cycle: G869 (see page 291)

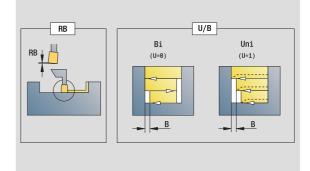
# Contour form:

RI, RK Workpiece blank oversize in X and Z direction Further parameters of the contour form: see page 68.

# Cycle form


- P Maximum infeed during rough turning
- I, K Oversize in X, Z direction (I: diameter value)
- RB Turning depth compensation for finishing
- B Offset width
- U Cutting direction
  - 0 (Bi): Bidirectional (in both directions)
  - 1 (Uni): Unidirectional (in direction of contour)
- Q Sequence (roughing/finishing)
  - 0: Roughing and finishing
  - 1: Only roughing
  - 2: Only finishing


# Further forms: see page 66


The Control uses the tool definition to distinguish between radial and axial recessing.

**Depth compensation RB:** Depending on factors such as workpiece material or feed rate, the tool tip is displaced during a turning operation. You can correct the resulting infeed error with the turning depth compensation factor. The value is usually determined empirically.

**Offset width B:** After the second infeed movement, during the transition from turning to recessing, the path to be machined is reduced by the offset width B. Each time the system switches on this side, the path is reduced by B—in addition to the previous offset. The total offset is limited to 80 % of the effective cutting width (effective cutting width = cutting width – 2\*cutting radius). If required, the Control reduces the programmed offset width. After clearance roughing, the remaining material is removed with a single cut.







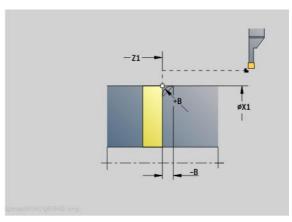
# Access to the technology database:

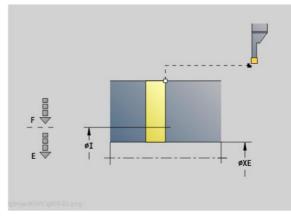
Machining operation: Recess turning
 Affected parameters: F, S, O, P

# "Parting" unit

The unit parts the workpiece. If programmed, a chamfer or rounding arc is machined on the outside diameter. At the end of cycle, the tool returns to the starting point. You can define a feed rate reduction, which becomes effective as soon as the position  $\mathbf{I}$  is reached.

Unit name: G859\_CUT\_OFF / Cycle: G859 (see page 319)


# Cycle form


- X1, Z1 Starting point of contour in X, Z (X: diameter value)
- B Chamfer/rounding
  - B>0: Radius of rounding arc
  - B<0: Section length of chamfer
- D Maximum speed
- XE Inside diameter (pipe)
- I Diameter for feed-rate reduction. Limit diameter over which traverse is at reduced feed rate.
- E Reduced feed rate
- SD Speed limitation from the diameter I up
- U Diameter from which the part catcher is activated (machine-dependent function)
- K Retraction distance after parting: Lift off the tool laterally from the plane surface before retraction

Further forms: see page 66

 $\bigcirc$ 

The limit to the maximum speed "D" is only effective in the cycle. After the cycle ends, the speed limit before the cycle become effective.





- Machining operation: Contour recessing
- Affected parameters: F, S, E

# "Undercutting (H, K, U)" unit

2.3 Units-Recessing

Depending on KG, the unit machines one of the following undercuts:

- Form U: The unit machines an undercut and finishes the adjoining plane surface. Either a chamfer or a rounding arc can be machined.
- Form H: The end point of the undercut is determined from the plunging angle.
- Form K: Only one linear cut at an angle of 45° is performed. The resulting contour geometry therefore depends on the tool that is used.



First, you select the **Type of undercut KG**, and then you enter the values for the selected type of undercut.

The Control changes parameters with the same address letters for the other undercuts as well. Do not change these values.

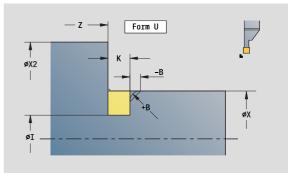
Unit name: G85x\_H\_K\_U / Cycle: G85 (see page 320)

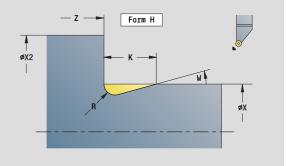
# **Contour form**

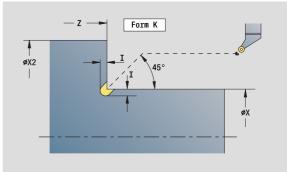
- KG Type of undercut
  - Form U: Cycle G856 (see page 325)
  - Form H: Cycle G857 (see page 326)
  - Form K: Cycle G858 (see page 327)
- X1, Z1 Contour corner point (X: diameter value)

# Undercut type U

- X2 End point, face (diameter value)
- I Undercut diameter
- K Undercut length
- B Chamfer/rounding
  - B>0: Radius of rounding arc
  - B<0: Section length of chamfer


# Undercut type H


- K Undercut length
- R Radius in the undercut corner
- W Plunge angle


# Undercut type K

I Undercut depth (radius)

Further forms: see page 66



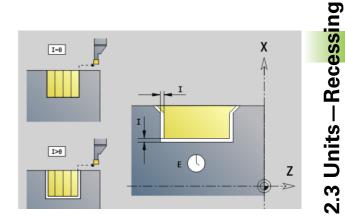




- Machining operation: Finishing
- Affected parameters: F, S

# "ICP recessing" unit

G870 generates a recess defined by G22-Geo. The Control uses the tool definition to distinguish between external and internal machining, or between radial and axial recesses.


Unit name: G870\_ICP / Cycle: G870 (see page 294)

# **Contour form**

- I Oversize in X and Z direction
- EZ Period of dwell after recessing path (default: time for one spindle revolution)

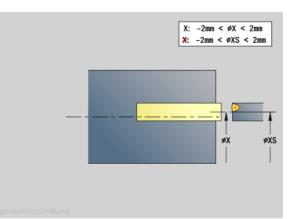
Further parameters of the contour form: see page 68.

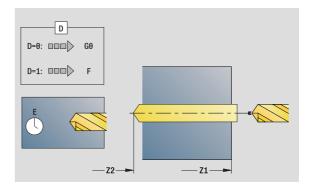
Further forms: see page 66

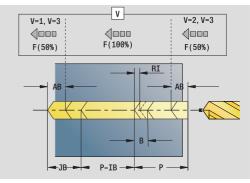


- Machining operation: Recessing
- Affected parameters: F, S

# 2.4 Units-Centric drilling


# "Centric drilling" unit


The unit uses stationary tools to drill axial holes in several passes. Suitable tools can be positioned up to +/– 2 mm outside the turning center.


Unit name: G74\_ZENTR / Cycle: G74 (see page 335)

# Cycle form

- Z1 Start point drill (starting point of hole)
- Z2 End point drill (end point of hole)
- NS Starting block no. of contour
- X Start point drill (starting point of hole; diameter value)— (range: -2 mm < X < 2 mm; default: 0)
- E Delay (dwell time at end of hole) (default: 0)
- D Retraction at
  - 0: Rapid traverse
  - 1: Feed rate
- V Feed rate reduction
  - 0: Without reduction
  - 1: At end of the hole
  - 2: At start of the hole
  - 3: At start and end of the hole
- AB Spot drilling / through drilling length (distance for feed rate reduction)
- P Hole depth
- IB Hole depth reduction value: Value by which the feed depth decreases after every advance.
- JB Minimum hole depth: If you have entered a hole depth reduction value, the hole depth is reduced only to the value entered in **JB**.
- B Retraction distance: Value by which the tool is retracted after reaching the respective hole depth.
- RI Internal safety clearance: Distance for reapproach inside the hole (default: safety clearance SCK).







- Machining operation: Drilling
- Affected parameters: F, S

#### "Global" form

- G14 Tool change point
  - No axis
  - 0: Simultaneously
  - 1: First X, then Z
  - 2: First Z, then X
  - 3: Only X
  - 4: Only Z
  - 5: Only Y direction
  - 6: Simultaneous with Y (X, Y and Z axes move on a diagonal path)
- CLT Coolant
  - 0: Without
  - 1: Circuit 1 on
  - 2: Circuit 2 on
- SCK Safety clearance in infeed direction: Safety clearance in infeed direction during drilling and milling operations.
- G60 Protection zone. During drilling and boring the protection zone monitoring is
  - 0: Active
  - 1: Inactive
- BP Break duration: Time span for interruption of the feed for chip breaking.
- BF Feed duration: Time interval until the next break. The interruption of the feed rate breaks the chip.

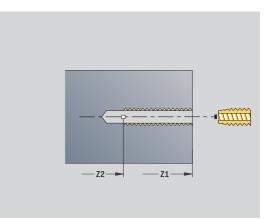
# Further forms: see page 66

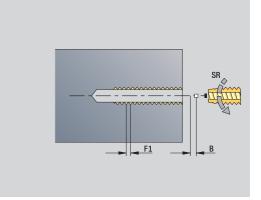


If **X** is not programmed or **XS** is in the range of -2 mm < XS < 2 mm, then the control drills at **XS**.

# "Centric tapping" unit

The unit cuts axial threads using stationary tools.


Unit name: G73\_CENTR / Cycle: G73 (see page 332)


# Cycle form

- Z1 Start point drill (starting point of hole)
- Z2 End point drill (end point of hole)
- NS Starting block no. of contour
- X Start point drill (starting point of hole; diameter value) (range: –2 mm < X < 2 mm; default: 0)
- F1 Thread pitch
- B Run-in length
- L Retraction length when using floating tap holders (default: 0)
- SR Retraction speed (default: Shaft speed for tapping)
- SP Chip breaking depth
- SI Retraction distance

Further forms: see page 66

**Retraction length L:** Use this parameter for floating tap holders. The cycle calculates a new nominal pitch on the basis of the thread depth, the programmed pitch, and the "retraction length." The nominal pitch is somewhat smaller than the pitch of the tap. During tapping, the tap is pulled away from the chuck by the retraction length. With this method you can achieve higher service life from the taps.





- Machining operation: Tapping
- Affected parameter: S

# "Boring, centric countersinking" unit

The unit uses stationary tools to drill axial holes in several passes.

Unit name: G72\_CENTR / Cycle: G72 (see page 331)

#### Cycle form

- NS Starting block no. of contour
- E Delay (dwell time at end of hole) (default: 0)
- D Retraction at
  - 0: Rapid traverse
  - 1: Feed rate
- RB Retraction plane

#### "Global" form

G14 Tool change point

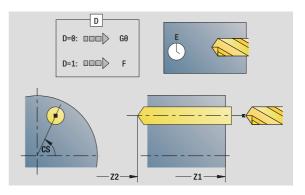
- No axis
- 0: Simultaneously
- 1: First X, then Z
- 2: First Z, then X
- 3: Only X
- 4: Only Z
- 5: Only Y direction
- 6: Simultaneous with Y (X, Y and Z axes move on a diagonal path)
- CLT Coolant
  - 0: Without
  - 1: Circuit 1 on
  - 2: Circuit 2 on
- SCK Safety clearance in infeed direction: Safety clearance in infeed direction during drilling and milling operations.
- G60 Protection zone. During drilling and boring the protection zone monitoring is
  - 0: Active
  - 1: Inactive

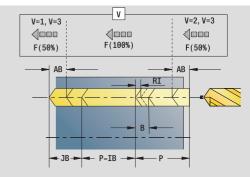
Further forms: see page 66

# 2.5 Units—Drilling in <mark>C a</mark>xis

#### 2.5 Units-Drilling in C axis

# "Single hole, face" unit


This unit machines a hole on the face of the workpiece.


Unit name: G74\_Bohr\_Stirn\_C / Cycle: G74 (see page 335)

# Cycle form

V

- Ζ1 Start point drill (starting point of hole)
- Ζ2 End point drill (end point of hole)
- CS Spindle angle
- Е Delay (dwell time at end of hole) (default: 0) D
  - Retraction at
    - 0: Rapid traverse
    - 1: Feed rate
    - Feed rate reduction
      - 0: Without reduction
      - 1: At end of the hole
      - 2: At start of the hole
      - 3: At start and end of the hole
- AB Spot drilling / through drilling length – distance for feed rate reduction
- Ρ Hole depth
- IΒ Hole depth reduction value: Value by which the feed depth decreases after every advance.
- JB Minimum hole depth: If you have entered a hole depth reduction value, the hole depth is reduced only to the value entered in JB.
- В Retraction distance: Value by which the tool is retracted after reaching the respective hole depth.
- RI Internal safety clearance: Distance for reapproach inside the hole (default: safety clearance SCK).





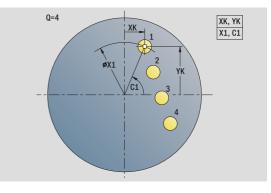
- Machining operation: Drilling
- Affected parameters: F, S

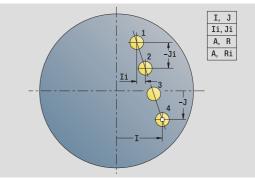
#### "Global" form

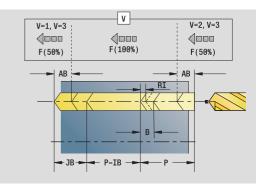
- G14 Tool change point
  - No axis
  - 0: Simultaneously
  - 1: First X, then Z
  - 2: First Z, then X
  - 3: Only X
  - 4: Only Z
  - 5: Only Y direction
  - 6: Simultaneous with Y (X, Y and Z axes move on a diagonal path)
- CLT Coolant
  - 0: Without
  - 1: Circuit 1 on
  - 2: Circuit 2 on
- SCK Safety clearance in infeed direction: Safety clearance in infeed direction during drilling and milling operations.
- G60 Protection zone. During drilling and boring the protection zone monitoring is
  - 0: Active
  - 1: Inactive
- BP Break duration: Time span for interruption of the feed for chip breaking.
- BF Feed duration: Time interval until the next break. The interruption of the feed rate breaks the chip.
- Further forms: see page 66

# "Linear pattern drilling, face" unit

The unit machines a linear drilling pattern in which the individual features are arranged at a regular spacing on the face.


Unit name: G74\_Lin\_Stirn\_C / Cycle: G74 (see page 335)


# Pattern form


- Q Number of holes
- X1, C1 Polar starting point
- XK, YK Cartesian starting point
- I, J End point (XK, YK)
- li, Ji: Distance (XKi, YKi)
- R Distance to first/last hole
- Ri Incremental distance
- A Pattern angle (reference is XK axis)

# Cycle form

- Z1 Start point drill (starting point of hole)
- Z2 End point drill (end point of hole)
- E Delay (dwell time at end of hole) (default: 0)
- D Retraction at
  - 0: Rapid traverse
  - 1: Feed rate
- V Feed rate reduction
  - 0: Without reduction
  - 1: At end of the hole
  - 2: At start of the hole
  - 3: At start and end of the hole
- AB Spot drilling / through drilling length (distance for feed rate reduction)
- P Hole depth
- IB Hole depth reduction value: Value by which the feed depth decreases after every advance.
- JB Minimum hole depth: If you have entered a hole depth reduction value, the hole depth is reduced only to the value entered in **JB**.
- B Retraction distance: Value by which the tool is retracted after reaching the respective hole depth.
- RI Internal safety clearance: Distance for reapproach inside the hole (default: safety clearance SCK).
- RB Retraction plane (default: return to the starting position or to the safety clearance)







- Machining operation: Drilling
- Affected parameters: F, S

#### "Global" form

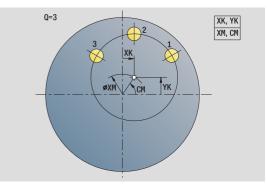
- G14 Tool change point
  - No axis
  - 0: Simultaneously
  - 1: First X, then Z
  - 2: First Z, then X
  - 3: Only X
  - 4: Only Z
  - 5: Only Y direction
  - 6: Simultaneous with Y (X, Y and Z axes move on a diagonal path)
- CLT Coolant
  - 0: Without
  - 1: Circuit 1 on
  - 2: Circuit 2 on
- SCK Safety clearance in infeed direction: Safety clearance in infeed direction during drilling and milling operations.
- G60 Protection zone. During drilling and boring the protection zone monitoring is
  - 0: Active
  - 1: Inactive
- BP Break duration: Time span for interruption of the feed for chip breaking.
- BF Feed duration: Time interval until the next break. The interruption of the feed rate breaks the chip.
- Further forms: see page 66

Κ

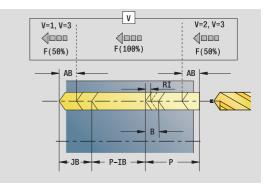
# "Circular pattern drilling, face" unit

This unit machines a circular drilling pattern on the face of the workpiece.

Unit name: G74\_Cir\_Stirn\_C / Cycle: G74 (see page 335)


# Pattern form


- Q Number of holes
- XM, CM Polar center point
- XK, YK Cartesian center point
- A Starting angle
- Wi Angle increment
  - Pattern diameter
- W End angle VD Botation d
  - Rotation direction (default: 0)
    - VD=0, without W: Figures are arranged on a full circle
    - VD=0, with W: Figures are arranged on the longer circular arc
    - VD=0, with Wi: The algebraic sign of Wi defines the direction (Wi<0: clockwise)</p>
    - VD=1, with W: Clockwise
    - VD=1, with Wi: Clockwise (algebraic sign of Wi has no effect)
    - VD=2, with W: Counterclockwise
    - VD=2, with Wi: Counterclockwise (algebraic sign of Wi has no effect)


#### Cycle form

- Z1 Start point drill (starting point of hole)
- Z2 End point drill (end point of hole)
- E Delay (dwell time at end of hole) (default: 0)
- D Retraction at
  - 0: Rapid traverse
  - 1: Feed rate
- V Feed rate reduction
  - 0: Without reduction
  - 1: At end of the hole
  - 2: At start of the hole
  - 3: At start and end of the hole
- AB Spot drilling / through drilling length (distance for feed rate reduction)
- P First hole depth
- IB Hole depth reduction value: Value by which the feed depth decreases after every advance.
- JB Minimum hole depth: If you have entered a hole depth reduction value, the hole depth is reduced only to the value entered in **JB**.
- B Retraction distance: Value by which the tool is retracted after reaching the respective hole depth.
- RI Internal safety clearance: Distance for reapproach inside the hole (default: safety clearance SCK).
- RB Retraction plane (default: return to the starting position or to the safety clearance)

#### Further forms: see page 66





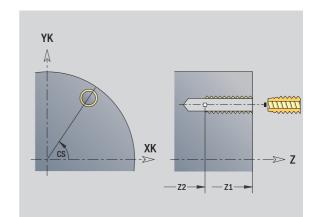


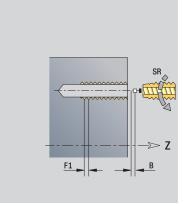
- Machining operation: Drilling
- Affected parameters: F, S

#### "Global" form

- G14 Tool change point
  - No axis
  - 0: Simultaneously
  - 1: First X, then Z
  - 2: First Z, then X
  - 3: Only X
  - 4: Only Z
  - 5: Only Y direction
  - 6: Simultaneous with Y (X, Y and Z axes move on a diagonal path)
- CLT Coolant
  - 0: Without
  - 1: Circuit 1 on
  - 2: Circuit 2 on
- SCK Safety clearance in infeed direction: Safety clearance in infeed direction during drilling and milling operations.
- G60 Protection zone. During drilling and boring the protection zone monitoring is
  - 0: Active
  - 1: Inactive
- BP Break duration: Time span for interruption of the feed for chip breaking.
- BF Feed duration: Time interval until the next break. The interruption of the feed rate breaks the chip.
- Further forms: see page 66

# "Tapping, face" unit


This unit machines a single tap hole on the face of the workpiece.


Unit name: G73\_Gew\_Stirn\_C / Cycle: G73 (see page 332)

# Cycle form

- Z1 Start point drill (starting point of hole)
- Z2 End point drill (end point of hole)
- CS Spindle angle
- F1 Thread pitch
- B Run-in length
- L Retraction length when using floating tap holders (default: 0)
- SR Retraction speed (default: Shaft speed for tapping)
- SP Chip breaking depth
- SI Retraction distance
- Further forms: see page 66

Use the **retraction length** for floating tap holders. The cycle calculates a new nominal pitch on the basis of the thread depth, the programmed pitch, and the retraction length. The nominal pitch is somewhat smaller than the pitch of the tap. During tapping, the tap is pulled away from the chuck by the retraction length. With this method you can achieve higher service life from taps.





- Machining operation: Tapping
- Affected parameter: S

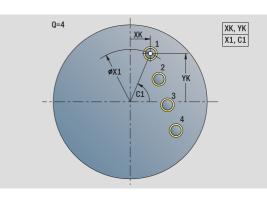
# 2.5 Units—Drilling in <mark>C a</mark>xis

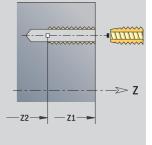
# "Linear tapping pattern, face" unit

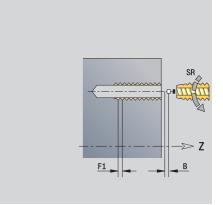
The unit machines a linear tapping pattern in which the individual features are arranged at a regular spacing on the face.

Unit name: G73\_Lin\_Stirn\_C / Cycle: G73 (see page 332)

# Pattern form


- Q Number of holes
- X1, C1 Polar starting point
- XK, YK Cartesian starting point
- I, J End point (XK, YK)
- li, Ji: Distance (XKi, YKi)
- R Distance to first/last hole
- Ri Incremental distance
- A Pattern angle (reference is XK axis)


# Cycle form


- Z1 Start point drill (starting point of hole)
- Z2 End point drill (end point of hole)
- F1 Thread pitch
- B Run-in length
- L Retraction length when using floating tap holders (default: 0)
- SR Retraction speed (default: Shaft speed for tapping)
- SP Chip breaking depth
- SI Retraction distance
- RB Retraction plane (default: return to the starting position or to the safety clearance)

# Further forms: see page 66

Use the **retraction length** for floating tap holders. The cycle calculates a new nominal pitch on the basis of the thread depth, the programmed pitch, and the retraction length. The nominal pitch is somewhat smaller than the pitch of the tap. During tapping, the tap is pulled away from the chuck by the retraction length. With this method you can achieve higher service life from taps.







# Access to the technology database:

- Machining operation: Tapping
- Affected parameter: S

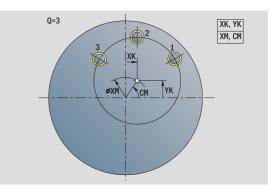
97

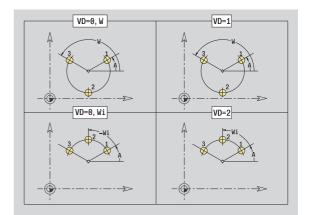
# "Circular tapping pattern, face" unit

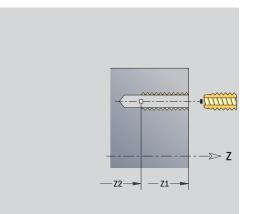
This unit machines a circular tapping pattern on the face of the workpiece.

Unit name: G73\_Cir\_Stirn\_C / Cycle: G73 (see page 332)

# Pattern form


- Q Number of holes
- XM, CM Polar center point
- XK, YK Cartesian center point
- A Starting angle
- Wi Angle increment
- K Pattern diameter
- W End angle VD Rotation of
  - Rotation direction (default: 0)
    - VD=0, without W: Figures are arranged on a full circle
    - VD=0, with W: Figures are arranged on the longer circular arc
    - VD=0, with Wi: The algebraic sign of Wi defines the direction (Wi<0: clockwise)</p>
    - VD=1, with W: Clockwise
    - VD=1, with Wi: Clockwise (algebraic sign of Wi has no effect)
    - VD=2, with W: Counterclockwise
    - VD=2, with Wi: Counterclockwise (algebraic sign of Wi has no effect)


# Cycle form


- Z1 Start point drill (starting point of hole)
- Z2 End point drill (end point of hole)
- F1 Thread pitch
- B Run-in length
- L Retraction length when using floating tap holders (default: 0)
- SR Retraction speed (default: Shaft speed for tapping)
- SP Chip breaking depth
- SI Retraction distance
- RB Retraction plane (default: return to the starting position or to the safety clearance)

# Further forms: see page 66

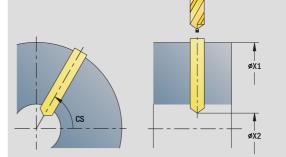
Use the **retraction length** for floating tap holders. The cycle calculates a new nominal pitch on the basis of the thread depth, the programmed pitch, and the retraction length. The nominal pitch is somewhat smaller than the pitch of the tap. During tapping, the tap is pulled away from the chuck by the retraction length. With this method you can achieve higher service life from taps.

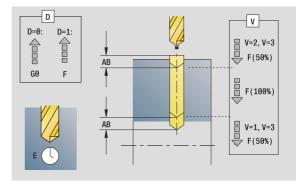


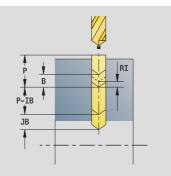




- Machining operation: Tapping
- Affected parameter: S


# "Single hole, lateral surface" unit


This unit machines a hole on the lateral surface of the workpiece.


Unit name: G74\_Bohr\_Mant\_C / Cycle: G74 (see page 335)

#### Cycle form

- X1 Start point drill (starting point of hole; diameter value)
- X2 End point drill (end point of hole; diameter value)
- CS Spindle angle
- E Delay (dwell time at end of hole) (default: 0)
- D Retraction at
  - 0: Rapid traverse
  - 1: Feed rate
- V Feed rate reduction
  - 0: Without reduction
  - 1: At end of the hole
  - 2: At start of the hole
  - 3: At start and end of the hole
- AB Spot drilling / through drilling length (distance for feed rate reduction)
- P Hole depth
- IB Hole depth reduction value: Value by which the feed depth decreases after every advance.
- JB Minimum hole depth: If you have entered a hole depth reduction value, the hole depth is reduced only to the value entered in **JB**.
- B Retraction distance: Value by which the tool is retracted after reaching the respective hole depth.
- RI Internal safety clearance: Distance for reapproach inside the hole (default: safety clearance SCK).







# Access to the technology database:

- Machining operation: Drilling
- Affected parameters: F, S

)

# 2.5 Units—Drilling in <mark>C a</mark>xis

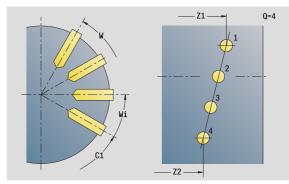
#### "Global" form

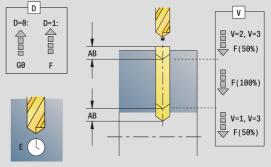
- G14 Tool change point
  - No axis
    0: Simultaneously
    1: First X, then Z
    - 2: First Z, then X
    - 3: Only X
    - 4: Only Z
    - 5: Only Y direction
    - 6: Simultaneous with Y (X, Y and Z axes move on a
  - diagonal path)
- CLT Coolant
  - 0: Without
  - 1: Circuit 1 on
  - 2: Circuit 2 on
- SCK Safety clearance in infeed direction: Safety clearance in infeed direction during drilling and milling operations.
- BP Break duration: Time span for interruption of the feed for chip breaking.
- BF Feed duration: Time interval until the next break. The interruption of the feed rate breaks the chip.

Further forms: see page 66

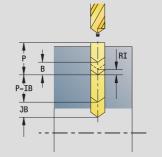
# "Linear pattern drilling, lateral surface" unit

The unit machines a linear drilling pattern in which the individual features are arranged at a regular spacing on the lateral surface.


Unit name: G74\_Lin\_Mant\_C / Cycle: G74 (see page 335)


# Pattern form

- Q Number of holes
- Z1, C1 Starting point of pattern
- Wi Angle increment
- W End angle
- Z2 End point of pattern


#### Cycle form

- X1 Start point drill (starting point of hole; diameter value)
- X2 End point drill (end point of hole; diameter value)
- E Delay (dwell time at end of hole) (default: 0)
- D Retraction at
  - 0: Rapid traverse
  - 1: Feed rate
- V Feed rate reduction
  - 0: Without reduction
  - 1: At end of the hole
  - 2: At start of the hole
  - 3: At start and end of the hole
- AB Spot drilling / through drilling length (distance for feed rate reduction)
- P Hole depth
- IB Hole depth reduction value: Value by which the feed depth decreases after every advance.
- JB Minimum hole depth: If you have entered a hole depth reduction value, the hole depth is reduced only to the value entered in **JB**.
- B Retraction distance: Value by which the tool is retracted after reaching the respective hole depth.
- RI Internal safety clearance: Distance for reapproach inside the hole (default: safety clearance SCK).
- RB Retraction plane (default: return to the starting position or to the safety clearance)









- Machining operation: Drilling
- Affected parameters: F, S

# "Global" form

G14 Tool change point

- No axis
  0: Simultaneously
  1: First X, then Z
  2: First Z, then X
  3: Only X
  4: Only Z
  - 5: Only Y direction
  - 6: Simultaneous with Y (X, Y and Z axes move on a
- diagonal path)
- CLT Coolant
  - 0: Without
  - 1: Circuit 1 on
  - 2: Circuit 2 on
- SCK Safety clearance in infeed direction: Safety clearance in infeed direction during drilling and milling operations.
- BP Break duration: Time span for interruption of the feed for chip breaking.
- BF Feed duration: Time interval until the next break. The interruption of the feed rate breaks the chip.

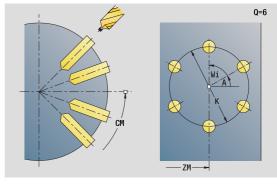
Further forms: see page 66

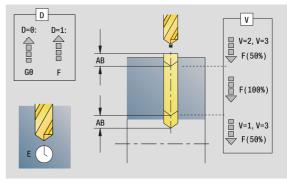
# 2.5 Units—Drilling in <mark>C a</mark>xis

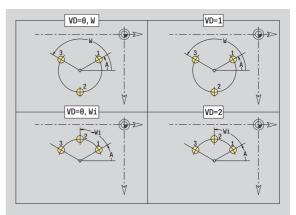
# "Circular pattern drilling, lateral surface" unit

This unit machines a circular hole pattern on the lateral surface of the workpiece.

Unit name: G74\_Cir\_Mant\_C / Cycle: G74 (see page 335)


# Pattern form


- Q Number of holes
- ZM, CM Center point of pattern
- A Starting angle
- Wi Angle increment
- K Pattern diameter
- W End angle
- VD Rotation direction (default: 0)
  - VD=0, without W: Figures are arranged on a full circle
  - VD=0, with W: Figures are arranged on the longer circular arc
  - VD=0, with Wi: The algebraic sign of Wi defines the direction (Wi<0: clockwise)</p>
  - VD=1, with W: Clockwise
  - VD=1, with Wi: Clockwise (algebraic sign of Wi has no effect)
  - VD=2, with W: Counterclockwise
  - VD=2, with Wi: Counterclockwise (algebraic sign of Wi has no effect)


# Cycle form

V

- X1 Start point drill (starting point of hole; diameter value)
- X2 End point drill (end point of hole; diameter value)
- E Delay (dwell time at end of hole) (default: 0)
- D Retraction at:
  - 0: Rapid traverse
  - 1: Feed rate
  - Feed rate reduction:
    - 0: Without reduction
    - 1: At end of the hole
    - 2: At start of the hole
    - 3: At start and end of the hole
- AB Spot drilling / through drilling length (distance for feed rate reduction)
- P Hole depth
- IB Hole depth reduction value: Value by which the feed depth decreases after every advance.
- JB Minimum hole depth: If you have entered a hole depth reduction value, the hole depth is reduced only to the value entered in **JB**.
- B Retraction distance: Value by which the tool is retracted after reaching the respective hole depth.
- RI Internal safety clearance: Distance for reapproach inside the hole (default: safety clearance SCK).
- RB Retraction plane (default: return to the starting position or to the safety clearance)







- Machining operation: Drilling
- Affected parameters: F, S

# 2.5 Units—Drilling in <mark>C a</mark>xis

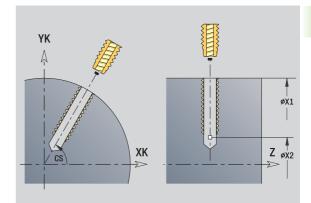
#### "Global" form

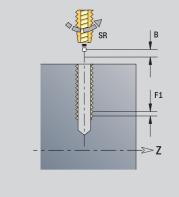
G14 Tool change point

- No axis
  0: Simultaneously
  1: First X, then Z
  2: First Z, then X
  - 3: Only X
  - 4: Only Z
  - 5: Only Y direction
  - 6: Simultaneous with Y (X, Y and Z axes move on a
- diagonal path)
- CLT Coolant
  - 0: Without
  - 1: Circuit 1 on
  - 2: Circuit 2 on
- SCK Safety clearance in infeed direction: Safety clearance in infeed direction during drilling and milling operations.
- BP Break duration: Time span for interruption of the feed for chip breaking.
- BF Feed duration: Time interval until the next break. The interruption of the feed rate breaks the chip.

Further forms: see page 66

# "Tap hole, lateral surface" unit


This unit machines a tap hole on the lateral surface of the workpiece.


Unit name: G73\_Gew\_Mant\_C / Cycle: G73 (see page 332)

#### Cycle form

- X1 Start point drill (starting point of hole; diameter value)
- X2 End point drill (end point of hole; diameter value)
- CS Spindle angle
- F1 Thread pitch
- B Run-in length
- L Retraction length when using floating tap holders (default: 0)
- SR Retraction speed (default: Shaft speed for tapping)
- SP Chip breaking depth
- SI Retraction distance
- Further forms: see page 66

Use the **retraction length** for floating tap holders. The cycle calculates a new nominal pitch on the basis of the thread depth, the programmed pitch, and the retraction length. The nominal pitch is somewhat smaller than the pitch of the tap. During tapping, the tap is pulled away from the chuck by the retraction length. With this method you can achieve higher service life from taps.



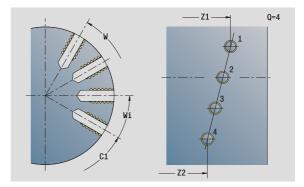


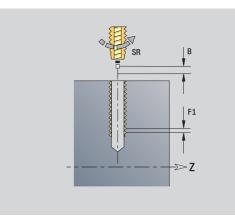
- Machining operation: Tapping
- Affected parameter: S

# "Linear tapping pattern, lateral surface" unit

The unit machines a linear tapping pattern in which the individual features are arranged at a regular spacing on the lateral surface.

Unit name: G73\_Lin\_Mant\_C / Cycle: G73 (see page 332)


#### Pattern form


| Q        | Number of holes                                            |
|----------|------------------------------------------------------------|
| Z1, C1   | Starting point of pattern                                  |
| Wi       | Angle increment                                            |
| W        | End angle                                                  |
| Z2       | End point of pattern                                       |
| Cycle fo | rm                                                         |
| X1       | Start point drill (starting point of hole; diameter value) |
| X2       | End point drill (end point of hole; diameter value)        |
| F1       | Thread pitch                                               |
| В        | Run-in length                                              |
| L        | Retraction length when using floating tap holders (default |
| SR       | Retraction speed (default: Shaft speed for tapping)        |
| SP       | Chip breaking depth                                        |
| SI       | Retraction distance                                        |
| חח       | Detrection plane                                           |

- t: 0)
- Retraction plane RB

Further forms: see page 66

Use the retraction length for floating tap holders. The cycle calculates a new nominal pitch on the basis of the thread depth, the programmed pitch, and the retraction length. The nominal pitch is somewhat smaller than the pitch of the tap. During tapping, the tap is pulled away from the chuck by the retraction length. With this method you can achieve higher service life from taps.





- Machining operation: Tapping
- Affected parameter: S

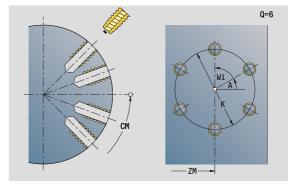
# 2.5 Units—Drilling in <mark>C a</mark>xis

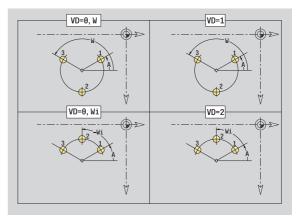
# "Circular tapping pattern, lateral surface" unit

This unit machines a circular tapping pattern on the lateral surface of the workpiece.

Unit name: G73\_Cir\_Mant\_C / Cycle: G73 (see page 332)

# Pattern form


- Q Number of holes
- ZM, CM Center point of pattern
- A Starting angle
- Wi Angle increment
- K Pattern diameter
- W End angle
- VD Rotation direction (default: 0)
  - VD=0, without W: Figures are arranged on a full circle
  - VD=0, with W: Figures are arranged on the longer circular arc
  - VD=0, with Wi: The algebraic sign of Wi defines the direction (Wi<0: clockwise)</p>
  - VD=1, with W: Clockwise
  - VD=1, with Wi: Clockwise (algebraic sign of Wi has no effect)
  - VD=2, with W: Counterclockwise
  - VD=2, with Wi: Counterclockwise (algebraic sign of Wi has no effect)


#### Cycle form

- X1 Start point drill (starting point of hole; diameter value)
- X2 End point drill (end point of hole; diameter value)
- F1 Thread pitch
- B Run-in length
- L Retraction length when using floating tap holders (default: 0)
- SR Retraction speed (default: Shaft speed for tapping)
- SP Chip breaking depth
- SI Retraction distance
- RB Retraction plane

# Further forms: see page 66

Use the **retraction length** for floating tap holders. The cycle calculates a new nominal pitch on the basis of the thread depth, the programmed pitch, and the retraction length. The nominal pitch is somewhat smaller than the pitch of the tap. During tapping, the tap is pulled away from the chuck by the retraction length. With this method you can achieve higher service life from taps.





# Access to the technology database:

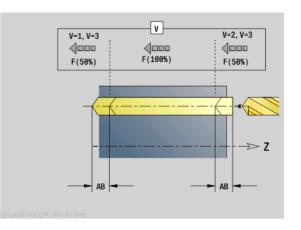
- Machining operation: Tapping
- Affected parameter: S

i

# "ICP drilling, C axis" unit

The unit machines a single hole or a hole pattern on the face or lateral surface. Using ICP, you define the holes as well as further details.

Unit name: G74\_ICP\_C / Cycle: G74 (see page 335)


# Pattern form

- FK Finished part contour
- NS Starting block no. of contour

#### **Cycle form** E De

D

- Delay (dwell time at end of hole) (default: 0)
- Retraction at
  - 0: Rapid traverse
  - 1: Feed rate
- V Feed rate reduction
  - 0: Without reduction
  - 1: At end of the hole
  - 2: At start of the hole
  - 3: At start and end of the hole
- AB Spot drilling / through drilling length (distance for feed rate reduction)
- P Hole depth
- IB Hole depth reduction value: Value by which the feed depth decreases after every advance.
- JB Minimum hole depth: If you have entered a hole depth reduction value, the hole depth is reduced only to the value entered in **JB**.
- B Retraction distance: Value by which the tool is retracted after reaching the respective hole depth.
- RI Internal safety clearance: Distance for reapproach inside the hole (default: safety clearance SCK).
- RB Retraction plane (default: return to the starting position or to the safety clearance)





- Machining operation: Drilling
- Affected parameters: F, S

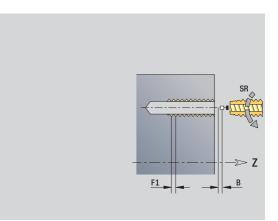
### "Global" form

- G14 Tool change point
  - No axis
  - 0: Simultaneously
  - 1: First X, then Z
  - 2: First Z, then X
  - 3: Only X
  - 4: Only Z
  - 5: Only Y direction
  - 6: Simultaneous with Y (X, Y and Z axes move on a
  - diagonal path)
- CLT Coolant
  - 0: Without
  - 1: Circuit 1 on
  - 2: Circuit 2 on
- SCK Safety clearance in infeed direction: Safety clearance in infeed direction during drilling and milling operations.
- BP Break duration: Time span for interruption of the feed for chip breaking.
- BF Feed duration: Time interval until the next break. The interruption of the feed rate breaks the chip.
- Further forms: see page 66

### "ICP tapping, C axis" unit

The unit machines a single tap hole or a tapping pattern on the face or lateral surface. Using ICP, you define the tap holes as well as further details.

Unit name: G73\_ICP\_C / Cycle: G73 (see page 332)


### Pattern form

- FK see page 68
- NS Starting block no. of contour

### Cycle form

- F1 Thread pitch
- B Run-in length
- L Retraction length when using floating tap holders (default: 0)
- SR Retraction speed (default: Shaft speed for tapping)
- SP Chip breaking depth
- SI Retraction distance
- RB Retraction plane

Further forms: see page 66



### Access to the technology database:

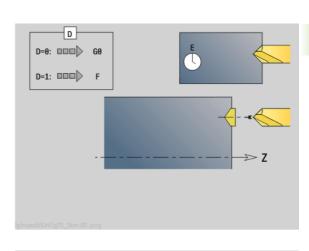
- Machining operation: Tapping
- Affected parameter: S

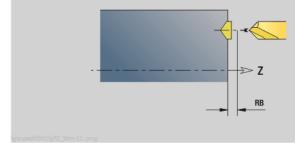
Use the **retraction length** for floating tap holders. The cycle calculates a new nominal pitch on the basis of the thread depth, the programmed pitch, and the retraction length. The nominal pitch is somewhat smaller than the pitch of the tap. During tapping, the tap is pulled away from the chuck by the retraction length. With this method you can achieve higher service life from taps.

### "ICP boring/countersinking, C axis" unit

The unit machines a single hole or a hole pattern on the face or lateral surface. Using ICP, you define the hole positions as well as further details for boring or countersinking.

Unit name: G72\_ICP\_C / Cycle: G72 (see page 331)


### Pattern form


- FK see page 68
- NS Starting block no. of contour

### Cycle form

- E Delay (dwell time at end of hole) (default: 0)
- D Retraction at
  - 0: Rapid traverse
  - 1: Feed rate
- RB Retraction plane (default: return to the starting position or to the safety clearance)

### Further forms: see page 66





### Access to the technology database:

- Machining operation: Drilling
- Affected parameters: F, S

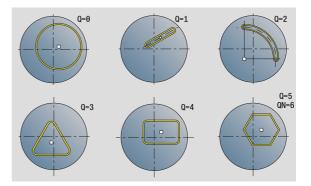
1

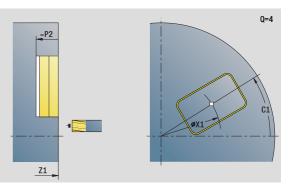
### 2.6 Units-Predrilling in C axis

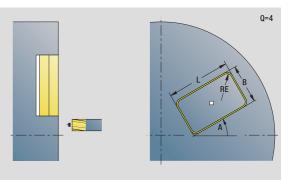
### "Predrill, contour mill, figures on face" unit

The unit determines the hole position and machines the hole. The subsequent milling cycle obtains the hole position from the reference stored in NF.

Unit name: DRILL\_STI\_KON\_C / Cycles: G840 A1 (see page 362); G71 (see page 329)


### Figure form


Q

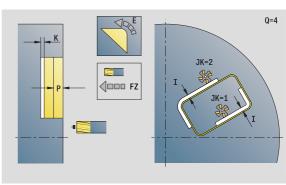

- Type of figure
  - 0: Full circle
  - 1: Linear slot
  - 2: Circular slot
  - 3: Triangle
  - 4: Rectangle, square
  - 5: Polygon
- QN Number of polygon corners—only with Q=5 (polygon)
- X1 Diameter of figure center
- C1 Angle of figure center
- Z1 Milling top edge
- P2 Depth of figure
- L Edge length / width across flats
  - L>0: Edge length
  - L<0: Width across flats (inside diameter) for polygon
- B Rectangle width
- RE Rounding radius
- A Angle to X axis
- Q2 Rotational direction of slot—only if Q=2 (circular slot)
  - cw: In clockwise direction
  - ccw: In counterclockwise direction
- W Angle of slot end point—only if Q=2 (circular slot)

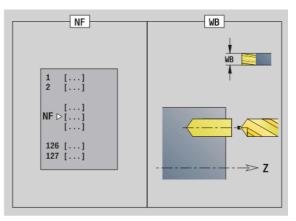


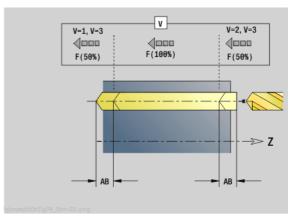
Program only the parameters relevant to the selected figure type.









- Machining operation: Drilling
- Affected parameters: F, S


# 2.6 Units—Predrilling in <mark>C a</mark>xis

### Cycle form

- JK Cutter position
  - 0: On the contour
  - 1: Within the contour
  - 2: Outside the contour
- H Cutting direction
  - 0: Up-cut milling
  - 1: Climb milling
- I Contour-parallel oversize
- K Infeed-direction oversize
- R Approach radius
- WB Cutter diameter
- NF Position mark
- E Delay (dwell time at end of hole) (default: 0)
- D Retraction at
  - 0: Rapid traverse
  - 1: Feed rate
- V Feed rate reduction
  - 0: Without reduction
  - 1: At end of the hole
  - 2: At start of the hole
  - 3: At start and end of the hole
- AB Spot drilling / through drilling length (distance for feed rate reduction)
- RB Retraction plane (default: return to the starting position or to the safety clearance)
- Further forms: see page 66







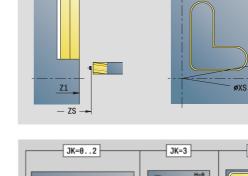
1

The unit determines the hole position and machines the hole. The subsequent milling cycle obtains the hole position from the reference stored in NF. If the milling contour consists of multiple sections, the unit machines a hole for each section.

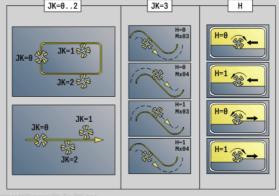
Unit name: DRILL\_STI\_840\_C / Cycles: G840 A1 (see page 362); G71 (see page 329)

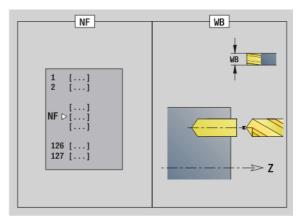
### **Contour form**

- FK see page 68
- NS Starting block no. of contour
- NE End block no. of contour
- Z1 Milling top edge
- P2 Depth of contour


### Cycle form

I


V


- JK Cutter position
  - 0: On the contour
  - 1, closed contour: Within the contour
  - 1, open contour: Left of the contour
  - 2, closed contour: Outside the contour
  - 2, open contour: Right of the contour
  - 3: Depending on H and MD
- H Cutting direction
  - 0: Up-cut milling
  - 1: Climb milling
  - Contour-parallel oversize
- K Infeed-direction oversize
- R Approach radius
- WB Cutter diameter
- NF Position mark
- E Delay (dwell time at end of hole) (default: 0)
- D Retraction at
  - 0: Rapid traverse
  - 1: Feed rate
  - Feed rate reduction
    - 0: Without reduction
      - 1: At end of the hole
      - 2: At start of the hole
      - 3: At start and end of the hole
- AB Spot drilling / through drilling length (distance for feed rate reduction)
- RB Retraction plane (default: return to the starting position or to the safety clearance)

### Further forms: see page 66



-P2



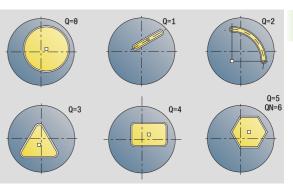


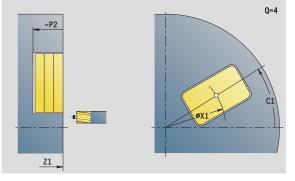
- Machining operation: Drilling
- Affected parameters: F, S

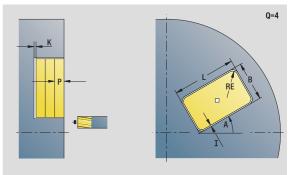
# 2.6 Units—Predrilling in <mark>C a</mark>xis

### "Predrill, pocket mill, figures on face" unit

The unit determines the hole position and machines the hole. The subsequent milling cycle obtains the hole position from the reference stored in NF.


Unit name: DRILL\_STI\_TASC / Cycles: G845 A1 (see page 371); G71 (see page 329)


### Figure form


Q

- Type of figure
  - 0: Full circle
  - 1: Linear slot
  - 2: Circular slot
  - 3: Triangle
  - 4: Rectangle, square
  - 5: Polygon
- QN Number of polygon corners—only with Q=5 (polygon)
- X1 Diameter of figure center
- C1 Angle of figure center
- Z1 Milling top edge
- P2 Depth of figure
- L Edge length / width across flats
  - L>0: Edge length
  - L<0: Width across flats (inside diameter) for polygon
- B Rectangle width
- RE Rounding radius
- A Angle to X axis
- Q2 Rotational direction of slot—only if Q=2 (circular slot)
  - cw: In clockwise direction
  - ccw: In counterclockwise direction
- W Angle of slot end point—only if Q=2 (circular slot)

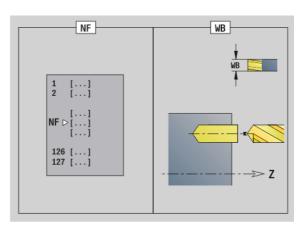
Program only the parameters relevant to the selected figure type.

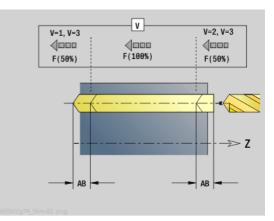






- Machining operation: Drilling
- Affected parameters: F, S


### Cycle form


JT

Н

- Machining direction
  - 0: From the inside out (from the inside towards the outside)
  - 1: From the outside in (from the outside towards the inside)
- Cutting direction
  - 0: Up-cut milling
  - 1: Climb milling
- Contour-parallel oversize
- Κ Infeed-direction oversize
- U Overlap factor (default: 0.5)
- WB Cutter diameter
- NF Position mark
- Е Delay (dwell time at end of hole) (default: 0) D
  - Retraction at
    - 0: Rapid traverse
    - 1: Feed rate
- V Feed rate reduction
  - 0: Without reduction
  - 1: At end of the hole
  - 2: At start of the hole
  - 3: At start and end of the hole
- AB Spot drilling / through drilling length (distance for feed rate reduction)
- Retraction plane (default: return to the starting position or RB to the safety clearance)

Further forms: see page 66



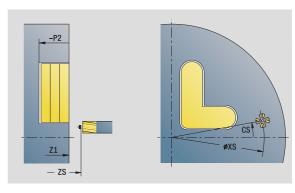


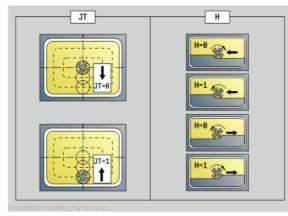
# 2.6 Units—Predrilling in <mark>C a</mark>xis

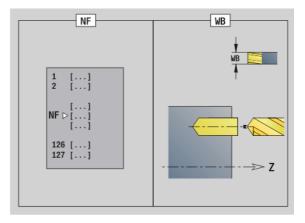
### "Predrill, pocket mill, ICP on face" unit

The unit determines the hole position and machines the hole. The subsequent milling cycle obtains the hole position from the reference stored in NF. If the pocket consists of multiple sections, the unit machines a hole for each section.

Unit name: DRILL\_STI\_845\_C / Cycles: G845 A1 (see page 371); G71 (see page 329)


### **Contour form**


- FK see page 68
- NS Starting block no. of contour
- NE End block no. of contour
- Z1 Milling top edge
- P2 Depth of contour


### Cycle form

- JT Machining direction
  - O: From the inside out (from the inside towards the outside)
  - 1: From the outside in (from the outside towards the inside)
- H Cutting direction
  - 0: Up-cut milling
  - 1: Climb milling
- I Contour-parallel oversize
- K Infeed-direction oversize
- U Overlap factor (default: 0.5)
- WB Cutter diameter
- NF Position mark
- E Delay (dwell time at end of hole) (default: 0)
- D Retraction at
  - 0: Rapid traverse
  - 1: Feed rate
- V Feed rate reduction
  - 0: Without reduction
  - 1: At end of the hole
  - 2: At start of the hole
  - 3: At start and end of the hole
- AB Spot drilling / through drilling length (distance for feed rate reduction)
- RB Retraction plane (default: return to the starting position or to the safety clearance)

### Further forms: see page 66





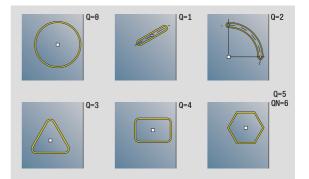


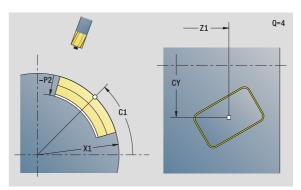
- Machining operation: Drilling
- Affected parameters: F, S

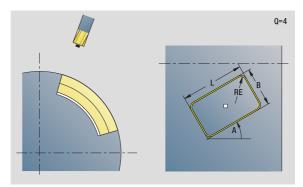
### "Predrill, contour mill, figures on lateral surface" unit

The unit determines the hole position and machines the hole. The subsequent milling cycle obtains the hole position from the reference stored in NF.

Unit name: DRILL\_MAN\_KON\_C / Cycles: G840 A1 (see page 362); G71 (see page 329)


### Figure form

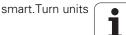

Q


- Type of figure
  - 0: Full circle
  - 1: Linear slot
  - 2: Circular slot
  - 3: Triangle
  - 4: Rectangle, square
  - 5: Polygon
- QN Number of polygon corners—only with Q=5 (polygon)
- Z1 Figure center
- C1 Angle of figure center
- CY Figure center of unrolled lateral surface
- X1 Milling top edge
- P2 Depth of figure
- L Edge length / width across flats
  - L>0: Edge length
  - L<0: Width across flats (inside diameter) for polygon
- B Rectangle width
- RE Rounding radius
- A Angle to Z axis
- Q2 Rotational direction of slot—only if Q=2 (circular slot)
  - cw: In clockwise direction
  - ccw: In counterclockwise direction
- W Angle of slot end point—only if Q=2 (circular slot)



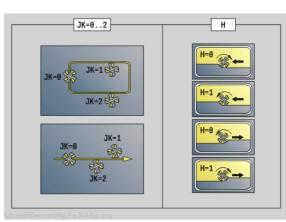
Program only the parameters relevant to the selected figure type.

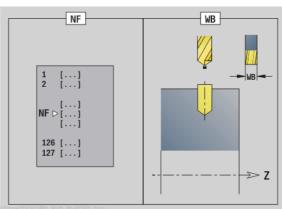


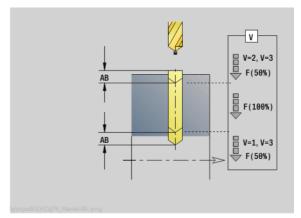





### Access to the technology database:


Machining operation: Drilling


Affected parameters: F, S




### Cycle form

- JK Cutter position
  - 0: On the contour
  - 1: Within the contour
  - 2: Outside the contour
- H Cutting direction
  - 0: Up-cut milling
  - 1: Climb milling
- I Contour-parallel oversize
- K Infeed-direction oversize
- R Approach radius
- WB Cutter diameter
- NF Position mark
- E Delay (dwell time at end of hole) (default: 0)
- D Retraction at
  - 0: Rapid traverse
  - 1: Feed rate
- V Feed rate reduction
  - 0: Without reduction
  - 1: At end of the hole
  - 2: At start of the hole
  - 3: At start and end of the hole
- AB Spot drilling / through drilling length (distance for feed rate reduction)
- RB Retraction plane (default: return to the starting position or to the safety clearance)
- Further forms: see page 66





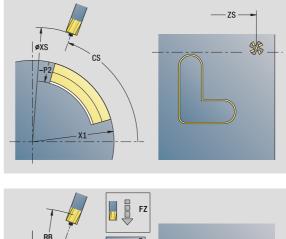


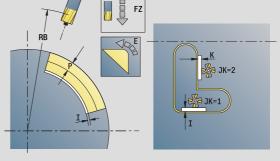
### "Predrill, contour mill, ICP on lateral surface" unit

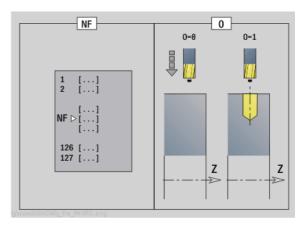
The unit determines the hole position and machines the hole. The subsequent milling cycle obtains the hole position from the reference stored in NF. If the milling contour consists of multiple sections, the unit machines a hole for each section.

Unit name: DRILL\_MAN\_840\_C / Cycles: G840 A1 (see page 362); G71 (see page 329)

### **Contour form**


- FK see page 68
- NS Starting block no. of contour
- NE End block no. of contour
- X1 Milling top edge (diameter value)
- P2 Depth of contour (radius value)


### Cycle form


I

- JK Cutter position
  - 0: On the contour
  - 1, closed contour: Within the contour
  - 1, open contour: Left of the contour
  - 2, closed contour: Outside the contour
  - 2, open contour: Right of the contour
  - 3: Depending on H and MD
- H Cutting direction
  - 0: Up-cut milling
  - 1: Climb milling
  - Contour-parallel oversize
- K Infeed-direction oversize
- R Approach radius
- WB Cutter diameter
- NF Position mark
- E Delay (dwell time at end of hole) (default: 0)
- D Retraction at
  - 0: Rapid traverse
  - 1: Feed rate
- V Feed rate reduction
  - 0: Without reduction
  - 1: At end of the hole
  - 2: At start of the hole
  - 3: At start and end of the hole
- AB Spot drilling / through drilling length (distance for feed rate reduction)
- RB Retraction plane (diameter value)

### Further forms: see page 66



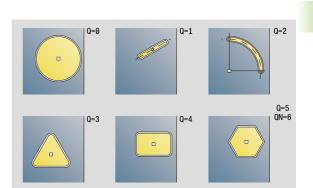


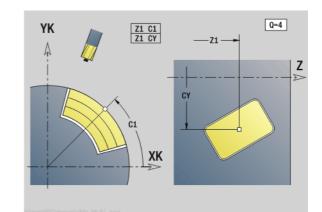


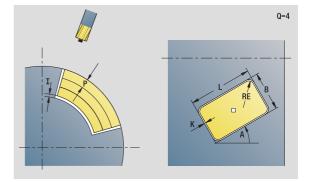
- Machining operation: Drilling
- Affected parameters: F, S

### "Predrill, pocket mill, figures on lateral surface" unit

The unit determines the hole position and machines the hole. The subsequent milling cycle obtains the hole position from the reference stored in NF.


Unit name: DRILL\_MAN\_TAS\_C / Cycles: G845 A1 (see page 371); G71 (see page 329)


### Figure form


- Q Type of figure
  - 0: Full circle
  - 1: Linear slot
  - 2: Circular slot
  - 3: Triangle
  - 4: Rectangle, square
  - 5: Polygon
- QN Number of polygon corners—only with Q=5 (polygon)
- Z1 Figure center
- C1 Angle of figure center
- CY Figure center of unrolled lateral surface
- X1 Milling top edge
- P2 Depth of figure
- L Edge length / width across flats
  - L>0: Edge length
  - L<0: Width across flats (inside diameter) for polygon
- B Rectangle width
- RE Rounding radius
- A Angle to Z axis
- Q2 Rotational direction of slot—only if Q=2 (circular slot)
  - cw: In clockwise direction
  - ccw: In counterclockwise direction
- W Angle of slot end point—only if Q=2 (circular slot)



Program only the parameters relevant to the selected figure type.

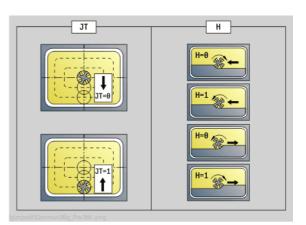


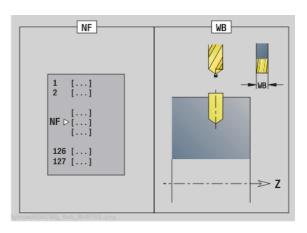


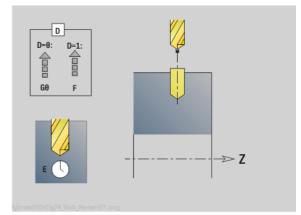


### Access to the technology database:

- Machining operation: Drilling
- Affected parameters: F, S


2.6 Units–Predrilling in <mark>C a</mark>xis


### Cycle form


JT

Н

- Machining direction
  - 0: From the inside out (from the inside towards the outside)
  - 1: From the outside in (from the outside towards the inside)
- Cutting direction
  - 0: Up-cut milling
  - 1: Climb milling
- Infeed-direction oversize
- Κ Contour-parallel oversize
- U Overlap factor (default: 0.5)
- WB Cutter diameter
- NF Position mark
- Е Delay (dwell time at end of hole) (default: 0) D
  - Retraction at
    - 0: Rapid traverse
    - 1: Feed rate
- V Feed rate reduction
  - 0: Without reduction
  - 1: At end of the hole
  - 2: At start of the hole
  - 3: At start and end of the hole
- AB Spot drilling / through drilling length (distance for feed rate reduction)
- Retraction plane (default: return to the starting position or RB to the safety clearance)
- Further forms: see page 66



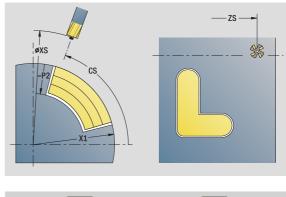


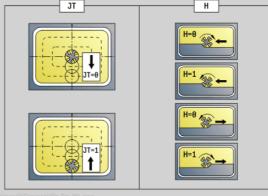


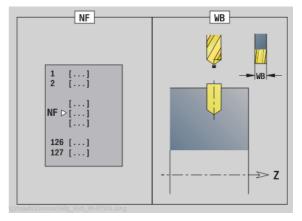
# 2.6 Units—Predrilling in <mark>C a</mark>xis

### "Predrill, pocket mill, ICP on lateral surface" unit

The unit determines the hole position and machines the hole. The subsequent milling cycle obtains the hole position from the reference stored in NF. If the pocket consists of multiple sections, the unit machines a hole for each section.


Unit name: DRILL\_MAN\_845\_C / Cycles: G845 A1 (see page 371); G71 (see page 329)


### **Contour form**


- FK see page 68
- NS Starting block no. of contour
- NE End block no. of contour
- X1 Milling top edge (diameter value)
- P2 Depth of contour

### Cycle form

- JT Machining direction
  - O: From the inside out (from the inside towards the outside)
  - 1: From the outside in (from the outside towards the inside)
- H Cutting direction
  - 0: Up-cut milling
  - 1: Climb milling
- I Infeed-direction oversize
- K Contour-parallel oversize
- U Overlap factor (default: 0.5)
- WB Cutter diameter
- NF Position mark
- E Delay (dwell time at end of hole) (default: 0)
- D Retraction at
  - 0: Rapid traverse
  - 1: Feed rate
- V Feed rate reduction
  - 0: Without reduction
  - 1: At end of the hole
  - 2: At start of the hole
  - 3: At start and end of the hole
- AB Spot drilling / through drilling length (distance for feed rate reduction)
- RB Retraction plane (diameter value)
- Further forms: see page 66







- Machining operation: Drilling
- Affected parameters: F, S

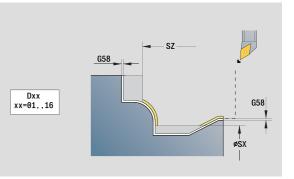
### 2.7 Units-Finishing

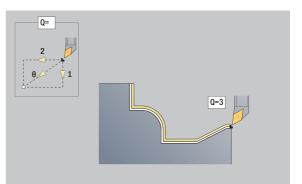
### "ICP contour finishing" unit

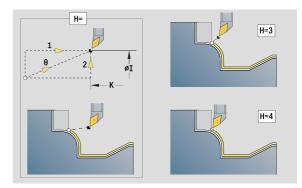
The unit finishes the contour described by ICP from "NS to NE" in one pass.

Unit name: G890\_ICP / Cycle: G890 (see page 295)

### **Contour form**


В


- Switch on TRC (type of tool radius compensation)
  - 0: Automatic
  - 1: Tool to the left (G41)
  - 2: Tool to the right (G42)
  - 3: Automatic, without tool angle compensation
  - 4: Tool to the left (G41), without tool angle compensation
  - 5: Tool to the right (G42), without tool angle compensation
- HR Main cutting direction
  - 0: Automatic
  - 1: +Z
  - 2: +X
  - 3: –Z
  - 4: –X


SX, SZ Cutting limit (SX: diameter value)—(default: no cutting limit) Further parameters of the contour form: see page 68.

### **Cycle form** Q Ty

- Type of approach (default: 0)
  - 0: Automatic selection—the Control checks:
    - Diagonal approach
    - First X, then Z direction
    - Equidistant around the barrier
    - Omission of the first contour elements if the starting position is inaccessible
  - 1: First X, then Z direction
  - 2: First Z, then X direction
  - 3: No approach—tool is located near the starting point of the contour area.



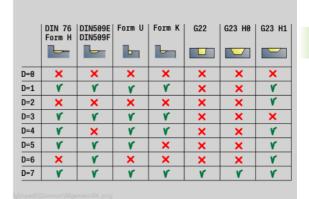


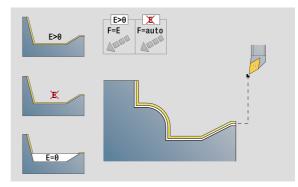


- Machining operation: Finishing
- Affected parameters: F, S

### Cycle form

Н


- Type of retraction. Tool backs off at 45° against the machining direction and moves to the position I, K (default: 3):
  - 0: Diagonal
  - 1: First X, then Z direction
  - 2: First Z, then X direction
  - 3: Stops at safety clearance
  - 4: No retraction motion (tool remains on the end coordinate)
  - 5: Diagonal to start position
  - 6: First X, then Z direction to start position
  - 7: First Z, then X direction to start position
  - 8: With G1 to I and K
- I, K Cycle end position. Position that is approached at the end of the cycle (I: diameter value).
- D Omit elements (see figure)
- E Plunging behavior
  - E=0: Descending contours are not machined
  - E>0: Plunging feed rate for declining contour elements. Descending contour elements are machined.
  - No input: The plunging feed rate is reduced during machining of declining contour elements by up to 50 %. Descending contour elements are machined.
  - Feed rate reduction for circular elements (default: 0)
    - 0: Feed rate reduction is active
    - 1: No feed rate reduction
- DXX Additive correction numbers 1 16
- G58 Contour-parallel oversize (radius)
- DI Axis-parallel oversize X
- DK Axis-parallel oversize Z
- Further forms: see page 66




0

If feed rate reduction is active, at least four spindle revolutions are used to machine every "small" contour element.

With the address Dxx you activate an additive compensation for the entire cycle run. The additive compensation is switched off again at the end of the cycle. You edit additive compensation values in the **Program Run**submode.





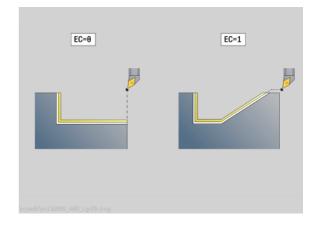
### "Longitudinal finishing with direct contour input" unit

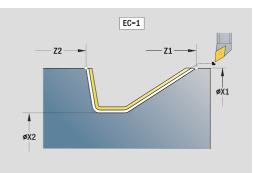
The unit finishes the contour defined by the parameters in one pass. In  ${\rm EC}$  you define whether you want to machine a normal or a plunging contour.

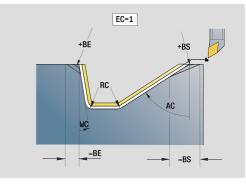
Unit name: G890\_G80\_L / Cycle: G890 (see page 295)

### Contour form

- EC Type of contour
  - 0: Normal contour
  - 1: Plunging contour
- X1, Z1 Contour starting point
- X2, Z2 Contour end point
- RC Rounding: Radius of contour corner
- AC Start angle: Angle of the first contour element (range:  $0^{\circ} < AC < 90^{\circ}$ )
- WC End angle: Angle of the last contour element (range:  $0^{\circ} < WC < 90^{\circ}$ )
- BS Chamfer/radius at start
  - BS>0: Radius of rounding arc
  - BS<0: Section length of chamfer
- BE Chamfer/radius at end
  - BE>0: Radius of rounding arc
  - BE<0: Section length of chamfer


### Cycle form


Е


- Plunging behavior
  - E>0: Plunging feed rate for declining contour elements. Descending contour elements are machined.
  - No input: The plunging feed rate is reduced during machining of declining contour elements by up to 50 %. Descending contour elements are machined.
- B Switch on TRC (type of tool radius compensation)
  - 0: Automatic
  - 1: Tool to the left (G41)
  - 2: Tool to the right (G42)
  - 3: Automatic, without tool angle compensation
  - 4: Tool to the left (G41), without tool angle compensation
  - 5: Tool to the right (G42), without tool angle compensation
- DXX Additive correction numbers 1 16
- G58 Contour-parallel oversize (radius)
- Further forms: see page 66



With the address Dxx you activate an additive compensation for the entire cycle run. The additive compensation is switched off again at the end of the cycle. You edit additive compensation values in the **Program Run**submode.







- Machining operation: Finishing
- Affected parameters: F, S, E

### 2.7 Units–Fin<mark>ish</mark>ing

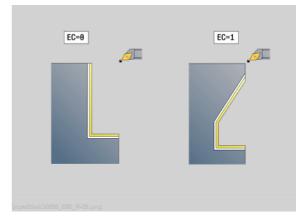
### "Transverse finishing with direct contour input" unit

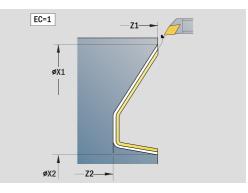
The unit finishes the contour defined by the parameters in one pass. In  ${\rm EC}$  you define whether you want to machine a normal or a plunging contour.

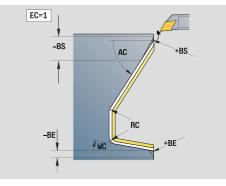
Unit name: G890\_G80\_P / Cycle: G890 (see page 295)

### **Contour form**

- EC Type of contour
  - 0: Normal contour
  - 1: Plunging contour
- X1, Z1 Contour starting point
- X2, Z2 Contour end point
- RC Rounding: Radius of contour corner
- AC Start angle: Angle of the first contour element (range:  $0^{\circ} < AC < 90^{\circ}$ )
- WC End angle: Angle of the last contour element (range:  $0^{\circ} < WC < 90^{\circ}$ )
- BS Chamfer/radius at start:
  - BS>0: Radius of rounding arc
  - BS<0: Section length of chamfer
- BE Chamfer/radius at end
  - BE>0: Radius of rounding arc
  - BE<0: Section length of chamfer</p>


### Cycle form


- E Plunging behavior
  - E>0: Plunging feed rate for declining contour elements. Descending contour elements are machined.
  - No input: The plunging feed rate is reduced during machining of declining contour elements by up to 50 %. Descending contour elements are machined.
- B Switch on TRC (type of tool radius compensation)
  - 0: Automatic
  - 1: Tool to the left (G41)
  - 2: Tool to the right (G42)
  - 3: Automatic, without tool angle compensation
  - 4: Tool to the left (G41), without tool angle compensation
  - 5: Tool to the right (G42), without tool angle compensation
- DXX Additive correction numbers 1 16
- G58 Contour-parallel oversize (radius)


### Further forms: see page 66



With the address Dxx you activate an additive compensation for the entire cycle run. The additive compensation is switched off again at the end of the cycle. You edit additive compensation values in the **Program Run**submode.







### Access to the technology database:

- Machining operation: Finishing
- Affected parameters: F, S, E

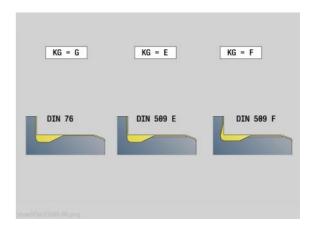
i

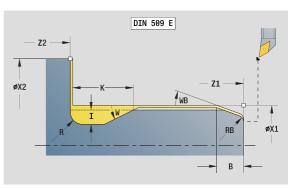
### "Relief turns (undercut) type E, F, DIN76" unit

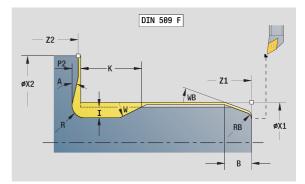
The unit machines the undercut defined by **KG**, and then the adjoining plane surface. The cylinder chamfer is executed when you enter at least one of the parameters **1st cut length** or **1st cut radius**.

Unit name: G85x\_DIN\_E\_F\_G / Cycle: G85 (see page 320)

### **Overview form**


- KG Type of relief turn (undercut)
  - E: DIN 509 type E; Cycle G851 (see page 322)
  - F: DIN 509 type F; Cycle G852 (see page 323)
  - G: DIN 76 type G (thread undercut); Cycle G853 (see page 324)
- X1, Z1 Contour starting point (X1: diameter value)
- X2, Z2 Contour end point (X2: diameter value)
- App Approach see page 71


### Parameters on the "Type E" form


- I Undercut depth (default: value from standard table)
- K Undercut length (default: value from standard table)
- W Undercut angle (default: 15° from standard table)
- R Undercut radius (default: value from standard table)
- H Type of departure
  - 0: To the starting point
  - 1: Plane surface end

### Parameters on the "Type F" form

- I Undercut depth (default: value from standard table)
- K Undercut length (default: value from standard table)
- W Undercut angle (default: 15° from standard table)
- R Undercut radius (default: value from standard table)
- P2 Face depth (default: value from standard table)
- A Face angle (default: 8° from standard table)
- H Type of departure
  - 0: To the starting point
  - 1: Plane surface end







### Access to the technology database:

Machining operation: Finishing

Affected parameters: F, S, E

### 2.7 Units—Fin<mark>ishi</mark>ng

### Parameters on the "Type G" form

- FP Thread pitch
- I Undercut diameter (default: value from standard table)
- K Undercut length (default: value from standard table)
- W Undercut angle (default: 30° from standard table)
- R Undercut radius (default: value from standard table)
- P1 Undercut oversize
  - No input: Machining in one cut
  - P1>0: Division into pre-turning and finish-turning; P1 is the longitudinal oversize; the transverse oversize is always 0.1 mm
- H Type of departure
  - 0: To the starting point
  - 1: Plane surface end

### Additional parameters for "cylinder first cut"

- B Cylinder 1st cut length (no input: no cylinder start chamfer)
- WB First-cut angle (default: 45°)
- RB Positive value: First cut radius, negative value: chamfer (no input: no element)
- E Reduced feed rate for plunging and the first cut (default: active feed rate)
- U Grinding oversize for cylinder

### Further forms: see page 66



- Undercuts can only be executed in orthogonal, paraxial contour corners along the longitudinal axis.
- Parameters that are not programmed are automatically calculated by the Control from the standard table.



### Access to the technology database:

Machining operation: Finishing

Affected parameters: F, S, E

### "Measuring cut" unit

The unit performs a cylindrical measuring cut with the length defined in the cycle, moves to the breakpoint for measuring and stops the program. After the program was stopped, you can manually measure the workpiece.

Unit name: MEASURE\_G809 / Cycle: G809 (see page 298)

### Contour form

EC Machining location

- 0: Outside
- 1: Inside
- XA, ZA Contour starting point
- R Measuring cut length
- P Measuring cut oversize
- O Approach angle: If an approach angle is entered, the cycle positions the tool over the starting point taking into account the safety clearance, and from there plunges at the specified angle to the diameter to be measured.
- ZR Workpiece blank starting point: Collision-free approach for inside machining

### Cycle form

QC Machining direction

■ 0: –Z

- 1: +Z
- V Measuring cut counter: Number of workpieces after which a measurement is performed
- D Additive correction numbers 1 16
- WE Directions
  - 0: Simultaneously
  - 1: First X, then Z
  - 2: First Z, then X
- Xi, Zi: Additive correction numbers 1 16
- AX Departing position X

Further forms: see page 66

### 2.8 Units-Threads

### **Overview of thread units**

- "Thread, direct" cuts a simple internal or external thread in longitudinal direction.
- "ICP thread" cuts a single or multi-start internal or external thread in longitudinal or transverse direction. The contour on which the thread is cut is defined with ICP.
- **"API thread"** cuts a single or multi-start API thread. The depth of thread decreases at the overrun at the end of thread.
- "Tapered thread" cuts a single or multi-start tapered internal or external thread.

### Handwheel superimposition

If your machine features handwheel superimposition, you can overlap axis movements during thread cutting in a limited area:

- **X direction**: Maximum programmed thread depth depending on the current cutting depth
- **Z direction**: +/- a fourth of the thread pitch



Machine and control must be specially prepared by the machine tool builder for use of this cycle. Refer to your machine manual.



Remember that position changes resulting from handwheel superimposition are no longer effective after the cycle end or the "last cut" function.

### Parameter V: Type of infeed

With the V parameter you define the type of infeed for thread cutting cycles.

The following infeed types are available:

### 0: Constant mach. X-section

The control reduces the cutting depth after each infeed to achieve a consistent chip cross section and removal rate.

### 1: Constant infeed

The control uses the same cutting depth for each infeed without exceeding the maximum infeed **I**.

### 2: EPL with distribution of cuts

The control uses the thread pitch  $\mathbf{F1}$  and the constant shaft speed  $\mathbf{S}$  to calculate the cutting depth for a constant infeed. If the thread depth is not a multiple of the cutting depth, the control uses the depth of the remaining cut for the first infeed. With the "distribution of remaining cuts," the control divides the last cutting depth into four partial cuts. The first cut is half the calculated cutting depth, the second is a quarter and the third and fourth each are an eighth.

### 3: EPL without distribution of cuts

The control uses the thread pitch  $\mathbf{F1}$  and the constant shaft speed  $\mathbf{S}$  to calculate the cutting depth for a constant infeed. If the thread depth is not a multiple of the cutting depth, the control uses the depth of the remaining cut for the first infeed. All subsequent infeeds are constant and correspond to the calculated cutting depth.

### 4: MANUALplus 4110

The control performs the first infeed with the maximum infeed I. To determine the subsequent cutting depths, the control uses the formula gt = 2 \* I \* SQRT "current no. of cuts", where "gt" is the absolute depth. The cutting depth decreases with each infeed since the current number of cuts is incremented by 1 with each infeed. If, as a result, the remaining cut depth **R** falls below the value defined in R, the control uses the value from R as the new constant cutting depth! If the thread depth is not a multiple of the cutting depth, the control performs the last cut to the final depth.

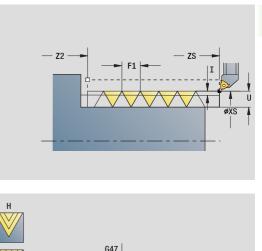
### 5: Constant infeed (4290)

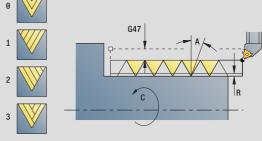
The control uses the same cutting depth for each infeed; the cutting depth corresponds to the maximum infeed I. If the thread depth is not a multiple of the cutting depth, the control uses the depth of the remaining cut for the first infeed.

### 6: Constant infeed with remaining cutting (4290)

The control uses the same cutting depth for each infeed; the cutting depth corresponds to the maximum infeed **I**. If the thread depth is not a multiple of the cutting depth, the control uses the depth of the remaining cut for the first infeed. With the "distribution of remaining cuts," the control divides the last cutting depth into four partial cuts. The first cut is half the calculated cutting depth, the second is a quarter and the third and fourth each are an eighth.

### "Thread, direct" unit


The unit cuts a simple internal or external thread in longitudinal direction.


Unit name: G32\_MAN / Cycle: G32 (see page 311)

### **Thread form**

| 0 | Thread location |
|---|-----------------|
|   |                 |

- 0: Internal thread (infeed in +X)
- 1: External thread (infeed in –X)
- APP Approach see page 71
- XS Start diameter
- ZS Starting position Z
- Z2 End point of thread
- F1 Thread pitch
- U Thread depth (automatically for metric ISO threads)
- I Maximum infeed (radius)
- IC Number of cuts (only if I is not programmed and the infeed V is 0 or 1)
- KE Run-out position
  - 0: At the end of the threading cut
  - 1: At the start of the threading cut
- K Run-out length





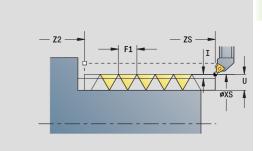
- Machining operation: Thread cutting
- Affected parameters: F, S

### Cycle form H Ki

- Kind of displacement (type of offset; offset between the individual infeeds in cutting direction)
  - 0: Without offset
  - 1: From left
  - 2: From right
  - 3: Alternately left/right
  - Type of infeed (for details, see page 132)
    - 0: Constant mach. X-section
    - 1: Constant infeed
    - 2: W/ remaining cutting (with distribution of remaining cuts)
    - 3: W/o remaining cutting (without distribution of remaining cuts)
    - 4: Same as MANUALplus 4110
    - 5: Constant infeed (same as 4290)
    - 6: Constant with distribute. (same as 4290)
- A Approach angle (angle of infeed; reference in X axis, 0°<A<60°, default 30°)
- R Remaining cut depth (only with V=4)
- C Starting angle
- D No. of gears (threads per unit)
- Q No. no load (number of dry runs)

Further forms: see page 66

V


### "ICP thread" unit

The unit cuts a single or multi-start internal or external thread in longitudinal or transverse direction. The contour on which the thread is cut is defined with ICP.

Unit name: G31\_ICP / Cycle: G31 (see page 307)

### Thread form

- FK Auxiliary contour: see page 68
- NS Starting block no. of contour
- NE End block no. of contour
- O1 Machine form element
  - 0: No machining
  - 1: At beginning
  - 2: At end
  - 3: At beginning and end
  - 4: Only chamfer and rounding arc
- O Thread location
  - 0: Internal thread (infeed in +X)
  - 1: External thread (infeed in –X)
- J1 Thread orientation
  - From first contour element
  - 0: Longitudinal
  - 1: Transverse
- F1 Thread pitch
- U Thread depth (automatically for metric ISO threads)
- A Approach angle (angle of infeed; reference in X axis, 60°<A<60°, default 30°)
- D No. of gears (threads per unit)
- K Run-out length



- Machining operation: Thread cutting
- Affected parameters: F, S

### Cycle form

- H Kind of displacement (type of offset; offset between the individual infeeds in cutting direction)
  - 0: Without offset
  - 1: From left
  - 2: From right
  - 3: Alternately left/right
  - Type of infeed (for details, see page 132)
    - 0: Constant mach. X-section
    - 1: Constant infeed
    - 2: W/ remaining cutting (with distribution of remaining cuts)
    - 3: W/o remaining cutting (without distribution of remaining cuts)
    - 4: Same as MANUALplus 4110
    - 5: Constant infeed (same as 4290)
    - 6: Constant with distribute. (same as 4290)
- R Remaining cut depth (only with V=4)
- I Maximum infeed (radius)
- IC Number of cuts (only if I is not programmed)
- B Run-in length
- P Overrun length
- C Starting angle
- Q No. no load (number of dry runs)

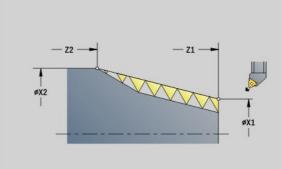
### Further forms: see page 66

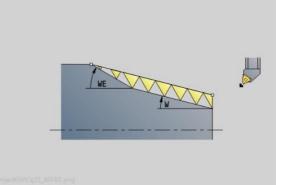
V

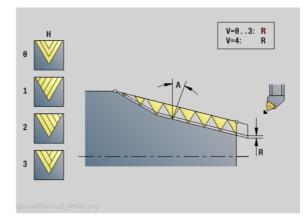
### 2.8 Units—T<mark>hre</mark>ads

### "API thread" unit

This unit cuts a single or multi-start API thread. The depth of thread decreases at the overrun at the end of thread.


Unit name: G352\_API / Cycle: G352 (see page 316)


### Thread form


- O Thread location
  - 0: Internal thread (infeed in +X)
  - 1: External thread (infeed in –X)
- X1, Z1 Starting point of thread (X1: diameter value)
- X2, Z2 End point of thread (X2: diameter value)
- W Taper angle (reference: Z axis; –45°<W<45°)
- WE Run-out angle (reference: Z axis; 0°<WE<90°; default: 12°)
- F1 Thread pitch
- U Thread depth (automatically for metric ISO threads)

### Cycle form

- I Maximum infeed (radius)
- H Kind of displacement (type of offset; offset between the individual infeeds in cutting direction)
  - 0: Without offset
  - 1: From left
  - 2: From right
  - 3: Alternately left/right
- V Type of infeed (for details, see page 132)
  - 0: Constant mach. X-section
  - 1: Constant infeed
  - 2: W/ remaining cutting (with distribution of remaining cuts)
  - 3: W/o remaining cutting (without distribution of remaining cuts)
  - 4: Same as MANUALplus 4110
  - 5: Constant infeed (same as 4290)
  - 6: Constant with distribute. (same as 4290)
- A Approach angle (angle of infeed; reference in X axis, 60°<A<60°, default 30°)
- R Remaining cut depth (only with V=4)
- C Starting angle
- D No. of gears (threads per unit)
- Q No. no load (number of dry runs)
- Further forms: see page 66







### Access to the technology database:

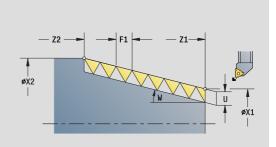
- Machining operation: Thread cutting
- Affected parameters: F, S

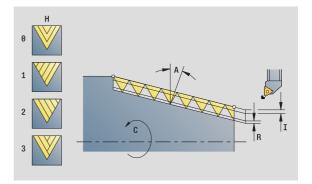
i

### "Tapered thread" unit

The unit cuts a single or multi-start tapered internal or external thread.

Unit name: G32\_KEG / Cycle: G32 (see page 311)


### Thread form


- O Thread location
  - 0: Internal thread (infeed in +X)
  - 1: External thread (infeed in –X)
- X1, Z1 Starting point of thread (X1: diameter value)
- X2, Z2 End point of thread (X2: diameter value)
- W Taper angle (reference: Z axis; -45°<W<45°)
- F1 Thread pitch
- U Thread depth (automatically for metric ISO threads)
- KE Run-out position
  - 0: At the end of the threading cut
  - 1: At the start of the threading cut
- K Run-out length

### Cycle form

- I Maximum infeed (radius)
- IC Number of cuts (only if I is not programmed)
- H Kind of displacement (type of offset; offset between the individual infeeds in cutting direction)
  - 0: Without offset
  - 1: From left
  - 2: From right
  - 3: Alternately left/right
- V Type of infeed (for details, see page 132)
  - 0: Constant mach. X-section
  - 1: Constant infeed
  - 2: W/ remaining cutting (with distribution of remaining cuts)
  - 3: W/o remaining cutting (without distribution of remaining cuts)
  - 4: Same as MANUALplus 4110
  - 5: Constant infeed (same as 4290)
  - 6: Constant with distribute. (same as 4290)
- A Approach angle (angle of infeed; reference in X axis, 0°<A<60°, default 30°)
- R Remaining cut depth (only with V=4)
- C Starting angle
- D No. of gears (threads per unit)
- Q No. no load (number of dry runs)

Further forms: see page 66





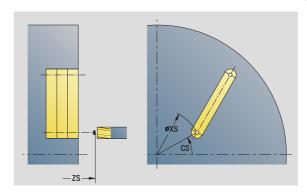
### Access to the technology database:

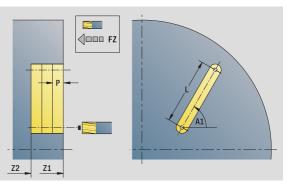
Machining operation: Thread cutting
 Affected parameters: F, S



### 2.9 Units-Milling, face

### "Slot, face" unit


The unit mills a slot from the starting position to the end point on the face of the workpiece. The slot width equals the diameter of the milling cutter.


Unit name: G791\_Nut\_Stirn\_C / Cycle: G791 (see page 352)

### Cycle form

- Z1 Milling top edge
- Z2 Milling floor
- L Slot length
- A1 Angle to X axis
- X1, C1 Polar slot target point
- XK, YK Cartesian slot target point
- P Maximum infeed
- FZ Infeed rate

Further forms: see page 66

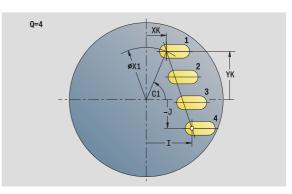


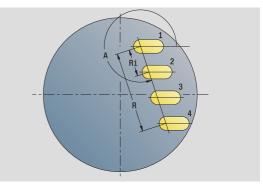


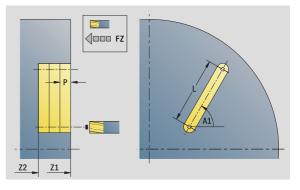
- Machining operation: Milling
- Affected parameters: F, S, FZ, P

### "Linear slot pattern, face" unit

The unit machines a linear slot pattern in which the individual features are arranged at a regular spacing on the face of the workpiece. The starting points of the slots correspond to the pattern positions. You define the length and the position of the slots in the unit. The slot width equals the diameter of the milling cutter.


Unit name: G791\_Lin\_Stirn\_C / Cycle: G791 (see page 352)


### Pattern form


- Q Number of slots
- X1, C1 Polar starting point
- XK, YK Cartesian starting point
- I, J End point (XK, YK)
- li, Ji: Distance (XKi, YKi)
- R Distance to first/last contour
- Ri Incremental distance
- A Pattern angle (reference is XK axis)

### Cycle form

- Z1 Milling top edge
- Z2 Milling floor
- L Slot length
- A1 Angle to X axis
- P Maximum infeed
- FZ Infeed rate
- Further forms: see page 66







### Access to the technology database:

Machining operation: Milling
 Affected parameters: F, S, FZ, P

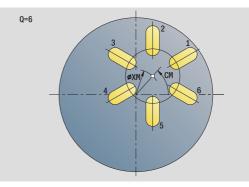
## 2.9 Units-Milling, face

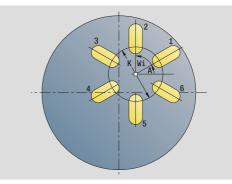
### "Circular slot pattern, face" unit

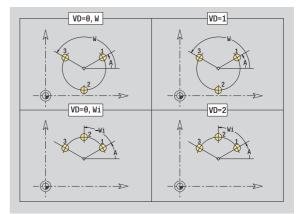
The unit machines a circular slot pattern in which the individual features are arranged at a regular spacing on the face of the workpiece. The starting points of the slots correspond to the pattern positions. You define the length and the position of the slots in the unit. The slot width equals the diameter of the milling cutter.

Unit name: G791\_Cir\_Stirn\_C / Cycle: G791 (see page 352)

### Pattern form


| Q      | Number of slots    |
|--------|--------------------|
| XM, CM | Polar center point |


- XK, YK Cartesian center point
- A Starting angle
- Wi Angle increment
- K Pattern diameter
- W End angle
- V Rotation direction (default: 0)
  - VD=0, without W: Figures are arranged on a full circle
  - VD=0, with W: Figures are arranged on the longer circular arc
  - VD=0, with Wi: The algebraic sign of Wi defines the direction (Wi<0: clockwise)</p>
  - VD=1, with W: Clockwise
  - VD=1, with Wi: Clockwise (algebraic sign of Wi has no effect)
  - VD=2, with W: Counterclockwise
  - VD=2, with Wi: Counterclockwise (algebraic sign of Wi has no effect)


### Cycle form

- Z1 Milling top edge
- Z2 Milling floor
- L Slot length
- A1 Angle to X axis
- P Maximum infeed
- FZ Infeed rate

Further forms: see page 66





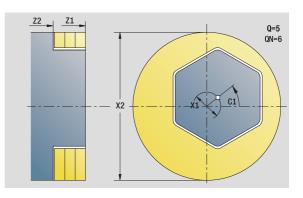


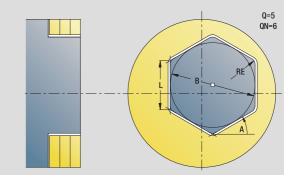
- Machining operation: Milling
- Affected parameters: F, S, FZ, P

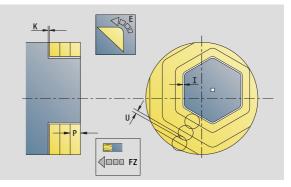
### "Face milling" unit

Depending on  ${\bf Q},$  the unit mills surfaces or the defined figure. The unit cuts the material around the figures.

Unit name: G797\_Stirnfr\_C / Cycle: G797 (see page 358)


### Figure form


- Q Type of figure
  - 0: Full circle
  - 1: Single surface
  - 2: Width across flats
  - 3: Triangle
  - 4: Rectangle, square
  - 5: Polygon
- QN Number of polygon corners (only with Q=5 polygon)
- X1 Diameter of figure center
- C1 Angle of figure center
- Z1 Milling top edge
- Z2 Milling floor
- X2 Limit diameter
- L Edge length
- B Width/Width across flats
- RE Rounding radius
- A Angle to X axis


### Cycle form

Н

- QK Machining operation
  - Roughing
  - Finishing
- J Milling direction
  - 0: Unidirectional
  - 1: Bidirectional
  - Cutting direction
    - 0: Up-cut milling
    - 1: Climb milling
- P Maximum infeed
- I Contour-parallel oversize
- K Infeed-direction oversize
- FZ Infeed rate
- E Reduced feed rate
- U Overlap factor
- Further forms: see page 66







### Access to the technology database:

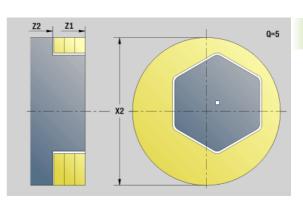
Machining operation: Finish-milling
 Affected parameters: F, S, FZ, P

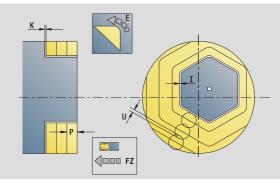
## 2.9 Units–Milling, face

### "Face milling ICP" unit

The unit mills the contour defined with  $\ensuremath{\mathsf{ICP}}$  on the face of the workpiece.

Unit name: G797\_ICP / Cycle: G797 (see page 358)


### Contour form


- FK see page 68
- NS Starting block no. of contour
- Z1 Milling top edge
- Z2 Milling floor
- X2 Limit diameter

### Cycle form

- QK Machining operation
  - Roughing
  - Finishing
- J Milling direction
  - 0: Unidirectional
  - 1: Bidirectional
- H Cutting direction
  - 0: Up-cut milling
  - 1: Climb milling
- P Maximum infeed
- I Contour-parallel oversize
- K Infeed-direction oversize
- FZ Infeed rate
- E Reduced feed rate
- U Overlap factor

Further forms: see page 66





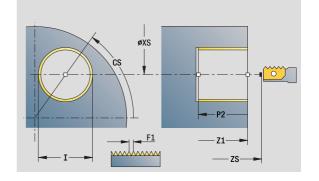
- Machining operation: Finish-milling
- Affected parameters: F, S, FZ, P

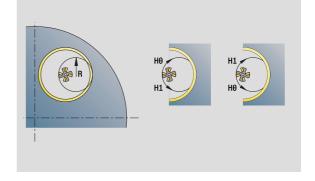
### "Thread milling" unit

The unit mills a thread in existing holes.

Place the tool on the center of the hole before calling G799. The cycle positions the tool on the end point of the thread within the hole. Then the tool approaches on "approach radius R" and mills the thread. During this, the tool advances by the thread pitch F. Following that, the cycle retracts the tool and returns it to the starting point. With parameter V, you can program whether the thread is to be milled in one rotation or, with single-point tools, in several rotations.

Unit name: G799\_Gewindefr\_C / Cycle: G799 (see page 342)


### Position form


- Z1 Start point drill (starting point of hole)
- P2 Thread depth
- I Thread diameter
- F1 Thread pitch

### Cycle form

- J Direction of thread
  - 0: Right-hand thread
  - 1: Left-hand thread
- H Cutting direction
  - 0: Up-cut milling
  - 1: Climb milling
- V Milling method
  - 0: The thread is milled in a 360-degree helix
  - 1: The thread is milled in several helical paths (singlepoint tool)
- R Approach radius

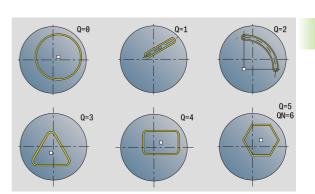
Further forms: see page 66

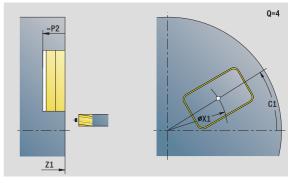


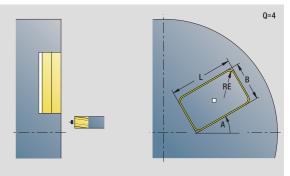


- Machining operation: Finish-milling
- Affected parameters: F, S

### "Contour milling, figures, face" unit


The unit mills the contour defined by  ${\bf Q}$  on the face of the workpiece.


Unit name: G840\_Fig\_Stirn\_C/ Cycle: G840 (see page 364)


### Figure form

- Q Type of figure
  - 0: Full circle
  - 1: Linear slot
  - 2: Circular slot
  - 3: Triangle
  - 4: Rectangle, square
  - 5: Polygon
- QN Number of polygon corners—only with Q=5 (polygon)
- X1 Diameter of figure center
- C1 Angle of figure center
- Z1 Milling top edge
- P2 Depth of figure
- L Edge length / width across flats
  - L>0: Edge length
  - L<0: Width across flats (inside diameter) for polygon
- B Rectangle width
- RE Rounding radius
- A Angle to X axis
- Q2 Rotational direction of slot—only if Q=2 (circular slot)
  - cw: In clockwise direction
  - ccw: In counterclockwise direction
- W Angle of slot end point—only if Q=2 (circular slot)

Program only the parameters relevant to the selected figure type.







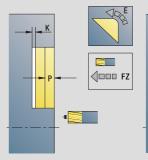
- Machining operation: Milling
- Affected parameters: F, S, FZ, P

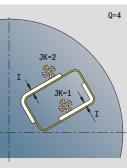
Н

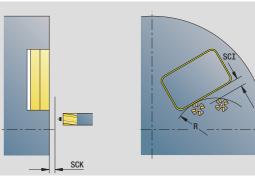
Ρ

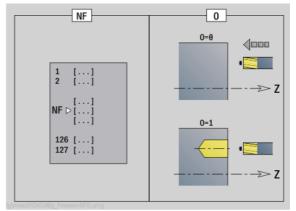
Ι

Κ


### Cycle form


- JK Cutter position
  - 0: On the contour
  - 1: Within the contour
  - 2: Outside the contour
  - Cutting direction
    - 0: Up-cut milling
  - 1: Climb milling
  - Maximum infeed
  - Contour-parallel oversize
  - Infeed-direction oversize
- FΖ Infeed rate
- Е Reduced feed rate
- R Approach radius 0
  - Plunging behavior
    - 0: Straight (vertical plunge)—The cycle moves the tool to the starting point; the tool plunges at feed rate and mills the contour.
    - 1: In predrilling—The cycle positions the tool above the hole; the tool plunges and mills the contour.
- NF Position mark (only if O=1)


### "Global" form


RB Retraction plane Further parameters: see page 70

Further forms: see page 66







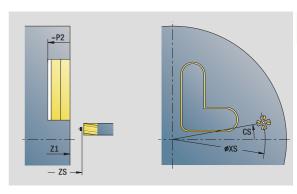


1

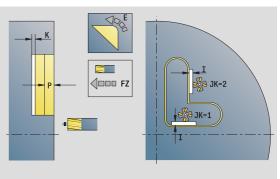
### "ICP contour milling, face" unit

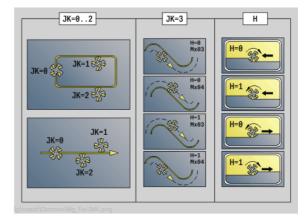
The unit mills the contour defined with  $\ensuremath{\mathsf{ICP}}$  on the face of the workpiece.

Unit name: G840\_Kon\_C\_Stirn / Cycle: G840 (see page 364)


### **Contour form**

- FK see page 68
- NS Starting block no. of contour
- NE End block no. of contour
- Z1 Milling top edge
- P2 Depth of contour


### Cycle form


- JK Cutter position
  - 0: On the contour
  - 1, closed contour: Within the contour
  - 1, open contour: Left of the contour
  - 2, closed contour: Outside the contour
  - 2, open contour: Right of the contour
  - 3: Depending on H and MD
- H Cutting direction
  - 0: Up-cut milling
  - 1: Climb milling
- P Maximum infeed
- I Contour-parallel oversize
- K Infeed-direction oversize
- FZ Infeed rate
- E Reduced feed rate
- R Approach radius
- O Plunging behavior
  - O: Straight (vertical plunge)—The cycle moves the tool to the starting point; the tool plunges at feed rate and mills the contour.
  - 1: In predrilling—The cycle positions the tool above the hole; the tool plunges and mills the contour.
- NF Position mark (only if O=1)
- RB Retraction plane

Further forms: see page 66

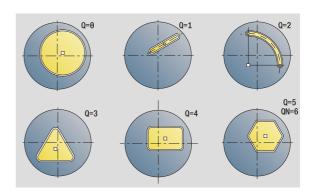


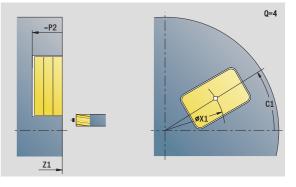
2.9 Units-Milling, face

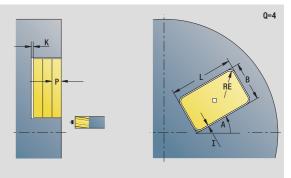




### "Pocket milling, figures, face" unit


The unit mills the pocket defined by  ${\bf Q}.$  In  ${\bf QK},$  select the machining operation (roughing/finishing) and the plunging strategy.


Unit name: G84x\_Fig\_Stirn\_C / Cycles: G845 (see page 372); G846 (see page 376)


### **Figure form** Q Type

- Type of figure
  - 0: Full circle
  - 1: Linear slot
  - 2: Circular slot
  - 3: Triangle
  - 4: Rectangle, square
  - 5: Polygon
- QN Number of polygon corners—only with Q=5 (polygon)
- X1 Diameter of figure center
- C1 Angle of figure center
- Z1 Milling top edge
- P2 Depth of figure
- L Edge length / width across flats
  - L>0: Edge length
  - L<0: Width across flats (inside diameter) for polygon
- B Rectangle width
- RE Rounding radius
- A Angle to X axis
- Q2 Rotational direction of slot—only if Q=2 (circular slot)
  - cw: In clockwise direction
  - ccw: In counterclockwise direction
  - Angle of slot end point—only if Q=2 (circular slot)

Program only the parameters relevant to the selected figure type.







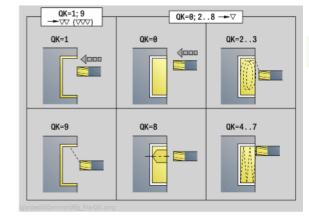
### Access to the technology database:

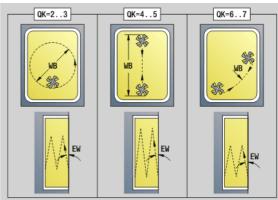
Machining operation: Milling

Affected parameters: F, S, FZ, P

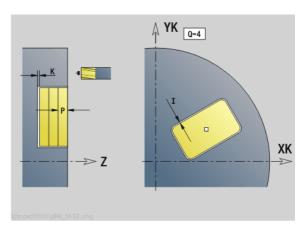
W

### 2.9 Units–Millin<mark>g, f</mark>ace


### Cycle form


- QK Machining operation and plunging strategy
  - 0: Roughing
  - 1: Finishing
  - 2: Helical roughing, manual
  - 3: Helical roughing, automatic
  - 4: Reciprocating linear roughing, manual
  - 5: Reciprocating linear roughing, automatic
  - 6: Reciprocating circular roughing, manual
  - 7: Reciprocating circular roughing, automatic
  - 8: Plunge roughing at predrilling position
  - 9: Finishing with 3-D approach arc
- JT Machining direction
  - O: From the inside out (from the inside towards the outside)
  - 1: From the outside in (from the outside towards the inside)
- H Cutting direction
  - 0: Up-cut milling
  - 1: Climb milling
- P Maximum infeed
- I Contour-parallel oversize
- K Infeed-direction oversize
- FZ Infeed rate
- E Reduced feed rate
- R Approach radius
- WB Plunging length
- EW Plunge angle
- NF Position mark (only if QK=8)
- U Overlap factor (default: 0.5)

### "Global" form


- RB Retraction plane
- Further parameters: see page 70

Further forms: see page 66







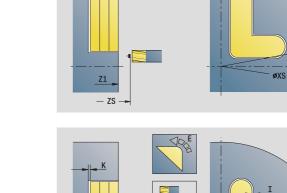


### 2.9 Units-Milling, face

### "ICP pocket milling, face" unit

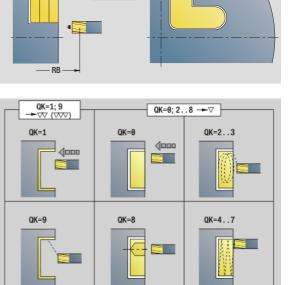
The unit mills the pocket defined by  ${\bf Q}.$  In  ${\bf QK},$  select the machining operation (roughing/finishing) and the plunging strategy.

Unit name: G845\_Tas\_C\_Stirn / Cycles: G845 (see page 372); G846 (see page 376)


### **Contour form**

- FK see page 68
- NS Starting block no. of contour
- NE End block no. of contour
- Z1 Milling top edge
- P2 Depth of contour
- NF Position mark (only if QK=8)

### Cycle form QK N


- Machining operation and plunging strategy
  - 0: Roughing
  - 1: Finishing
  - 2: Helical roughing, manual
  - 3: Helical roughing, automatic
  - 4: Reciprocating linear roughing, manual
  - 5: Reciprocating linear roughing, automatic
  - 6: Reciprocating circular roughing, manual
  - 7: Reciprocating circular roughing, automatic
  - 8: Plunge roughing at predrilling position
  - 9: Finishing with 3-D approach arc
- JT Machining direction
  - O: From the inside out (from the inside towards the outside)
  - 1: From the outside in (from the outside towards the inside)
- H Cutting direction
  - 0: Up-cut milling
  - 1: Climb milling
- P Maximum infeed
- I Contour-parallel oversize
- K Infeed-direction oversize
- FZ Infeed rate
- E Reduced feed rate
- R Approach radius
- WB Plunging length
- EW Plunge angle
- U Overlap factor (default: 0.5)
- RB Retraction plane

Further forms: see page 66



☐□□□ FZ

-P2



### Access to the technology database:

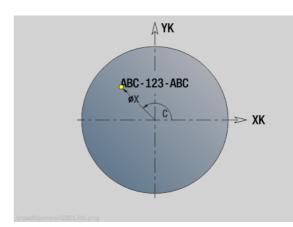
Machining operation: Milling
 Affected parameters: F, S, FZ, P

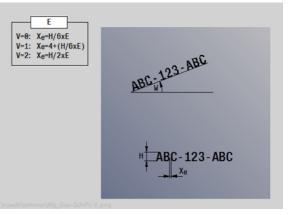


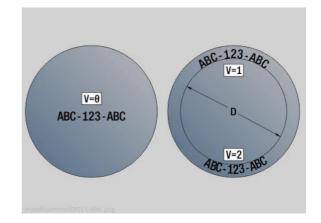
### "Engraving, face" unit

The unit engraves character strings in linear or polar layout on the face of the workpiece. Diacritics and special characters that you cannot enter in the smart. Turn editor can be defined, character by character, in NF. If you program "Continue from last text" (Q=1), tool change and pre-positioning are suppressed. The technological data of the previous engraving cycle apply.

Unit name: G801\_GRA\_STIRN\_C / Cycle: G801 (see page 380)


Character set: see page 378


### **Position form**


| Х, С      | Polar starting point                                                    |
|-----------|-------------------------------------------------------------------------|
| XK, YK    | Cartesian starting point                                                |
| Z         | End point. Z position, infeed depth during milling.                     |
| RB        | Retraction plane                                                        |
| Cycle for | m                                                                       |
| TXT       | Text to be engraved                                                     |
| NF        | Character number (character to be engraved)                             |
| Н         | Font height                                                             |
| E         | Distance factor (for calculation see figure)                            |
| W         | Inclination angle                                                       |
| FZ        | Plunging feed rate factor (plunging feed rate = current feed rate * FZ) |
| V         | Execution                                                               |
|           | 0: Linear                                                               |
|           | 1: Arched above                                                         |

- 2: Arched below
- D Reference diameter
- 0 Continue from last text
  - 0 (No): Engraving starts at the starting point
  - 1 (Yes): Engraving starts at the tool position

### Further forms: see page 66



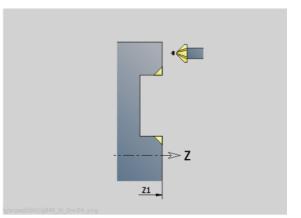


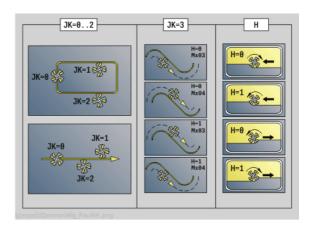


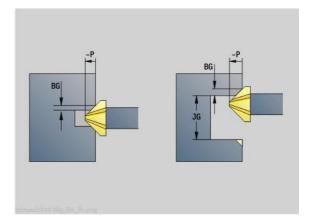
- Machining operation: Engraving
- Affected parameters: F, S

### "Deburring, face" unit

The unit deburrs the contour defined with ICP on the face of the workpiece.


Unit name: G840\_ENT\_C\_STIRN / Cycle: G840 (see page 368)


### **Contour form**


- FΚ see page 68
- NS Starting block no. of contour
- NE End block no. of contour
- Z1 Milling top edge

### **Cvcle form**

- JK Cutter position
  - JK=0: On the contour
  - JK=1, closed contour: Within the contour
  - JK=1, open contour: Left of the contour
  - JK=2, closed contour: Outside the contour
  - JK=2, open contour: Right of the contour
  - JK=3: Depending on H and MD
- Н Cutting direction
  - 0: Up-cut milling
  - 1: Climb milling
- ΒG Chamfer width
- JG Preparation diameter
- Ρ Plunging depth (indicated as a negative value)
- L Contour-parallel oversize
- R Approach radius
- FΖ Infeed rate
- Е Reduced feed rate
- RB Retraction plane
- Further forms: see page 66







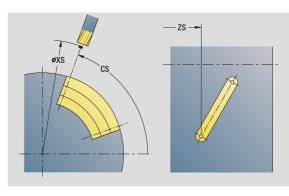
### Access to the technology database:

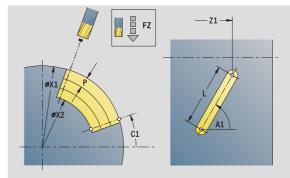
Machining operation: Deburring Affected parameters: F, S



### 2.10 Units-Milling, lateral surface

### "Slot, lateral surface" unit


The unit mills a slot from the starting position to the end point on the lateral surface. The slot width equals the diameter of the milling cutter.


Unit name: G792\_Nut\_MANT\_C / Cycle: G792 (see page 353)

### Cycle form

- X1 Milling top edge (diameter value)
- X2 Milling floor (diameter value)
- L Slot length
- A1 Angle to Z axis
- Z1, C1 Polar slot target point
- P Maximum infeed
- FZ Infeed rate

Further forms: see page 66

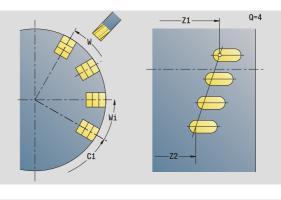


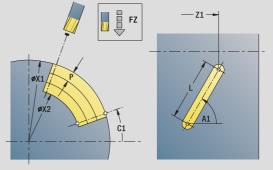


- Machining operation: Milling
- Affected parameters: F, S, FZ, P

### "Linear slot pattern, lateral surface" unit

The unit machines a linear slot pattern in which the individual features are arranged at a regular spacing on the lateral surface. The starting points of the slots correspond to the pattern positions. You define the length and the position of the slots in the unit. The slot width equals the diameter of the milling cutter.


Unit name: G792\_Lin\_Mant\_C / Cycle: G792 (see page 353)


### Pattern form

- Q Number of slots
- Z1, C1 Starting point of pattern
- Wi Angle increment
- W End angle
- Z2 End point of pattern

### Cycle form

- X1 Milling top edge (diameter value)
- X2 Milling floor (diameter value)
- L Slot length
- A1 Angle to Z axis
- P Maximum infeed
- FZ Infeed rate
- Further forms: see page 66



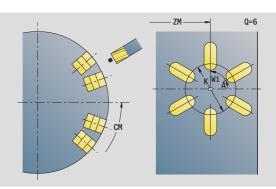


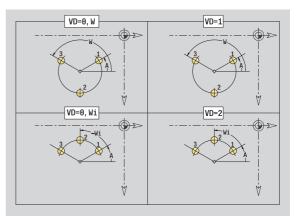
### Access to the technology database:

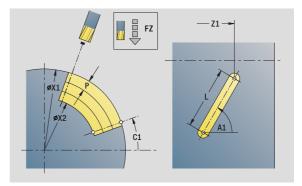
Machining operation: Milling
 Affected parameters: F, S, FZ, P

The unit machines a circular slot pattern in which the individual features are arranged at a regular spacing on the lateral surface. The starting points of the slots correspond to the pattern positions. You define the length and the position of the slots in the unit. The slot width equals the diameter of the milling cutter.

Unit name: G792\_Cir\_Mant\_C / Cycle: G792 (see page 353)


### Pattern form


| Q       | Number of slots       |
|---------|-----------------------|
| ZNA CNA | Contor point of patte |


- ZM, CM Center point of pattern
- A Starting angle
- Wi Angle increment
- K Pattern diameter
- W End angle
- V Rotation direction (default: 0)
  - VD=0, without W: Figures are arranged on a full circle
  - VD=0, with W: Figures are arranged on the longer circular arc
  - VD=0, with Wi: The algebraic sign of Wi defines the direction (Wi<0: clockwise)</p>
  - VD=1, with W: Clockwise
  - VD=1, with Wi: Clockwise (algebraic sign of Wi has no effect)
  - VD=2, with W: Counterclockwise
  - VD=2, with Wi: Counterclockwise (algebraic sign of Wi has no effect)

### Cycle form

- X1 Milling top edge (diameter value)
- X2 Milling floor (diameter value)
- L Slot length
- A1 Angle to Z axis
- P Maximum infeed
- FZ Infeed rate
- Further forms: see page 66





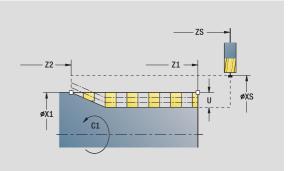


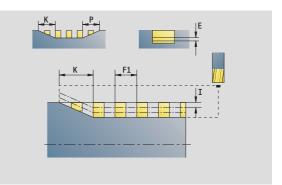
- Machining operation: Milling
- Affected parameters: F, S, FZ, P

### "Helical slot milling" unit

The unit mills a helical slot. The slot width equals the diameter of the milling cutter.

Unit name: G798\_WendeInut\_C / Cycle: G798 (see page 360)


### **Position form**


- X1 Thread diameter
- C1 Starting angle
- Z1 Starting point of thread
- Z2 End point of thread
- U Thread depth

### Cycle form

- F1 Thread pitch
- J Direction of thread:
  - 0: Right-hand thread
  - 1: Left-hand thread
- D No. of gears (threads per unit)
- P Run-in length
- K Run-out length
- I Maximum infeed
- E Cutting depth reduction

Further forms: see page 66



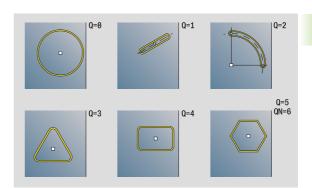


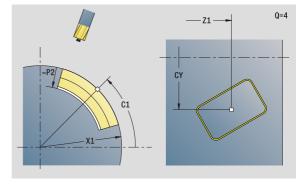
### Access to the technology database:

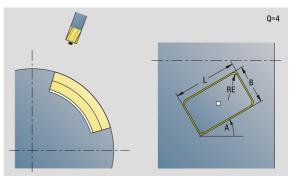
Machining operation: Finish-milling
 Affected parameters: F, S

1

# 2.10 Units-Milling, lateral s<mark>urf</mark>ace


### "Contour milling, figures, lateral surface" unit


The unit mills the contour defined by **Q** on the lateral surface. Unit name: G840\_Fig\_Mant\_C / Cycle: G840 (see page 364)


### **Figure form**

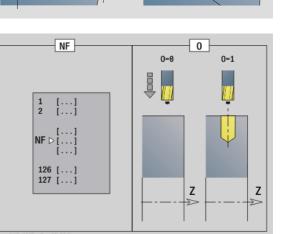
- Q Type of figure
  - 0: Full circle
  - 1: Linear slot
  - 2: Circular slot
  - 3: Triangle
  - 4: Rectangle, square
  - 5: Polygon
- QN Number of polygon corners—only with Q=5 (polygon)
- Z1 Figure center
- C1 Angle of figure center
- CY Figure center of unrolled lateral surface
- X1 Milling top edge
- P2 Depth of figure
- L Edge length / width across flats
  - L>0: Edge length
  - L<0: Width across flats (inside diameter) for polygon
- B Rectangle width
- RE Rounding radius
- A Angle to Z axis
- Q2 Rotational direction of slot—only if Q=2 (circular slot)
  - cw: In clockwise direction
  - ccw: In counterclockwise direction
- W Angle of slot end point—only if Q=2 (circular slot)

Program only the parameters relevant to the selected figure type.








- Machining operation: Milling
- Affected parameters: F, S, FZ, P

|              | Cycle fo          |                                                                                                                                                                                                                                                                                                             | FZ  |                 |
|--------------|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------------|
|              | JK<br>H           | Cutter position  0: On the contour  1: Within the contour  2: Outside the contour Cutting direction  0: Up out milling                                                                                                                                                                                      |     | JK=2<br>K<br>JK |
| מיווווא, ומ  | P<br>I<br>K<br>FZ | <ul> <li>0: Up-cut milling</li> <li>1: Climb milling</li> <li>Maximum infeed</li> <li>Infeed-direction oversize</li> <li>Contour-parallel oversize</li> <li>Infeed rate</li> </ul>                                                                                                                          |     |                 |
| 2<br> <br> } | E<br>R<br>O       | Reduced feed rate<br>Approach radius<br>Plunging behavior                                                                                                                                                                                                                                                   |     |                 |
|              | NF                | <ul> <li>0: Straight (vertical plunge)—The cycle moves the tool to the starting point; the tool plunges at feed rate and mills the contour.</li> <li>1: In predrilling—The cycle positions the tool above the hole; the tool plunges and mills the contour.</li> <li>Position mark (only if O=1)</li> </ul> | SCI | R,              |

### "Global" form

Retraction plane RΒ Further parameters: see page 70

Further forms: see page 66



smart.Turn units

i

Q=4

SCK

JK=1

# 2.10 Units-Milling, lateral s<mark>urf</mark>ace

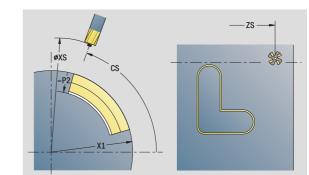
### "ICP contour milling, lateral surface" unit

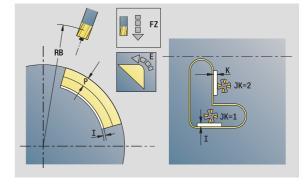
The unit mills the contour defined with ICP on the lateral surface.

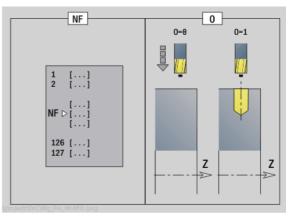
Unit name: G840\_Kon\_C\_Mant / Cycle: G840 (see page 364)

### **Contour form**

- FK see page 68
- NS Starting block no. of contour
- NE End block no. of contour
- X1 Milling top edge (diameter value)
- P2 Depth of contour (radius value)


### Cycle form


JK


Cutter position

- 0: On the contour
- 1, closed contour: Within the contour
- 1, open contour: Left of the contour
- 2, closed contour: Outside the contour
- 2, open contour: Right of the contour
- 3: Depending on H and MD
- H Cutting direction
  - 0: Up-cut milling
  - 1: Climb milling
- P Maximum infeed
- I Contour-parallel oversize
- K Infeed-direction oversize
- FZ Infeed rate
- E Reduced feed rate
- R Approach radius
- O Plunging behavior
  - 0: Straight (vertical plunge)—The cycle moves the tool to the starting point; the tool plunges at feed rate and mills the contour.
  - 1: In predrilling—The cycle positions the tool above the hole; the tool plunges and mills the contour.
- NF Position mark (only if O=1)
- RB Retraction plane (diameter value)

Further forms: see page 66

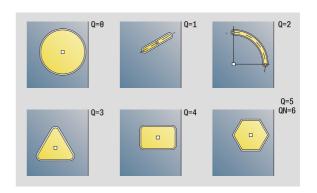




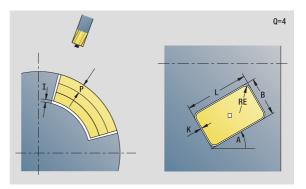


- Machining operation: Finish-milling
- Affected parameters: F, S, FZ, P

### "Pocket milling, figures, lateral surface" unit


The unit mills the pocket defined by  ${\bf Q}.$  In  ${\bf QK},$  select the machining operation (roughing/finishing) and the plunging strategy.


Unit name: G84x\_Fig\_Mant\_C / Cycles: G845 (see page 372); G846 (see page 376)


### Figure form

- Type of figure
  - 0: Full circle
  - 1: Linear slot
  - 2: Circular slot
  - 3: Triangle
  - 4: Rectangle, square
  - 5: Polygon
- QN Number of polygon corners—only with Q=5 (polygon)
- Z1 Figure center
- C1 Angle of figure center
- CY Figure center of unrolled lateral surface
- X1 Milling top edge
- P2 Depth of figure
- L Edge length / width across flats
  - L>0: Edge length
  - L<0: Width across flats (inside diameter) for polygon
- B Rectangle width
- RE Rounding radius
- A Angle to Z axis
- Q2 Rotational direction of slot—only if Q=2 (circular slot)
  - cw: In clockwise direction
  - ccw: In counterclockwise direction
- W Angle of slot end point—only if Q=2 (circular slot)

Program only the parameters relevant to the selected figure type.



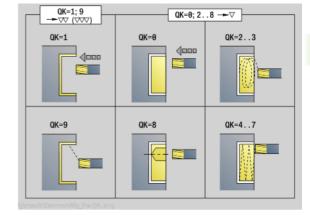


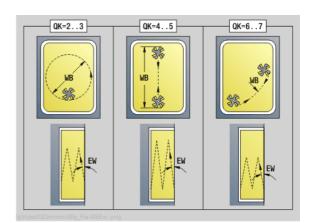


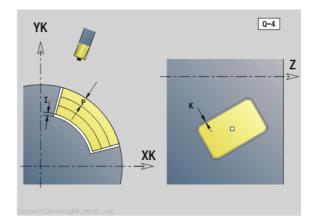
### Access to the technology database:

Machining operation: Milling
 Affected parameters: F, S, FZ, P

## 2.10 Units-Milling, lateral s<mark>urf</mark>ace


### Cycle form


- QK Machining operation and plunging strategy
  - 0: Roughing
  - 1: Finishing
  - 2: Helical roughing, manual
  - 3: Helical roughing, automatic
  - 4: Reciprocating linear roughing, manual
  - 5: Reciprocating linear roughing, automatic
  - 6: Reciprocating circular roughing, manual
  - 7: Reciprocating circular roughing, automatic
  - 8: Plunge roughing at predrilling position
  - 9: Finishing with 3-D approach arc
- JT Machining direction:
  - O: From the inside out (from the inside towards the outside)
  - 1: From the outside in (from the outside towards the inside)
- H Cutting direction
  - 0: Up-cut milling
  - 1: Climb milling
- P Maximum infeed
- I Infeed-direction oversize
- K Contour-parallel oversize
- FZ Infeed rate
- E Reduced feed rate
- R Approach radius
- WB Plunging length
- EW Plunge angle
- NF Position mark (only if QK=8)
- U Overlap factor (default: 0.5)


### "Global" form

- RB Retraction plane
- Further parameters: see page 70

Further forms: see page 66



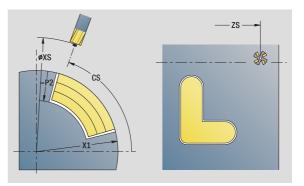


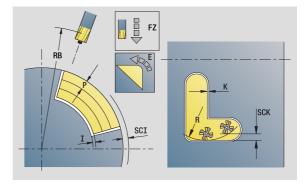


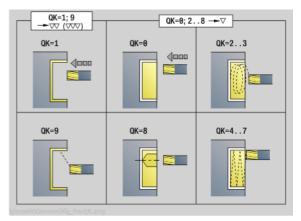
### "ICP pocket milling, lateral surface" unit

The unit mills the pocket defined by Q. In QK, select the machining operation (roughing/finishing) and the plunging strategy.

Unit name: G845\_Tas\_C\_Mant / Cycles: G845 (see page 372); G846 (see page 376)


### **Contour form**


- FK see page 68
- NS Starting block no. of contour
- NE End block no. of contour
- X1 Milling top edge (diameter value)
- P2 Depth of contour
- NF Position mark (only if QK=8)


### Cycle form

QK

- Machining operation and plunging strategy
  - 0: Roughing
  - 1: Finishing
  - 2: Helical roughing, manual
  - 3: Helical roughing, automatic
  - 4: Reciprocating linear roughing, manual
  - 5: Reciprocating linear roughing, automatic
  - 6: Reciprocating circular roughing, manual
  - 7: Reciprocating circular roughing, automatic
  - 8: Plunge roughing at predrilling position
  - 9: Finishing with 3-D approach arc
- JT Machining direction
  - O: From the inside out (from the inside towards the outside)
  - 1: From the outside in (from the outside towards the inside)
- H Cutting direction
  - 0: Up-cut milling
  - 1: Climb milling
- P Maximum infeed
- I Infeed-direction oversize
- K Contour-parallel oversize
- FZ Infeed factor
- E Reduced feed rate
- R Approach radius
- WB Plunging length
- EW Plunge angle
- U Overlap factor (default: 0.5)
- RB Retraction plane (diameter value)
- Further forms: see page 66







### Access to the technology database:

Machining operation: Milling
 Affected parameters: F, S, FZ, P

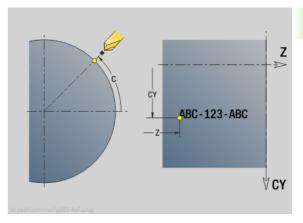
## 2.10 Units–Milling, lateral s<mark>urf</mark>ace

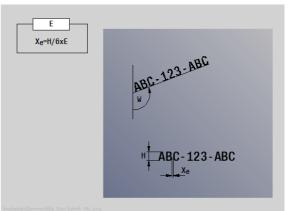
### "Engraving, lateral surface" unit

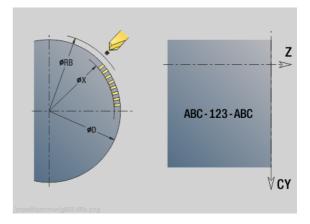
The unit engraves character strings aligned linearly on the lateral surface. Diacritics and special characters that you cannot enter in the smart. Turn editor can be defined, character by character, in **NF**. If you program "Continue from last text" (Q=1), tool change and prepositioning are suppressed. The technological data of the previous engraving cycle apply.

Unit name: G802\_GRA\_MANT\_C / Cycle: G802 (see page 381)

Character set: see page 378


### **Position form**


- Z Starting point
- C Starting angle
- CY Starting point
- X End point (diameter). X position, infeed depth during milling.
- RB Retraction plane


### Cycle form

- TXT Text to be engraved
- NF Character number (character to be engraved)
- H Font height
- E Distance factor (for calculation see figure)
- W Inclination angle
- FZ Plunging feed rate factor (plunging feed rate = current feed rate \* FZ)
- D Reference diameter
- Q Continue from last text
  - 0 (No): Engraving starts at the starting point
  - 1 (Yes): Engraving starts at the tool position

### Further forms: see page 66





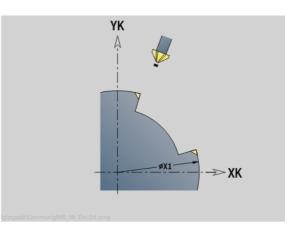


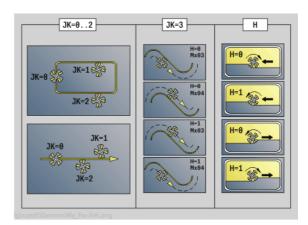
- Machining operation: Engraving
- Affected parameters: F, S

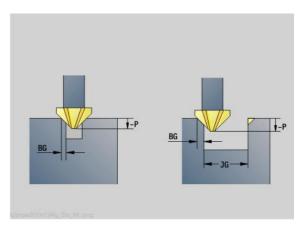
### "Deburring, lateral surface" unit

The unit deburrs the contour defined with ICP on the lateral surface.

Unit name: G840\_ENT\_C\_MANT / Cycle: G840 (see page 368)


### **Contour form**


- FK see page 68
- NS Starting block no. of contour
- NE End block no. of contour
- X1 Milling top edge (diameter value)


### Cycle form

JK

- Cutter position
  - JK=0: On the contour
  - JK=1, closed contour: Within the contour
  - JK=1, open contour: Left of the contour
  - JK=2, closed contour: Outside the contour
  - JK=2, open contour: Right of the contour
  - JK=3: Depending on H and MD
- H Cutting direction
  - 0: Up-cut milling
  - 1: Climb milling
- BG Chamfer width
- JG Preparation diameter
- P Plunging depth (indicated as a negative value)
- K Contour-parallel oversize
- R Approach radius
- FZ Infeed rate
- E Reduced feed rate
- RB Retraction plane
- Further forms: see page 66







### Access to the technology database:

Machining operation: Deburring
 Affected parameters: F, S

### 2.11 Units-Special operations

### "Program beginning (START)" unit

In the start unit, default values that are used in the following units are defined. The start unit is called once at the beginning of the machining section. You also directly specify the rotational speed limits, zero point shift and tool change point for the program.

Unit name: Start / Called cycle: None

### "Limits" form

- S0 Maximum main spindle speed
- S1 Maximum rotational speed of driven tool
- Z Zero point shift (G59)

### "TC point" form (tool change point)

- WT1 Tool change point
  - No axis (do not approach the tool change point)
  - 0: Simultaneous (X and Z axes depart diagonally)
  - 1: First X, then Z
  - 2: First Z, then X
  - 3: Only X
  - 4: Only Z
  - 5: Only Y
  - 6: Simultaneous with Y
- WX1 Tool change point in X (reference: distance of the slide position as radius value from the machine zero point)
- WZ1 Tool change point in Z (reference: distance of the slide position from the machine zero point)
- WY1 Tool change point in Y (reference: distance of the slide position from the machine zero point)

### Soft keys in the program beginning form

| Acceptance<br>of zero pnt  | Loads the zero point defined during setup        |
|----------------------------|--------------------------------------------------|
| Acceptance<br>TC point \$1 | Loads the tool-change point defined during setup |

### "Defaults" form

- GWW Tool change point
  - No axis (do not approach the tool change point)
  - 0: Simultaneous (X and Z axes depart diagonally)
  - 1: First X, then Z
  - 2: First Z, then X
  - 3: Only X
  - 4: Only Z
  - 5: Only Y
  - 6: Simultaneous with Y
- CLT Coolant
  - 0: Without
  - 1: Circuit 1 on
  - 2: Circuit 2 on
- G60 Protection zone (default for drilling units)
  - 0: Active
  - 1: Inactive

### Cycle form

L

Subprogram name: Name of a subprogram that is called by the start unit

### "Global" form

- G47 Safety clearance
- SCK Safety clearance in infeed direction (drilling and milling)
- SCI Safety clearance in the working plane (milling)
- I, K Oversize in X, Z direction (X: diameter value)



You can load the zero point shift and the tool change point by soft key (see soft-key table).

- The setting in the **"TC point**" form applies only within the current program.
- Position of tool change point (WX1, WZ1, WY1):
  - If the tool change point is defined, you use G14 to move to this position.
  - If the tool change point is not defined, you use G14 to move to the position defined in manual mode.

If you call a subprogram using the start unit, you should set the subprogram with G65 Chuck selection with fixture D0. You should also move the C axes out, for example with M15 or M315.

### "C axis ON" unit

The unit activates the SPI (spindle) C axis.

Unit name: C\_Axis\_ON / Called cycle: None

### "C axis ON" form

- SPI Workpiece spindle number (0 to 3). Spindle that rotates the workpiece.
- C Approach position

### "C axis OFF" unit

The unit deactivates the SPI (spindle) C axis.

Unit name: C\_Axis\_OFF / Called cycle: None

### "C axis OFF" form

SPI Workpiece spindle number (0 to 3). Spindle that rotates the workpiece.

### "Subprogram call" unit

2.11 Units-Special operations

The unit calls the subprogram defined in "L".

Unit name: SUBPROG / Called cycle: Any subprogram

### **Contour form**

L

- Subprogram name
- Q Number of repetitions
- LA-LF Transfer values
- LH Transfer value
- LN Transfer value—reference to a block number as contour reference. Is updated during block numbering.

### Cycle form

- LI-LK Transfer values
- LO Transfer value
- LΡ Transfer value
- LR Transfer value
- LS Transfer value
- Transfer value LU
- LW-LZ Transfer values

### Cycle form

- ID1 Transfer value—text variable (string)
- AT1 Transfer value—text variable (string)
- ΒS Transfer value
- Transfer value ΒE
- WS Transfer value
- AC Transfer value
- WC Transfer value
- RC Transfer value
- IC Transfer value
- KC Transfer value
- JC Transfer value

The tool call is not a mandatory parameter in this unit!

Instead of the text "transfer value," texts can be displayed that were defined in the subprogram. You can also define help graphics for every line of the subprogram (see page 430).

### Access to the technology database:

Not possible

### "Program section repeat" unit

Use the **Repeat** unit to program a program section repeat. The unit consists of two inseparable parts. Program the unit with the Start form immediately before the repeatable part, and the unit with the End form immediately behind the repeatable part. Be sure to use the same variable number here.

Unit name: REPEAT / Called cycle: None

### "Start" form

| AE                  | Repetition                                                                                                 |
|---------------------|------------------------------------------------------------------------------------------------------------|
|                     | 0: Beginning                                                                                               |
|                     | ■ 1: End                                                                                                   |
| V                   | Variable number 1–30 (counting variable for the iteration loop)                                            |
| NN                  | Number of repetitions                                                                                      |
| QR                  | Save workpiece blank                                                                                       |
|                     | • 0: No                                                                                                    |
|                     | ■ 1: Yes                                                                                                   |
|                     |                                                                                                            |
| K                   | Comment                                                                                                    |
| K<br>"End" fo       |                                                                                                            |
|                     |                                                                                                            |
| "End" fo            | orm                                                                                                        |
| "End" fo            | Repetition:                                                                                                |
| "End" fo            | Repetition:<br>0: Beginning                                                                                |
| " <b>End</b> " fo   | Repetition:<br>© 0: Beginning<br>© 1: End<br>Variable number 1–30 (counting variable for the iteration     |
| "End" fo<br>AE<br>V | Repetition:<br>© Beginning<br>1: End<br>Variable number 1–30 (counting variable for the iteration<br>loop) |

- Q Number of the C axis
- Κ Comment



### "Program end" unit

In every smart.Turn program, the end unit should be called once at the end of the machining section.

Unit name: END / Called cycle: None

### "Program end" form

- ME Type of return jump
  - 30: Without M30 restart
  - 99: With M99 restart
- NS Block number for return jump
- G14 Tool change point
  - No axis (do not approach the tool change point)
  - 0: Simultaneous (X and Z axes depart diagonally)
  - 1: First X, then Z
  - 2: First Z, then X
  - 3: Only X
  - 4: Only Z
  - 5: Only Y
  - 6: Simultaneous with Y
- MFS M command at the start of the unit
- MFE M command at the end of the unit

### "Tilt plane" unit

The unit executes the following transformations and rotations:

- Shifts the coordinate system to the position I, K
- Rotates the coordinate system by the angle B; reference point: I, K
- Shifts, if programmed, the coordinate system by U and W in the rotated coordinate system

Unit name: G16\_ROTWORKPLAN / Called cycle: G16 (see page 523)

### "Tilt plane" form

Q Tilt plane

- 0: OFF (disable tilting)
- 1: ON (tilt working plane)
- B Angle: Plane angle (reference: positive Z axis)
- I Reference point: Plane reference in X direction (radius)
- K Reference point: Plane reference in Z direction
- U Shift in X: Shift in X direction
- W Shift in Z: Shift in Z direction

### Please note:

- **Q0** resets the working plane. The zero point and coordinate system defined before the unit are then in effect again.
- The positive Z axis is the reference axis for the "plane angle B." This also applies to a mirrored coordinate system.
- X is the infeed axis in a tilted coordinate system. X coordinates are entered as diameter coordinates.
- Other zero point shifts are not permitted while tilting is active.

2.11 Units-Special oper<mark>atio</mark>ns



i



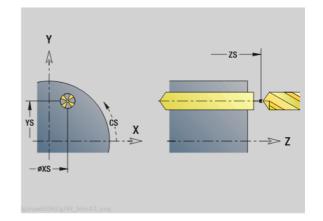


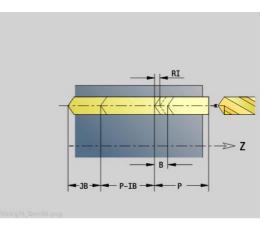
smart.Turn units for the Y axis

### 3.1 Units—Drilling in the Y axis

### "ICP drilling, Y axis" unit

The unit machines a single hole or a hole pattern in the XY or YZ plane. Using ICP, you define the holes as well as further details.


Unit name: G74\_ICP\_Y / Cycle: G74 (see page 335)


- FK see page 68
- NS Starting block no. of contour

### Parameters on the Cycle form

- E Delay (dwell time at end of hole) (default: 0)D Retraction at
  - 0: Rapid traverse
  - 1: Feed rate
- V Feed rate reduction
  - 0: Without reduction
    - 1: At end of the hole
    - 2: At start of the hole
    - 3: At start and end of the hole
- AB Spot drilling / through drilling length (distance for feed rate reduction)
- P First hole depth
- IB Hole depth reduction value
- JB Minimum hole depth
- B Retraction distance
- RI Internal safety clearance: Distance for reapproach inside the hole (default: safety clearance SCK).
- RB Retraction plane (default: return to the starting position or to the safety clearance)

Further forms: see page 66

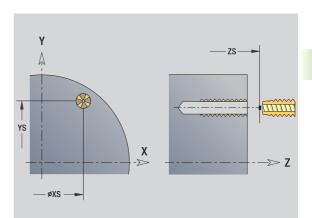


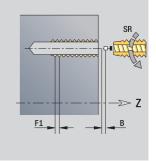


- Machining operation: Drilling
- Affected parameters: F, S

### "ICP tapping, Y axis" unit

The unit machines a single tap hole or a hole pattern in the XY or YZ plane. Using ICP, you define the tap holes as well as further details.


Unit name: G73\_ICP\_Y / Cycle: G73 (see page 332)


### Parameters on the Pattern form

- FK see page 68
- NS Starting block no. of contour
- Parameters on the Cycle form
- F1 Thread pitch
- B Run-in length
- L Retraction length when using floating tap holders (default: 0)
- SR Retraction speed (default: Shaft speed for tapping)
- SP Chip breaking depth
- SI Retraction distance
- RB Retraction plane

Further forms: see page 66

**Retraction length L:** Use this parameter for floating tap holders. The cycle calculates a new nominal pitch on the basis of the thread depth, the programmed pitch, and the "retraction length." The nominal pitch is somewhat smaller than the pitch of the tap. During tapping, the tap is pulled away from the chuck by the retraction length. With this method you can achieve higher service life from the taps.





- Machining operation: Tapping
- Affected parameter: S

Е

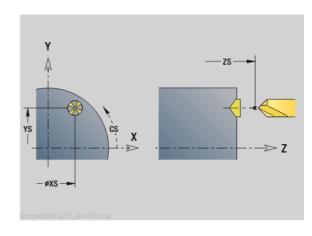
D

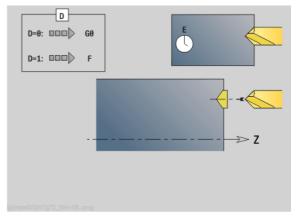
### "ICP boring/countersinking, Y axis" unit

The unit machines a single hole or a hole pattern in the XY or YZ plane. Using ICP, you define the hole positions as well as further details for boring or countersinking.

Unit name: G72\_ICP\_Y / Cycle: G72 (see page 331)

### Parameters on the Pattern form


FK see page 68


NS Starting block no. of contour

### Parameters on the Cycle form

- Delay (dwell time at end of hole) (default: 0)
- Retraction at
  - 0: Rapid traverse
  - 1: Feed rate
- RB Retraction plane (default: return to the starting position or to the safety clearance)

Further forms: see page 66





### Access to the technology database:

- Machining operation: Drilling
- Affected parameters: F, S

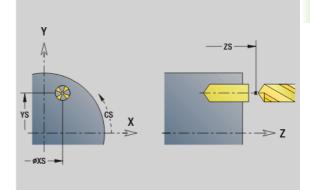
1

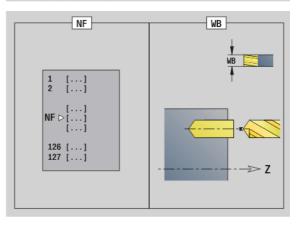
### 3.2 Units-Predrilling in Y axis

### "Predrill, contour mill, ICP in XY plane" unit

The unit determines the hole position and machines the hole. The subsequent milling cycle obtains the hole position from the reference stored in NF. If the milling contour consists of multiple sections, the unit machines a hole for each section.

Unit name: DRILL\_STI\_840\_Y / Cycles: G840 A1 (see page 362); G71 (see page 329)


### Parameters on the Contour form


- FK see page 68
- NS Starting block no. of contour
- NE End block no. of contour
- Z1 Milling top edge
- P2 Depth of contour

### Parameters on the Cycle form

- JK Cutter position
  - 0: On the contour
  - 1, closed contour: Within the contour
  - 1, open contour: Left of the contour
  - 2, closed contour: Outside the contour
  - 2, open contour: Right of the contour
  - 3: Depending on H and MD
- H Cutting direction
  - 0: Up-cut milling
  - 1: Climb milling
- I Contour-parallel oversize
- K Infeed-direction oversize
- R Approach radius
- WB Cutter diameter
- NF Position mark
- E Delay (dwell time at end of hole) (default: 0)
- D Retraction at
  - 0: Rapid traverse
  - 1: Feed rate
- V Feed rate reduction
  - 0: Without reduction
  - 1: At end of the hole
  - 2: At start of the hole
  - 3: At start and end of the hole
- AB Spot drilling / through drilling length (distance for feed rate reduction)
- RB Retraction plane (default: return to the starting position or to the safety clearance)

### Further forms: see page 66



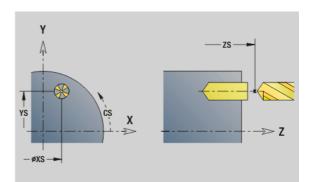


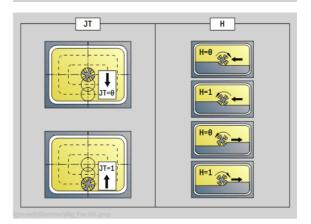
- Machining operation: Drilling
- Affected parameters: F, S

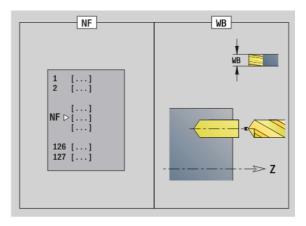
### "Predrill, pocket mill, ICP in XY plane" unit

The unit determines the hole position and machines the hole. The subsequent milling cycle obtains the hole position from the reference stored in NF. If the pocket consists of multiple sections, the unit machines a hole for each section.

Unit name: DRILL\_STI\_845\_Y / Cycles: G845 A1 (see page 371); G71 (see page 329)


### Parameters on the Contour form


- FK see page 68
- NS Starting block no. of contour
- NE End block no. of contour
- Z1 Milling top edge
- P2 Depth of contour


### Parameters on the Cycle form

- JT Machining direction:
  - 0: From the inside out (from the inside towards the outside)
  - 1: From the outside in (from the outside towards the inside)
- H Cutting direction
  - 0: Up-cut milling
  - 1: Climb milling
- I Contour-parallel oversize
- K Infeed-direction oversize
- U Overlap factor (default: 0.5)
- WB Cutter diameter
- NF Position mark
- E Delay (dwell time at end of hole) (default: 0)
- D Retraction at
  - 0: Rapid traverse
  - 1: Feed rate
- V Feed rate reduction
  - 0: Without reduction
  - 1: At end of the hole
  - 2: At start of the hole
  - 3: At start and end of the hole
- AB Spot drilling / through drilling length (distance for feed rate reduction)
- RB Retraction plane (default: return to the starting position or to the safety clearance)

Further forms: see page 66







- Machining operation: Drilling
- Affected parameters: F, S

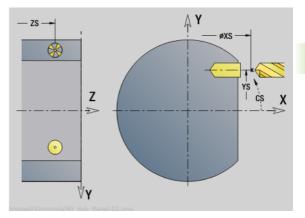
### 3.2 Units–Predrilling in Y axis

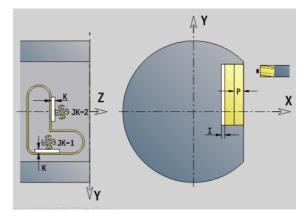
### "Predrill, contour mill, ICP in YZ plane" unit

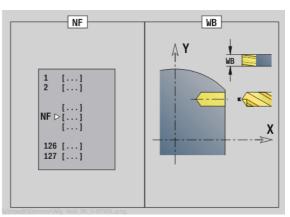
The unit determines the hole position and machines the hole. The subsequent milling cycle obtains the hole position from the reference stored in NF. If the milling contour consists of multiple sections, the unit machines a hole for each section.

Unit name: DRILL\_MAN\_840\_Y / Cycles: G840 A1 (see page 362); G71 (see page 329)

### Parameters on the Contour form


- FK see page 68
- NS Starting block no. of contour
- NE End block no. of contour
- X1 Milling top edge (diameter value)
- P2 Depth of contour (radius value)


### Parameters on the Cycle form


- JK Cutter position
  - JK=0: On the contour
  - JK=1, closed contour: Within the contour
  - JK=1, open contour: Left of the contour
  - JK=2, closed contour: Outside the contour
  - JK=2, open contour: Right of the contour
  - JK=3: Depending on H and MD
- H Cutting direction

Т

- 0: Up-cut milling
- 1: Climb milling
- Contour-parallel oversize
- K Infeed-direction oversize
- R Approach radius
- WB Cutter diameter
- NF Position mark
- E Delay (dwell time at end of hole) (default: 0)
- D Retraction at
  - 0: Rapid traverse
  - 1: Feed rate
- V Feed rate reduction
  - 0: Without reduction
  - 1: At end of the hole
  - 2: At start of the hole
  - 3: At start and end of the hole
- AB Spot drilling / through drilling length (distance for feed rate reduction)
- RB Retraction plane (diameter value)
- Further forms: see page 66







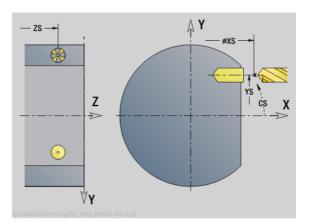
- Machining operation: Drilling
- Affected parameters: F, S

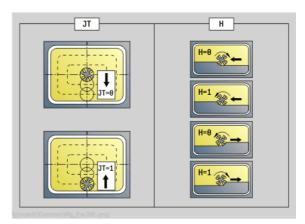
### "Predrill, pocket mill, ICP in YZ plane" unit

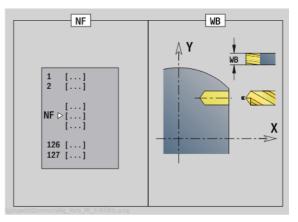
The unit determines the hole position and machines the hole. The subsequent milling cycle obtains the hole position from the reference stored in NF. If the pocket consists of multiple sections, the unit machines a hole for each section.

Unit name: DRILL\_MAN\_845\_Y / Cycles: G845 A1 (see page 371)

### Parameters on the Contour form


- FK see page 68
- NS Starting block no. of contour
- NE End block no. of contour
- X1 Milling top edge (diameter value)
- P2 Depth of contour Parameters on the Cycle form


### Parameters on the Cycle form


- JT Machining direction:
  - O: From the inside out (from the inside towards the outside)
  - 1: From the outside in (from the outside towards the inside)
- H Cutting direction
  - 0: Up-cut milling
  - 1: Climb milling
  - Maximum infeed
- I Infeed-direction oversize
- K Contour-parallel oversize
- U Overlap factor (default: 0.5)
- WB Cutter diameter
- NF Position mark

Ρ

- E Delay (dwell time at end of hole) (default: 0)
- D Retraction at
  - 0: Rapid traverse
  - 1: Feed rate
- V Feed rate reduction
  - 0: Without reduction
  - 1: At end of the hole
  - 2: At start of the hole
  - 3: At start and end of the hole
- AB Spot drilling / through drilling length (distance for feed rate reduction)
- RB Retraction plane (diameter value)
- Further forms: see page 66





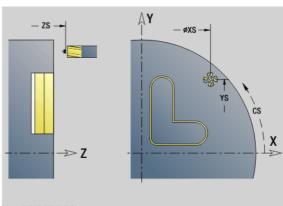


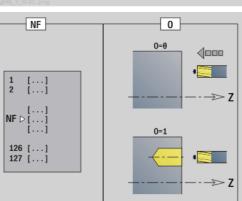
- Machining operation: Drilling
- Affected parameters: F, S

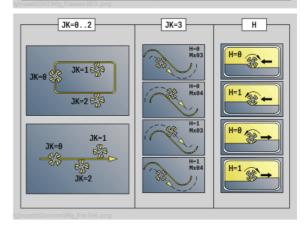
# 3.3 Units-Milling in Y axis

# "ICP contour milling in XY plane" unit

The unit mills the contour defined with ICP in the XY plane.


Unit name: G840\_Kon\_Y\_Stirn / Cycle: G840 (see page 364)


#### Parameters on the Contour form


- FK see page 68
- NS Starting block no. of contour
- NE End block no. of contour
- Z1 Milling top edge
- P2 Depth of contour

#### Parameters on the Cycle form

- JK Cutter position
  - JK=0: On the contour
  - JK=1, closed contour: Within the contour
  - JK=1, open contour: Left of the contour
  - JK=2, closed contour: Outside the contour
  - JK=2, open contour: Right of the contour
  - JK=3: Depending on H and MD
- H Cutting direction
  - 0: Up-cut milling
  - 1: Climb milling
- P Maximum infeed
- I Contour-parallel oversize
- K Infeed-direction oversize
- FZ Infeed rate
- E Reduced feed rate
- R Approach radius
- O Plunging behavior
  - O: Straight (vertical plunge)—The cycle moves the tool to the starting point; the tool plunges at feed rate and mills the contour.
  - 1: In predrilling—The cycle positions the tool above the hole; the tool plunges and mills the contour.
- NF Position mark (only if O=1)
- RB Retraction plane
- Further forms: see page 66







#### Access to the technology database:

- Machining operation: Finish-milling
- Affected parameters: F, S, FZ, P

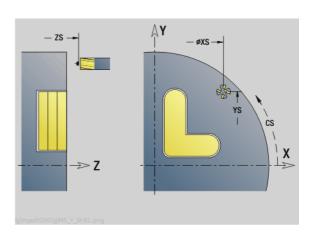
1

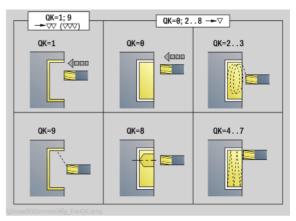
3.3 Units–Milling <mark>in</mark> Y axis

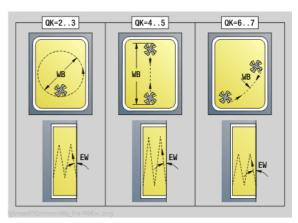
# "ICP pocket milling in XY plane" unit

The unit mills the pocket defined with ICP in the XY plane. In **OK** (machining operation), select whether a roughing or finishing operation is to be executed. For roughing, define the plunging strategy.

Unit name: G845 Tas Y Stirn / Cycles: G845 (see page 372); G846 (see page 376)


# Parameters on the Contour form


- FΚ see page 68
- NF Position mark (only if QK=8) NS
  - Starting block no. of contour
- Z1 Milling top edge
- P2 Depth of contour
- NE End block no. of contour


#### Parameters on the Cycle form QK

- Machining operation and plunging strategy
  - 0: Roughing
  - 1: Finishina
  - 2: Helical roughing, manual
  - 3: Helical roughing, automatic
  - 4: Reciprocating linear roughing, manual
  - 5: Reciprocating linear roughing, automatic
  - 6: Reciprocating circular roughing, manual
  - 7: Reciprocating circular roughing, automatic
  - 8: Plunge roughing at predrilling position
  - 9: Finishing with 3-D approach arc
- JT Machining direction:
  - 0: From the inside out (from the inside towards the outside)
  - 1: From the outside in (from the outside towards the inside)
- Н Cutting direction
  - 0: Up-cut milling
  - 1: Climb milling
  - Maximum infeed
- Т Contour-parallel oversize
- Κ Infeed-direction oversize
- FΖ Infeed rate
- Е Reduced feed rate
- R Approach radius
- WB Plunging length
- EW Plunge angle
- U Overlap factor (default: 0.5)
- RB Retraction plane

# Further forms: see page 66





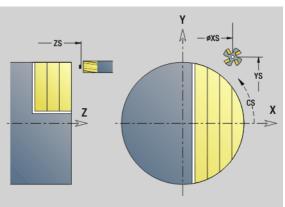


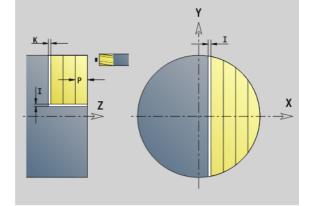
# Access to the technology database:

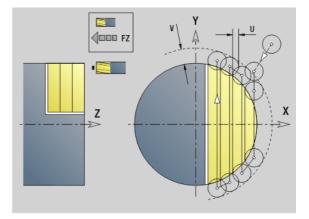
- Machining operation: Milling
- Affected parameters: F, S, FZ, P



Ρ


# "Single-surface milling, XY plane" unit


The unit mills a single surface defined with ICP in the XY plane.


Unit name: G841\_Y\_STI / Cycles: G841 (see page 529); G842 (see page 530)

#### Parameters on the Contour form

- FK see page 68
- NS Starting block no. of contour
- Parameters on the Cycle form
- QK Machining operation:
  - 0: Roughing
  - 1: Finishing
- P Maximum infeed
- I Contour-parallel oversize
- K Infeed-direction oversize
- H Cutting direction
  - 0: Up-cut milling
  - 1: Climb milling
- U Overlap factor (default: 0.5)
- V Overrun factor
- FZ Infeed rate
- RB Retraction plane
- Further forms: see page 66





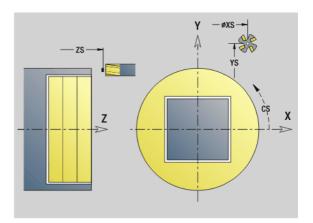


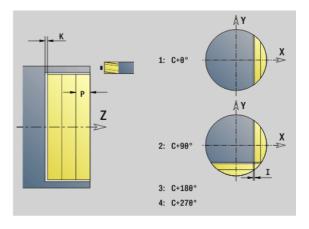
#### Access to the technology database:

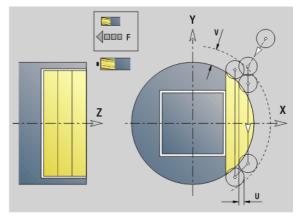
- Machining operation: Milling
- Affected parameters: F, S, FZ, P

1

# 3.3 Units–Milling in Y axis


# "Centric polygon milling, XY plane" unit


The unit mills the centric polygon defined with ICP in the XY plane.


Unit name: G843\_Y\_STI / Cycles: G843 (see page 531); G844 (see page 532)

| Paramete | ers on | the | Contour | form |
|----------|--------|-----|---------|------|
|          |        |     | 20      |      |

- FK see page 68
- NS Starting block no. of contour
- Parameters on the Cycle form
- QK Machining operation:
  - 0: Roughing
  - 1: Finishing
- P Maximum infeed
- I Contour-parallel oversize
- K Infeed-direction oversize
- H Cutting direction
  - 0: Up-cut milling
  - 1: Climb milling
- U Overlap factor (default: 0.5)
- V Overrun factor
- FZ Infeed rate
- RB Retraction plane
- Further forms: see page 66







# Access to the technology database:

- Machining operation: Milling
- Affected parameters: F, S, FZ, P

i

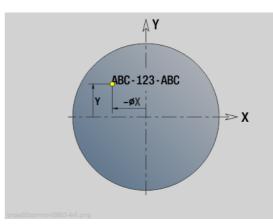
# 3.3 Units—Milling <mark>in</mark> Y axis

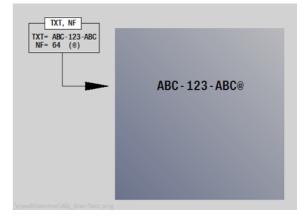
# "Engraving in XY plane" unit

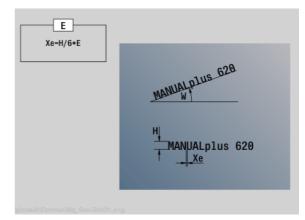
The unit engraves character strings aligned linearly in the XY plane. Diacritics and special characters that you cannot enter in the smart. Turn editor can be defined, character by character, in **NF**. If you program "Continue from last text" (Q=1), tool change and prepositioning are suppressed. The technological data of the previous engraving cycle apply.

Unit name: G803\_GRA\_Y\_STIRN / Cycle: G803 (see page 541)

Character set: see page 378


#### Parameters on the Position form


- X, Y Starting point
- Z End point. Z position, infeed depth during milling.
- RB Retraction plane
- APP Approach: see page 71
- DEP Departure: see page 71


#### Parameters on the Cycle form

- TXT Text to be engraved
- NF Character number (character to be engraved)
- H Font height
- E Distance factor (for calculation see figure)
- W Inclination angle
- FZ Plunging feed rate factor (plunging feed rate = current feed rate \* FZ)
- Q Continue from last text
  - 0 (No): Engraving starts at the starting point
  - 1 (Yes): Engraving starts at the tool position

#### Further forms: see page 66



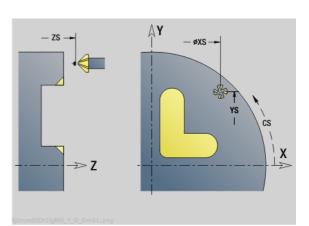


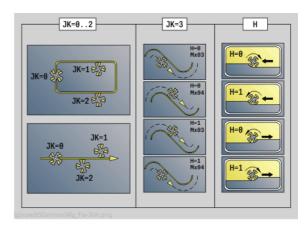


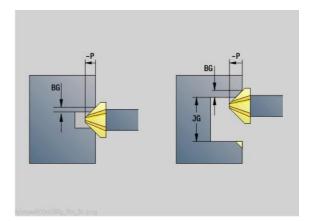
- Machining operation: Engraving
- Affected parameters: F, S

# "Deburring in XY plane" unit

The unit deburrs the contour defined with ICP in the XY plane.


Unit name: G840\_ENT\_Y\_STIRN / Cycle: G840 (see page 368)


# Parameters on the Contour form


- FK see page 68
- NS Starting block no. of contour
- NE End block no. of contour
- Z1 Milling top edge

# Parameters on the Cycle form

- JK Cutter position
  - JK=0: On the contour
  - JK=1, closed contour: Within the contour
  - JK=1, open contour: Left of the contour
  - JK=2, closed contour: Outside the contour
  - JK=2, open contour: Right of the contour
  - JK=3: Depending on H and MD
- H Cutting direction
  - 0: Up-cut milling
  - 1: Climb milling
- BG Chamfer width
- JG Preparation diameter
- P Plunging depth (indicated as a negative value)
- I Contour-parallel oversize
- R Approach radius
- FZ Infeed rate
- E Reduced feed rate
- RB Retraction plane
- Further forms: see page 66







## Access to the technology database:

- Machining operation: Deburring
- Affected parameters: F, S

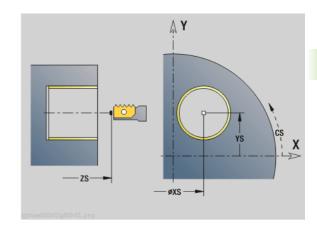


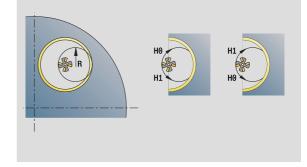
1

# "Thread milling in XY plane" unit

The unit mills a thread in existing holes in the XY plane.

Unit name: G800\_GEW\_Y\_STIRN / Cycle: G800 (see page 543)


# Parameters on the Position form


- APP Approach see page 71
- CS Approach position C
- Z1 Start point drill (starting point of hole)
- P2 Thread depth
- I Thread diameter
- F1 Thread pitch

## Parameters on the Cycle form

- J Direction of thread:
  - 0: Right-hand thread
  - 1: Left-hand thread
- H Cutting direction
  - 0: Up-cut milling
  - 1: Climb milling
- V Milling method
  - 0: The thread is milled in a 360-degree helix
  - 1: The thread is milled in several helical paths (singlepoint tool)
- R Approach radius

# Further forms: see page 66





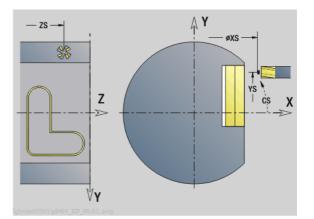
- Machining operation: Finish-milling
- Affected parameters: F, S

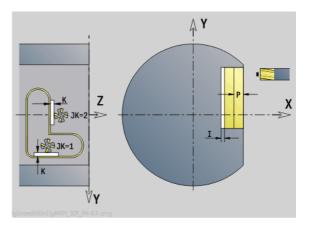


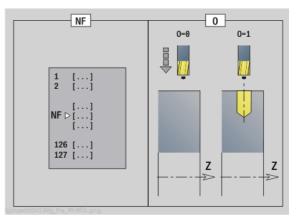
# "ICP contour milling in YZ plane" unit

The unit mills the contour defined with ICP in the YZ plane.

Unit name: G840\_Kon\_Y\_Mant / Cycle: G840 (see page 364)


# Parameters on the Contour form


- FK see page 68
- NS Starting block no. of contour
- NE End block no. of contour
- X1 Milling top edge (diameter value)
- P2 Depth of contour (radius value)


#### Parameters on the Cycle form

- JK Cutter position
  - JK=0: On the contour
  - JK=1, closed contour: Within the contour
  - JK=1, open contour: Left of the contour
  - JK=2, closed contour: Outside the contour
  - JK=2, open contour: Right of the contour
  - JK=3: Depending on H and MD
- H Cutting direction
  - 0: Up-cut milling
  - 1: Climb milling
- P Maximum infeed
- I Contour-parallel oversize
- K Infeed-direction oversize
- FZ Infeed rate
- E Reduced feed rate
- R Approach radius
- O Plunging behavior
  - 0: Straight (vertical plunge)—The cycle moves the tool to the starting point; the tool plunges at feed rate and mills the contour.
  - 1: In predrilling—The cycle positions the tool above the hole; the tool plunges and mills the contour.
- NF Position mark (only if O=1)
- RB Retraction plane (diameter value)

Further forms: see page 66







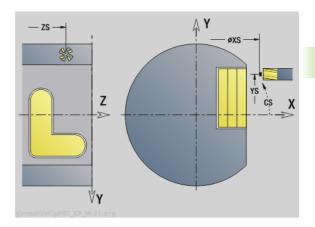
- Machining operation: Finish-milling
- Affected parameters: F, S, FZ, P

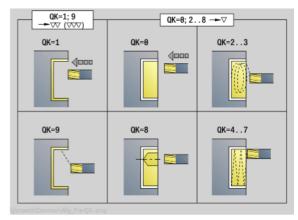


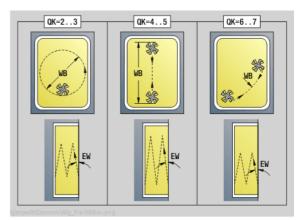
# 3.3 Units—Milling <mark>in</mark> Y axis

# "ICP pocket milling in YZ plane" unit

The unit mills the pocket defined with ICP in the YZ plane. In  $\mathbf{QK}$  (machining operation), select whether a roughing or finishing operation is to be executed. For roughing, define the plunging strategy.


Unit name: G845\_Tas\_Y\_Mant / Cycles: G845 (see page 372); G846 (see page 376)


# Parameters on the Contour form


- FK see page 68
- NS Starting block no. of contour
- NE End block no. of contour
- X1 Milling top edge (diameter value)
- P2 Depth of contour
- NF Position mark (only if QK=8)

# Parameters on the Cycle form

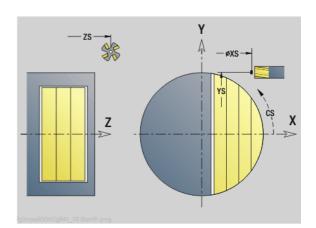
- QK Machining operation and plunging strategy
  - 0: Roughing
  - 1: Finishing
  - 2: Helical roughing, manual
  - 3: Helical roughing, automatic
  - 4: Reciprocating linear roughing, manual
  - 5: Reciprocating linear roughing, automatic
  - 6: Reciprocating circular roughing, manual
  - 7: Reciprocating circular roughing, automatic
  - 8: Plunge roughing at predrilling position
  - 9: Finishing with 3-D approach arc
- JT Machining direction:
  - O: From the inside out (from the inside towards the outside)
  - 1: From the outside in (from the outside towards the inside)
- H Cutting direction
  - 0: Up-cut milling
  - 1: Climb milling
- P Maximum infeed
- I Infeed-direction oversize
- K Contour-parallel oversize
- FZ Infeed rate
- E Reduced feed rate
- R Approach radius
- WB Plunging length
- EW Plunge angle
- U Overlap factor (default: 0.5)
- RB Retraction plane (diameter value)
- Further forms: see page 66

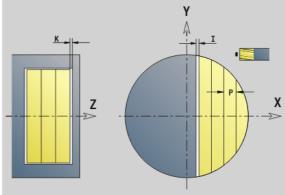




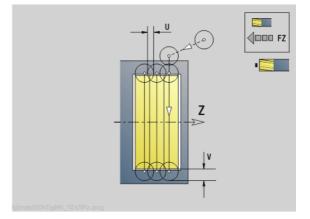


- Machining operation: Milling
- Affected parameters: F, S, FZ, P


# "Single-surface milling, YZ plane" unit


The unit mills a single surface defined with ICP in the YZ plane.

Unit name: G841\_Y\_MANT / Cycles: G841 (see page 529), G842 (see page 530)


| Parameters on the Contour form |
|--------------------------------|
|--------------------------------|

- FK see page 68
- NS Starting block no. of contour
- Parameters on the Cycle form
- QK Machining operation:
  - 0: Roughing
  - 1: Finishing
- P Maximum infeed
- I Contour-parallel oversize
- K Infeed-direction oversize
- H Cutting direction
  - 0: Up-cut milling
  - 1: Climb milling
- U Overlap factor (default: 0.5)
- V Overrun factor
- FZ Infeed rate
- RB Retraction plane
- Further forms: see page 66





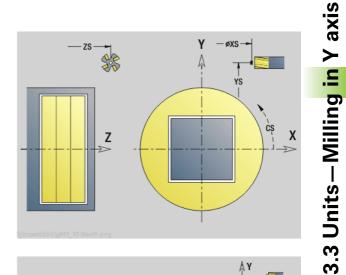
lg\mpedit\Ori1\g841\_YZ-PIK.pn

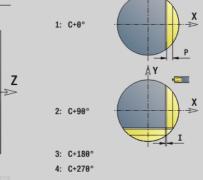


## Access to the technology database:

Machining operation: Milling
 Affected parameters: F, S, FZ, P

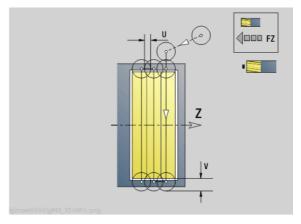
i


# "Centric polygon milling, YZ plane" unit


The unit mills the centric polygon defined with ICP in the YZ plane.

Unit name: G843\_Y\_MANT / Cycles: G843 (see page 531); G844 (see page 532)

#### Parameters on the Contour form


- FΚ see page 68
- NS Starting block no. of contour
- Parameters on the Cycle form
- QK Machining operation:
  - 0: Roughing
  - 1: Finishing
- Ρ Maximum infeed
- Т Contour-parallel oversize
- Κ Infeed-direction oversize
- Н Cutting direction
  - 0: Up-cut milling
  - 1: Climb milling
- U Overlap factor (default: 0.5)
- V Overrun factor
- FΖ Infeed rate
- RB Retraction plane
- Further forms: see page 66





ΔY

5



#### Access to the technology database:

- Machining operation: Milling
- Affected parameters: F, S, FZ, P

HEIDENHAIN MANUALplus 620, CNC PILOT 640

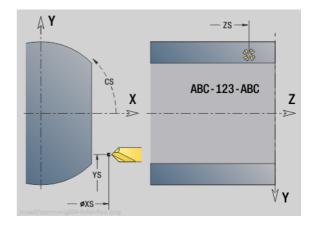
1

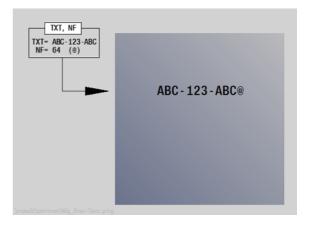
# "Engraving in YZ plane" unit

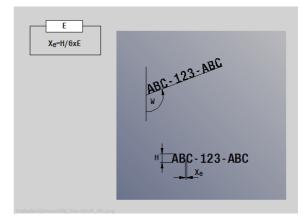
The unit engraves character strings aligned linearly in the YZ plane. Diacritics and special characters that you cannot enter in the smart.Turn editor can be defined, character by character, in **NF**. If you program "Continue from last text" (Q=1), tool change and prepositioning are suppressed. The technological data of the previous engraving cycle apply.

Unit name: G804\_GRA\_Y\_MANT / Cycle: G804 (see page 542)

Character set: see page 378


# Parameters on the Position form


- Y, Z Starting point
- X End point (diameter). X position, infeed depth during milling.
- RB Retraction plane


# Parameters on the Cycle form

- TXT Text to be engraved
- NF Character number (character to be engraved)
- H Font height
- E Distance factor (for calculation see figure)
- W Inclination angle
- FZ Plunging feed rate factor (plunging feed rate = current feed rate \* FZ)
- Q Continue from last text
  - 0 (No): Engraving starts at the starting point
  - 1 (Yes): Engraving starts at the tool position

# Further forms: see page 66





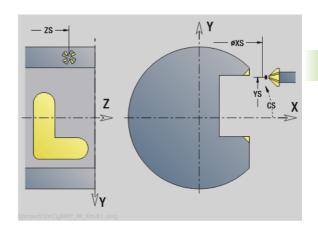


# Access to the technology database:

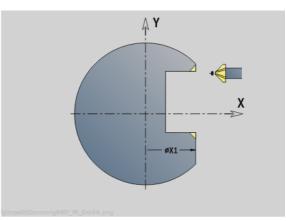
Machining operation: Engraving
 Affected parameters: F, S

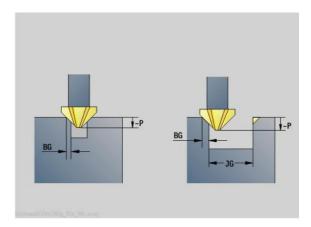
# "Deburring in YZ plane" unit

The unit deburrs the contour defined with ICP in the YZ plane.


Unit name: G840\_ENT\_Y\_MANT / Cycle: G840 (see page 368)

#### Parameters on the Contour form


- FK see page 68
- NS Starting block no. of contour
- NE End block no. of contour
- X1 Milling top edge (diameter value)


## Parameters on the Cycle form

- JK Cutter position
  - JK=0: On the contour
  - JK=1, closed contour: Within the contour
  - JK=1, open contour: Left of the contour
  - JK=2, closed contour: Outside the contour
  - JK=2, open contour: Right of the contour
  - JK=3: Depending on H and MD
- H Cutting direction
  - 0: Up-cut milling
  - 1: Climb milling
- BG Chamfer width
- JG Preparation diameter
- P Plunging depth (indicated as a negative value)
- K Contour-parallel oversize
- R Approach radius
- FZ Infeed rate
- E Reduced feed rate
- RB Retraction plane
- Further forms: see page 66



3.3 Units–Milling in Y axis



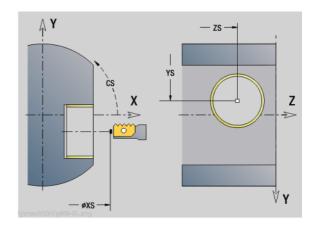


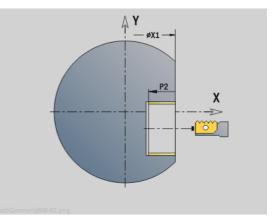
- Machining operation: Deburring
- Affected parameters: F, S

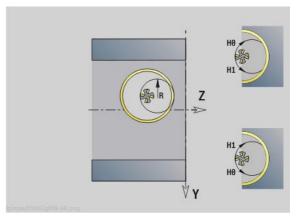
J

# "Thread milling in YZ plane" unit

The unit mills a thread in existing holes in the YZ plane.


Unit name: G806\_GEW\_Y\_MANT / Cycle: G806 (see page 544)


# Parameters on the Position form


- APP Approach see page 71
- CS Approach position C
- X1 Start point drill (starting point of hole)
- P2 Thread depth
- I Thread diameter
- F1 Thread pitch

# Parameters on the Cycle form

- Direction of thread:
  - 0: Right-hand thread
  - 1: Left-hand thread
- H Cutting direction
  - 0: Up-cut milling
  - 1: Climb milling
- V Milling method
  - 0: The thread is milled in a 360-degree helix
  - 1: The thread is milled in several helical paths (singlepoint tool)
- R Approach radius
- Further forms: see page 66







## Access to the technology database:

- Machining operation: Finish-milling
- Affected parameters: F, S



1

Werkzeug-Editor 描Goto 描Konfig 描Sonst 描Extras 描G Startsatznummer Kontur ID Endsatznummer Kontur maximale Zustellung 0 Drehtiefenkorr. Aufmaß X P/2 Aufmaß Z Schnittbegrenzung X 1/1 Schnittbegrenzung Z K0.5 nfahrwinkel fahrwinkel auf A . unidirekt ahrart Q/1 unidirekt U/O HO < 1/2 > akremental Kontura

# **DIN Programming**

# 4.1 Programming in DIN/ISO mode

# Geometry and machining commands

The Control also supports structured programming in DIN/ISO mode.

The **G commands** are divided into:

**Geometry commands** for describing the blank and finished part.

**Machining commands** for the MACHINING section.



Some G codes are used for blank/finished-part definition and in the MACHINING section. When copying or shifting NC blocks, keep in mind that "geometry" functions are used exclusively for describing a contour, while "machining" functions are used only in the MACHINING section. Beispiel: "Structured DINplus program"

| HEADER                                   |                 |
|------------------------------------------|-----------------|
| #MATERIAL                                | Steel           |
| #MACHINE                                 | Automatic lathe |
| #DRAWING                                 | 356_787.9       |
| #CLAMP. PRESS.                           | 20              |
| #SLIDE                                   | \$1             |
| #COMPANY                                 | Turn & Co       |
| #MEASURE_UNITS                           | METRIC          |
|                                          |                 |
| TURRET 1                                 |                 |
| T1 ID"342-300.1"                         |                 |
| T2 ID"111-80-080.1"                      |                 |
|                                          |                 |
|                                          |                 |
| BLANK                                    |                 |
| N1 G20 X120 Z120 K                       | 2               |
|                                          |                 |
| FINISHED                                 |                 |
| N2 G0 X60 Z-115                          |                 |
| N3 G1 Z-105                              |                 |
|                                          |                 |
| MACHINING                                |                 |
| N22 G59 Z282                             |                 |
| N25 G14 Q0                               |                 |
| [Predrilling 30 mm outside centric face] |                 |
| N26 T1                                   |                 |
| N27 G97 S1061 G95 I                      | F0.25 M4        |
|                                          |                 |
| END                                      |                 |

# **Contour programming**

The "contour follow-up" function and contour-related turning cycles require the previous description of the blank and finished part. For milling and drilling, contour definition is a precondition if you wish to use fixed cycles.



Use ICP (Interactive Contour Programming) for describing blank and finished parts.

#### **Contours for turning:**

- Describe a continuous contour.
- The direction of the contour description is independent of the direction of machining.
- Contour descriptions must not extend beyond the turning center.
- The contour of the finished part must lie within the contour of the blank part.
- When machining bars, define only the required section as blank.
- Contour definitions apply to the entire NC program, even if the workpiece is rechucked for machining the rear face.
- In the fixed cycles, the defined contour is used to program "reference values."

#### To describe workpiece blanks and auxiliary workpiece blanks, use

- G20 "Blank part macro" for standard parts (cylinder, hollow cylinder).
- G21 "Cast-part macro" for blank-part contours based on finished-part contours. G21 is only used for describing workpiece blanks.
- Individual contour elements (such as are used for finished-part contours) where use of G20 or G21 is not possible.

To describe **finished parts**, use individual contour elements and form elements. The contour elements or the complete contour can be assigned attributes accounted for during the machining of the workpiece (example: oversizes, additive compensation, special feed rates, etc.). The Control always uses paraxial elements to close finished parts.

For intermediate machining steps, define **auxiliary contours.** Auxiliary contours are programmed in the same way as finished-part descriptions. One contour description is possible per AUXILIARY CONTOUR. An AUXILIARY CONTOUR is assigned a name (ID) that can be referenced by the cycles. Auxiliary contours are not closed automatically.

#### **Contours for C-axis machining:**

- Contours for C-axis machining are programmed within the FINISHED PART section.
- Identify the contours as FACE or LATERAL. You can use section codes more than once or program multiple contours within one section code.

**Block references:** When editing G codes related to the contour (MACHINING section), load the block references from the displayed contour.

▶ Place the cursor in the input box (NS).

| Contour<br>reference | Switch to the contour display.                     |
|----------------------|----------------------------------------------------|
|                      | Place the cursor on the desired contour element.   |
| NE                   | Switch to NE.                                      |
|                      | Place the cursor on the desired contour element.   |
| Take over            | ▶ Press the LOAD soft key to return to the dialog. |

Т

# NC blocks of the DIN program

An NC block contains **NC commands** such as positioning, switching or organizational commands. Traversing and switching commands begin with G or M followed by a number (G1, G2, G81, M3, M30, ...) and the address parameters. Organizational commands consist of key words (WHILE, RETURN, etc.), or of a combination of letters/ numbers.

You can also program NC blocks containing only variable calculations.

You can program several NC commands in one NC block, provided they have different address letters and do not have opposing functions.

#### Examples

- Permissible combination: N10 G1 X100 Z2 M8
- Non-permissible combination: N10 G1 X100 Z2 G2 X100 Z2 R30 (same address letters are used more than once) or N10 M3 M4 (opposing functionality)

#### NC address parameters

The address parameters consist of 1 or 2 letter(s) followed by

- A value
- A mathematical expression
- A question mark—simplified geometry programming (VGP)
- A letter "i" to designate incremental address parameters (examples: Xi..., Ci..., XKi..., YKi..., etc.)
- A # variable
- A constant (\_constname)

#### Examples:

- X20 [Absolute dimension]
- Zi-35.675 [Incremental dimension]
- X? [Simplified geometry programming]
- X#I1 [Variable programming]
- X(#g12+1) [Variable programming]
- X(37+2)\*SIN(30) [Mathematical expression]
- X(20\*\_pi) [Expression with constant]



# 4.1 Programming in DIN/ISO mode

# Creating, editing and deleting NC blocks

# Make NC block:



- Press the INS key. The Control creates a new NC block below the cursor position.
- Alternatively you can program the NC command directly. The Control creates a new NC block or inserts the NC command in the existing NC block.

# Delete the NC block:

Position the cursor on the NC block to be deleted.



Press the DEL key. The Control deletes the NC block.

# Add an NC element:

Position the cursor on an element of the NC block (NC block number, G or

M command, address parameter, etc.).

▶ Insert NC element (G, M, T function, etc.).

# Change NC element:

Position the cursor on an element of the NC block (NC block number, G or

M command, address parameter, etc.) or the section code.



Press ENTER or double-click with the left mouse key. The Control activates a dialog box which displays the block number, the number of the G or M function, or the address parameters, which can then be edited.

#### **Delete NC element:**

Position the cursor on an element of the NC block (NC block number, G or

M command, address parameter, etc.).



Press the DEL key. The NC element highlighted by the cursor and all the related elements are deleted. Example: If the cursor is located on a G command, the address parameters are also deleted.

# **Address parameters**

Coordinates can be programmed absolutely or incrementally. If you do not make any entry for X, Y, Z, XK, YK, C, the coordinates of the block previously executed will be retained (modal).

The Control calculates missing coordinates in the principal axes X, Y or Z if you program "?" (simplified geometry programming).

The machining functions G0, G1, G2, G3, G12 and G13 are modal. This means that the Control uses the previous G command if the address parameters X, Y, Z, I or K in the following block have been programmed without a G code. However, the address parameters must have been programmed as absolute values.

The Control supports the use of variables and mathematical expressions as address parameters.

## To edit address parameters:

- Call the dialog box.
- > Position the cursor in the input field and enter/change the values, or
- ▶ Use the additional input options provided by the soft keys.
  - Enter "?" (simplified geometry programming)
  - Switch from incremental to absolute, or vice versa
  - Activate variable input
  - Load the contour reference

#### Simplified geometry programming:

You can use simplified geometry programming when radii, target or center point coordinates are missing.

- ▶ Press the ? soft key.
- Press the ? soft key again to display further options.

Simplified geometry programming provides the following options:

- **?**: The control calculates the value.
- ?>: The control calculates the value. If there are two possible solutions, the control uses the higher value.
- ?<: The control calculates the value. If there are two possible solutions, the control uses the lower value.</p>



#### Soft key in the G dialog Alternately shows and hides the help Help graphics graphic Opens the alphabetic keyboard for Variables entering variables (GOTO key) Inserts the question mark for activating ? the simplified geometry programming Activates incremental programming for Incremental the current input parameter Allows transferring the contour Contour references for NS and NE reference

# **Fixed cycles**

HEIDENHAIN recommends programming a fixed cycle as follows:

- Insert the tool
- Define the cutting data
- Position the tool in front of the working area
- Define the safety clearance
- Cycle call

Æ

- Retract the tool
- Move to tool change point

Remember when omitting cycle programming steps during optimization:

- A special feed rate remains in effect until the next feed command (for example the finishing feed rate during recessing cycles).
- Some cycles traverse diagonally back to the starting point if you use the standard programming (for example roughing cycles).

# Typical structure of a fixed cycle

| MACHINING        |                             |
|------------------|-----------------------------|
| N G59 Z          | Zero point shift            |
| N G26 S          | Define the speed limit      |
| N G14 Q          | Move to tool change point   |
| ····             |                             |
| N., T.,          | Insert the tool             |
| N G96 S G95 F M4 | Define the technology data  |
| N G0 X Z         | Pre-position                |
| N G47 P.         | Define the safety clearance |
| N G810 NS NE     | Cycle call                  |
| N G0 X Z         | If necessary, retract       |
| N G14 Q0         | Move to tool change point   |
| ····             |                             |

**DIN Programming** 

# Subprograms, expert programs

Subprograms are used to program the contour or the machining process.

In the subprogram, transfer parameters are available as variables. You can fix the designation of the transfer parameters and illustrate them in help graphics (See "Subprograms" on page 430.).

In every subprogram, the local variables  $\#\mathrm{I1}$  to  $\#\mathrm{I99}$  are available for internal calculations.

Subprograms can be nested up to six times. Nesting means that a subprogram calls a further subprogram, etc.

If a subprogram is to be run repeatedly, enter the number of times the subprogram is to be repeated in the Q parameter.

The Control distinguishes between local and external subprograms.

- Local subprograms are in the file of the NC main program. Local subprograms can only be called in from their corresponding main programs.
- **External subprograms** are stored in separate NC files and can be called in from any NC main program or other NC subprograms.

#### **Expert programs**

An expert program is a subprogram that executes complex processes and is adapted to the machine configurations. Expert programs are usually provided by the machine tool builder.

# NC program conversion

For programming and user communication, keep in mind that the Control interprets the NC program up to the fixed word MACHINING in the program selection. The MACHINING section is not interpreted until you select **Cycle on**.

# **DIN/ISO** programs of predecessor controls

The DIN program formats of the predecessor controls MANUALplus 4110 and CNC PILOT 4290 differ from the format of the MANUALplus 620. However, you can use the program converter to adapt programs of the predecessor control to the new control.

When opening an NC program, the Control recognizes the programs of predecessor controls. The program concerned will be converted after a confirmation prompt. "CONV\_..." will be prefixed to the program name.

This converter is also part of the Transfer submode.

DIN/ISO programs not only have new solutions for tool management, technology data, etc., but also for contour description and variable programming.

# Remember the following when converting **DIN/ISO programs of the MANUALplus 4110**:

- Tool call: The loading of the T number depends on whether the program is a "multifix program" (2-digit T number) or "turret program" (4-digit T number).
  - 2-digit T number: The T number is loaded as "ID" and entered as the T number "T1".
- 4-digit T number (Tddpp): The first two digits of the T number (dd) are loaded as "ID" and the last two (pp) as "T".
- Workpiece-blank definition: A G20/G21 workpiece-blank definition of the MANUALplus 4110 becomes an AUXILIARY BLANK.
- Contour descriptions: In MANUALplus 4110 programs, the fixed cycles are followed by the contour description. During conversion the contour description is converted to an AUXILIARY CONTOUR. The associated cycle in the MACHINING section then refers to this auxiliary contour.
- Variable programming: Variable accesses to tool data, machine dimensions, D compensation values, parameter data and events cannot be converted. These program sequences have to be adapted.
- **M functions** are left unchanged.
- Inches or metric: The converter cannot detect the unit of measure of the MANUALplus 4110 program. Consequently, no unit of measure is entered in the target program. This has to be completed by the user.

Remember the following when converting **DIN programs of the CNC PILOT 4290**:

- **Tool call** (T commands of the TURRET section):
  - T commands containing a reference to the tool database are left unchanged (example: T1 ID"342-300.1").
  - T commands containing tool data cannot be converted.
- Variable programming: Variable accesses to tool data, machine dimensions, D compensation values, parameter data and events cannot be converted. These program sequences have to be adapted.
- **M functions** are left unchanged.
- **Names of external subprograms:** When an external subprogram is called, the converter prefixes "CONV\_..." to the name.



If the DIN program contains nonconvertible elements, the corresponding NC block is saved as a comment. The word WARNING is inserted in front of this comment. Depending on the situation, the nonconvertible command is taken into the comment line, or the nonconvertible NC block follows the comment.



HEIDENHAIN recommends adapting converted NC programs to the circumstances of the Control and then testing them before using them for production.

# 4.1 Programming in DIN/ISO mode

# "Geometry" menu item

The **Geo(metry) menu item** contains functions for contour description. Select the "Geo" menu item in DIN/ISO mode to access the following menu items.

- **G**: Direct entry of a G code
- Line: Direct entry of a line segment G1
- Circle: Description of a circular arc (G2, G3, G12, G13)
- Form: Description of form elements
- Front: Functions for contour descriptions on the front face
- Surface: Functions for contour descriptions on the lateral surface
- ICP, Extras, Graph.: See "Shared menu items" on page 43.



Back to the DIN/ISO main menu

# "Machining" menu item

The **"Mach(ining)" menu item** contains functions for programming the machining operation. Select the "Mach" menu item in DIN/ISO mode to access the following functions:

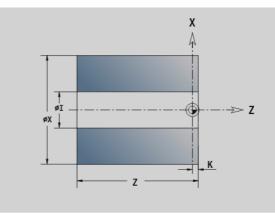
- **G**: Direct entry of a G code
- **G menu**: Menu items for machining tasks
- **M**: Direct entry of an M function
- **M menu**: Menu items for switching tasks
- T: Direct tool call
- **F**: Feed per revolution G95
- **S**: Cutting speed G96
- Extras, Graph.: See "Shared menu items" on page 43.



Back to the DIN/ISO main menu

smart.Turn → Machine 🏷 Tool editor ) B 🗰 G 👫 Line 🏥 Cir 🗰 Form 🗰 Front 🗰 Lateral 🗰 ICP 🎬 Extras 🏭 Graph. 🗰 🛪 bar.nc 拱 Linear pattern G401 N 7 G1 X50 N 8 G1 Z-48 N 9 G1 X8 📫 Circular pattern G402 Bore hole G300 Start point G180 ACHTNING Line 6181 N 58 UNIT ID\*STAF1\* [Program N 51 [vunit ID=STAF1\* 50=\* 52 L'InitStart\*V1 ##Girle 0 N 53 G26 S3808 ##Girle 0 N 54 G14 00 ##Figures N 55 END\_0F\_UNIT S2829550533 ##Y axis 🗰 Circle cv G182 END PGM Circle ccw G103 OF OFF M07 N 180 UNIT ID\*G820 G80\* N 181 (Sunit ID=\*G820 N 182 T1 N 183 G36 S300 G35 F0 N 184 M8 N 185 G0 X52 Z2 N 186 G47 P2 N 187 G820 P1 10.5 K0 N 187 G88 X550 Z58 XEE [G820 Roughing, direct transverse] OFF TNC:\Project\SMART\_KAPITEL4\ncps\bar.nc 09:37

| G            | G-menu 👖 M 🖬 M-menu 🗰 T 📑 F 👬 S 🕌 Extras 🐺 Graph. 📰 🛪                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |  |  |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--|--|
| bar.n        | Single path                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |  |  |
| N 7<br>N 8   | Turn cycles 🔹 🕨 🛗 Roughing 🕨 🏭 Roughing longitudinal G810                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | - 💶     |  |  |
|              | Tool Finishing Roughing transversal G820                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         |  |  |
| MACUTA       | 🚮 Datum, allowance 🕨 🎆 Recessg 🕨 🏥 Parallel contour 🛛 G830                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |  |  |
|              | Touch probe cycles 🕨 🗰 Thread 🕨 🎫 bidirectional 🛛 6835                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |  |  |
| N 50<br>N 51 | THE TAXABLE TAXAB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | END PGM |  |  |
| N 52         | Feed rate, rpn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | → 😔 of  |  |  |
| N 53<br>N 54 | HILL HAR A REAL PROPERTY AND A REAL PROPERTY A | OFF (   |  |  |
| N 55         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |  |  |
| N 100        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |  |  |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |  |  |
| N 101        | <pre>[</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |  |  |


# 4.2 Definition of workpiece blank

# Chuck part bar/tube G20-Geo

G20 defines the contour of a cylinder/hollow cylinder.

#### Parameters

- X Cylinder/hollow cylinder diameter
  - Diameter of circumference of a polygonal blank
- Z Length of the blank
- K Right edge (distance between workpiece zero point and right edge)
- I Inside diameter of hollow cylinders



#### **Beispiel: G20-Geo**



# Cast part G21-Geo

G21 generates the contour of the blank part from the contour of the finished part—plus the equidistant oversize P.

#### Parameters

- P Equidistant oversize (reference: finished part contour)
- Q Bore hole Y/N (default: 0)
  - 0: Without hole
  - 1: With hole



G21 cannot be used to describe an "auxiliary blank."

#### **Beispiel: G21-Geo**

| BLANK                     |
|---------------------------|
| N1 G21 P5 Q1 [cast blank] |
|                           |
| FINISHED                  |
| N2 G0 X30 Z0              |
| N3 G1 X50 BR-2            |
| N4 G1 Z-40                |
| N5 G1 X65                 |
| N6 G1 Z-70                |
|                           |

1

# 4.3 Basic contour elements

# Starting point of turning contour G0-Geo

G0 defines the starting point of a turning contour.

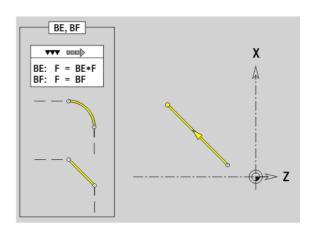
#### Parameters

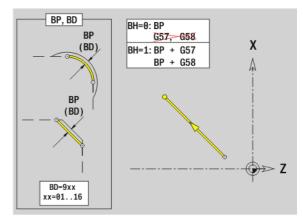
- X Starting point of contour (diameter value)
- Z Starting point of contour
- PZ Starting point of contour (polar radius)
- W Starting point of contour (polar angle)

**Beispiel: G0-Geo** 

| · · · ·                                  |
|------------------------------------------|
| FINISHED                                 |
| N2 G0 X30 Z0 [starting point of contour] |
| N3 G1 X50 BR-2                           |
| N4 G1 Z-40                               |
| N5 G1 X65                                |
| N6 G1 Z-70                               |
|                                          |

# Machining attributes for form elements


All the basic contour elements contain the chamfer/rounding form element (BR). You can define machining attributes for this form element and for all the other form elements (recesses, undercuts).


#### Parameters

BE Special feed factor for the chamfer/rounding arc during the finishing cycle (default: 1)

Special feed rate = active feed rate \* BE

- BF Special feed rate for the chamfer/rounding arc during the finishing cycle (default: no special feed rate)
- BD Additive compensation number for the chamfer/rounding arc (901-916)
- BP Equidistant oversize (at constant distance) for the chamfer/ rounding arc
- BH Type of oversize for the chamfer/rounding arc
  - 0: Absolute oversize
  - 1: Additive oversize

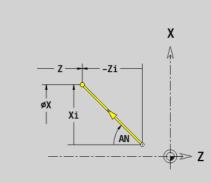


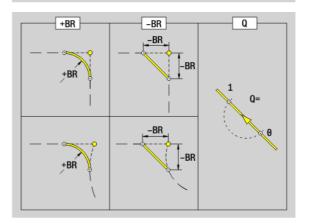


# Line segment in a contour G1-Geo

G1 defines a line segment in a turning contour.

#### Parameters


- X End point of contour element (diameter value)
- Z End point of contour element
- AN Angle to rotary axis (for angle direction see graphic support window)
- Q Point of intersection. End point if the line segment intersects a circular arc (default: 0):
  - 0: Near point of intersection
  - 1: Far point of intersection
- BR Chamfer/rounding. Defines the transition to the next contour element. When entering a chamfer/rounding, program the theoretical end point.
  - No input: Tangential transition
  - BR=0: No tangential transition
  - BR>0: Rounding radius
  - BR<0: Width of chamfer
- PZ End point of contour element (polar radius; reference: workpiece zero point)
- W End point of contour element (polar angle; reference: workpiece zero point)
- AR Angle to rotary axis (AR corresponds to AN)
- R Length of line
- BE, BF, BD, BP and BH (see "Machining attributes for form elements" on page 208)
- FP Do not machine element (only necessary for TURN PLUS):
  - 0: Do not machine basic element (straight line)
  - 1: Do not machine overlay element (chamfer or rounding)
  - 2: Do not machine basic and overlay elements
  - Measuring cut oversize (measuring cut diameter)
- KC Length of measuring cut
- HC Measuring cut counter: Number of workpieces after which a measurement is performed




IC

#### Programming

- X, Z: Absolute, incremental, modal or "?"
- **ANI:** Angle to the subsequent element
- **ARi:** Angle to the previous element





# Example: G1-Geo

210

| FINISHED               |                                                 |
|------------------------|-------------------------------------------------|
| N2 G0 X0 Z0            | Starting point                                  |
| N3 G1 X50 BR-2         | Vertical line with chamfer                      |
| N4 G1 Z-20 BR2         | Horizontal line with radius                     |
| N5 G1 X70 Z-30         | Oblique cut with absolute target coordinates    |
| N6 G1 Zi-5             | Horizontal line segment, incremental            |
| N7 G1 Xi10 AN30        | Incremental and angle                           |
| N8 G1 X92 Zi-5         | Incremental and absolute mixed                  |
| N9 G1 X? Z-80          | Calculate the X coordinate                      |
| N10 G1 X100 Z-100 AN10 | End point and angle with unknown starting point |
|                        |                                                 |

DIN Programming

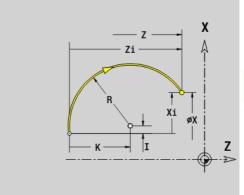
i

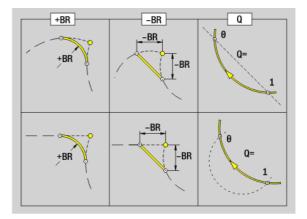
# 4.3 Basic cont<mark>our</mark> elements

# Circular arc of turning contour G2/G3-Geo

G2/G3 defines a circular arc in a contour with **incremental** center dimensioning. Direction of rotation (see help graphic):

- G2: In clockwise direction
- G3: In counterclockwise direction


# Parameters


- X End point of contour element (diameter value)
- Z End point of contour element
- R Radius
- I Center (distance from starting point to center as radius)
- K Center (distance from starting point to center)
- Q Point of intersection. End point if the circular arc intersects a line segment or another circular arc (default: 0):
  - 0: Near point of intersection
  - 1: Far point of intersection
- BR Chamfer/rounding. Defines the transition to the next contour element. When entering a chamfer/rounding, program the theoretical end point.
  - No input: Tangential transition
  - BR=0: No tangential transition
  - BR>0: Rounding radius
  - BR<0: Width of chamfer
- BE, BF, BD, BP and BH (see "Machining attributes for form elements" on page 208)
- FP Do not machine element (only necessary for TURN PLUS):
  - 0: Do not machine basic element (circle)
  - 1: Do not machine overlay element (chamfer or rounding)
  - 2: Do not machine basic and overlay elements

Programming X, Z: Absolute, incremental, modal or "?"

## Example: G2-, G3-Geo

| FINISHED                                                                                                         |                                       |
|------------------------------------------------------------------------------------------------------------------|---------------------------------------|
| N1 G0 X0 Z-10                                                                                                    |                                       |
| N2 G3 X30 Z-30 R30                                                                                               | Target point and radius               |
| N3 G2 X50 Z-50 I19.8325 K-2.584                                                                                  | Target point and center, incremental  |
| N4 G3 Xi10 Zi-10 R10                                                                                             | Target point (incremental) and radius |
| N5 G2 X100 Z? R20                                                                                                | Unknown target point coordinate       |
| N6 G1 Xi-2.5 Zi-15                                                                                               |                                       |
| and the second |                                       |





# Circular arc of turning contour G12/G13-Geo

G12/G13 defines a circular arc in a contour with **absolute** center dimensioning. Direction of rotation (see help graphic):

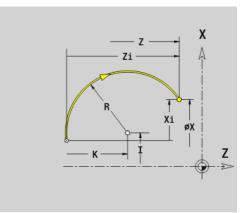
- G12: In clockwise direction
- G13: In counterclockwise direction

#### Parameters

- X End point of contour element (diameter value)
- Z End point of contour element
  - Center (radius dimension)
- K Center

I

Ο


- R Radius
  - Point of intersection. End point if the circular arc intersects a line segment or another circular arc (default: 0):
    - 0: Near point of intersection
    - 1: Far point of intersection
- BR Chamfer/rounding. Defines the transition to the next contour element. When entering a chamfer/rounding, program the theoretical end point.
  - No input: Tangential transition
  - BR=0: No tangential transition
  - BR>0: Rounding radius
  - BR<0: Width of chamfer
- PZ End point of contour element (polar radius; reference: workpiece zero point)
- W End point of contour element (polar angle; reference: workpiece zero point)
- PM Center point (polar radius; reference: workpiece zero point)
- WM Center point (polar angle; reference: workpiece zero point)
- AR Starting angle (tangential angle to rotary axis)
- AN End angle (tangential angle to rotary axis)


BE, BF, BD, BP and BH (see "Machining attributes for form elements" on page 208)

- FP Do not machine element (only necessary for TURN PLUS):
  - 0: Do not machine basic element (circle)
  - 1: Do not machine overlay element (chamfer or rounding)
  - 2: Do not machine basic and overlay elements

## Programming

- **X, Z:** Absolute, incremental, modal or "?"
- **ARi:** Angle to the previous element
- **ANI:** Angle to the subsequent element





# Example: G12-, G13-Geo

| ····                              |                                                           |
|-----------------------------------|-----------------------------------------------------------|
| FINISHED                          |                                                           |
| N1 G0 X0 Z-10                     |                                                           |
| ····                              |                                                           |
| N7 G13 Xi-15 Zi15 R20             | Target point (incremental) and radius                     |
| N8 G12 X? Z? R15                  | Only the radius is known                                  |
| N9 G13 X25 Z-30 R30 BR10 Q1       | Rounding arc in transition and selection of intersections |
| N10 G13 X5 Z-10 I22.3325 K-12.584 | Target point and center, absolute                         |
| · · · ·                           |                                                           |

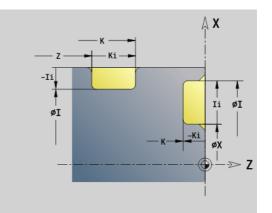


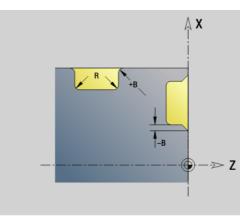
# 4.4 Contour form elements

# **Recess (standard) G22-Geo**

G22 defines a recess on the previously programmed paraxial reference element.

#### Parameters


- X Starting point of recess on the face (diameter)
- Z Starting point of recess on the lateral surface
  - Inside corner (diameter value)
    - Recess on face: End point of the recess
    - Recess on lateral surface: Recess base
- K Inside corner
  - Recess on face: Recess base
  - Recess on lateral surface: End point of the recess
- li Inside corner—incremental (pay attention to algebraic sign!)
  - Recess on face: Recess width
  - Recess on lateral surface: Recess depth
- Ki Inside corner—incremental (pay attention to algebraic sign!)
  - Recess on face: Recess depth
  - Recess on lateral surface: Recess width
- B Outside radius/chamfer at both sides of the recess (default: 0)
  - B>0: Radius of rounding
  - B<0: Width of chamfer
- R Inside radius in both corners of recess (default: 0)


BE, BF, BD, BP and BH (see "Machining attributes for form elements" on page 208)

- FP Do not machine element (only necessary for TURN PLUS):
  - 1: Do not machine recess



Program only X or Z for the starting point.





I

| Example: G22-Geo                 |                                           |
|----------------------------------|-------------------------------------------|
| FINISHED                         |                                           |
| N1 G0 X40 Z0                     |                                           |
| N2 G1 X80                        |                                           |
| N3 G22 X60 I70 Ki-5 B-1 R0.2     | Recess on face, depth is incremental      |
| N4 G1 Z-80                       |                                           |
| N5 G22 Z-20 I70 K-28 B1 R0.2     | Longitudinal recess, width is absolute    |
| N6 G22 Z-50 li-8 Ki-12 B0.5 R0.3 | Longitudinal recess, width is incremental |
| N7 G1 X40                        |                                           |
| N8 G1 Z0                         |                                           |
| N9 G22 Z-38 li6 K-30 B0.5 R0.2   | Longitudinal recess, inside               |
|                                  |                                           |



# 4.4 Contour fo<mark>rm</mark> elements

L

# Recess (general) G23-Geo

G23 defines a recess on the previously programmed linear reference element. The reference element can also be oblique.

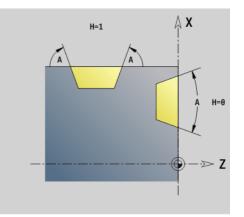
#### Parameters H Type of

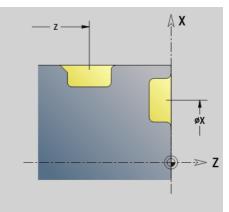
- Type of recess (default: 0)
  - 0: Symmetrical recess
  - 1: Relief turn
- X Center point of recess on the face (diameter)

No input: Position is calculated

Z Center point of recess on the lateral surface

No input: Position is calculated


- Recess depth and recess position
  - I>0: Recess at the right of the reference element
  - I<0: Recess at the left of the reference element</p>
- K Recess width (without chamfer/rounding arc)
- U Recess diameter (diameter of recess base). Use U only if the reference element runs parallel to the Z axis
- A Recess angle (default: 0)
  - $\blacksquare$  H=0: Angle between recess edges (0° <= A < 180°)
  - H=1: Angle between reference line and recess edge (0° < A <= 90°)
- B Outside radius/chamfer at corner near the starting point (default: 0)
  - B>0: Radius of rounding
  - B<0: Width of chamfer
- P Outside radius/chamfer at corner far from the starting point (default: 0)
  - P>0: Radius of the rounding arc
  - P<0: Chamfer width
- R Inside radius in both corners of recess (default: 0)


BE, BF, BD, BP and BH (see "Machining attributes for form elements" on page 208)


- FP Do not machine element (only necessary for TURN PLUS):
  - 1: Do not machine recess



The Control refers the recess depth to the reference element. The recess base runs parallel to the reference element.









| elements |
|----------|
| form     |
| r fo     |
| tou      |
| Conto    |
| 4        |
| 4        |

### Example: G23-Geo

| FINISHED                                    |                                           |
|---------------------------------------------|-------------------------------------------|
| N1 G0 X40 Z0                                |                                           |
| N2 G1 X80                                   |                                           |
| N3 G23 H0 X60 I-5 K10 A20 B-1 P1 R0.2       | Recess on face, depth is incremental      |
| N4 G1 Z-40                                  |                                           |
| N5 G23 H1 Z-15 K12 U70 A60 B1 P-1 R0.2      | Longitudinal recess, width is absolute    |
| N6 G1 Z-80 A45                              |                                           |
| N7 G23 H1 X120 Z-60 I-5 K16 A45 B1 P-2 R0.4 | Longitudinal recess, width is incremental |
| N8 G1 X40                                   |                                           |
| N9 G1 Z0                                    |                                           |
| N10 G23 H0 Z-38 I-6 K12 A37.5 B-0.5 R0.2    | Longitudinal recess, inside               |
|                                             |                                           |



### Thread with undercut G24-Geo

G24 defines a linear basic element with a longitudinal thread and subsequent thread undercut (DIN 76). The thread is an outside or inside thread (metric ISO fine-pitch thread DIN 13 Part 2, Series 1).

### **Parameters** F Thread

- Thread pitch
- I Undercut depth (radius)
- K Width of undercut
- Z End point of the undercut

BE, BF, BD, BP and BH (see "Machining attributes for form elements" on page 208)

- FP Do not machine element (only necessary for TURN PLUS):
  - 1: Do not machine element



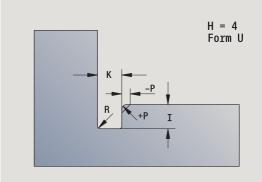
Program G24 only in closed contours.The thread is machined with G31.

### Example: G24-Geo

| FINISHED                                                                                                         |                           |
|------------------------------------------------------------------------------------------------------------------|---------------------------|
| N1 G0 X40 Z0                                                                                                     |                           |
| N2 G1 X40 BR-1.5                                                                                                 | Starting point for thread |
| N3 G24 F2 I1.5 K6 Z-30                                                                                           | Thread with undercut      |
| N4 G1 X50                                                                                                        | Next transverse element   |
| N5 G1 Z-40                                                                                                       |                           |
| and the second |                           |

### **Undercut contour G25-Geo**

G25 generates the undercut contours listed below. The undercuts are only possible in inside contour corners in which the transverse element is parallel to the X axis. Program G25 after the first element. You specify the undercut type in parameter H.


### Undercut type U (H=4)

### Parameters

- H Undercut type U: H=4
- I Undercut depth (radius)
- K Width of undercut
- R Inside radius in both corners of recess (default: 0)
- P Outside radius/chamfer (default: 0)
  - P>0: Radius of the rounding arc
  - P<0: Chamfer width

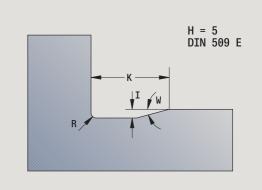
BE, BF, BD, BP and BH (see "Machining attributes for form elements" on page 208)

- FP Do not machine element (only necessary for TURN PLUS):
  - 1: Do not machine undercut



### Beispiel: Call G25-Geo type U

| N G1 Z-15 [longitudinal element]   |
|------------------------------------|
| N G25 H4 I2 K4 R0.4 P-0.5 [type U] |
| N G1 X20 [transverse element]      |
|                                    |


### Undercut DIN 509 E (H=0.5)

### Parameters

- H Undercut type DIN 509 E: H=0 or H=5
- I Undercut depth (radius)
- K Width of undercut
- R Undercut radius (in both corners of the undercut)
- W Undercut angle

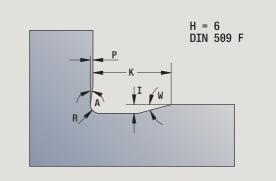
BE, BF, BD, BP and BH (see "Machining attributes for form elements" on page 208)

The Control uses the diameter to calculate the parameters that you do not define.



### Beispiel: Call G25-Geo DIN 509 E

| N G1 Z-15 [longitudinal element] |
|----------------------------------|
| N G25 H5 [DIN 509 E]             |
| N G1 X20 [transverse element]    |
|                                  |


### Undercut DIN 509 F (H=6)

### Parameters

- H Undercut type DIN 509 F: H=6
- I Undercut depth (radius)
- K Width of undercut
- R Undercut radius (in both corners of the undercut)
- P Face depth
- W Undercut angle
- A Transverse angle

BE, BF, BD, BP and BH (see "Machining attributes for form elements" on page 208)

The Control uses the diameter to calculate the parameters that you do not define.

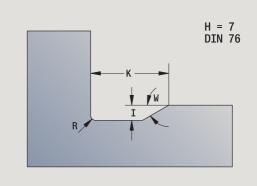


### Beispiel: Call G25-Geo DIN 509 F

| N G1 Z-15 [longitudinal element] |
|----------------------------------|
| N G25 H6 [DIN 509 F]             |
| N G1 X20 [transverse element]    |
|                                  |

4.4 Contour form elements

### 4.4 Contour fo<mark>rm</mark> elements


### Undercut DIN 76 (H=7)

Program only FP. All the other values are automatically calculated from the thread pitch in the standard table if they are not defined.

### Parameters

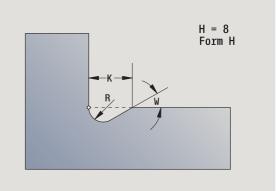
- H Undercut type DIN 76: H=7
- I Undercut depth (radius)
- K Width of undercut
- R Undercut radius in both corners of the undercut (default: R=0.6\*I)
- W Undercut angle (default: 30°)
- FP Thread pitch

BE, BF, BD, BP and BH (see "Machining attributes for form elements" on page 208)



### Beispiel: Call G25-Geo DIN 76

| N G1 Z-15 [longitudinal element] |  |
|----------------------------------|--|
| N G25 H7 FP2 [DIN 76]            |  |
| N G1 X20 [transverse element]    |  |
|                                  |  |


### Undercut type H (H=8)

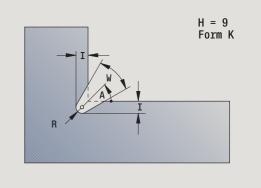
If you do not enter W, the angle will be calculated on the basis of K and R. The end point of the undercut is then located at the "contour corner."

### Parameters

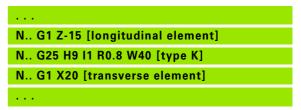
- H Undercut type H: H=8
- K Width of undercut
- R Undercut radius—no input: The circular element is not machined
- W Plunge angle-no input: W is calculated

BE, BF, BD, BP and BH (see "Machining attributes for form elements" on page 208)




### Beispiel: Call G25-Geo type H

| N G1 Z-15 [longitudinal element] |
|----------------------------------|
| N G25 H8 K4 R1 W30 [type H]      |
| N G1 X20 [transverse element]    |
| •••                              |


### Undercut type K (H=9)

### Parameters

- H Undercut type K: H=9
- I Undercut depth
- R Undercut radius—no input: The circular element is not machined
- W Undercut angle
- A Angle to longitudinal axis (default: 45°)
- BE, BF, BD, BP and BH (see "Machining attributes for form elements" on page 208)



### Beispiel: Call G25-Geo type K

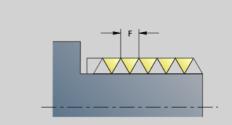


### 4.4 Contour fo<mark>rm</mark> elements

### Thread (standard) G34-Geo

G34 defines a simple or concatenated external or internal thread (metric ISO fine-pitch thread DIN 13 Series 1). The Control calculates all the required values.

### Parameters


F Thread pitch (default: pitch from the standard table)

Threads are concatenated by programming several G1/G34 blocks after each other.



You need to program a linear contour element as a reference before G34 or in the NC block containing G34.

Machine the thread with G31.



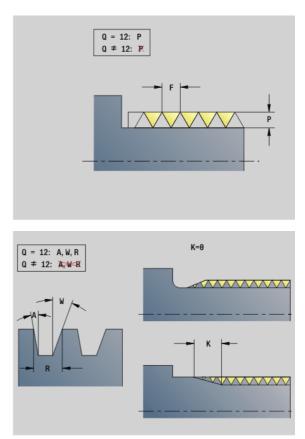
### Beispiel: G34

FI N N N N N N N N N N N N N

| NISHED                                    |
|-------------------------------------------|
| 1 G0 X0 Z0                                |
| 2 G1 X20 BR-2                             |
| 3 G1 Z-30                                 |
| 4 G34 [metric ISO]                        |
| 5 G25 H7 I1.7 K7                          |
| 6 G1 X30 BR-1.5                           |
| 7 G1 Z-40                                 |
| 8 G34 F1.5 [metric ISO fine-pitch thread] |
| 9 G25 H7 I1.5 K4                          |
| 10 G1 X40                                 |
| 11 G1 Z-60                                |
|                                           |

1

### Thread (general) G37-Geo


G37 defines the different types of thread. Multi-start threads and concatenated threads are possible. Threads are concatenated by programming several G01/G37 blocks after each other.

### Parameters Q Type of

- Type of thread (default: 1)
  - 1: Metric ISO fine-pitch thread (DIN 13 Part 2, Series 1)
  - 2. Metric ISO thread (DIN 13 Part 1, Series 1)
  - 3: Metric ISO tapered thread (DIN 158)
  - 4: Metric ISO tapered fine-pitch thread (DIN 158)
  - 5: Metric ISO trapezoid thread (DIN 103 Part 2, Series 1)
  - 6: Flat metric trapezoid thread (DIN 380 Part 2, Series 1)
  - 7: Metric buttress thread (DIN 513 Part 2, Series 1)
  - 8: Cylindrical round thread (DIN 405 Part 1, Series 1)
  - 9: Cylindrical Whitworth thread (DIN 11)
  - 10: Tapered Whitworth thread (DIN 2999)
  - 11: Whitworth pipe thread (DIN 259)
  - 12: Nonstandard thread
  - 13: UNC US coarse thread
  - 14: UNF US fine-pitch thread
  - 15: UNEF US extra-fine-pitch thread
  - 16: NPT US taper pipe thread
  - 17: NPTF US taper dryseal pipe thread
  - 18: NPSC US cylindrical pipe thread with lubricant
  - 19: NPFS US cylindrical pipe thread without lubricant
- F Thread pitch
  - Required for Q=1, 3 to 7, 12.
  - For other thread types, F is calculated from the diameter if it was not programmed.
- P Thread depth—enter only for Q=12
- K Run-out length for threads without undercut (default: 0)
- D Reference point (default: 0)
  - 0: Runout of thread at the end of the reference element
  - 1: Runout of thread at the beginning of the reference element
- H Number of thread turns (default: 1)
- A Thread angle at left—enter only for Q=12
- W Thread angle at right—enter only for Q=12
- R Thread width—enter only for Q=12
- E Variable pitch (default: 0)

Increase/decrease the pitch per revolution by E.

- V Direction of thread
  - 0: Right-hand thread
  - 1: Left-hand thread





| FINISHED                                   |
|--------------------------------------------|
| N1 G0 X0 Z0                                |
| N2 G1 X20 BR-2                             |
| N3 G1 Z-30                                 |
| N4 G37 Q2[metric ISO]                      |
| N5 G25 H7 I1.7 K7                          |
| N6 G1 X30 BR-1.5                           |
| N7 G1 Z-40                                 |
| N8 G37 F1.5 [metric ISO fine-pitch thread] |
| N9 G25 H7 FP1.5                            |
| N10 G1 X40                                 |
| N11 G1 Z-60                                |
|                                            |

4.4 Contour fo<mark>rm</mark> elements



### Beispiel: G37 Concatenated

- Before G37, program a linear contour element as a reference.
- Machine the thread with G31.
- For standard threads, the parameters P, R, A and W are defined by the Control.
- Use Q=12 if you wish to use individual parameters.

### Danger of collision!

The thread is generated to the length of the reference element. Another linear element without undercut is to be programmed as overrun.

| AUXILIARY CONTOUR ID"G37_Concatenated" |
|----------------------------------------|
| N37 G0 X0 Z0                           |
| N 38 G1 X20                            |
| N 39 G1 Z-30                           |
| N 40 G37 F2[metric ISO]                |
| N 41 G1 X30 Z-40                       |
| N 42 G37 Q2                            |
| N 43 G1 Z-70                           |
| N 44 G37 F2                            |
|                                        |

• •

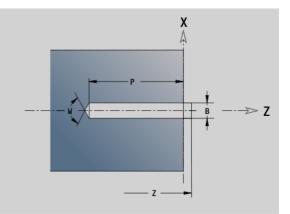
i

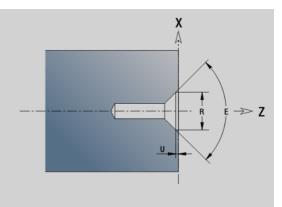
### Bore hole (centric) G49-Geo

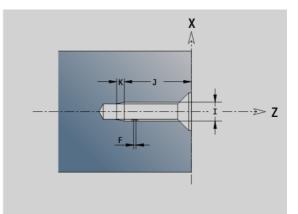
G49 defines a single hole with countersink and thread **at the turning center** (front or rear face). The G49 hole is a form element, not part of the contour.

### Parameters

- Z Starting position for hole (reference point)
- B Hole diameter
- P Depth of hole (excluding point)
- W Point angle (default: 180°)
- R Sinking diameter
- U Sinking depth
- E Sinking angle
- I Thread diameter
- J Thread depth
- K Thread chamfer
- F Thread pitch
- V Left-hand or right-hand thread (default: 0)
  - 0: Right-hand thread
  - 1: Left-hand thread
- A Angle corresponding to the position of the hole (default: 0)


■ A=0°: Front face


- A=180°: Rear side
- O Centering diameter




### Program G49 in the FINISHED section, not in AUXILIARY CONTOUR, FACE or REAR.

Machine the G49 hole with G71...G74.







### 4.5 Attributes for contour description

| Overview of attributes for contour description                                                                                                                                                                                                   |                                                                  |          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|----------|
| G38                                                                                                                                                                                                                                              | Special feed factor for basic elements and form elements—modal   | Page 227 |
| G52                                                                                                                                                                                                                                              | Equidistant oversize for basic elements and form elements—modal  | Page 229 |
| G95                                                                                                                                                                                                                                              | Finishing feed rate for basic elements and form elements—modal   | Page 230 |
| G149                                                                                                                                                                                                                                             | Additive compensation for basic elements and form elements—modal | Page 230 |
|                                                                                                                                                                                                                                                  |                                                                  |          |
| <ul> <li>Once programmed, G38-, G52-, G95- and G149-Geo remain in effect for all contour elements until the function is programmed again without defining parameters.</li> <li>For form elements you can program different attributes</li> </ul> |                                                                  |          |
| For form elements, you can program different attributes                                                                                                                                                                                          |                                                                  |          |

- For form elements, you can program different attributes directly in the definition of the form element (see "Machining attributes for form elements" on page 208).
- The attributes for contour description influence the finishing feed rate of the Cycles G869 and G890, not the finishing feed rate in recessing cycles.

### Feed rate reduction G38-Geo

G38 activates the special feed rate for the finishing cycle G890. The special feed rate applies to basic contour elements and form elements. It is a modal function.

### Parameters

E Special feed factor (default: 1)

Special feed rate = active feed rate \* E



- G38 is a modal function.
- Program G38 before the contour element for which it is intended.
- G38 **replaces** a special feed rate.
- To cancel the special feed factor, program G38 without parameters.

### Attributes for superimposed elements G39-Geo

G39 influences the finishing feed rate of G890 with the form elements:

- Chamfers/rounding arcs (for connecting basic elements)
- Undercuts
- Recesses

**Affected machining:** Special feed rate, surface roughness, additive D compensation, equidistant oversizes.

### Parameters F Feed p

- Feed per revolution
- V Type of surface roughness (see also DIN 4768)
  - 1: General surface roughness (profile depth) Rt1
  - 2: Surface roughness Ra
  - 3: Surface roughness Rz
- RH Surface roughness [µm, inch mode: µinch]
- D Number of the additive compensation (901 <= D <= 916)
- P Oversize (radius)
- H P applies as an absolute or additive value (default: 0)
  - 0: P replaces G57/G58 oversizes
  - 1: P is added to G57/G58 oversizes
- E Special feed factor (default: 1)

Special feed rate = active feed rate \* E



Use surface roughness (V, RH), finishing feed rate (F) and special feed rate ("E") alternately!

- G39 is a non-modal function.
- Program G39 before the contour element for which it is intended.
- G50 preceding a cycle (MACHINING section) cancels a finishing oversize programmed for that cycle with G39.

Function G39 can be replaced by directly entering the attributes in the contour elements dialog. The function is necessary to execute imported programs correctly.

### **Separation point G44**

During automatic program creation with TURN PLUS, you can define the separation point for rechucking with function G44.

### Parameters

- D Location of separation point:
  - O: Start of the basic element as separation point
  - 1: Target of the basic element as separation point



If no separation point was defined, TURNplus uses the largest diameter as separation point for outside machining and the smallest diameter as separation point for inside machining.

### **Oversize G52-Geo**

G52 defines an equidistant oversize that applies to basic contour elements and form elements and is taken into consideration in G810, G820, G830, G860 and G890.

### Parameters

- P Oversize (radius)
- H P applies as an absolute or additive value (default: 0)
  - 0: P replaces G57/G58 oversizes
  - 1: P is added to G57/G58 oversizes

G52 is a modal function.

- Program G52 in the NC block for which it is intended.
- G50 preceding a cycle (MACHINING section) cancels an oversize programmed for that cycle with G52.



### Feed per revolution G95-Geo

G95 influences the finishing feed rate of G890 for basic contour elements and form elements.

### Parameters F Feed

Feed per revolution



The G95 finishing feed rate replaces a finishing feed rate defined in the machining section.

- G95 is a modal function.
- To cancel a finishing feed rate set with G95, program G95 without an input value.

**Beispiel: Attributes in contour description G95** 

| FINISHED                         |
|----------------------------------|
| N1 G0 X0 Z0                      |
| N2 G1 X20 BR-1                   |
| N3 G1 Z-20                       |
| N4 G25 H5 I0.3 K2.5 R0.6 W15     |
| N5 G1 X40 BR-1                   |
| N6 G95 F0.08                     |
| N7 G1 Z-40                       |
| N8 G25 H5 I0.3 K2.5 R0.6 W15 BF0 |
| N9 G95                           |
| N10 G1 X58 BR-1                  |
| N11 G1 Z-60                      |
| •••                              |

### Additive compensation G149-Geo

G149 followed by a D number activates/deactivates an additive compensation function. The Control manages the 16 tool-independent compensation values in an internal table. The compensation values are managed in the **Program Run** submode (see "Program Run submode" in the User's Manual).

### Parameters

- D Additive compensation (default: D900)
  - D=900: Deactivates the additive compensation
  - D=901 to 916: Activates the additive compensation D



Note the direction of contour description.

- Additive compensation is effective from the block in which G149 is programmed.
- Additive compensation remains in effect up to:the next G149 D900,
  - up to the end of the finished part description.

Beispiel: Attributes in contour description G149

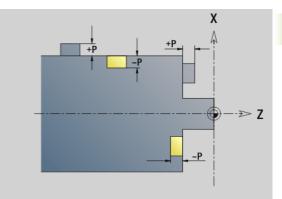
| FINISHED                           |
|------------------------------------|
| N1 G0 X0 Z0                        |
| N2 G1 X20 BR-1                     |
| N3 G1 Z-20                         |
| N4 G25 H5 I0.3 K2.5 R0.6 W15       |
| N5 G1 X40 BR-1                     |
| N6 G149 D901                       |
| N7 G1 Z-40                         |
| N8 G25 H5 I0.3 K2.5 R0.6 W15 BD900 |
| N9 G149 D900                       |
| N10 G1 X58 BR-1                    |
| N 12 G1 Z-60                       |
|                                    |

. . .

### 4.6 C-axis contours— Fundamentals

### Milling contour position

Define the reference plane or the reference diameter in the section code. Specify the depth and position of a milling contour (pocket, island) in the contour definition:


■ With **depth P** programmed in the previous G308 cycle.

Alternatively on figures: Cycle parameter **depth P**.

The **algebraic sign of "P"** defines the position of the milling contour:

- P<0: Pocket
- P>0: Island

| Position of milling contour |                 |                                 |  |  |
|-----------------------------|-----------------|---------------------------------|--|--|
| Р                           | Surface         | Milling floor                   |  |  |
| P<0                         | Z               | Z+P                             |  |  |
| P>0                         | Z+P             | Z                               |  |  |
| P<0                         | Z               | Z–P                             |  |  |
| P>0                         | Z–P             | Z                               |  |  |
| P<0                         | Х               | X+(P*2)                         |  |  |
| P>0                         | X+(P*2)         | Х                               |  |  |
|                             | P           P<0 | P         Surface           P<0 |  |  |



■ X: Reference diameter from the section code

- Z: Reference plane from the section code
- P: Depth from G308 or from cycle parameter



The area milling cycles mill the surface specified in the contour definition. **Islands** within this surface are not taken into consideration.

Contours in more than one plane (hierarchically nested contours):

- A plane begins with G308 and ends with G309.
- G308 defines a new reference plane/reference diameter. The first G308 uses the reference plane defined in the section code. Each following G308 defines a new plane. Calculation: New reference plane = Reference plane + P (from previous G308).
- G309 switches back to the previous reference plane.



### Beginning of pocket/island G308-Geo

G308 defines a new reference plane / reference diameter in hierarchically nested contours.

### Parameters

- P Depth for pockets, height for islands
- ID Name of the contour for reference from units or cycles
- HC Milling/drilling attribute:
  - 1: Contour milling
  - 2: Pocket milling
  - 3: Area milling
  - 4: Deburring
  - 5: Engraving
  - 6: Contour milling and deburring
  - 7: Pocket milling and deburring
  - 14: Do not machine
- Q Milling location:
  - 0: On the contour
  - 1: Inside/left
  - 2: Outside/right
- H Direction:
  - 0: Up-cut milling
  - 1: Climb milling
- D Cutter diameter
- I Limit diameter
- W Angle of the chamfer
- BR Chamfer width
- RB Retraction plane

### End of pocket/island G309-Geo

G309 defines the end of a reference plane. Every reference plane defined with G308 **must** be ended with G309 (See "Milling contour position" on page 231.).

### Example of G308/G309

| ····                             |                                                        |  |
|----------------------------------|--------------------------------------------------------|--|
| FINISHED                         |                                                        |  |
| ····                             |                                                        |  |
| FACE_C Z0                        | Define reference plane                                 |  |
| N7 G308 P-5 ID"Rectangle"        | Beginning of rectangle with depth of –5                |  |
| N8 G305 XK-5 YK-10 K50 B30 R3 A0 | Rectangle                                              |  |
| N9 G308 P-10 ID"Circle"          | Beginning of "full circle in rectangle" with depth –10 |  |
| N10 G304 XK-3 YK-5 R8            | Full circle                                            |  |
| N11 G309                         | End of full circle                                     |  |
| N12 G309                         | End of rectangle                                       |  |
| LATERAL_C X100                   | Define reference diameter                              |  |
| N13 G311 Z-10 C45 A0 K18 B8 P-5  | Linear slot with depth –5                              |  |
| ····                             |                                                        |  |



### Circular pattern with circular slots

For circular slots in circular patterns you program the pattern positions, the center of curvature, the curvature radius and the position of the slots.

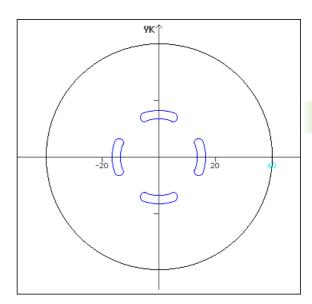
The Control positions the slots as follows:

- Slots are arranged at the distance of the pattern radius about the pattern center if
  - Pattern center = center of curvature and
  - Pattern radius = curvature radius
- Slots are arranged at the distance of the pattern radius + curvature radius about the pattern center if
  - Pattern center <> center of curvature or
  - Pattern radius <> curvature radius

In addition, the position influences the arrangement of the slots:

- Normal position: The starting angle of the slot applies as a **relative** value to the pattern position. The starting angle is added to the pattern position.
- Original position: The starting angle of the slot applies as an absolute value.

The following examples show the programming of a circular pattern with circular slots:


### Slot centerline as reference and normal position

Programming:

- Pattern center = center of curvature
- Pattern radius = curvature radius
- Normal position

These commands arrange the slots at the distance of the pattern radius about the pattern center.

Example: Slot centerline as reference, normal position



| N G402 Q4 K30 A0 XK0 YK0 H0     | Circular pattern, normal position |
|---------------------------------|-----------------------------------|
| N G303 I0 J0 R15 A-20 W20 B3 P1 | Circular slot                     |

### Slot centerline as reference and original position

Programming:

- Pattern center = center of curvature
- Pattern radius = curvature radius
- Original position

These commands arrange all slot at the same position.

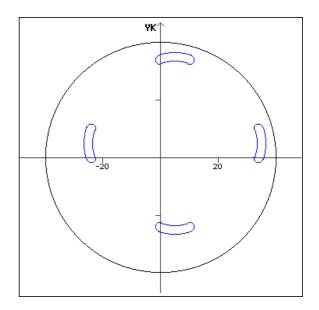
Example: Slot centerline as reference, original position



### N.. G402 Q4 K30 A0 XK0 YK0 H1 N.. G303 I0 J0 R15 A-20 W20 B3 P1

Circular pattern, original position Circular slot

# 4.6 C-axis contours—F<mark>und</mark>amentals


### Center of curvature as reference and normal position

Programming:

- Pattern center <> center of curvature
- Pattern radius = curvature radius
- Normal position

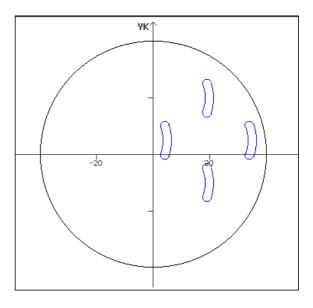
These commands arrange the slots at the distance of the pattern radius plus curvature radius about the pattern center.

Example: Center of curvature as reference, normal position



### N.. G402 Q4 K30 A0 XK5 YK5 H0 N.. G303 I0 J0 R15 A-20 W20 B3 P1

### Circular pattern, normal position Circular slot


### Center of curvature as reference and original position

Programming:

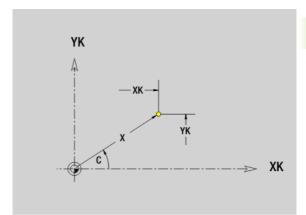
- Pattern center <> center of curvature
- Pattern radius = curvature radius
- Original position

These commands arrange the slots at the distance of the pattern radius plus curvature radius about the pattern center while keeping the starting and ending angle.

Example: Center of curvature as reference and original position



| N G402 Q4 K30 A0 XK5 YK5 H1     | Circular pattern, original position |
|---------------------------------|-------------------------------------|
| N G303 I0 J0 R15 A-20 W20 B3 P1 | Circular slot                       |


### 4.7 Front and rear face contours

### Starting point of front/rear face contour G100-Geo

G100 defines the starting point of a front or rear face contour.

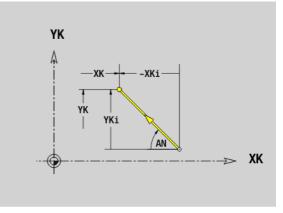
### Parameters

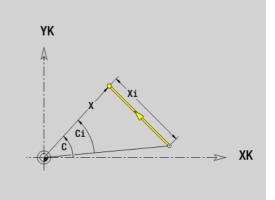
- X Starting point in polar coordinates (diameter)
- C Starting point in polar coordinates (angular dimension)
- XK Starting point in Cartesian coordinates
- YK Starting point in Cartesian coordinates





### Line segment in front/rear face contour G101-Geo


G101 defines a line segment in a contour on the front face/rear face.


### Parameters

- X End point in polar coordinates (diameter)
- C End point in polar coordinates (angular dimension)
- XK End point in Cartesian coordinates
- YK End point in Cartesian coordinates
- AN Angle to positive XK axis
- Q Point of intersection. End point if the line segment intersects a circular arc (default: 0):
  - 0: Near point of intersection
  - 1: Far point of intersection
- BR Chamfer/rounding. Defines the transition to the next contour element. When entering a chamfer/rounding, program the theoretical end point.
  - No input: Tangential transition
  - BR=0: No tangential transition
  - BR>0: Rounding radius
  - BR<0: Width of chamfer
- AR Angle to positive XK axis (AR corresponds to AN)
- R Length of line

### Programming

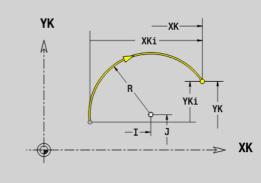
- **XK, YK:** Absolute, incremental, modal or "?"
- **X, C:** Absolute, incremental or modal
- **ARi:** Angle to the previous element
- **ANI:** Angle to the subsequent element

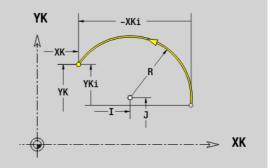


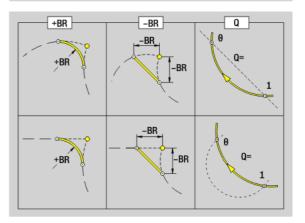


### Circular arc in front/rear face contour G102/ G103-Geo

G102/G103 defines a circular arc in a front or rear face contour. Direction of rotation (see help graphic):


- G102: In clockwise direction
- G103: In counterclockwise direction


### Parameters


- X End point in polar coordinates (diameter)
- C End point in polar coordinates (angular dimension)
- XK End point in Cartesian coordinates
- YK End point in Cartesian coordinates
- R Radius
- I Center in Cartesian coordinates
- J Center in Cartesian coordinates
- Q Point of intersection. End point if the circular arc intersects a line segment or another circular arc (default: 0):
  - 0: Near point of intersection
  - 1: Far point of intersection
- BR Chamfer/rounding. Defines the transition to the next contour element. When entering a chamfer/rounding, program the theoretical end point.
  - No input: Tangential transition
  - BR=0: No tangential transition
  - BR>0: Rounding radius
  - BR<0: Width of chamfer
- XM Center point (polar radius; reference: workpiece zero point)
- CM Center point (polar angle; reference: workpiece zero point)
- AR Starting angle (tangential angle to rotary axis)
- AN End angle (tangential angle to rotary axis)

### Programming

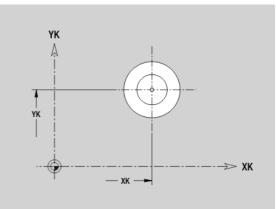
- **XK, YK:** Absolute, incremental, modal or "?"
- **X, C:** Absolute, incremental or modal
- I, J: Absolute, incremental or "?"
- **XM, CM:** Absolute or incremental
- ARi: Angle to the previous element
- ANI: Angle to the subsequent element
- End point must not be the starting point (no full circle).

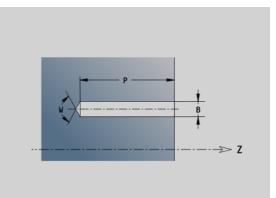


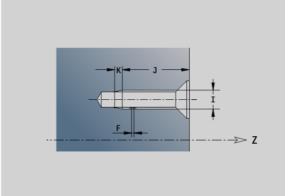




### Bore hole on front/rear face G300-Geo


G300 defines a hole with countersinking and thread in a front or rear face contour.


### Parameters


- XK Center in Cartesian coordinates
- YK Center in Cartesian coordinates
- B Hole diameter
- P Depth of hole (excluding point)
- W Point angle (default: 180°)
- R Sinking diameter
- U Sinking depth
- E Sinking angle
- I Thread diameter
- J Thread depth
- K Thread runout length
- F Thread pitch
- V Left-hand or right-hand thread (default: 0)
  - 0: Right-hand thread
  - 1: Left-hand thread
- A Angle to Z axis; angle of the hole
  - Range for front face: –90° < A < 90° (default: 0°)
  - Range for rear side: 90° < A < 270° (default: 180°)
- O Centering diameter



Machine the G300 holes with G71...G74.





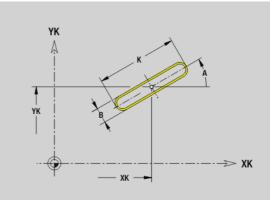


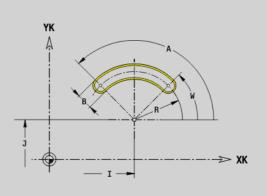
### Linear slot on front/rear face G301-Geo

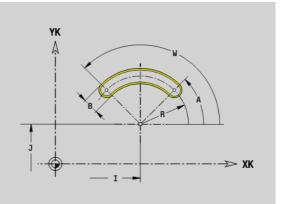
G301 defines a linear slot in a contour on the front or rear face.

### Parameters

- XK Center in Cartesian coordinates
- YK Center in Cartesian coordinates
- X Diameter (center point in polar coordinates)
- C Angle (center point in polar coordinates)
- A Angle to XK axis (default: 0°)
- K Slot length
- B Slot width
- P Depth/height (default: "P" from G308)
  - P<0: Pocket
  - P>0: Island


### Circular slot on front/rear face G302/G303-Geo


G302/G303 defines a circular slot in a contour on the front face/rear face.


- G302: Circular slot clockwise
- G303: Circular slot counterclockwise

### Parameters

- I Center of curvature in Cartesian coordinates
- J Center of curvature in Cartesian coordinates
- X Diameter (center point in polar coordinates)
- C Angle (center point in polar coordinates)
- R Curvature radius (reference: center point path of the slot)
- A Starting angle; reference: XK axis (default: 0°)
- W End angle; reference: XK axis (default: 0°)
- B Slot width
- P Depth/height (default: "P" from G308)
  - P<0: Pocket
  - P>0: Island

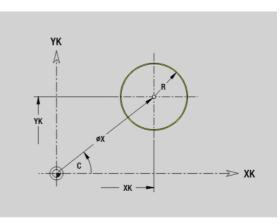






i

### Full circle on front/rear face G304-Geo

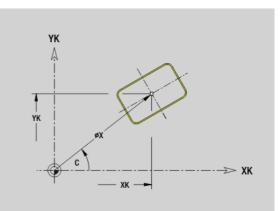

G304 defines a full circle in a contour on the front face/rear face.

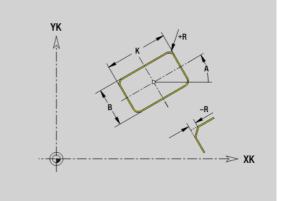
### Parameters

- XK Center in Cartesian coordinates
- YK Center in Cartesian coordinates
- X Diameter (center point in polar coordinates)
- C Angle (center point in polar coordinates)
- R Radius

Ρ

- Depth/height (default: "P" from G308)
  - P<0: Pocket
  - P>0: Island





### Rectangle on front/rear face G305-Geo

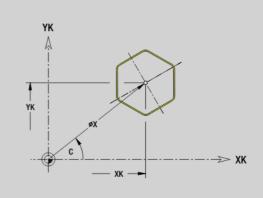
G305 defines a rectangle in a contour on the front face/rear face.

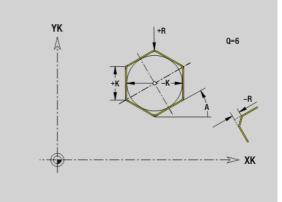
### Parameters

- XK Center in Cartesian coordinates
- YK Center in Cartesian coordinates
- X Diameter (center point in polar coordinates)
- C Angle (center point in polar coordinates)
- A Angle to XK axis (default: 0°)
- K Length
- B (Height) width
- R Chamfer/rounding arc (default: 0°)
  - R>0: Radius of rounding arc
  - R<0: Chamfer width
- P Depth/height (default: "P" from G308)
  - P<0: Pocket
  - P>0: Island






4.7 Front and rear face contours


### Eccentric polygon on front/rear face G307-Geo

G307 defines a polygon in a contour on the front face/rear face.

### Parameters

- XK Center in Cartesian coordinates
- YK Center in Cartesian coordinates
- X Diameter (center point in polar coordinates)
- C Angle (center point in polar coordinates)
- A Angle of a polygon edge to XK axis (default: 0°)
- Q Number of edges (Q > 2)
- K Length of edge
  - K>0: Edge length
  - K<0: Inside diameter of circle</p>
- R Chamfer/rounding arc (default: 0°)
  - R>0: Radius of rounding arc
  - R<0: Chamfer width
- P Depth/height (default: "P" from G308)
  - P<0: Pocket
  - P>0: Island

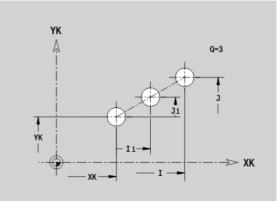


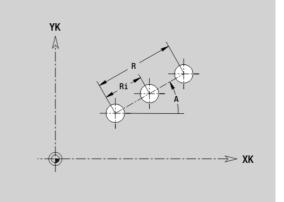


i

### Linear pattern on front/rear face G401-Geo

G401 defines a linear hole pattern or figure pattern on the front or rear face. G401 is effective for the hole/figure defined in the following block (G300 to 305, G307).


### Parameters


- Q Number of figures (default: 1)
- XK Starting point in Cartesian coordinates
- YK Starting point in Cartesian coordinates
- I End point in Cartesian coordinates
- J End point in Cartesian coordinates
- li Distance (XKi) between figures (pattern distance)
- Ji Distance (YKi) between figures (pattern distance)
- A Angle of longitudinal axis to XK axis (default: 0°)
- R Total length of pattern
- Ri Distance between figures (pattern distance)



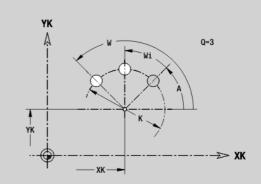
Program the hole/figure in the following block without a center.

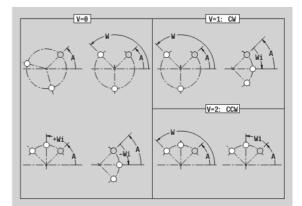
The milling cycle (MACHINING section) calls the hole/ figure in the following block—not the pattern definition.

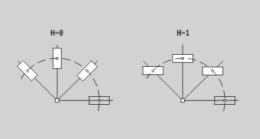




### Circular pattern on front/rear face G402-Geo


G402 defines a circular hole pattern or figure pattern on the front or rear face. G402 is effective for the hole/figure defined in the following block (G300 to 305, G307).


### Parameters


- Q Number of figures
- K Pattern diameter
- A Starting angle—position of the first figure; reference: XK axis (default: 0°)
- W End angle—position of the last figure; reference: XK axis (default: 360°)
- Wi Angle between figures
- V Direction—orientation (default: 0)
  - V=0, without W: Figures are arranged on a full circle
  - V=0, with W: Figures are arranged on the longer circular arc
  - V=0, with Wi: The algebraic sign of Wi defines the direction (Wi<0: clockwise)</p>
  - V=1, with W: Clockwise
  - V=1, with Wi: Clockwise (algebraic sign of Wi has no effect)
  - V=2, with W: Counterclockwise
  - V=2, with Wi: Counterclockwise (algebraic sign of Wi has no effect)
- XK Center in Cartesian coordinates
- YK Center in Cartesian coordinates
- H Position of the figures (default: 0)
  - H=0: Normal position; the figures are rotated about the circle center (rotation)
  - H=1: Original position; the position of the figures relative to the coordinate system remains unchanged (translation)

Program the hole/figure in the following block without a center. Exception: circular slot. (See "Circular pattern with circular slots" on page 234.)

The milling cycle (MACHINING section) calls the hole/ figure in the following block—not the pattern definition.



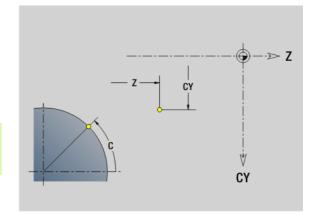




i

### 4.8 Lateral surface contours

### Starting point of lateral surface contour G110-Geo


G110 defines the starting point of a lateral-surface contour.

### **Parameters** Ζ

- Starting point
- С Starting point (starting angle or polar angle)
- CY Starting point as linear value; reference: unrolled reference diameter
- PZ Starting point (polar radius)

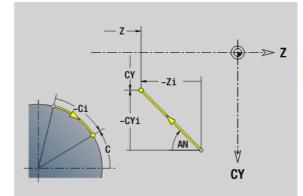


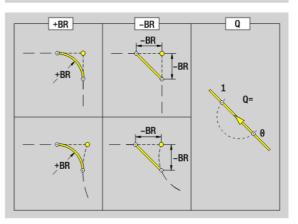
Program either Z, C or Z, CY.



### Line segment in a lateral surface contour G111-Geo

G111 defines a line segment in a lateral-surface contour.


### Parameters


- Z End point
- C End point (end angle)
- CY End point as linear value; reference: unrolled reference diameter
- AN Angle to Z axis
- Q Point of intersection. End point if the line segment intersects a circular arc (default: 0):
  - Q=0: Near point of intersection
  - Q=1: Far point of intersection
- BR Chamfer/rounding. Defines the transition to the next contour element. When entering a chamfer/rounding, program the theoretical end point.
  - No input: Tangential transition
  - BR=0: No tangential transition
  - BR>0: Rounding radius
  - BR<0: Width of chamfer
- PZ End point (polar radius)
- AR Angle to Z axis (AR corresponds to AN)
- R Length of line



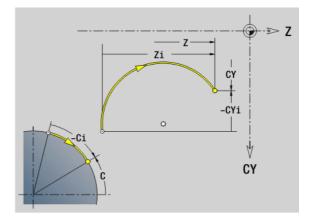
### Programming

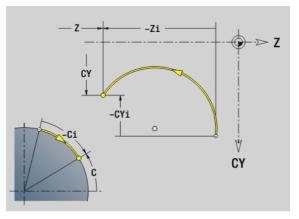
- **Z, CY:** Absolute, incremental, modal or "?"
- **C:** Absolute, incremental or modal
- **ARi:** Angle to the previous element
- **ANI:** Angle to the subsequent element

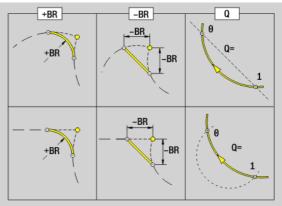




### Circular arc in lateral surface contour G112/ G113-Geo


G112/G113 defines a circular arc in a lateral-surface contour. Direction of rotation: See help graphic


### Parameters


- Z End point
- C End point (end angle or polar angle)
- CY End point as linear value; reference: unrolled reference diameter
- R Radius
- K Center point in Z direction
- J Angle of the center point as a linear value
- Q Point of intersection. End point if the circular arc intersects a line segment or another circular arc (default: 0):
  - 0: Near point of intersection
  - 1: Far point of intersection
- BR Chamfer/rounding. Defines the transition to the next contour element. When entering a chamfer/rounding, program the theoretical end point.
  - No input: Tangential transition
  - BR=0: No tangential transition
  - BR>0: Rounding radius
  - BR<0: Width of chamfer
- PZ End point (polar radius)
- W Center point (polar angle; reference: workpiece zero point)
- PM Center point (polar radius; reference: workpiece zero point)
- AR Starting angle (tangential angle to rotary axis)
- AN End angle (tangential angle to rotary axis)

### Programming

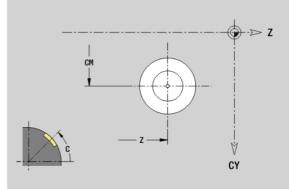
- Z, CY: Absolute, incremental, modal or "?"
- **C:** Absolute, incremental or modal
- **K, J:** Absolute or incremental
- **PZ, W, PM:** Absolute or incremental
- ARi: Angle to the previous element
- **ANi:** Angle to the subsequent element

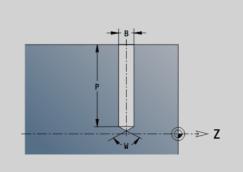


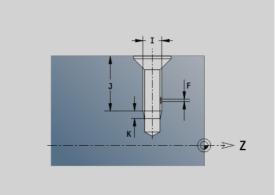




# 4.8 Lateral surf<mark>ace</mark> contours


### Hole on lateral surface G310-Geo


G310 defines a hole with countersink and thread in a lateral surface contour.


### Parameters

- Z Center (Z position)
- CY Center as linear value; reference: unrolled reference diameter
- C Center (angle)
- B Hole diameter
- P Depth of hole (excluding point)
- W Point angle (default: 180°)
- R Sinking diameter
- U Sinking depth
- E Sinking angle
- I Thread diameter
- J Thread depth
- K Thread runout length
- F Thread pitch
- V Left-hand or right-hand thread (default: 0)
  - V=0: Right-hand thread
  - V=1: Left-hand thread
- A Angle to Z axis; range:  $0^{\circ} < A < 180^{\circ}$ ; (default:  $90^{\circ}$  = vertical hole)
- O Centering diameter

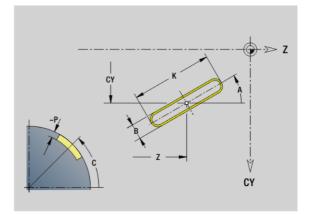
Machine the G310 holes with G71...G74.










# 4.8 Lateral surface contours

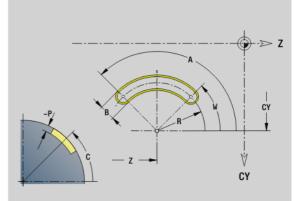
### Linear slot on lateral surface G311-Geo

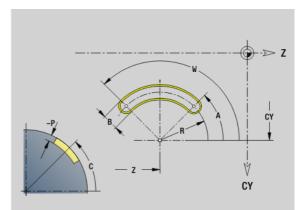
G311 defines a linear slot in a lateral-surface contour.

### Parameters Z Center

- Z Center (Z position)
- CY Center as linear value; reference: unrolled reference diameter
- C Center (angle)
- A Angle to Z axis (default: 0°)
- K Slot length
- B Slot width
- P Pocket depth (default: "P" from G308)




### Circular slot on lateral surface G312/G313-Geo


G312/G313 defines a circular slot in a lateral-surface contour.

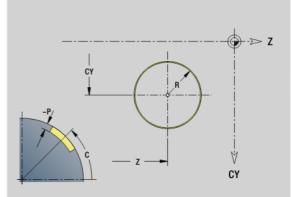
- G312: Circular slot clockwise
- G313: Circular slot counterclockwise

### Parameters

- Z Center
- CY Center as linear value; reference: unrolled reference diameter
- C Center (angle)
- R Radius; reference: center point path of the slot
- A Starting angle; reference: Z axis (default: 0°)
- W End angle; reference: Z axis
- B Slot width
- P Pocket depth (default: "P" from G308)





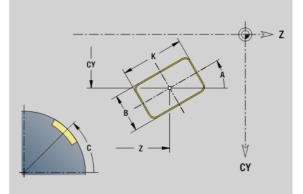

# 4.8 Lateral surf<mark>ace</mark> contours

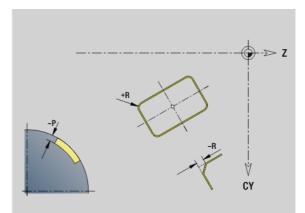
### Full circle on lateral surface G314-Geo

G314 defines a full circle in a lateral-surface contour.

### Parameters

- Z Center
- CY Center as linear value; reference: unrolled reference diameter
- C Center (angle)
- R Radius
- P Pocket depth (default: "P" from G308)





### Rectangle on lateral surface G315-Geo

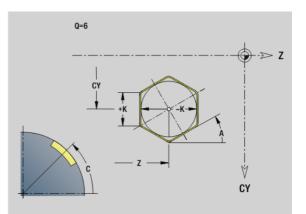
G315 defines a rectangle in a lateral-surface contour.

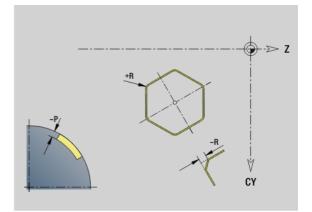
### Parameters

- Z Center
- CY Center as linear value; reference: unrolled reference diameter
- C Center (angle)
- A Angle to Z axis (default: 0°)
- K Length
- B Width
- R Chamfer/rounding arc (default: 0°)
  - R>0: Radius of rounding arc
  - R<0: Chamfer width
- P Pocket depth (default: "P" from G308)









### Eccentric polygon on lateral surface G317-Geo

G317 defines a polygon in a lateral-surface contour.

### Parameters Z Center

- CY Center as linear value; reference: unrolled reference diameter
- C Center (angle)
- Q Number of edges (Q > 2)
- A Angle to Z axis (default: 0°)
- K Length of edge
  - K>0: Edge length
  - K<0: Inside diameter of circle
- R Chamfer/rounding arc (default: 0°)
  - R>0: Radius of rounding arc
  - R<0: Chamfer width
  - Pocket depth (default: "P" from G308)





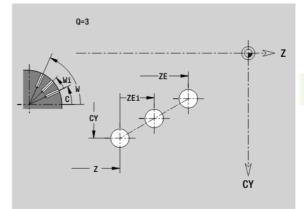
Ρ

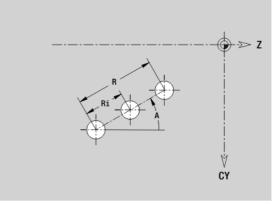
1

### 4.8 Lateral surf<mark>ace</mark> contours

### Linear pattern on lateral surface G411-Geo

G411 defines a linear hole or figure pattern on the lateral surface. G411 is effective for the hole/figure defined in the following block (G310 to 315, G317).


### Parameters


- Q Number of figures (default: 1)
- Z Starting point
- C Starting point (starting angle)
- CY Starting point as linear value; reference: unrolled reference diameter
- ZE End point
- ZEi Distance between figures in Z direction
- W End point (end angle)
- Wi Angular distance between figures
- A Angle to Z axis; (default: 0°)
- R Total length of pattern
- Ri Distance between figures (pattern distance)



If you program Q, Z and C, the holes/figures are arranged at a regular spacing on the lateral surface.

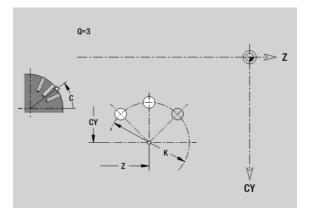
- Program the hole/figure in the following block without a center.
- The milling cycle calls the hole/figure in the following block—not the pattern definition.

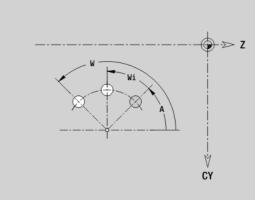


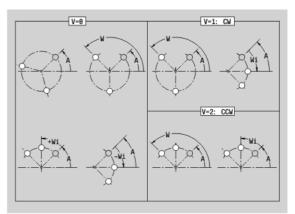


### Circular pattern on lateral surface G412-Geo

G412 defines a circular hole or figure pattern on the lateral surface. G412 is effective for the hole/figure defined in the following block (G310 to 315, G317).


### Parameters


- Q Number of figures
- K Pattern diameter
- A Starting angle—position of the first figure; reference: Z axis (default: 0°)
- W End angle—position of the last figure; reference: Z axis (default: 360°)
- Wi Angle between figures
  - Direction—orientation (default: 0)
    - V=0, without W: Figures are arranged on a full circle
    - V=0, with W: Figures are arranged on the longer circular arc
    - V=0, with Wi: The algebraic sign of Wi defines the direction (Wi<0: clockwise)</p>
    - V=1, with W: Clockwise
    - V=1, with Wi: Clockwise (algebraic sign of Wi has no effect)
    - V=2, with W: Counterclockwise
    - V=2, with Wi: Counterclockwise (algebraic sign of Wi has no effect)
- Z Center of pattern
- C Center of pattern (angle)
- H Position of the figures (default: 0)
  - H=0: Normal position; the figures are rotated about the circle center (rotation)
  - H=1: Original position; the position of the figures relative to the coordinate system remains unchanged (translation)




Program the hole/figure in the following block without a center. Exception: circular slot. (See "Circular pattern with circular slots" on page 234.)

The milling cycle (MACHINING section) calls the hole/ figure in the following block—not the pattern definition.



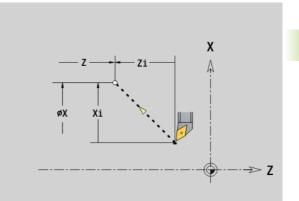




V

### 4.9 Tool positioning

### **Rapid traverse G0**


G0 moves at rapid traverse along the shortest path to the target point.

### Parameters

- X Target point (diameter)
- Z Target point

Programming X, Z: Absolute, incremental or modal

If more axes are available on your machine, additional input parameters will be displayed, e.g. parameter  ${\bf B}$  for the B axis.



### Rapid traverse to machine coordinates G701

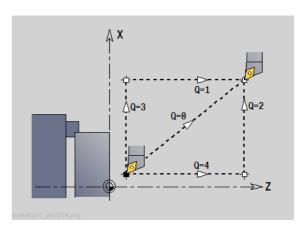
G701 moves at rapid traverse along the shortest path to the target point.

### Parameters

- X End point (diameter)
- Z End point



X, Z refer to the machine zero point and the slide zero point.


If more axes are available on your machine, additional input parameters will be displayed, e.g. parameter  ${\bf B}$  for the B axis.

### Approach tool change point G14

G14 moves the slide at rapid traverse to the tool change position. In setup mode, define permanent coordinates for the tool change position.

### **Parameters**

- Sequence. Determines the course of traverse movements Q (default: 0)
  - 0: Diagonal path of traverse
  - 1: First X, then Z direction
  - 2: First Z, then X direction
  - 3: Only X direction, Z remains unchanged
  - 4: Only Z direction, X remains unchanged
- D Number of the tool change position to be approached (0-2) (default =0, tool change position from parameters)



### **Beispiel: G14**

| N1 G14 Q0 [Move to the tool change position] |
|----------------------------------------------|
| N2 T3 G95 F0.25 G96 S200 M3                  |
| N3 G0 X0 Z2                                  |
| •••                                          |

### Definition of tool-change point G140

G140 defines the position of the tool change point defined in D. This position can be approached with G14.

### **Parameters**

- Number of the tool change point (1-2) D
- Х Diameter-Position of the tool change point
- Ζ Length—Position of the tool change point



If X or Z parameters are missing, the values from the tool change point parameter are entered.

### **Beispiel: G140**

. .

**N1** 

ра

N2 N3

Ν5

1] **N6** 

| G14 Q0 [Tool change position from rameter] |
|--------------------------------------------|
| 2 T3 G95 F0.25 G96 S200 M3                 |
| G0 X40 Z10                                 |
| G140 D1 X100 Z100 [Set tool change pos.    |
| G14 Q0 D1 [Move to tool change pos. 1]     |
| G140 D2 X150 [Set tool change pos. 2,      |

N7 use Z from parameters]

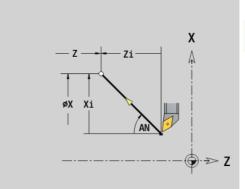
N8 G14 Q0 D2 [Move to tool change pos. 2]

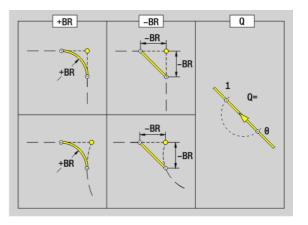
. . .

### 4.10 Linear and circular movements

### Linear movement G1

G1 moves the tool on a linear path at the feed rate to the "end point."


### Parameters


- X End point (diameter)
- Z End point
- AN Angle (angular direction: see help graphic)
- Q Point of intersection. End point if the line segment intersects a circular arc (default: 0):
  - 0: Near point of intersection
  - 1: Far point of intersection
- BR Chamfer/rounding. Defines the transition to the next contour element. When entering a chamfer/rounding, program the theoretical end point.
  - No input: Tangential transition
  - BR=0: No tangential transition
  - BR>0: Rounding radius
  - BR<0: Width of chamfer</p>
- BE Special feed factor for chamfer/rounding arc (default: 1)

Special feed rate = active feed rate \* BE (0 < BE <= 1)

Programming X, Z: Absolute, incremental, modal or "?"

If more axes are available on your machine, additional input parameters will be displayed, e.g. parameter  ${\bf B}$  for the B axis.



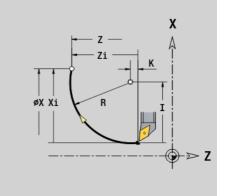


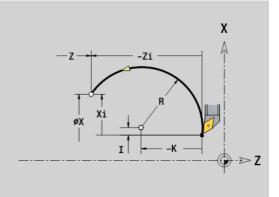
### Circular path G2/G3

4.10 Linear and circular movements

L

G2/G3 moves the tool in a circular arc at the feed rate to the "end point." The center dimensioning is **incremental.** Direction of rotation (see help graphic):


- G2: In clockwise direction
- G3: In counterclockwise direction


### Parameters

- X End point (diameter)
- Z End point
- R Radius (0 < R <= 200 000 mm)
  - Incremental center point (distance from starting point to center point; radius)
- K Incremental center point (distance from starting point to center point)
- Q Point of intersection. End point if the circular arc intersects a line segment or another circular arc (default: 0):
  - 0: Near point of intersection
  - 1: Far point of intersection
- BR Chamfer/rounding. Defines the transition to the next contour element. When entering a chamfer/rounding, program the theoretical end point.
  - No input: Tangential transition
  - BR=0: No tangential transition
  - BR>0: Rounding radius
  - BR<0: Width of chamfer
- BE Special feed factor for chamfer/rounding arc (default: 1)

Special feed rate = active feed rate \* BE (0 < BE <= 1)

Programming X, Z: Absolute, incremental, modal or "?"



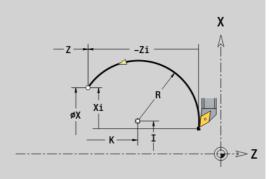


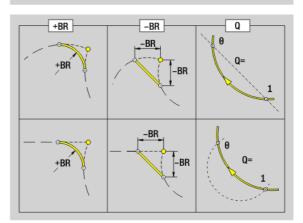
### Beispiel: G2, G3

| N1 T3 G95 F0.25 G96 S200 M3 |
|-----------------------------|
| N2 G0 X0 Z2                 |
| N3 G42                      |
| N4 G1 Z0                    |
| N5 G1 X15 B-0.5 E0.05       |
| N6 G1 Z-25 B0               |
| N7 G2 X45 Z-32 R36 B2       |
| N8 G1 A0                    |
| N9 G2 X80 Z-80 R20 B5       |
| N10 G1 Z-95 B0              |
| N11 G3 X80 Z-135 R40 B0     |
| N12 G1 Z-140                |
| N13 G1 X82 G40              |
|                             |

G12/G13 moves the tool in a circular arc at the feed rate to the "end point." The center dimensioning is absolute. Direction of rotation (see help graphic):

- G12: In clockwise direction
- G13: In counterclockwise direction


### **Parameters**


- Х End point (diameter)
- Ζ End point
- R Radius (0 < R <= 200 000 mm)
- L Absolute center point (radius)
- Κ Absolute center point
- Point of intersection. End point if the circular arc intersects a line Ο segment or another circular arc (default: 0):
  - 0: Near point of intersection
  - 1: Far point of intersection
- BR Chamfer/rounding. Defines the transition to the next contour element. When entering a chamfer/rounding, program the theoretical end point.
  - No input: Tangential transition
  - BR=0: No tangential transition
  - BR>0: Rounding radius
  - BR<0: Width of chamfer</p>
- BE Special feed factor for chamfer/rounding arc (default: 1)

Special feed rate = active feed rate \* BE (0 < BE <= 1)

Programming X, Z: Absolute, incremental, modal or "?"









### 4.11 Feed rate, shaft speed

### **Speed limitation G26**

### G26: Main spindle; Gx26: Spindle x (x: 1...3)

The speed limitation remains in effect until the end of the program or until a new value is programmed for G26/Gx26.

### Parameters S (Maxim

(Maximum) speed



If S > "absolute maximum speed" (machine parameter), the parameter value will apply.

### Beispiel: G26

| N1 G14 Q0                    |
|------------------------------|
| N1 G26 S2000 [maximum speed] |
| N2 T3 G95 F0.25 G96 S200 M3  |
| N3 G0 X0 Z2                  |
| •••                          |

### Reduce rapid traverse G48

The reduction of the rapid traverse rate remains in effect until the end of the program or until G48 is programmed again without input values.

### Parameters

- F Max. feed rate in mm/min for linear axes or °/min for rotary axes
- D Number of the axis
  - 1: X
  - 2: Y
  - 🔳 3: Z
  - 4: U
  - 5: V
  - 6: W
  - 7: A
  - 8: B
  - 9: C

### **Interrupted feed G64**

G64 interrupts the programmed feed for a short period of time. G64 is a modal function.

### Parameters

- E Pause duration (0.01 s < E < 99.99 s)
- F Feed duration (0.01 s < E < 99.99 s)
- For switch-on, program G64 with E and F.
- For switch-off, program G64 without parameters.

### Beispiel: G64

| N1 T3 G95 F0.25 G96 S200 M3          |
|--------------------------------------|
| N2 G64 E0.1 F1 [interrupted feed on] |
| N3 G0 X0 Z2                          |
| N4 G42                               |
| N5 G1 Z0                             |
| N6 G1 X20 B-0.5                      |
| N7 G1 Z-12                           |
| N8 G1 Z-24 A20                       |
| N9 G1 X48 B6                         |
| N10 G1 Z-52 B8                       |
| N11 G1 X80 B4 E0.08                  |
| N12 G1 Z-60                          |
| N13 G1 X82 G40                       |
| N14 G64 [interrupted feed off]       |
|                                      |

### Feed per tooth Gx93

Gx93 (x: spindle 1...3) defines the **drive-dependent** feed rate with respect to the number of teeth of the cutter.

### Parameters

F Feed per tooth in mm/tooth or inch/tooth

 $\bigcirc$ 

The actual value display shows the feed rate in mm/rev.

### Beispiel: G193

| N1 M5                            |
|----------------------------------|
| N2 T1 G197 S1010 G193 F0.08 M104 |
| N3 M14                           |
| N4 G152 C30                      |
| N5 G110 C0                       |
| N6 G0 X122 Z-50                  |
| N7 G                             |
| N8 G                             |
| N9 M15                           |
|                                  |



### **Constant feed rate G94 (feed per minute)**

G94 defines the feed rate independent of drive. Parameters F

Feed per minute in mm/min or in./min

### **Beispiel: G94**

| N1 G14 Q0                    |
|------------------------------|
| N2 T3 G94 F2000 G97 S1000 M3 |
| N3 G0 X100 Z2                |
| N4 G1 Z-50                   |
|                              |

### Feed per revolution Gx95

### G95: Main spindle; Gx95: Spindle x (x: 1...3)

Gx95 defines a **drive-dependent** feed rate.

### **Parameters** F

Feed rate in mm/revolution or inch/revolution

Beispiel: G95, Gx95

. . .

| N1 G14 Q0                   |
|-----------------------------|
| N2 T3 G95 F0.25 G96 S200 M3 |
| N3 G0 X0 Z2                 |
| N5 G1 Z0                    |
| N6 G1 X20 B-0.5             |
|                             |

1

### **Constant surface speed Gx96**

### G96: Main spindle; Gx96: Spindle x (x: 1...3)

The spindle speed is dependent on the X position of the tool tip or on the diameter of the drilling or milling tool.

### Parameters

S Cutting speed in m/min or ft/min



If you call a drilling tool while a constant cutting speed is active, the Control automatically calculates the spindle speed from the programmed cutting speed and activates it with Gx97. To prevent inadvertent rotation of the spindle, program the **spindle speed first** and **then T**.

### Beispiel: G96, G196

| N1 T3 G195 F0.25 G196 S200 M3 |
|-------------------------------|
| N2 G0 X0 Z2                   |
| N3 G42                        |
| N4 G1 Z0                      |
| N5 G1 X20 B-0.5               |
| N6 G1 Z-12                    |
| N7 G1 Z-24 A20                |
| N8 G1 X48 B6                  |
| N9 G1 Z-52 B8                 |
| N10 G1 X80 B4 E0.08           |
| N11 G1 Z-60                   |
| N12 G1 X82 G40                |

. .

### Speed Gx97

### G97: Main spindle; Gx97: Spindle x (x: 1...3)

Constant spindle speed.

### Parameters

S Speed in revolutions per minute



G26/Gx26 limits the spindle speed.

### Beispiel: G97, G197

| N1 G14 Q0                    |
|------------------------------|
| N2 T3 G95 F0.25 G97 S1000 M3 |
| N3 G0 X0 Z2                  |
| N5 G1 Z0                     |
| N6 G1 X20 B-0.5              |
|                              |

### 4.12 Tool-tip and cutter radius compensation

### Tool-tip radius compensation (TRC)

If TRC is not used, the theoretical tool tip is the reference point for the paths of traverse. This might lead to inaccuracies when the tool moves along non-paraxial paths of traverse. The TRC function corrects programmed paths of traverse.

The TRC (Q=0) **reduces** the feed rate for circular arcs if the shifted radius < the original radius. The TRC corrects the special feed rate when a rounding arc is machined as transition to the next contour element.

Reduced feed rate = feed rate \* (shifted radius / original radius)

### Milling cutter radius compensation (MCRC)

When the MCRC function is not active, the system defines the center of the cutter as the reference point for the paths of traverse. With the MCRC function, the Control accounts for the outside diameter of the tool when moving along the programmed paths of traverse. The **recessing, roughing and milling cycles** already include TRC/MCRC calls. The TRC/MCRC must be switched off when these cycles are called.



If the tool radii are > than the contour radii, the TRC/ MCRC might cause tool path loops. **Recommendation:** Use the finishing cycle G890 or milling cycle G840.

Never program the MCRC during a perpendicular approach to the machining plane.

### G40: Switch off TRC/MCRC

G40 is used to deactivate TRC/MCRC. Please note:

- The TRC/MCRC remains in effect until a block with G40 is reached.
- The block containing G40, or the block after G40 only permits a linear path of traverse (G14 is not permissible).

### Function of the TRC/MCRC

| N G0 X10 Z10     |                                                       |
|------------------|-------------------------------------------------------|
| N G41            | Activate TRC to the left of the contour               |
| N G0 Z20         | Path of traverse: from X10/Z10 to X10+TRC/<br>Z20+TRC |
| N G1 X20         | The path of traverse is "shifted" by the TRC          |
| N G40 G0 X30 Z30 | Path of traverse from X20+TRC/Z20+TRC to X30/<br>Z30  |
| ····             |                                                       |

# ..12 Tool-tip and cutter radius c<mark>om</mark>pensation

### G41/G42: Switch on TRC/MCRC

**G41:** Switch on TRC/MCRC—compensation of the tool-tip/cutter radius to the **left** of the contour in traverse direction.

**G42**: Switch on TRC/MCRC—compensation of the tool-tip/cutter radius to the **right** of the contour in traverse direction.

### Parameters

- Q Plane (default: 0)
  - 0: TRC on the turning plane (XZ plane)
  - 1: MCRC on the front face (XC plane)
  - 2: MCRC on the lateral surface (ZC plane)
  - 3: MCRC on the front face (XY plane)
  - 4: MCRC on the lateral surface (YZ plane)
- H Output (only with MCRC) (default: 0)
  - 0: Intersecting areas which are programmed in directly successive contour elements are not machined.
  - 1: The complete contour is machined—even if certain areas are intersecting.
- O Feed rate reduction (default: 0)
  - 0: Feed rate reduction is active
  - 1: No feed rate reduction

### Please note:

- Program G41/G42 in a separate NC block.
- Program a straight line segment (G0/G1) after the block containing G41/G42.
- The TRC/MCRC is taken into account from the next path of traverse.

### Beispiel: G40, G41, G42

| N1 T3 G95 F0.25 G96 S200 M3                  |
|----------------------------------------------|
| N2 G0 X0 Z2                                  |
| N3 G42 [TRC on, to the right of the contour] |
| N4 G1 Z0                                     |
| N5 G1 X20 B-0.5                              |
| N6 G1 Z-12                                   |
| N7 G1 Z-24 A20                               |
| N8 G1 X48 B6                                 |
| N9 G1 Z-52 B8                                |
| N10 G1 X80 B4 E0.08                          |
| N11 G1 Z-60                                  |
| N12 G1 X82 G4 [TRC off]                      |
|                                              |

### 4.13 Zero point shifts

You can program several zero point shifts in one NC program. The relationships of the coordinates (for blank/finished part, auxiliary contours) are retained by the zero offset description.

G920 temporarily deactivates zero point shifts—G980 reactivates them.

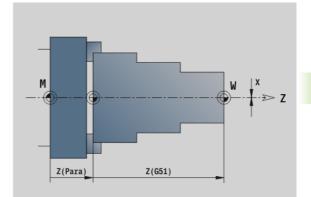
| Overview of zero point shifts                      |          |
|----------------------------------------------------|----------|
| G51:                                               | Page 267 |
| Relative shift                                     |          |
| Programmed shift                                   |          |
| Reference: Previously defined workpiece zero point |          |
| G53/G54/G55:                                       | Page 268 |
| Relative shift                                     |          |
| Shift defined in setup mode (offset)               |          |
| Reference: Previously defined workpiece zero point |          |
| G56:                                               | Page 268 |
| Additive shift                                     |          |
| Programmed shift                                   |          |
| Reference: Workpiece zero point defined at present |          |
| G59:                                               | Page 269 |
| Absolute shift                                     |          |
| Programmed shift                                   |          |
|                                                    |          |

DIN Programming

1



### Zero point shift G51


G51 shifts the workpiece zero point by the defined value in the selected axis. The shift is referenced to the workpiece zero point defined in setup mode.

### Parameters

- X Shift (radius)
- Y Shift (machine-dependent)
- Z Shift
- U Shift (machine-dependent)
- V Shift (machine-dependent)
- W Shift (machine-dependent)

Even if you shift the zero point several times with G51, it is always referenced to the workpiece zero point defined in setup mode.

The zero point shift is valid until program end, or until it is canceled by other zero point shifts.

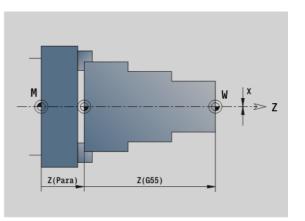


### Beispiel: G51

| N1 T3 G95 F0.25 G96 S200 M3    |
|--------------------------------|
| N2 G0 X62 Z5                   |
| N3 G810 NS7 NE12 P5 I0.5 K0.2  |
| N4 G51 Z-28 [zero point shift] |
| N5 G0 X62 Z-15                 |
| N6 G810 NS7 NE12 P5 I0.5 K0.2  |
| N7 G51 Z-56 [zero point shift] |
|                                |

### Zero point offsets-Shift G53/G54/G55

G53, G54 and G55 shift the workpiece zero point by the offset values defined in setup mode.


The shift is referenced to the workpiece zero point defined in setup mode, even if you shift the zero point several times with G53, G54 and G55.

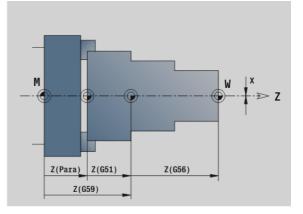
The shift remains in effect until the end of the program or until it is canceled by other zero point shifts.

Before using zero point shifts with G53, G54 and G55, you need to define the offset values in setup mode (see "Defining offsets" in the User's Manual).



A shift in X is entered as a radius.




### Additive zero point shift G56

G56 shifts the workpiece zero point by the defined value in the selected axis. The shift is referenced to the currently active workpiece zero point.

### Parameters

- X Shift (radius value) (default: 0)
- Y Shift (machine-dependent)
- Z Shift
- U Shift (machine-dependent)
- V Shift (machine-dependent)
- W Shift (machine-dependent)

If you shift the workpiece zero point more than once with G56, the shift is always added to the currently active zero point.

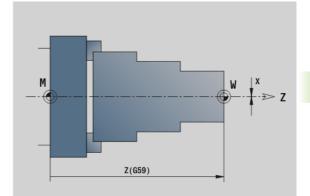


### Beispiel: G56

| N1 T3 G95 F0.25 G96 S200 M3    |
|--------------------------------|
| N2 G0 X62 Z5                   |
| N3 G810 NS7 NE12 P5 I0.5 K0.2  |
| N4 G56 Z-28 [zero point shift] |
| N5 G0 X62 Z5                   |
| N6 G810 NS7 NE12 P5 I0.5 K0.2  |
| N7 G56 Z-28 [zero point shift] |
|                                |

4.13 Zero point shifts

### Absolute zero point shift G59


G59 sets the workpiece zero point to the defined value in the selected axis. The new workpiece zero point remains in effect to the end of the program.

### Parameters

- X Shift (radius)
- Y Shift (machine-dependent)
- Z Shift
- U Shift (machine-dependent)
- V Shift (machine-dependent)
- W Shift (machine-dependent)



G59 cancels all previous zero point shifts (with G51, G56 or G59).



### **Beispiel: G59**

... N1 N2

| G59 Z256 | [zero | point | shift |
|----------|-------|-------|-------|
| G14 Q0   |       |       |       |
|          |       |       |       |

N3 T3 G95 F0.25 G96 S200 M3

N4 G0 X62 Z2

. . .

i

### 4.14 Oversizes

### Switch off oversize G50

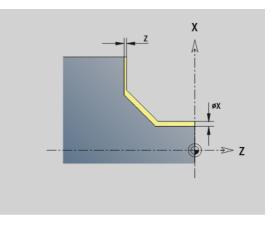
G50 switches off oversizes defined with G52-Geo for the following cycle. Program G50 before the cycle.

To ensure compatibility, the G52 code is also supported for switching off the oversizes. HEIDENHAIN recommends using G50 for new NC programs.

### Axis-parallel oversize G57

G57 defines different oversizes for X and Z. Program G57 before the cycle call.

### Parameters


- X Oversize X (diameter value)—only positive values
- Z Oversize Z—only positive values

G57 is effective in the following cycles. After cycle run, the oversizes are

- deleted: G810, G820, G830, G835, G860, G869, G890
- **not** deleted: G81, G82, G83



If the oversizes are programmed with G57 **and** in the cycle itself, the cycle oversizes apply.



Beispiel: G57

| N1 T3 G95 F0.25 G96 S200 M3          |
|--------------------------------------|
| N2 G0 X120 Z2                        |
| N3 G57 X0.2 Z0.5 [paraxial oversize] |
| N4 G810 NS7 NE12 P5                  |
|                                      |

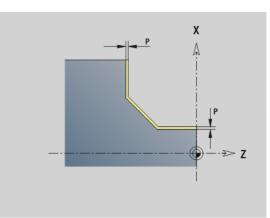
### 4.14 Oversizes

### Contour-parallel oversize (equidistant) G58

G58 defines an equidistant oversize. Program G58 before the cycle call. A negative oversize during finishing is permitted with G890.

### Parameters

P Oversize


G58 is effective in the following cycles. After cycle run, the oversizes are

deleted: G810, G820, G830, G835, G860, G869, G890

**not** deleted: G83



If an oversize is programmed with G58  $\ensuremath{\text{and}}$  in the cycle, the oversize from the cycle is used.



### Beispiel: G58

| I1 T3 G95 F0.25 G96 S200 M3           |
|---------------------------------------|
| 12 G0 X120 Z2                         |
| I3 G58 P2 [contour-parallel oversize] |
| I4 G810 NS7 NE12 P5                   |
|                                       |

. . .

N

. N N

### 4.15 Safety clearances

### Safety clearance G47

G47 defines the safety clearance for

■ the turning cycles: G810, G820, G830, G835, G860, G869, G890.

the drilling cycles G71, G72, G74.

■ the milling cycles G840...G846.

### Parameters P Safety of

Safety clearance

G47 without parameters activates the parameter values defined in the "Safety clearance G47" user parameter.



G47 replaces the safety clearance set in the machining parameters or that set in G147.

### Safety clearance G147

G147 defines the safety clearance for

- the milling cycles G840...G846.
- the drilling cycles G71, G72, G74.

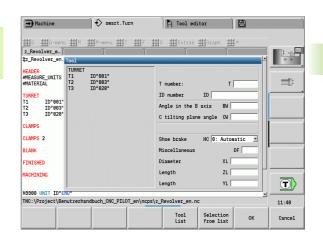
### Parameters

- Safety clearance to the milling plane (only for milling operations)
- K Safety clearance in approach direction (feed)

G147 without parameters activates the parameter values defined in the "Safety clearance G147.." user parameter.



G147 replaces the safety clearance set in the machining parameters or that set in G47.


### 4.16 Tools, compensations

### Tool call T



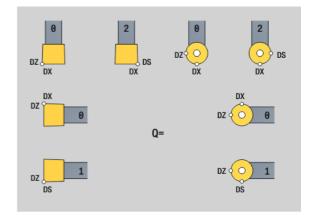
This function is also available on machines with a tool magazine. The control uses the magazine list instead of the turret list.

The Control displays the tool assignment defined in the TURRET section. You can enter the T number directly or select it from the tool list (switch with the **Tool list** soft key).





### **Correction of cut (switching the tool edge compensation) G148**


G148 defines the values compensating for wear. DX, DZ become effective after program start and after a T command.

### Parameters

- O Selection (default: 0)
  - O=0: DX, DZ active—DS inactive
  - O=1: DS, DZ active—DX inactive
  - O=2: DX, DS active—DZ inactive



The cycles G860, G869, G879, G870, G890 automatically take the "correct" wear compensation into account.



### Beispiel: G148

| N1 T3 G95 F0.25 G96 S160 M3       |
|-----------------------------------|
| N2 G0 X62 Z2                      |
| N3 G0 Z-29.8                      |
| N4 G1 X50.4                       |
| N5 G0 X62                         |
| N6 G150                           |
| N7 G1 Z-20.2                      |
| N8 G1 X50.4                       |
| N9 G0 X62                         |
| N10 G151 [recessing finishing]    |
| N11 G148 O0 [change compensation] |
| N12 G0 X62 Z-30                   |
| N13 G1 X50                        |
| N14 G0 X62                        |
| N15 G150                          |
| N16 G148 O2                       |
| N17 G1 Z-20                       |
| N18 G1 X50                        |
| N19 G0 X62                        |
|                                   |

i

### 4.16 Tools, compensations

### Additive compensation G149

The Control manages 16 tool-independent compensation values. One G149 followed by a D number activates the additive compensation function. G149 D900 deactivates the additive compensation function. The compensation values are managed in the **Program Run** submode (see "Program Run submode" in the User's Manual).

### Parameters

- D Additive compensation (default: D900):
  - D900: deactivates the additive compensation
  - D901 to D916: activates the additive compensation

### Programming:

- The compensation becomes effective after the tool has moved in the compensation direction by the compensation value. Therefore, program G149 one block before the block containing the path of traverse to which the compensation is to apply.
- Additive compensation remains in effect up to:
  - the next G149 D900
  - the next tool change
  - End of program



The additive compensation is added to the tool compensation.

### Beispiel: G149

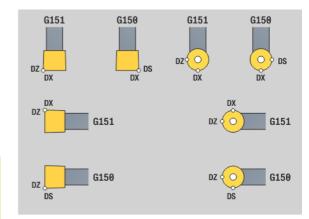
. . .

| N1 T3 G96 S200 G95 F0.4 M4              |
|-----------------------------------------|
| N2 G0 X62 Z2                            |
| N3 G89                                  |
| N4 G42                                  |
| N5 G0 X27 Z0                            |
| N6 G1 X30 Z-1.5                         |
| N7 G1 Z-25                              |
| N8 G149 D901 [activate compensation]    |
| N9 G1 X40 BR-1                          |
| N10 G1 Z-50                             |
| N11 G149 D902                           |
| N12 G1 X50 BR-1                         |
| N13 G1 Z-75                             |
| N14 G149 D900 [deactivate compensation] |
| N15 G1 X60 B-1                          |
| N16 G1 Z-80                             |
| N17 G1 X62                              |
| N18 G80                                 |
|                                         |

### Compensation of right-hand tool tip G150 Compensation of left-hand tool tip G151

G150/G151 defines the tool reference point for recessing and button tools.

- G150: Reference point is on right tip
- G151: Reference point is on left tip


G150/G151 is effective from the block in which it is programmed and remains in effect up to

- the next tool change
- program end.



The displayed actual values always refer to the tool tip defined in the tool data.

If you use TRC, after G150/G151 you must also adjust G41/G42.



### Beispiel: G150, G151

| N1 T3 G95 F0.25 G96 S160 M3    |
|--------------------------------|
| N2 G0 X62 Z2                   |
| N3 G0 Z-29.8                   |
| N4 G1 X50.4                    |
| N5 G0 X62                      |
| N6 G150                        |
| N7 G1 Z-20.2                   |
| N8 G1 X50.4                    |
| N9 G0 X62                      |
| N10 G151 [recessing finishing] |
| N11 G148 O0                    |
| N12 G0 X62 Z-30                |
| N13 G1 X50                     |
| N14 G0 X62                     |
| N15 G150                       |
| N16 G148 O2                    |
| N17 G1 Z-20                    |
| N18 G1 X50                     |
| N19 G0 X62                     |
| · · · ·                        |

### 4.17 Contour-based t<mark>urn</mark>ing cycles

### 4.17 Contour-based turning cycles

### Working with contour-based cycles

Possibilities of transferring the contour to be machined to the cycle:

- Transferring the contour reference in the start block number and the end block number. The contour area is machined in the direction "from NS to NE."
- Transferring the contour reference via the name of the auxiliary contour (ID). The complete auxiliary contour is machined in the direction of contour definition.
- Describing the contour with G80 in the block directly after the cycle (see "Cycle end / Simple contour G80" on page 299).
- Describing the contour with G0, G1, G2 and G3 blocks directly after the cycle. The contour is concluded by G80 without parameters.

Possibilities of defining the workpiece blank for calculating the number of cutting passes:

- Defining a global workpiece blank in the BLANK program section. Regeneration of the workpiece blank is automatically active. The cycle uses the specified workpiece blank.
- If no workpiece blank is defined, the cycle calculates the blank from the contour to be machined and the position of the tool during cycle call. Contour follow-up is **not** active.

### Finding the block references:



▶ Place cursor in NS or NE input field

Press the soft key

Select the contour element:

- Use the horizontal arrow keys to select the contour element
- Use the vertical arrow keys to switch between contours (also face contours, etc.).

NS

Switch between NS and NE: Press the NS soft key

Press the NE soft key



Press the soft key to confirm the block number and return to the dialog.

### Cutting limits in X, Z

The tool position before the cycle call determines the effect of a cutting limit. The Control machines the area to the right or to the left of the cutting limit, depending on which side the tool has been positioned before the cycle is called.



A cutting limit restricts the contour area that can be machined; it does not apply to the paths for approach and departure.

### **Beispiel: Contour-based cycles**

N1 G810 NS7 NE12 P3 [block reference]

N2 ...

. . .

N3 G810 ID"007" P3 [name of auxiliary contour]

N4 ...

N5 G810 ID"007" NS9 NE7 P3 [combination]

N6 ...

N7 G810 P3 [predefined contour description]

N8 G80 XS60 ZS-2 XE90 ZE-50 AC10 WC10 BS3 BE-2 RC5 EC0

N9...

N10 G810 P3[direct contour description]

N11 G0 X50 Z0

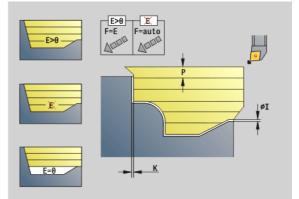
N12 G1 Z-62 BR4

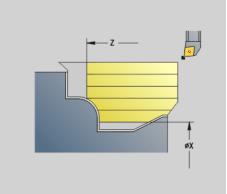
N13 G1 X85 AN80 BR-2

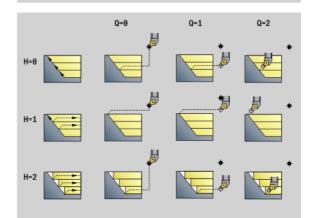
N14 G1 Zi-5

N15 G80

N16 ...


. . .


### Longitudinal roughing G810


G810 machines the defined contour area. The reference to the contour to be machined can be transferred in the cycle parameters, or the contour can be defined directly after the cycle call (see "Working with contour-based cycles" on page 277). The contour to be machined can contain various valleys. If required, the area to be machined is divided into several sections.

### Parameters

- ID Auxiliary contour—ID number of the contour to be machined
- NS Starting block number (beginning of contour section)
- NE End block number (end of contour section)
  - NE not programmed: The contour element NS is machined in the direction of contour definition.
  - NS=NE programmed: The contour element NS is machined opposite to the direction of contour definition.
- P Maximum infeed
- I Oversize in X direction (diameter value)—(default: 0)
- K Oversize in Z direction (default: 0)
- E Plunging behavior
  - E=0: Descending contours are not machined
  - E>0: Plunging feed rate
  - No input: Feed rate reduction depending on the plunge angle—maximum 50 %
- X Cutting limit in X direction (diameter value)—(default: no cutting limit)
- Z Cutting limit in Z direction (default: no cutting limit)
- A Approach angle (reference: Z axis)—(default: 0°/180°, parallel to Z axis)
- W Departing angle (reference: Z axis)—(default: 90°/270°; perpendicular to Z axis)
- H Type of departure (default: 0)
  - 0: With each cut (machine contour outline after each pass)
  - 1: With the last cut (retracts at 45°; contour smoothing after last pass)
  - 2: No smoothing (retracts at 45°; no contour smoothing)
- Q Type of retraction at cycle end (default: 0)
  - 0: Returns to starting point (first X, then Z direction)
  - 1: Positions in front of the finished contour
  - 2: Retracts to safety clearance and stops

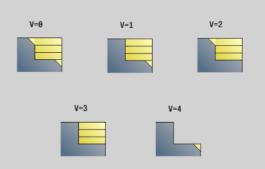






## 4.17 Contour-based t<mark>urn</mark>ing cycles

### Parameters


- V Identifier beginning/end (default: 0) A chamfer/rounding arc is machined:
  - 0: At beginning and end
  - 1: At beginning
  - 2: At end
  - 3: No machining
  - 4: Chamfer/rounding arc is machined—not the basic element (prerequisite: Contour section with one element)
- D Omit elements (see figure)
- U Cut line on horizontal element (default: 0):
  - 0: No (regular proportioning of cuts)
  - 1: Yes (may result in irregular proportioning of cuts)
- O Hide undercutting:

В

- 0: Undercuts are machined
- 1: Undercuts are not machined
- Slide lead with 4-axis machining (not yet implemented)
- XA, ZA Starting point of blank (only effective if no blank was programmed):
  - XA, ZA not programmed: The workpiece blank contour is calculated from the tool position and the ICP contour.
  - XA, ZA programmed: Definition of the corner point of the workpiece blank.

The Control uses the tool definition to distinguish between external and internal machining.

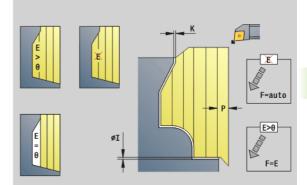
- The tool radius compensation is active.
- A G57 oversize enlarges the contour (also inside contours.
- A G58 oversize
  - >0: Enlarges the contour
  - <0: Is not offset</p>
- **G57/G58 oversizes** are deleted after cycle end.

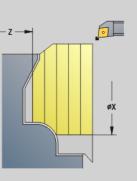


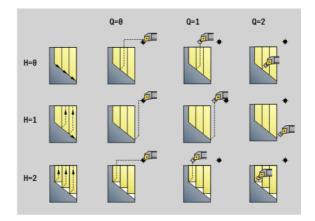
|     | DIN 76 | IN 76 DIN509E<br>DIN509F | Form U | Form H<br>Form K | G22 | G23 H0 | G23 H1 |
|-----|--------|--------------------------|--------|------------------|-----|--------|--------|
|     |        |                          | Ŀ      |                  |     |        |        |
| D=0 | ×      | ×                        | ×      | ×                | ×   | ×      | ×      |
| D=1 | ٢      | Y                        | ۲      | ۲                | ×   | ×      | ×      |
| D=2 | ×      | ×                        | ×      | ×                | ×   | ×      | ۲      |
| D=3 | ٢      | r                        | ٢      | ۲                | ×   | ×      | ٢      |
| D=4 | ٢      | ×                        | ×      | r                | ×   | ×      | ٢      |

pedit\Common\Allgemein-03 . p n g

### Cycle run


- **1** Calculates the areas to be machined and the cutting segmentation.
- **2** Approaches workpiece for first pass from starting point, taking the safety clearance into account (first in Z direction, then in X direction).
- **3** Moves at feed rate to target point Z.
- 4 Depending on H:
  - H=0: Machines the contour outline
  - H=1 or 2: Retracts at 45°
- **5** Returns at rapid traverse and approaches for next pass.
- 6 Repeats 3 to 5 until target point X has been reached.
- 7 If required, repeats 2 to 6 until all areas have been machined.
- 8 If H=1: Smoothes the contour
- **9** Retracts as programmed in Q.


### Face roughing G820


G820 machines the defined contour area. The reference to the contour to be machined can be transferred in the cycle parameters, or the contour can be defined directly after the cycle call (see "Working with contour-based cycles" on page 277). The contour to be machined can contain various valleys. If required, the area to be machined is divided into several sections.

### Parameters

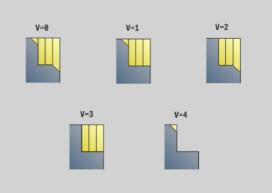
- ID Auxiliary contour—ID number of the contour to be machined
- NS Starting block number (beginning of contour section)
- NE End block number (end of contour section)
  - NE not programmed: The contour element NS is machined in the direction of contour definition.
  - NS=NE programmed: The contour element NS is machined opposite to the direction of contour definition.
- P Maximum infeed
- I Oversize in X direction (diameter value)—(default: 0)
- K Oversize in Z direction (default: 0)
- E Plunging behavior
  - E=0: Descending contours are not machined
  - E>0: Plunging feed rate
  - No input: Feed rate reduction depending on the plunge angle—maximum 50 %
- X Cutting limit in X direction (diameter value)—(default: no cutting limit)
- Z Cutting limit in Z direction (default: no cutting limit)
- A Approach angle (reference: Z axis)—(default: 90°/270°; perpendicular to Z axis)
- W Departure angle (reference: Z axis)—(default: 0°/180°, parallel to Z axis)
- H Type of departure (default: 0)
  - 0: With each cut (machine contour outline after each pass)
  - 1: With the last cut (retracts at 45°; contour smoothing after last pass)
  - 2: No smoothing (retracts at 45°; no contour smoothing)
- Q Type of retraction at cycle end (default: 0)
  - 0: Returns to starting point, first Z, then X direction
  - 1: Positions in front of the finished contour
  - 2: Retracts to safety clearance and stops










В

### Parameters V Ident

- Identifier beginning/end (default: 0) A chamfer/rounding arc is machined:
  - 0: At beginning and end
  - 1: At beginning
  - 2: At end
  - 3: No machining
  - 4: Chamfer/rounding arc is machined—not the basic element (prerequisite: Contour section with one element)
- D Omit elements (see figure)
- U Cut line on vertical element (default: 0):
  - 0: No (regular proportioning of cuts)
  - 1: Yes (may result in irregular proportioning of cuts)
- O Hide undercutting:
  - 0: Undercuts are machined
  - 1: Undercuts are not machined
  - Slide lead with 4-axis machining (not yet implemented)
- XA, ZA Starting point of blank (only effective if no blank was programmed):
  - XA, ZA not programmed: The workpiece blank contour is calculated from the tool position and the ICP contour.
  - XA, ZA programmed: Definition of the corner point of the workpiece blank.

The Control uses the tool definition to distinguish between external and internal machining.

- The tool radius compensation is active.
- A G57 oversize enlarges the contour (also inside contours.
- A G58 oversize
  - >0: Enlarges the contour
  - <0: Is not offset</li>
- **G57/G58 oversizes** are deleted after cycle end.



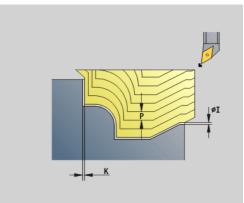
|     | DIN 76 | DIN509E<br>DIN509F | Form U | Form H<br>Form K | G22 | G23 H0 | G23 H1 |
|-----|--------|--------------------|--------|------------------|-----|--------|--------|
|     |        |                    | Ŀ      |                  |     |        |        |
| D=0 | ×      | ×                  | ×      | ×                | ×   | ×      | ×      |
| D=1 | ۲      | r                  | ٢      | ۲                | ×   | ×      | ×      |
| D=2 | ×      | ×                  | ×      | ×                | ×   | ×      | ۲      |
| D=3 | ٢      | r                  | ٢      | ۲                | ×   | ×      | ٢      |
| D=4 | ٢      | ×                  | ×      | ٢                | ×   | ×      | ۲      |

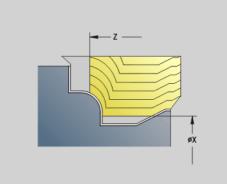
edit\Common\Allgemein-03 . p n g

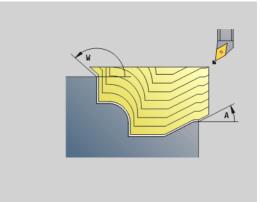
### Cycle run

- **1** Calculates the areas to be machined and the cutting segmentation.
- **2** Approaches workpiece for first pass from starting point, taking the safety clearance into account (first in X direction, then in Z).
- **3** Moves at feed rate to target point X.
- **4** Depending on H:

■ H=0: Machines the contour outline


- H=1 or 2: Retracts at 45°
- **5** Returns at rapid traverse and approaches for next pass.
- 6 Repeats 3 to 5 until target point Z has been reached.
- 7 If required, repeats 2 to 6 until all areas have been machined.
- 8 If H=1: Smoothes the contour
- **9** Retracts as programmed in Q.


### **Contour-parallel roughing G830**


G830 machines the contour area defined in "ID", or by "NS, NE", parallel to the contour (see "Working with contour-based cycles" on page 277). The contour to be machined can contain various valleys. If required, the area to be machined is divided into several sections.

### Parameters

- D Auxiliary contour—ID number of the contour to be machined
- NS Starting block number (beginning of contour section)
- NE End block number (end of contour section)
  - NE not programmed: The contour element NS is machined in the direction of contour definition.
  - NS=NE programmed: The contour element NS is machined opposite to the direction of contour definition.
- P Maximum infeed
- Oversize in X direction (diameter value)—(default: 0)
- K Oversize in Z direction (default: 0)
- X Cutting limit in X direction (diameter value)—(default: no cutting limit)
- Z Cutting limit in Z direction (default: no cutting limit)
- A Approach angle (reference: Z axis)—(default: 0°/180°, parallel to Z axis, or with facing tools: parallel to X axis)
- W Departure angle (reference: Z axis)—(default: 90°/270°, perpendicular to Z axis, or with facing tools: perpendicular to X axis)
- Q Type of retraction at cycle end (default: 0)
  - 0: Returns to starting point (first X, then Z direction)
  - 1: Positions in front of the finished contour
  - 2: Retracts to safety clearance and stops







4.17 Contour-based turning cycles

### 4.17 Contour-based t<mark>urn</mark>ing cycles

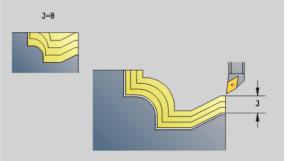
### Parameters

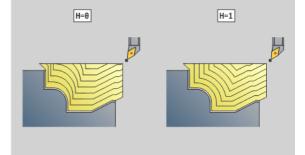
- Identifier beginning/end (default: 0) A chamfer/rounding arc is machined:
  - 0: At beginning and end
  - 1: At beginning
  - 2: At end
  - 3: No machining
  - 4: Chamfer/rounding arc is machined—not the basic element (prerequisite: Contour section with one element)
- B Contour calculation
  - 0: Automatic
  - 1: Tool to the left (G41)
  - 2: Tool to the right (G42)
- D Omit elements (see figure)
- J Workpiece blank oversize (radius value)—active only if **no blank** has been defined.
- H Contour-parallel—Type of cutting paths:
  - 0: Constant machining depth
  - 1: Equidistant cut lines
- HR Specify primary machining direction
- XA, ZA Starting point of blank (only effective if no blank was programmed):
  - XA, ZA not programmed: The workpiece blank contour is calculated from the tool position and the ICP contour.
  - XA, ZA programmed: Definition of the corner point of the workpiece blank.

The Control uses the tool definition to distinguish between external and internal machining.



### The tool radius compensation is active.


- A G57 oversize enlarges the contour (also inside contours.
- A G58 oversize
  - >0: Enlarges the contour
  - <0: Is not offset</p>
- G57/G58 oversizes are deleted after cycle end.

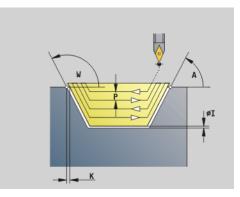

### Cycle run

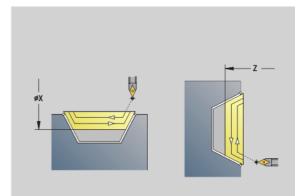
- **1** Calculates the areas to be machined and the cutting segmentation.
- **2** Approaches workpiece for first pass from starting point, taking the safety clearance into account.
- **3** Executes the first cut (roughing).
- 4 Returns at rapid traverse and approaches for next pass.
- **5** Repeats 3 to 4 until the complete area has been machined.
- 6 If required, repeats 2 to 5 until all areas have been machined.
- 7 Retracts as programmed in Q.

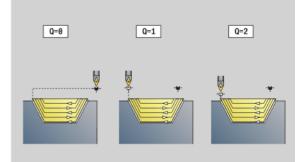


npedit\Common\Allgemein-03.png







### Contour cycle, bidirectional (contour-parallel with neutral tool) G835


G835 machines the contour area defined in "ID", or by "NS, NE", parallel to the contour and bidirectionally (see "Working with contour-based cycles" on page 277). The contour to be machined can contain various valleys. If required, the area to be machined is divided into several sections.

### Parameters

- ID Auxiliary contour—ID number of the contour to be machined
- NS Starting block number (beginning of contour section)
- NE End block number (end of contour section)
  - NE not programmed: The contour element NS is machined in the direction of contour definition.
  - NS=NE programmed: The contour element NS is machined opposite to the direction of contour definition.
- P Maximum infeed
- I Oversize in X direction (diameter value)—(default: 0)
- K Oversize in Z direction (default: 0)
- X Cutting limit in X direction (diameter value)—(default: no cutting limit)
- Z Cutting limit in Z direction (default: no cutting limit)
- A Approach angle (reference: Z axis)—(default: 0°/180°, parallel to Z axis, or with facing tools: parallel to X axis)
- W Departure angle (reference: Z axis)—(default: 90°/270°, perpendicular to Z axis, or with facing tools: perpendicular to X axis)
- Q Type of retraction at cycle end (default: 0)
  - 0: Returns to starting point (first X, then Z direction)
  - 1: Positions in front of the finished contour
  - 2: Retracts to safety clearance and stops
- V Identifier beginning/end (default: 0) A chamfer/rounding arc is machined:
  - 0: At beginning and end
  - 1: At beginning
  - 2: At end
  - 3: No machining
  - 4: Chamfer/rounding arc is machined—not the basic element (prerequisite: Contour section with one element)







### .17 Contour-based turning cycles

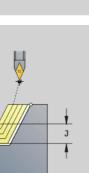
### **Parameters**

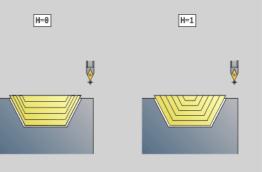
- В Contour calculation
  - 0: Automatic
  - 1: Tool to the left (G41)
  - 2: Tool to the right (G42)
- D Omit elements (see figure)
- J Workpiece blank oversize (radius value)-active only if no blank has been defined.
- Н Contour-parallel—Type of cutting paths:
  - 0: Constant machining depth
  - 1: Equidistant cut lines
- XA, ZA Starting point of blank (only effective if no blank was programmed):
  - XA, ZA not programmed: The workpiece blank contour is calculated from the tool position and the ICP contour.
  - XA, ZA programmed: Definition of the corner point of the workpiece blank.

The Control uses the tool definition to distinguish between external and internal machining.



### The tool radius compensation is active.


- A G57 oversize enlarges the contour (also inside contours.
- A G58 oversize
  - >0: Enlarges the contour
  - <0: Is not offset</p>
- **G57/G58 oversizes** are deleted after cycle end.

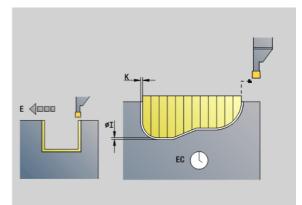

### Cycle run

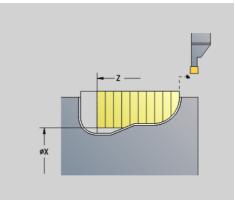
- 1 Calculates the areas to be machined and the cutting segmentation.
- Approaches workpiece for first pass from starting point, taking 2 the safety clearance into account.
- **3** Executes the first cut (roughing).
- Approaches for the next pass and executes the next cut 4 (roughing) in the opposite direction.
- **5** Repeats 3 to 4 until the complete area has been machined.
- 6 If required, repeats 2 to 5 until all areas have been machined.
- 7 Retracts as programmed in Q.

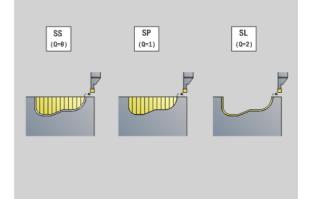










### **Recessing G860**


G860 machines the defined contour area. The reference to the contour to be machined can be transferred in the cycle parameters, or the contour can be defined directly after the cycle call (see "Working with contour-based cycles" on page 277). The contour to be machined can contain various valleys. If required, the area to be machined is divided into several sections.

### Parameters

- ID Auxiliary contour—ID number of the contour to be machined
- NS Start block number
  - Beginning of the contour section, or
  - Reference to a G22/G23-Geo recess
- NE End block number (end of contour section)
  - NE not programmed: The contour element NS is machined in the direction of contour definition.
  - NS=NE programmed: The contour element NS is machined opposite to the direction of contour definition.
  - NE is inapplicable if the contour is defined by G22/G23-Geo
  - Oversize in X direction (diameter value)—(default: 0)
- K Oversize in Z direction (default: 0)
- Q Action (default: 0)
  - O: Roughing and finishing
  - 1: Only roughing
  - 2: Only finishing
- X Cutting limit in X direction (diameter value)—(default: no cutting limit)
- Z Cutting limit in Z direction (default: no cutting limit)
- V Identifier beginning/end (default: 0) A chamfer/rounding arc is machined:
  - 0: At beginning and end
  - 1: At beginning
  - 2: At end
  - 3: No machining
- E Finishing feed rate (default: active feed rate)
- EC Dwell time
- D Revolutions on recessing floor







# 1.17 Contour-based t<mark>urn</mark>ing cycles

# Parameters

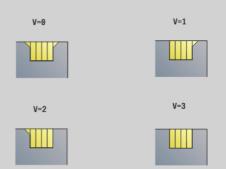
- H Type of retraction at cycle end (default: 0)
  - 0: Return to starting point
    - Axial recess: First Z, then X direction
    - Radial recess: First X, then Z direction
  - 1: Positions in front of the finished contour
  - 2: Retracts to safety clearance and stops
- B Recessing width
- P Cutting depth by which one cut is fed.
- O Roughing, lift-off
  - 0: Lift-up at rapid
  - 1: Below 45°
- U Finishing of floor element
  - 0: Value from global parameter
  - 1: Dividing
  - 2: Complete

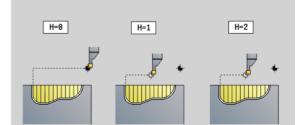
The Control uses the tool definition to distinguish between external and internal machining, or between radial and axial recesses.

Contour cycle repeats can be programmed with G741 before the cycle call.



# The tool radius compensation is active.


A **G57 oversize** enlarges the contour (also inside contours.


A G58 oversize

- >0: Enlarges the contour
- <0: Is not offset</p>
- **G57/G58 oversizes** are deleted after cycle end.

### Cycle run (where Q=0 or 1)

- **1** Calculates the areas to be machined and the cutting segmentation.
- **2** Approaches workpiece for first pass from starting point, taking the safety clearance into account.
  - Radial recess: First Z, then X direction
  - Axial recess: First X, then Z direction
- **3** Executes first cut (roughing).
- 4 Returns at rapid traverse and approaches for next pass.
- 5 Repeats 3 to 4 until the complete area has been machined.
- 6 If required, repeats 2 to 5 until all areas have been machined.
- 7 If Q=0: Finish-machines the contour.

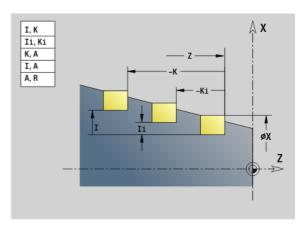




i

# Repeat recessing cycle G740/G741

G740 and G741 are programmed before G860 to repeat the recessing contour defined in Cycle G860.


# Parameters

- X Starting point X (diameter value). Shifts the starting point of the recessing contour defined by G860 to this coordinate.
- Z Starting point Z. Shifts the starting point of the recessing contour defined by G860 to this coordinate.
- I Distance between the first and last recessing contour (X direction).
- K Distance between the first and last recessing contour (Z direction).
- li Distance between the recessing contours (X direction).
- Ki Distance between the recessing contours (Z direction).
- Q Number of recessing contours
- A Angle at which the recessing contours are arranged.
- R Length. Distance between the first and last recessing contour.
- Ri Length. Distance between the recessing contours.
- O Flow:
  - 0: Rough-machine all recesses, then finish-machine all recesses (default, previous behavior)
  - 1: Machine each recess completely before machining the next one

The following parameter combinations are allowed:

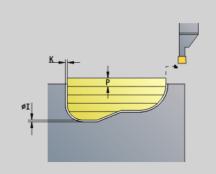
- I, K ■ Ii, Ki ■ I, A ■ K, A
- A, R

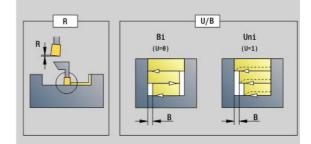
G740 does not support the parameters A, R and O.

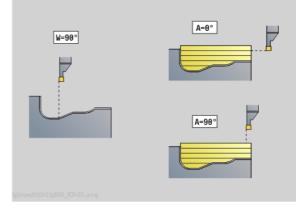




| AUXILIARY CONTOUR ID "recess"    |
|----------------------------------|
| N 47 G0 X50 Z0                   |
| N 48 G1 Z-5                      |
| N 49 G1 X45                      |
| N 54 G1 Z-15                     |
| N 56 G1 Z-17                     |
| MACHINING                        |
| N 162 T4                         |
| N 163 G96 S150 G95 F0.2 M3       |
| N 165 G0 X120 Z100               |
| N 166 G47 P2                     |
| N 167 G741 K-50 Q3 A180 O0       |
| N 168 G860 I0.5 K0.2 E0.15 Q0 H0 |
| N 172 G0 X50 Z0                  |
| N 173 G1 X40                     |
| N 174 G1 Z-9                     |
| N 175 G1 X50                     |
| N 169 G80                        |
| N 170 G14 Q0                     |
|                                  |


# 4.17 Contour-based t<mark>urn</mark>ing cycles


# **Recess turning cycle G869**


G869 machines the defined contour area. The reference to the contour to be machined can be transferred in the cycle parameters, or the contour can be defined directly after the cycle call (see "Working with contour-based cycles" on page 277).

The workpiece is machined by alternate recessing and roughing movements. The machining process requires a minimum of retraction and infeed movements. The contour to be machined can contain various valleys. If required, the area to be machined is divided into several sections.

- ID Auxiliary contour—ID number of the contour to be machined
- NS Start block number
  - Beginning of the contour section, or
  - Reference to a G22/G23-Geo recess
- NE End block number (end of contour section)
  - NE not programmed: The contour element NS is machined in the direction of contour definition.
  - NS=NE programmed: The contour element NS is machined opposite to the direction of contour definition.
  - NE is inapplicable if the contour is defined by G22/G23-Geo
- P Maximum infeed
- R Turning depth compensation for finishing (default: 0)
- I Oversize in X direction (diameter value)—(default: 0)
- K Oversize in Z direction (default: 0)
- X Cutting limit (diameter value)—(default: no cutting limit)
- Z Cutting limit (default: no cutting limit)
- A Approach angle (default: opposite to recessing direction)
- W Departure angle (default: opposite to recessing direction)
- Q Action (default: 0)
  - 0: Roughing and finishing
  - 1: Only roughing
  - 2: Only finishing
- U Unidirectional turning (default: 0)
  - 0: The roughing passes are bidirectional.
  - 1: The roughing passes are unidirectional (from NS to NE)









# Parameters

Н

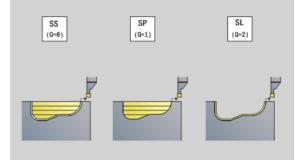
V

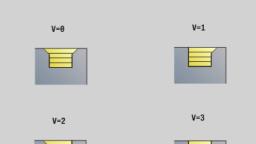
Ο

- Type of retraction at cycle end (default: 0)
  - 0: Returns to starting point (axial recess: first Z, then X direction; radial recess: first X, then Z direction
  - 1: Positions in front of the finished contour
  - 2: Retracts to safety clearance and stops
- Identifier beginning/end (default: 0) A chamfer/rounding arc is machined:
  - 0: At beginning and end
  - 1: At beginning
  - 2: At end
  - 3: No machining
- Recessing feed rate (default: active feed rate)
- E Finishing feed rate (default: active feed rate)
- B Offset width (default: 0)
- XA, Starting point of blank (only effective if no blank was
- ZA programmed):
  - XA, ZA not programmed: The workpiece blank contour is calculated from the tool position and the ICP contour.
  - XA, ZA programmed: Definition of the corner point of the workpiece blank.

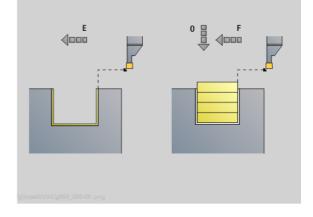
The Control uses the tool definition to distinguish between radial and axial recesses.

Program at least one contour reference (e.g.: NS or NS, NE) and P.


**Turning depth compensation R:** Depending on factors such as workpiece material or feed rate, the tool tip is displaced during a turning operation. You can correct the resulting infeed error with the turning depth compensation factor. The value is usually determined empirically.


**Offset width B:** After the second infeed movement, during the transition from turning to recessing, the path to be machined is reduced by the offset width B. Each time the system switches on this side, the path is reduced by B—in addition to the previous offset. The total offset is limited to 80 % of the effective cutting width (effective cutting width = cutting width -2\*cutting radius). If required, the Control reduces the programmed offset width. After clearance roughing, the remaining material is removed with a single cut.

The tool radius compensation is active.


A **G57 oversize** enlarges the contour (also inside contours.

- A G58 oversize
  - >0: Enlarges the contour
  - <0: Is not offset</p>
- **G57/G58 oversizes** are deleted after cycle end.

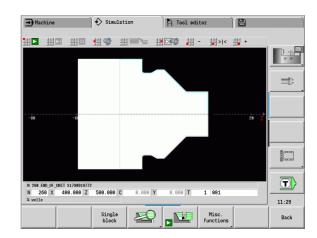








**DIN Programming** 


292

# Cycle run (where Q=0 or 1)

- 1 Calculates the areas to be machined and the cutting segmentation.
- **2** Approaches workpiece for first pass from starting point, taking the safety clearance into account.
  - Radial recess: First Z, then X direction
- Axial recess: First X, then Z direction
- 3 Executes the first cut (recessing).
- 4 Machines perpendicularly to recessing direction (turning).
- **5** Repeats 3 to 4 until the complete area has been machined.
- 6 If required, repeats 2 to 5 until all areas have been machined.
- 7 If Q=0: Finish-machines the contour.

# Machining information:

- Transition from turning to recessing: Before the transition from turning to recessing, the Control retracts the tool by 0.1 mm. Thus an offset cutting edge is adjusted for the recessing operation, independent of "offset width B."
- Inside radii and chamfers: Depending on the recessing width and the radii of rounding arcs, single cuts preventing a "fluid transition" from recessing to turning are executed before the rounding is machined. This prevents damage to the tool.
- **Edges:** Edges are recessed. This prevents residual rings.



# **Recessing cycle G870**

G870 generates a recess defined by G22-Geo. The Control uses the tool definition to distinguish between external and internal machining, or between radial and axial recesses.

## Parameters

- ID Auxiliary contour—ID number of the contour to be machined
- NS Block number (reference to G22-Geo)
  - Oversize for roughing (default: 0)
    - I=0: Recess is made in one work step.
    - I>0: The first operation is roughing, the second finishing.
    - Dwell time (default: Time for one spindle revolution)
      - If I=0: For every recess
    - If I>0: Only for finishing

Calculation of cutting segmentation:

Maximum offset = 0.8 \* cutting width



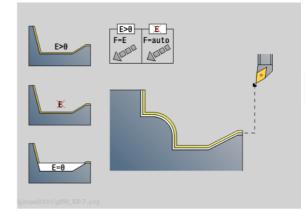
The tool radius compensation is active.
An oversize is not taken into account.

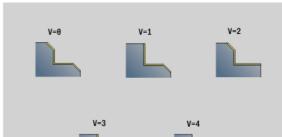
# Cycle run

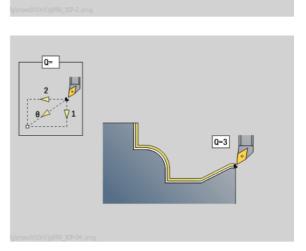
- **1** Calculates the number of cutting passes.
- 2 Approaches workpiece from starting point for first pass.
  - Radial recess: First Z, then X direction
  - Axial recess: First X, then Z direction
- **3** Executes the first cut according to I.
- 4 Returns at rapid traverse and approaches for next pass.
- 5 If I=0: Dwells for time E
- 6 Repeats 3 to 4 until the complete recess has been machined.
- 7 If I>0: Finish machines the contour



L


Е

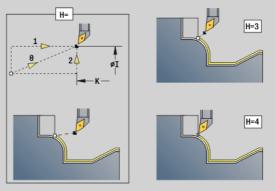

# Finish contour G890


G890 finishes the defined contour area in one pass. The reference to the contour to be machined can be transferred in the cycle parameters, or the contour can be defined directly after the cycle call (see "Working with contour-based cycles" on page 277). The contour to be machined can contain various valleys. If required, the area to be

machined is divided into several sections. **Parameters** 

- ID Auxiliary contour—ID number of the contour to be machined
- NS Starting block number (beginning of contour section)
- NE End block number (end of contour section)
  - NE not programmed: The contour element NS is machined in the direction of contour definition.
  - NS=NE programmed: The contour element NS is machined opposite to the direction of contour definition.
- E Plunging behavior
  - E=0: Descending contours are not machined
  - E>0: Plunging feed rate
  - No input: Descending contours are machined at programmed feed rate
- V Identifier beginning/end (default: 0) A chamfer/rounding arc is machined:
  - 0: At beginning and end
  - 1: At beginning
  - 2: At end
  - 3: No machining
  - 4: Chamfer/rounding arc is machined—not the basic element (prerequisite: Contour section with one element)
- Q Type of approach (default: 0)
  - 0: Automatic selection—the Control checks:
    - Diagonal approach
    - First X, then Z direction
    - Equidistant around the barrier
    - Omission of the first contour elements if the starting position is inaccessible
  - 1: First X, then Z direction
  - 2: First Z, then X direction
  - 3: No approach—tool is located near the starting point of the contour area.










#### Parameters H Type or

- Type of retraction (default: 3). Tool backs off at 45° against the machining direction and moves as follows to the position I, K:
  - 0: Diagonal
  - 1: First X, then Z direction
  - 2: First Z, then X direction
  - 3: Stops at safety clearance
  - 4: No retraction motion—tool remains on the end coordinate
  - 5: Diagonally to the tool position before the cycle call
  - 6: First in X, then in Z to the tool position before the cycle call
  - 7: First in Z, then in X to the tool position before the cycle call
- X Cutting limit (diameter value)—(default: no cutting limit)
- Z Cutting limit (default: no cutting limit)
- D Omit elements (default: 1). Use the omit codes listed in the table at right to omit individual elements, or the omit codes listed in the table at the lower right to skip execution of recesses, undercuts and relief turns.
- End point that is approached at the end of the cycle (diameter value)
- K End point that is approached at the end of the cycle
- O Feed rate reduction for circular elements (default: 0)
  - 0: Feed rate reduction is active
  - 1: No feed rate reduction
- U Cycle type—Required for generating the contour from the G80 parameters. (default:0)
  - O: Standard contour (longitudinal or transverse), recessing contour or ICP contour
  - 1: Linear path without/with return
  - 2: Circular arc CW, without/with return
  - 3: Circular arc CCW, without/with return
  - 4: Chamfer without/with return
  - 5: Rounding arc without/with return
- B Tool-tip radius compensation (default: 0)
  - 0: Automatic determination
  - 1: To the left of the contour
  - 2: To the right of the contour
  - 3: Automatic determination without taking the tool angle into account
  - 4: To the left of the contour without taking the tool angle into account
  - 5: To the right of the contour without taking the tool angle into account
- HR Main cutting direction (default: 0)
  - 0: Automatic
  - 1: +Z
  - 2: +X
  - 3: –Z
  - 4: –X



npedit\Ori1\g890\_ICP-5.png

|     | DIN 76<br>Form H | DIN509E<br>DIN509F | Form U | Form K | G22 | G23 H0 | G23 H1 |
|-----|------------------|--------------------|--------|--------|-----|--------|--------|
| D=0 | ×                | ×                  | ×      | ×      | ×   | ×      | ×      |
| D=1 | ۲                | ۲                  | ٢      | ۲      | ×   | ×      | ۲      |
| D=2 | ×                | ×                  | ×      | ×      | ×   | ×      | ۲      |
| D=3 | ۲                | ۲                  | ۲      | ٢      | ×   | ×      | ×      |
| D=4 | ۲                | ×                  | ۲      | ۲      | ×   | ×      | ۲      |
| D=5 | ۲                | ٢                  | ۲      | ×      | ×   | ×      | ۲      |
| D=6 | ×                | ۲                  | ×      | ×      | ×   | ×      | ۲      |
| D=7 | ٢                | r                  | ٢      | ٢      | ٢   | ٢      | ٢      |

| Codes for omitting recesses and undercuts           |                         |           |
|-----------------------------------------------------|-------------------------|-----------|
| G call                                              | Function D code         |           |
| G22                                                 | Recess for sealing ring | 512       |
| G22                                                 | Recess for guard ring   | 1.024     |
| G23 H0                                              | General recess          | 256       |
| G23 H1                                              | Relief turn             | 2.048     |
| G25 H4                                              | Undercut type U         | 32.768    |
| G25 H5                                              | Undercut type E         | 65.536    |
| G25 H6                                              | Undercut type F         | 131.072   |
| G25 H7                                              | Undercut type G         | 262.744   |
| G25 H8                                              | Undercut type H         | 524.288   |
| G25 H9                                              | Undercut type K         | 1.048.576 |
| Add the codes if you want to hide several elements. |                         |           |



The Control uses the tool definition to distinguish between external and internal machining.

**Undercuts** are machined if they are programmed and if tool geometry permits.

# Feed rate reduction

# For chamfers/rounding arcs, the following applies:

- Feed rate is programmed with G95-Geo: No automatic feed rate reduction.
- Feed rate is **not** programmed with G95-Geo: Automatic feed rate reduction. Each chamfer/rounding is therefore machined with at least three revolutions.
- For chamfers/rounding arcs which, as a result of their size, are machined with at least three revolutions, the feed rate is not reduced automatically.

# For circular elements, the following applies:

- For small circular elements, the feed rate is decreased until every element is machined with at least four spindle revolutions. You can switch this feed rate reduction off with O.
- The tool radius compensation (TRC) results under certain conditions in a feed rate reduction for circular elements (See "Tooltip and cutter radius compensation" on page 264.). You can switch this feed rate reduction off with O.



A **G57 oversize** enlarges the contour (also inside contours.

- A G58 oversize
  - >0: Enlarges the contour
  - <0: Reduces the contour</p>
- **G57/G58 oversizes** are deleted after cycle end.

# Measuring cut G809

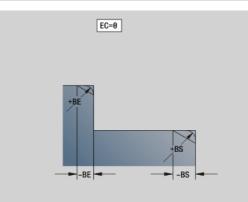
Cycle G809 performs a cylindrical measuring cut with the length defined in the cycle, moves to the breakpoint for measuring and stops the program. After the program was stopped, you can manually measure the workpiece.

- X Starting point X
- Z Starting point Z
- R Measuring cut length
- P Measuring cut oversize
- I Breakpoint Xi for measuring: Incremental distance to starting point of measurement
- K Breakpoint Zi for measuring: Incremental distance to starting point of measurement
- ZS Workpiece blank starting point: Collision-free approach for inside machining
- XE Departing position X
- D Number of an additive compensation to be active during the measuring cut
- V Measuring cut counter: Number of workpieces after which a measurement is performed
- Q Machining direction
  - 0: –Z
  - 1: +Z
- EC Machining location
  - 0: Outside
  - 1: Inside
- WE Directions
  - 0: Simultaneously
  - 1: First X, then Z
  - 2: First Z, then X
- O Approach angle: If an approach angle is entered, the cycle positions the tool over the starting point taking into account the safety clearance and from there plunges at the specified angle to the diameter to be measured.

# 4.18 Contour definitions in the machining section

# Cycle end / Simple contour G80

By programming G80 (with parameters), a turning contour consisting of more than one element can be defined in one NC block. G80 (without parameters) ends a contour definition directly after a cycle.


# Parameters

- XS Starting point of contour in X (diameter value)
- ZS Starting point of contour in Z
- XE Contour end point in X (diameter value)
- ZE Contour end point in Z
- AC Angle of 1st element (range:  $0^{\circ} \le AC \le 90^{\circ}$ )
- WC Angle of 2nd element (range:  $0^{\circ} \le AC \le 90^{\circ}$ )
- BS Chamfer/rounding arc at starting point
- WS Angle for chamfer at starting point
- BE Chamfer/rounding arc at end point
- WE Angle for chamfer at end point
- RC Radius
- IC Chamfer width
- KC Chamfer width
- JC Execution (see cycle programming)
  - 0: Simple contour
  - 1: Expanded contour
- EC Plunging contour
  - 0: Rising contour
  - 1: Plunging contour
- HC Contour direction for finishing:
  - 0: Longitudinal
  - 1: Transverse

 $"\mbox{IC"}$  and  $"\mbox{KC"}$  are used in the control to show the chamfer/rounding cycles.

# 

EC=0



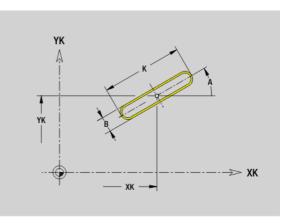
| N1 T3 G95 F0.25 G96 S200 M3              |
|------------------------------------------|
| N2 G0 X120 Z2                            |
| N3 G810 P3                               |
| N4 G80 XS60 ZS-2 XE90 ZE-50 BS3 BE-2 RC5 |
| N5                                       |
| N6 G0 X85 Z2                             |
| N7 G810 P5                               |
| N8 G0 X0 Z0                              |
| N9 G1 X20                                |
| N10 G1 Z-40                              |
| N11 G80                                  |

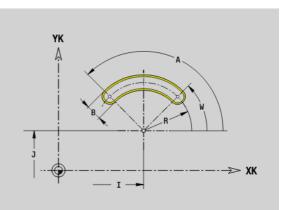


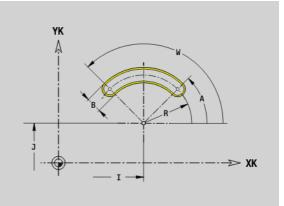
# Linear slot on front/rear face G301

G301 defines a linear slot in a contour on the front or rear face. Program this figure in conjunction with G840, G845 or G846.

# Parameters


- XK Center in Cartesian coordinates
- YK Center in Cartesian coordinates
- X Diameter (center point in polar coordinates)
- C Angle (center point in polar coordinates)
- A Angle to XK axis (default: 0°)
- K Slot length
- B Slot width P Depth/Hei
  - Depth/Height
    - P<0: Pocket
    - P>0: Island


# Circular slot on front/rear face G302/G303


G302/G303 defines a circular slot in a contour on the front face/rear face. Program this figure in conjunction with G840, G845 or G846.

- G302: Circular slot clockwise
- G303: Circular slot counterclockwise

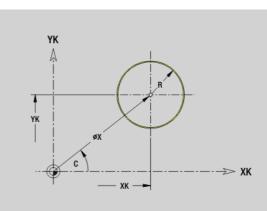
- I Center of curvature in Cartesian coordinates
- J Center of curvature in Cartesian coordinates
- X Diameter (center point in polar coordinates)
- C Angle (center point in polar coordinates)
- R Curvature radius (reference: center point path of the slot)
- A Starting angle; reference: XK axis (default: 0°)
- W End angle; reference: XK axis (default: 0°)
- B Slot width
- P Depth/Height
  - P<0: Pocket
  - P>0: Island







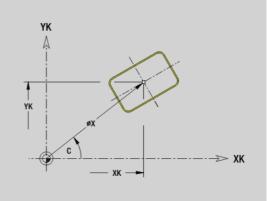
# Full circle on front/rear face G304


G304 defines a full circle in a contour on the front face/rear face. Program this figure in conjunction with G840, G845 or G846.

# Parameters

- XK Center in Cartesian coordinates
- YK Center in Cartesian coordinates
- X Diameter (center point in polar coordinates)
- C Angle (center point in polar coordinates)
- R Radius
- P Depth/Height

P<0: Pocket


■ P>0: Island



# **Rectangle on front/rear face G305**

G305 defines a rectangle in a contour on the front face/rear face. Program this figure in conjunction with G840, G845 or G846.

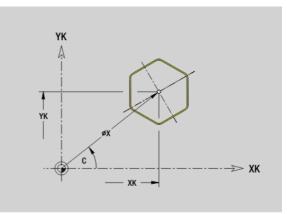
- XK Center in Cartesian coordinates
- YK Center in Cartesian coordinates
- X Diameter (center point in polar coordinates)
- C Angle (center point in polar coordinates)
- A Angle to XK axis (default: 0°)
- K Length
- B (Height) width
- R Chamfer/rounding arc (default: 0°)
  - R>0: Radius of rounding arc
  - R<0: Chamfer width
- P Depth/Height
  - P<0: Pocket
  - P>0: Island

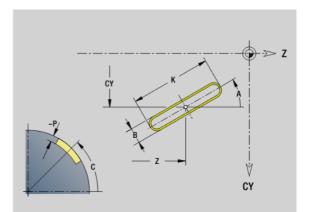




# Eccentric polygon on front/rear face G307

G307 defines a polygon in a contour on the front face/rear face. Program this figure in conjunction with G840, G845 or G846.


# Parameters


- XK Center in Cartesian coordinates
- YK Center in Cartesian coordinates
- X Diameter (center point in polar coordinates)
- C Angle (center point in polar coordinates)
- A Angle of a polygon edge to XK axis (default: 0°)
- Q Number of edges (Q > 2)
- K Edge length
  - K>0: Edge length
  - K<0: Inside diameter of circle
- R Chamfer/rounding arc (default: 0°)
  - R>0: Radius of rounding arc
  - R<0: Chamfer width</p>
- P Depth/Height
  - P<0: Pocket
  - P>0: Island

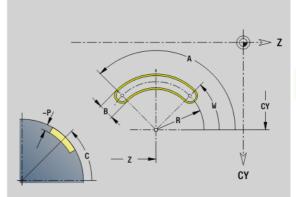
# Linear slot on lateral surface G311

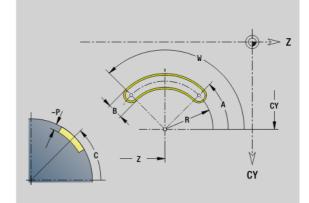
G311 defines a linear slot in a lateral-surface contour. Program this figure in conjunction with G840, G845 or G846.

- Z Center (Z position)
- CY Center as linear value; reference: unrolled reference diameter
- C Center (angle)
- A Angle to Z axis (default: 0°)
- K Slot length
- B Slot width
- P Depth of pocket





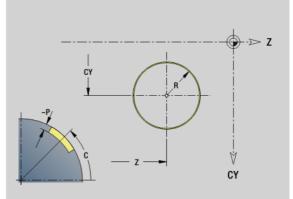

# Circular slot on lateral surface G312/G313


G312/G313 defines a circular slot in a lateral-surface contour. Program this figure in conjunction with G840, G845 or G846.

- G312: Circular slot clockwise
- G313: Circular slot counterclockwise

# Parameters

- Z Center
- CY Center as linear value; reference: unrolled reference diameter
- C Center (angle)
- R Radius; reference: center point path of the slot
- A Starting angle; reference: Z axis (default: 0°)
- W End angle; reference: Z axis
- B Slot width
- P Depth of pocket






# Full circle on lateral surface G314

G314 defines a full circle in a lateral-surface contour. Program this figure in conjunction with G840, G845 or G846.

- Z Center
- CY Center as linear value; reference: unrolled reference diameter
- C Center (angle)
- R Radius
- P Depth of pocket



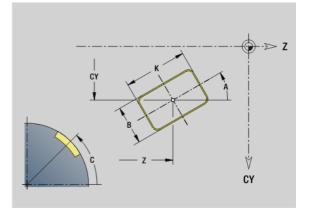


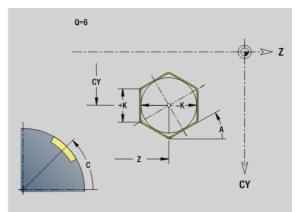
# **Rectangle, lateral surface G315**

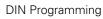
G315 defines a rectangle in a lateral-surface contour. Program this figure in conjunction with G840, G845 or G846.

#### **Parameters** Ζ

- Center
- CY Center as linear value; reference: unrolled reference diameter
- С Center (angle)
- А Angle to Z axis (default: 0°)
- Κ Length
- В Width


4.18 Contour definitions in the mach<mark>inin</mark>g section


- R Chamfer/rounding arc (default: 0°)
  - R>0: Radius of rounding arc
  - R<0: Chamfer width
- Ρ Depth of pocket


# Eccentric polygon, lateral surface G317

G317 defines a polygon in a lateral-surface contour. Program this figure in conjunction with G840, G845 or G846.

- Center
- CY Center as linear value: reference: unrolled reference diameter
- С Center (angle)
- Q Number of edges (Q > 2)
- А Angle to Z axis (default: 0°)
- Κ Edge length
  - K>0: Edge length
  - K<0: Inside diameter of circle
- R Chamfer/rounding arc (default: 0°)
  - R>0: Radius of rounding arc
  - R<0: Chamfer width</p>
- Ρ Depth of pocket







# 4.19 Thread cycles

# **Overview of threading cycles**

- G31 machines single threads, successions of threads and multi-start threads defined with G24-Geo, G34-Geo or G37-Geo (FINISHED PART). G31 can also machine a threading contour defined directly after the cycle call and concluded by G80: See "Thread cycle G31" on page 307.
- G32 cuts a single thread in any desired direction and position: See "Single thread cycle G32" on page 311.
- G33 conducts a single thread cut. The direction of the single thread cut is as desired: See "Thread single path G33" on page 313.
- G35 cuts a simple cylindrical metric ISO thread without run-out: See "Metric ISO thread G35" on page 315.
- G352 cuts a tapered API thread: See "Tapered API thread G352" on page 316.

# Handwheel superimposition

If your machine features handwheel superimposition, you can overlap axis movements during thread cutting in a limited area:

- **X direction**: Maximum programmed thread depth depending on the current cutting depth
- **Z direction**: +/- a fourth of the thread pitch



Machine and control must be specially prepared by the machine tool builder for use of this cycle. Refer to your machine manual.



Remember that position changes resulting from handwheel superimposition are no longer effective after the cycle end or the "last cut" function.

# Parameter V: Type of infeed

With the V parameter you define the type of infeed for thread cutting cycles.

The following infeed types are available:

# 0: Constant mach. X-section

The control reduces the cutting depth after each infeed to achieve a consistent chip cross section and removal rate.

# 1: Constant infeed

The control uses the same cutting depth for each infeed without exceeding the maximum infeed **I**.

# 2: EPL with distribution of cuts

The control uses the thread pitch **F1** and the constant shaft speed **S** to calculate the cutting depth for a constant infeed. If the thread depth is not a multiple of the cutting depth, the control uses the depth of the remaining cut for the first infeed. With the "distribution of remaining cuts," the control divides the last cutting depth into four partial cuts. The first cut is half the calculated cutting depth, the second is a quarter and the third and fourth each are an eighth.

# 3: EPL without distribution of cuts

The control uses the thread pitch  $\mathbf{F1}$  and the constant shaft speed  $\mathbf{S}$  to calculate the cutting depth for a constant infeed. If the thread depth is not a multiple of the cutting depth, the control uses the depth of the remaining cut for the first infeed. All subsequent infeeds are constant and correspond to the calculated cutting depth.

# 4: MANUALplus 4110

The control performs the first infeed with the maximum infeed I. To determine the subsequent cutting depths, the control uses the formula gt = 2 \* I \* SQRT "current no. of cuts", where "gt" is the absolute depth. The cutting depth decreases with each infeed since the current number of cuts is incremented by 1 with each infeed. If, as a result, the remaining cut depth **R** falls below the value defined in R, the control uses the value from R as the new constant cutting depth! If the thread depth is not a multiple of the cutting depth, the control performs the last cut to the final depth.

# 5: Constant infeed (4290)

The control uses the same cutting depth for each infeed; the cutting depth corresponds to the maximum infeed  $\mathbf{I}$ . If the thread depth is not a multiple of the cutting depth, the control uses the depth of the remaining cut for the first infeed.

# 6: Constant infeed with remaining cutting (4290)

The control uses the same cutting depth for each infeed; the cutting depth corresponds to the maximum infeed **I**. If the thread depth is not a multiple of the cutting depth, the control uses the depth of the remaining cut for the first infeed. With the "distribution of remaining cuts," the control divides the last cutting depth into four partial cuts. The first cut is half the calculated cutting depth, the second is a quarter and the third and fourth each are an eighth.

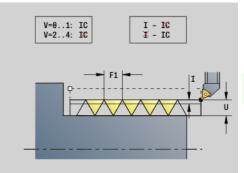


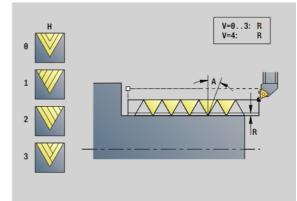
# 4.19 Thread cycles

# Thread cycle G31

G31 machines single threads, successions of threads and multi-start threads defined with G24-, G34- or G37-Geo. G31 can also machine a threading contour defined directly after the cycle call and concluded by G80.

# Parameters


- ID Auxiliary contour—ID number of the contour to be machined
- NS Contour start block number (reference to basic element G1-Geo; for successions of threads: block number of the first basic element)
- NE Contour end block number (reference to basic element G1-Geo; for successions of threads: block number of the last basic element)
- O Identifier beginning/end (default: 0) A chamfer/rounding arc is machined:
  - 0: No machining
  - 1: At beginning
  - 2: At end
  - 3: At beginning and end
  - 4: Chamfer/rounding arc is machined—not the basic element (prerequisite: Contour section with one element)
- J Reference direction:
  - No input: The reference direction is determined from the first contour element.
  - J=0: Longitudinal thread
  - J=1: Transverse thread
- I Maximum infeed
  - No input and V=0 (constant chip cross section): I = 1/3 \* F
- IC Number of cuts. The infeed is calculated from IC and U. Usable with:
  - V=0 (constant chip cross section)
  - V=1 (constant infeed)
- B Run-in length


No input: The run-in length is determined from the contour. If this is not possible, the value is calculated from the kinematic parameters. The thread contour is extended by the value B.

P Overrun length

No input: The run-out length is determined from the contour. If this is not possible, the value is calculated. The thread contour is extended by the value P.

A Approach angle (angle of infeed) (default: 30°)





# Beispiel: G31

| FINISHED                               |
|----------------------------------------|
| N 2 G0 X16 Z0                          |
| N 3 G52 P2 H1                          |
| N 4 G95 F0.8                           |
| N 5 G1 Z-18                            |
| N 6 G25 H7 I1.15 K5.2 R0.8 W30 BF0 BP0 |
| N 7 G37 Q12 F2 P0.8 A30 W30            |
| N 8 G1 X20 BR-1 BF0 BP0                |
| N 9 G1 Z-23.8759 BR0                   |
| N 10 G52 G95                           |
| N 11 G3 Z-41.6241 I-14.5 BR0           |
| N 12 G1 Z-45                           |

i

# 4.19 Thread cycles

# Parameters

- Type of infeed (default: 0); for details, see page 306
  - 0: Constant cross section for all cuts
  - 1: Constant infeed
  - 2: W/ remaining cutting (with distribution of remaining cuts). First infeed = Remainder of the division of thread depth/ cutting depth. The last cut is divided into four partial cuts: 1/ 2, 1/4, 1/8 and 1/8.
  - 3: Infeed is calculated from the pitch and spindle speed
  - 4: Same as MANUALplus 4110
  - 5: Constant infeed (same as 4290)
  - 6: Constant with distribute. (same as 4290)
- H Type of offset for smoothing the thread flanks (default: 0)
  - 0: Without offset
  - 1: Offset from the left
  - 2: Offset from the right
  - 3: Tool is offset alternately from the right and left
- R Depth of remaining cuts—only in conjunction with approach type V=4 (same as MANUALplus 4110)
- C Starting angle (thread start is defined with respect to rotationally nonsymmetrical contour elements)—(default: 0)
- BD External/internal thread (no meaning for closed contours)
  - 0: External thread
  - 1: Internal thread
- F Thread pitch
- U Thread depth
- K Run-out length
  - K>0: Run-out
  - K<0: Run-in

The length K should be at least the value of the thread depth.

- D Number of thread turns for multi-start thread
- E Variable pitch (no effect at present)
- Q Number of no-load (air) cuts after the last cut (for reducing the cutting pressure in the thread base)—(default: 0)



If a thread has been defined with G24-Geo, G34-Geo or G37-Geo, the parameters F, U, K and D are not relevant.

**Run-in length B:** The slide requires a run-in distance at the start of thread in order to accelerate to the programmed contouring feed rate before starting the actual thread.

**Run-out length P:** The slide needs an overtravel at the end of the thread to decelerate again. Remember that the paraxial line P needs overtravel even with an oblique thread run-out

# Beispiel: G31, continued

| Beispiel: G31, continued                                |
|---------------------------------------------------------|
| N 13 G1 X30 BR2                                         |
| N 14 G1 Z-50 BR0                                        |
| N 15 G2 X36 Z-71 I12 BR5                                |
| N 16 G1 X40 Z-80                                        |
| N 17 G1 Z-99                                            |
| N 18 G1 Z-100[thread]                                   |
| N 19 G1 X50                                             |
| N 20 G1 Z-120                                           |
| N 21 G1 X0[thread]                                      |
| N 22 G1 Z0                                              |
| N 23 G1 X16 BR-1.5                                      |
|                                                         |
| AUXILIARY CONTOUR ID"thread"                            |
| N 24 G0 X20 Z0                                          |
| N 25 G1 Z-30                                            |
| N 26 G1 X30 Z-60                                        |
| N 27 G1 Z-100                                           |
|                                                         |
| MACHINING                                               |
| N 33 G14 Q0 M108                                        |
| N 30 T9 G97 S1000 M3                                    |
| N 34 G47 P2                                             |
| N 35 G31 NS16 NE17 J0 IC5 B5 P0 V0 H1                   |
| BD0 F2 K10                                              |
| N 36 G0 X110 Z20                                        |
| N 38 G47 M109                                           |
| [G80 contours can be inside or outside]                 |
| N 43 G31 IC4 B4 P4 A30 V0 H2 C30 BD0 F6                 |
| U3 K-10 Q2                                              |
| N 44 G0 X80 Z0                                          |
| N 45 G1 Z-20                                            |
| N 46 G1 X100 Z-40                                       |
| N 47 G1 Z-60                                            |
| N 48 G80                                                |
| [External thread regardless of the value defined in BD] |
| N 49 G0 X50 Z-30                                        |
|                                                         |

You can calculate the minimum run-in and run-out length with the following equation.

**Run-in length**:  $B = 0.75 * (F*S)^2 / a * 0.66 + 0.15$ 

**Run-out length**:  $P = 0.75 * (F*S)^2 / a * 0.66 + 0.15$ 

- F: Thread pitch in mm/revolution
- S: Speed in revolutions/second
- a: Acceleration in mm/s<sup>2</sup> (see axis data)

# Determination of external/internal thread:

- G31 with contour reference—closed contour: External or internal thread is defined by the contour. BD has no meaning.
- G31 with contour reference—open contour: External or internal thread is defined by "BD". If "BD" is not programmed, the contour is used to determine whether a thread is external or internal.
- If the thread contour is programmed directly after the cycle, "BD" determines whether the thread is an internal or external thread. If "BD" is not programmed, the algebraic sign of "U" is evaluated (as in the MANUALplus 4110).
  - U>0: Internal thread
  - U<0: External thread

**Starting angle C:** At the end of the "run-in path B" the spindle is at the "starting angle C" position. Therefore, if the thread is to start exactly at the starting angle, position the tool by the run-in length—or by the run-in length plus a multiple of the thread pitch—in front of the beginning of the thread.

The individual thread cuts are calculated from the thread depth, maximum approach I and type of approach V.



Cycle stop—the Control retracts the tool from the thread groove and then stops all tool movements. (Lift-off distance: OEM configuration parameter: cfgGlobalProperties-threadliftoff)

Feed rate override is not effective.



#### Danger of collision!

An excessive overrun length P might cause a collision. You can check the overrun length in the **Simulation** submode.

#### Beispiel: G31, continued

| N 50 G31 NS16 NE17 O0 IC2 B4 P0 A30 V0<br>H1 C30 BD1 F2 U1 K10                   |
|----------------------------------------------------------------------------------|
| N 51 G0 Z10 X50                                                                  |
| [AUXILIARY CONTOURS can be inside or<br>outside if they are not closed contours] |
| N 52 G0 X50 Z-30                                                                 |
| N 53 G31 ID"thread" O0 IC2 B4 P0 A30 V0<br>H1 C30 BD1 F2 U1 K10                  |
| N 60 G0 Z10 X50                                                                  |

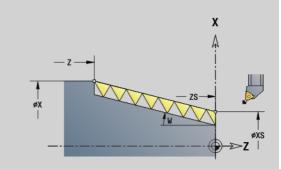
# Cycle run

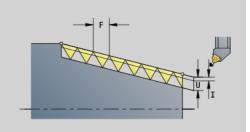
- **1** Calculates the number of cutting passes.
- 2 Moves diagonally to the internal starting point at rapid traverse. This point lies in front of the "starting point of thread" by the runin length B. With H=1 (or 2, 3) the current offset is taken into account for calculating the internal starting point.

The internal starting point is calculated on the basis of the tool tip.

- **3** Accelerates to feed rate (line B).
- **4** Executes a thread cut.
- 5 Decelerates (line P).
- 6 Retracts to safety clearance, returns at rapid traverse, and approaches for next pass. For multiple threads, the same rate of cut is used for each thread turn, before the next infeed motion is executed.
- 7 Repeats 3 to 6 until the complete thread has been cut.
- 8 Executes air cuts.
- **9** Returns to starting point.

# Single thread cycle G32


G32 cuts a single thread in any desired direction and position (longitudinal, tapered or transverse thread; internal or external thread).


# Parameters

- X End point of thread (diameter)
- Z End point of thread
- XS Starting point for thread (diameter)
- ZS Starting point for thread
- BD External/internal thread:
  - 0: External thread
  - 1: Internal thread
- F Thread pitch
- U Thread depth

No input: The thread depth is calculated automatically:

- External thread (0.6134 \* F)
- Internal thread (0.5413 \* F)
- I Maximum cutting depth
- IC Number of cuts. The infeed is calculated from IC and U. Usable with:
  - V=0 (constant chip cross section)
  - V=1 (constant infeed)
- V Type of infeed (default: 0); for details, see page 306
  - 0: Constant cross section for all cuts
  - 1: Constant infeed
  - 2: W/ remaining cutting (with distribution of remaining cuts). First infeed = Remainder of the division of thread depth/ cutting depth. The last cut is divided into four partial cuts: 1/ 2, 1/4, 1/8 and 1/8
  - 3: Infeed is calculated from the pitch and spindle speed
  - 4: Same as MANUALplus 4110
  - 5: Constant infeed (same as 4290)
  - 6: Constant with distribute. (same as 4290)
- H Type of offset for smoothing the thread flanks (default: 0)
  - 0: Without offset
  - 1: Offset from the left
  - 2: Offset from the right
  - 3: Tool is offset alternately from the right and left
- WE Lift off method with K=0 (default: 0)
  - 0: G0 at end
  - 1: Lift-off in thread
- K Run-out length at thread end point (default: 0)





# Parameters

W Taper angle (range: -45° < W < 45°)---(default: 0)

Position of the taper thread with respect to longitudinal or transverse axis:

- W>0: Rising contour (in machining direction)
- W<0: Falling contour

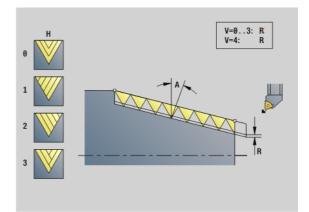
# Parameters

- C Starting angle (thread start is defined with respect to rotationally nonsymmetrical contour elements)—(default: 0)
- A Approach angle (angle of infeed) (default: 30°)
- R Remainder cuts (default: 0)
  - O: The last cut is divided into four partial cuts: 1/2, 1/4, 1/8 and 1/8.
  - 1: W/o remaining cutting (without distribution of remaining cuts)
- E Variable pitch (no effect at present)
- Q Number of no-load (air) cuts after the last cut (for reducing the cutting pressure in the thread base)—(default: 0)
- D Number of thread turns for multi-start thread
- J Reference direction:
  - No input: The reference direction is determined from the first contour element.
  - J=0: Longitudinal thread
  - J=1: Transverse thread

The cycle calculates the thread from the thread end point, thread depth and the tool position.

First infeed = Remainder of the division of thread depth/cutting depth.

**Transverse thread:** Use G31 with contour definition for cutting transverse threads.




Cycle stop—the Control retracts the tool from the thread groove and then stops all tool movements. (Lift-off distance: OEM configuration parameter: cfgGlobalProperties-threadliftoff)

Feed rate override is not effective.

# Cycle run

- 1 Calculates the number of cutting passes.
- 2 Executes a thread cut.
- **3** Returns at rapid traverse and approaches for next pass.
- 4 Repeats 2 to 3 until the complete thread has been cut.
- **5** Executes air cuts.
- 6 Returns to starting point.





| N1 T4 G97 S800 M3             |
|-------------------------------|
| N2 G0 X16 Z4                  |
| N3 G32 X16 Z-29 F1.5 [thread] |
|                               |

# 1.19 Thread cycles

# Thread single path G33

G33 conducts a single thread cut. The direction of the single thread path is as desired (longitudinal, tapered or transverse threads; internal or external threads). You can make successive threads by programming G33 several times in succession.

Position the tool in front of the thread by the run-in length B if the slide must accelerate to the feed rate. And remember the run-out length P **before** the end point of thread if the slide has to be decelerated.

# Parameters

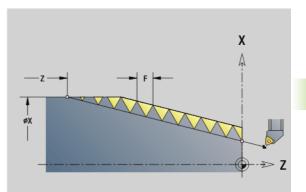
- X End point of thread (diameter)
- Z End point of thread
- F Thread pitch
- B Slop. length (run-in length; length of the acceleration path)
- P Overflow length (run-out length; length of the deceleration path)
- C Starting angle (thread start is defined with respect to rotationally nonsymmetrical contour elements)—(default: 0)
- H Reference direction for thread pitch (default: 0)
  - 0: Feed rate on the Z axis (for longitudinal and taper threads up to a max. angle of +45°/-45° to the Z axis)
  - 1: Feed rate on the X axis (for transverse and taper threads up to a max. angle of +45°/-45° to the X axis)
  - 3: Contouring feed rate
- E Variable pitch (default: 0)—(no effect at present)
- I Retraction distance in X—retraction path for cycle stop in the thread, incremental value
- K Retraction distance in Z—retraction path for cycle stop in the thread, incremental value

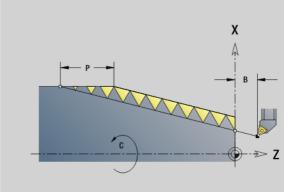
**Run-in length B:** The slide requires a run-in distance at the start of thread in order to accelerate to the programmed feed rate before starting the actual thread.

Default: cfgAxisProperties/SafetyDist

**Run-out length P:** The slide needs an overtravel at the end of the thread to decelerate again. Remember that the paraxial line P needs overtravel even with an oblique thread run-out.

P=0: Start of a successive thread


■ P>0: End of a successive thread


**Starting angle C:** At the end of the "run-in path B" the spindle is at the "starting angle C" position.



Cycle stop—the Control retracts the tool from the thread groove and then stops all tool movements. (Lift-off distance: OEM configuration parameter: cfqGlobalProperties-threadliftoff)

- Feed rate override is not effective
- Create thread with G95 (feed rate per revolution)





| N1 T5 G97 S1100 G95 F0.5 M3                   |
|-----------------------------------------------|
| N2 G0 X101.84 Z5                              |
| N3 G33 X120 Z-80 F1.5 P0 [thread single path] |
| N4 G33 X140 Z-122.5 F1.5                      |
| N5 G0 X144                                    |
|                                               |

# Cycle run

- 1 Accelerates to feed rate (line B).
- 2 Moves at feed rate to end point of thread –run-out length P.
- **3** Decelerates (line P) and stops at the end point of thread.

# Activating handwheel during G33

With the G923 function you can activate the handwheel in order to make compensations during a thread cut. In the G923 function you define limits within which traverse with the handwheel is possible.

# Parameters

- X Max. positive offset: limit in +X
- Z Max. positive offset: limit in +Z
- U Max. negative offset: limit in –X
- W Max. negative offset: limit in –Z
- H Reference direction:
  - H=0: Longitudinal thread
  - H=1: Transverse thread
- Q Thread type:
  - Q=1: Right-hand thread
  - Q=2: Left-hand thread

4.19 Thread cycles

# Metric ISO thread G35

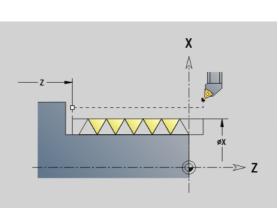
G35 cuts a longitudinal thread (internal or external thread). The thread starts at the current tool position and ends at the end point X, Z.

From the tool position relative to the end point of the thread, the Control automatically determines whether an internal or external thread is to be cut.

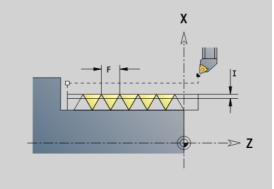
# **Parameters**

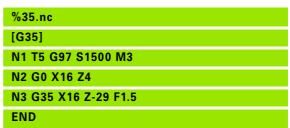
- End point of thread (diameter) Х
- Ζ End point of thread
- F Thread pitch
- Т Maximum infeed

No input: I is calculated from the thread pitch and the thread depth.


- 0 Number of no-load (air) cuts after the last cut (for reducing the cutting pressure in the thread base)-(default: 0) V
  - Type of infeed (default: 0); for details, see page 306
  - O: Constant cross section for all cuts
    - 1: Constant infeed
    - 2: W/ remaining cutting (with distribution of remaining cuts). First infeed = Remainder of the division of thread depth/ cutting depth. The last cut is divided into four partial cuts: 1/ 2, 1/4, 1/8 and 1/8.
    - 3: Infeed is calculated from the pitch and spindle speed
    - 4: Same as MANUALplus 4110
    - 5: Constant infeed (same as 4290)
    - 6: Constant with distribute. (same as 4290)

Cycle stop—the Control retracts the tool from the thread groove and then stops all tool movements. (Liftoff distance: OEM configuration parameter: cfqGlobalProperties-threadliftoff)


If you are programming an internal thread, it is advisable to preset the thread pitch F since the diameter of the longitudinal element is not the thread diameter. If you have the Control calculate the thread pitch automatically, slight deviations may occur.

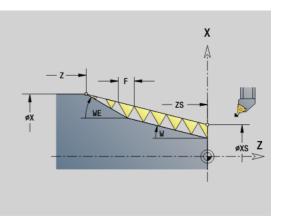

# **Cvcle run**

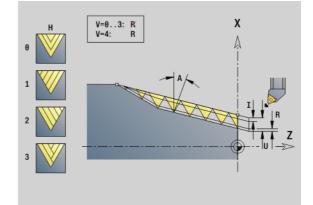
- 1 Calculates the number of cutting passes.
- 2 Executes a thread cut.
- **3** Returns at rapid traverse and approaches for next pass.
- 4 Repeats 2 to 3 until the complete thread has been cut.
- **5** Executes air cuts.
- 6 Returns to starting point.



**19 Thread cycles** 







# Tapered API thread G352

This cycle cuts a tapered single or multi-start API thread. The depth of thread decreases at the overrun at the end of thread.

# Parameters

- X End point of thread (diameter)
- Z End point of thread
- XS Starting point for thread (diameter)
- ZS Starting point for thread
- F Thread pitch
- U Thread depth
  - U>0: Internal thread
  - U<=0: External thread (lateral surface or front face)
  - U= +999 or -999: Thread depth is calculated
- I Maximum approach (infeed) (default: I is calculated from the thread pitch and the thread depth)
- V Type of infeed (default: 0); for details, see page 306
  - 0: Constant cross section for all cuts
  - 1: Constant infeed
  - 2: W/ remaining cutting (with distribution of remaining cuts). First infeed = Remainder of the division of thread depth/ cutting depth. The last cut is divided into four partial cuts: 1/ 2, 1/4, 1/8 and 1/8
  - 3: Infeed is calculated from the pitch and spindle speed
  - 4: Same as MANUALplus 4110
- H Type of offset for smoothing the thread flanks (default: 0)
  - 0: Without offset
  - 1: Offset from the left
  - 2: Offset from the right
  - 3: Tool is offset alternately from the right and left
- A Infeed angle (range:  $-60^{\circ} < A < 60^{\circ}$ ; default:  $30^{\circ}$ )
  - A>0: Infeed on right thread flank
  - A<0: Infeed on left thread flank
- R Depth of remaining cuts—only in conjunction with approach type V=4 (same as MANUALplus 4110)
- W Cone (taper) angle (range:  $-45^{\circ} < W < 45^{\circ}$ ; default: 0°)
- WE Run-out angle (range: 0° < WE < 90°; default: 12°)
- D Threads per unit (number of thread turns) for multi-start thread
- Q Number of no-load (air) cuts after the last cut (for reducing the cutting pressure in the thread base)—(default: 0)
- C Starting angle (thread start is defined with respect to rotationally nonsymmetrical contour elements)—(default: 0)





### Beispiel: G352

| %352.nc                              |
|--------------------------------------|
| [G352]                               |
| N1 T5 G97 S1500 M3                   |
| N2 G0 X13 Z4                         |
| N3 G352 X16 Z-28 XS13 ZS0 F1.5 U-999 |
| WE12                                 |

END

Internal or external threads: See algebraic sign of "U."

**Number of cutting passes:** The first cut is performed at the cutting depth defined for "I" and is reduced with each cut until the tool reaches the "remaining cutting depth R."

**Handwheel superposition** (provided that your machine is equipped accordingly): The superposition is limited to the following range:

- **X direction:** Depending on the current cutting depth—without exceeding the starting and end points of the thread.
- **Z direction:** Maximal 1 thread groove—without exceeding the starting and end points of the thread.

Definition of taper angle:

- XS/ZS, X/Z
- XS/ZS, Z, W
- ZS, X/Z, W

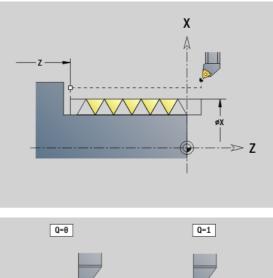


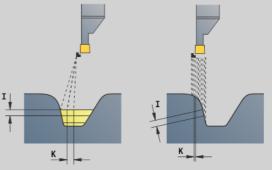
Cycle stop—the Control retracts the tool from the thread groove and then stops all tool movements. (Liftoff distance: OEM configuration parameter: cfgGlobalProperties-threadliftoff)

If you are programming an internal thread, it is advisable to preset the thread pitch F since the diameter of the longitudinal element is not the thread diameter. If you have the Control calculate the thread pitch automatically, slight deviations may occur.

# Cycle run

- 1 Calculates the number of cutting passes.
- 2 Executes a thread cut.
- **3** Returns at rapid traverse and approaches for next pass.
- **4** Repeats 2 to 3 until the complete thread has been cut.
- 5 Executes air cuts.
- 6 Returns to starting point.


# Metric ISO thread G38


Cycle G38 creates a cylindrical thread whose form does not correspond to the tool form. Use a recessing or button tool for machining.

Describe the contour of the thread turn as auxiliary contour. The position of the auxiliary contour must correspond to the start position of the thread cuts. You can select the entire auxiliary contour or just segments in the cycle.

# Parameters

- ID Name of the auxiliary contour
- NS Start block of the contour to be machined
- NE End block of the contour to be machined
- Q Thread depth
  - O: Roughing: The contour is roughed out line by line at maximum infeed I and K. A programmed oversize (G58 or G57) is taken into account.
  - 1: Finishing: The turn of the thread is created in individual cuts along the contour. Define the distances between the individual thread cuts on the contour with I and K.
- X End point of thread X
- Z End point of thread Z
- F Thread pitch
- I Maximum infeed
  - If Q=0: Plunging depth
  - If Q=1: Distance between the finishing cuts as arc length
- K Maximum infeed
  - If Q=0: Offset width
  - If Q=1: Distance between the finishing cuts on straight line
- J Run-out length
- C Starting angle
- O Type of infeed
  - 0: Rapid traverse
  - 1: Feed rate

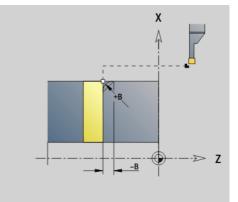




| %352.nc                                                 |
|---------------------------------------------------------|
| [G38]                                                   |
| N1 T5 G97 S1500 M3                                      |
| N2 G0 X43 Z4                                            |
| N3 G38 ID"123" NS3 NE5 X40 Z-30 F1.5 I0.8<br>K0.5 J3 C0 |
| END                                                     |

# 4.20 Parting cycle

# Cut-off cycle G859


Cycle G859 parts the workpiece. If programmed, a chamfer or rounding arc is machined on the outside diameter. At the end of cycle, the tool retracts and returns to the starting point.

You can define a feed rate reduction, which becomes effective as soon as the position I is reached.

# Parameters

- X Cut-off (parting) diameter
- Z Cut-off (parting) position
- I Diameter for feed rate reduction
  - I is defined: The control switches to feed rate E after this position
  - I is not defined: No feed rate reduction
- XE Inside diameter (pipe)
- E Reduced feed rate
- B Chamfer/rounding
  - B>0: Radius of rounding arc
  - B<0: Width of chamfer
- D Speed limitation: maximum speed during parting
- K Retraction distance after parting: Lift off the tool laterally from the plane surface before retraction
- SD Speed limitation from the diameter I up
- U Diameter from which the part catcher is activated (machinedependent function)





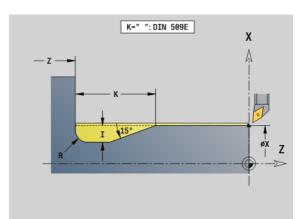
| %859.nc                           |
|-----------------------------------|
| [G859]                            |
| N1 T3 G95 F0.23 G96 S248 M3       |
| N2 G0 X60 Z-28                    |
| N3 G859 X50 Z-30 I10 XE8 E0.11 B1 |
| END                               |

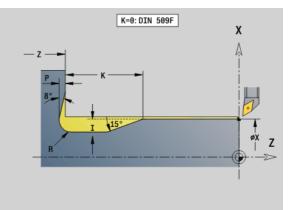


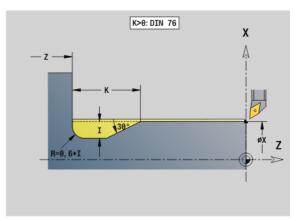
# 4.21 Undercut cycles

# **Undercut cycle G85**

With the function G85, you can machine undercuts according to DIN 509 E, DIN 509 F and DIN 76 (thread undercut).


# **Parameters**


4.21 Undercut cycles


- Х Target point (diameter)
- Ζ Target point
- I Depth (radius)
  - DIN 509 E, F: Finishing oversize (default: 0)
  - DIN 76: Undercut depth
- Κ Undercut width and type of undercut
  - K-No input: DIN 509 E
  - K=0: DIN 509 F
  - K>0: Undercut width for DIN 76
- Е Reduced feed for machining the undercut (default: active feed rate)

G85 machines the adjoining cylinder if you position the tool to diameter X "in front of" the cylinder.

The undercut rounding arcs are executed with the radius ?0.6 \* I.







| Parameters for undercut DIN 509 E |      |     |     |  |
|-----------------------------------|------|-----|-----|--|
| Diameter                          | 1    | К   | R   |  |
| <= 18                             | 0.25 | 2   | 0.6 |  |
| > 18 - 80                         | 0.35 | 2.5 | 0.6 |  |
| > 80                              | 0.45 | 4   | 1   |  |

| Parameters for | or undercut | DIN 509 F |     |     |
|----------------|-------------|-----------|-----|-----|
| Diameter       | l I         | К         | R   | Р   |
| <= 18          | 0.25        | 2         | 0.6 | 0.1 |
| > 18 - 80      | 0.35        | 2.5       | 0.6 | 0.2 |
| > 80           | 0.45        | 4         | 1   | 0.3 |

I = undercut depth

 $\blacksquare$  K = undercut width

R = undercut radius

P = face depth

- Undercut angle for undercuts according to DIN 509 E and F: 15°
- Transverse angle for an undercut according to DIN 509 F: 8°



The **tool radius compensation** is not active.

**Oversizes** are not taken into account.

| N1 T21 G95 F0.23 G96 S248 M3   |
|--------------------------------|
| N2 G0 X62 Z2                   |
| N3 G85 X60 Z-30 I0.3           |
| N4 G1 X80                      |
| N5 G85 X80 Z-40 K0             |
| N6 G1 X100                     |
| N7 G85 X100 Z-60 I1.2 K6 E0.11 |
| N8 G1 X110                     |
| · · · ·                        |



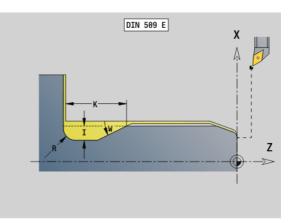
# Undercut according to DIN 509 E with cylinder machining G851

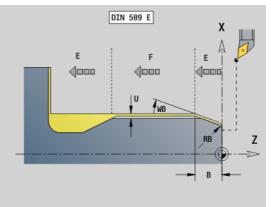
G851 machines the adjoining cylinder, the undercut, and finishes with the plane surface. It also machines a cylinder start chamfer when you enter at least one of the parameters **Cut-in length (1st cut length)** or **Cut-in radius (1st cut radius)**.

# Parameters

- I Undercut depth (default: value from standard table)
- K Undercut length (default: value from standard table)
- W Undercut angle (default: value from standard table)
- R Undercut radius (default: value from standard table)
- B Cut-in length (1st cut length)—no input: No chamfer machined at start of cylinder
- RB Cut-in radius (1st cut radius)—no input: 1st cut radius is not machined
- WB 1st cut angle (default: 45°)
- E Reduced feed for machining the undercut (default: active feed rate)
- H Type of departure (default: 0):
  - 0: Tool returns to the starting point
  - 1: Tool remains at the end of the plane surface
- U Grinding oversize for the area of the cylinder (default: 0)

The Control calculates unentered parameters from the diameter of the cylinder in the standard table (see "Undercut cycle G85" on page 320).


# Blocks following the cycle call


| N G851 I K W /Cycle call |                                         |
|--------------------------|-----------------------------------------|
| N G0 X Z                 | /Corner point of cylinder start chamfer |
| N G1 Z                   | /Undercut corner                        |
| N G1 X                   | /End point on plane surface             |
| N G80                    | /End of contour definition              |

Undercuts can only be executed in orthogonal, paraxial contour corners along the longitudinal axis.

**Cutting radius compensation** is active.

• Oversizes are not taken into account.





| %851.nc                                   |
|-------------------------------------------|
| [G851]                                    |
| N1 T2 G95 F0.23 G96 S248 M3               |
| N2 G0 X60 Z2                              |
| N3 G851 I3 K15 W30 R2 B5 RB2 WB30 E0.2 H1 |
| N4 G0 X50 Z0                              |
| N5 G1 Z-30                                |
| N6 G1 X60                                 |
| N7 G80                                    |
| END                                       |

# 4.21 Undercut cycles

# Undercut according to DIN 509 F with cylinder machining G852

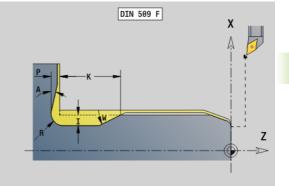
G852 machines the adjoining cylinder, the undercut, and finishes with the plane surface. It also machines a cylinder start chamfer when you enter at least one of the parameters **Cut-in length (1st cut length)** or **Cut-in radius (1st cut radius)**.

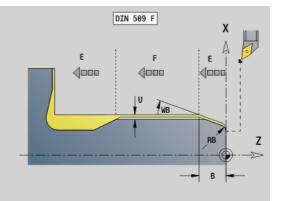
# Parameters

- I Undercut depth (default: value from standard table)
- K Undercut length (default: value from standard table)
- W Undercut angle (default: value from standard table)
- R Undercut radius (default: value from standard table)
- P Face depth (default: value from standard table)
- A Face angle (default: value from standard table)
- B Cut-in length (1st cut length)—no input: No chamfer machined at start of cylinder
- RB Cut-in radius (1st cut radius)—no input: 1st cut radius is not machined
- WB 1st cut angle (default: 45°)
- E Reduced feed for machining the undercut (default: active feed rate)
- H Type of departure (default: 0):
  - 0: Tool returns to the starting point
  - 1: Tool remains at the end of the plane surface
- U Grinding oversize for the area of the cylinder (default: 0)

The Control calculates unentered parameters automatically from the diameter in the standard table (see "Undercut cycle G85" on page 320).

# Blocks following the cycle call


| N G852 I K W /Cycle call |                                         |
|--------------------------|-----------------------------------------|
| N G0 X Z                 | /Corner point of cylinder start chamfer |
| N G1 Z                   | /Undercut corner                        |
| N G1 X                   | /End point on plane surface             |
| N G80                    | /End of contour definition              |




Undercuts can only be executed in orthogonal, paraxial contour corners along the longitudinal axis.

**Cutting radius compensation** is active.

• Oversizes are not taken into account.





| %852.nc                                              |
|------------------------------------------------------|
| [G852]                                               |
| N1 T2 G95 F0.23 G96 S248 M3                          |
| N2 G0 X60 Z2                                         |
| N3 G852 I3 K15 W30 R2 P0.2 A8 B5 RB2 WB30<br>E0.2 H1 |
| N4 G0 X50 Z0                                         |
| N5 G1 Z-30                                           |
| N6 G1 X60                                            |
| N7 G80                                               |
| END                                                  |

# Undercut according to DIN 76 with cylinder machining G853

G853 machines the adjoining cylinder, the undercut, and finishes with the plane surface. It also machines a cylinder start chamfer when you enter at least one of the parameters **Cut-in length (1st cut length)** or **Cut-in radius (1st cut radius)**.

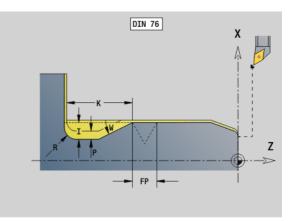
# Parameters

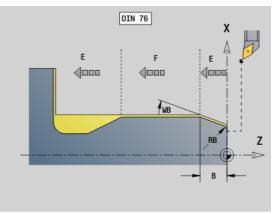
L

- FP Thread pitch
  - Undercut depth (default: value from standard table)
- K Undercut length (default: value from standard table)
- W Undercut angle (default: value from standard table)
- R Undercut radius (default: value from standard table)
- P Oversize:
  - P is not defined: The undercut is machined in one pass
  - P is defined: Division into pre-turning and finish-turning
     P = longitudinal oversize; the transverse oversize is preset to 0.1 mm
- B Cut-in length (1st cut length)—no input: No chamfer machined at start of cylinder
- RB Cut-in radius (1st cut radius)—no input: 1st cut radius is not machined
- WB 1st cut angle (default: 45°)
- E Reduced feed for machining the undercut (default: active feed rate)
- H Type of departure (default: 0):
  - 0: Tool returns to the starting point
  - 1: Tool remains at the end of the plane surface

Parameters that are not programmed are automatically calculated by the Control from the standard table:

- FP from the diameter
- I, K, W, and R from FP (thread pitch)


# Blocks following the cycle call


| N G853 FP I K. | W /Cycle call                           |
|----------------|-----------------------------------------|
| N G0 X Z       | /Corner point of cylinder start chamfer |
| N G1 Z         | /Undercut corner                        |
| N G1 X         | /End point on plane surface             |
| N G80          | /End of contour definition              |

Undercuts can only be executed in orthogonal, paraxial contour corners along the longitudinal axis.

Cutting radius compensation is active.

• Oversizes are not taken into account.





# Beispiel: G853

| %853.nc                                                |
|--------------------------------------------------------|
| [G853]                                                 |
| N1 T2 G95 F0.23 G96 S248 M3                            |
| N2 G0 X60 Z2                                           |
| N3 G853 FP1.5 I47 K15 W30 R2 P1 B5 RB2<br>WB30 E0.2 H1 |
| N4 G0 X50 Z0                                           |
| N5 G1 Z-30                                             |
| N6 G1 X60                                              |
| N7 G80                                                 |
| END                                                    |

# 4.21 Undercut cycles

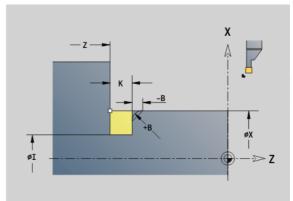
### Undercut type U G856

G856 machines an undercut and finishes the adjoining plane surface. A chamfer or rounding (optional) can be machined.

Tool position at the end of the cycle: Cycle starting point

### Parameters

- I Undercut depth (default: value from standard table)
- K Undercut length (default: value from standard table)
- B Chamfer/rounding:
  - B>0: Radius of rounding arc
  - B<0: Width of chamfer


### Blocks following the cycle call

| N G856 I K /Cycle call |                             |
|------------------------|-----------------------------|
| N G0 X Z.              | /Undercut corner            |
| N G1 X                 | /End point on plane surface |
| N G80                  | /End of contour definition  |

Undercuts can only be executed in orthogonal, paraxial contour corners along the longitudinal axis.

**Cutting radius compensation** is active.

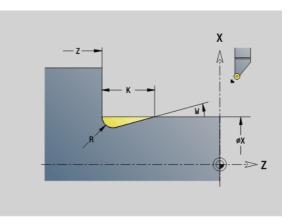
- **Oversizes** are not taken into account.
- If the cutting width of the tool is not defined, the control assumes that the tool's cutting width equals K.



| %856.nc                     |
|-----------------------------|
| G856]                       |
| N1 T3 G95 F0.23 G96 S248 M3 |
| N2 G0 X60 Z2                |
| N3 G856 I47 K7 B1           |
| N4 G0 X50 Z-30              |
| N5 G1 X60                   |
| N6 G80                      |
| FND                         |

### Undercut type H G857

G857 machines an undercut. The end point is determined from the plunge angle in accordance with **Undercut type H**.


Tool position at the end of the cycle: Cycle starting point

### Parameters

- X Corner point of contour (diameter)
- Z Corner point of contour
- K Undercut length
- R Radius—no input: No circular element (tool radius = undercut radius)
- W Plunging angle—no input: W is calculated from K and R

Undercuts can only be executed in orthogonal, paraxial contour corners along the longitudinal axis.

- **Cutting radius compensation** is active.
- Oversizes are not taken into account.



### Beispiel: G857

%857.nc [G857]

N1 T2 G95 F0.23 G96 S248 M3

N2 G0 X60 Z2

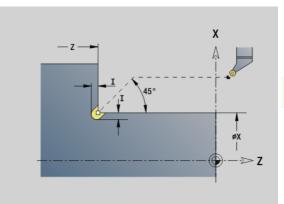
N3 G857 X50 Z-30 K7 R2 W30

END

# 4.21 Undercut cycles

# Undercut type K G858

G858 machines an undercut. This cycle performs only one linear cut at an angle of  $45^\circ$ . The resulting contour geometry therefore depends on the tool that is used.


Tool position at the end of the cycle: Cycle starting point

### Parameters

- X Corner point of contour (diameter)
- Z Corner point of contour
- I Undercut depth

Undercuts can only be executed in orthogonal, paraxial contour corners along the longitudinal axis.

- **Cutting radius compensation** is active.
- Oversizes are not taken into account.



### Beispiel: G858

%858.nc [G858]

N1 T9 G95 F0.23 G96 S248 M3

N2 G0 X60 Z2

N3 G858 X50 Z-30 I0.5

### END

# 4.22 Drilling cycles

# Overview of drilling and boring cycles and contour reference

The drilling and boring cycles can be used with driven or stationary tools.

### Drilling and boring cycles:

- G71 Simple drilling: Page 329
- G72 Boring/countersinking (only with contour reference (ID, NS): Page 331
- G73 Tapping (not with G743–G746): Page 338
- G74 Deep-hole drilling: Page 335
- G36 Tapping—single path (direct position input): Page 334
- G799 Thread milling (direct position input): Page 342

### Pattern definitions:

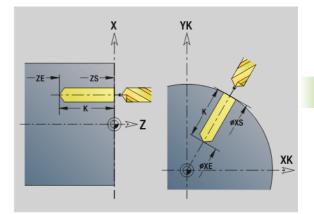
- G743 Linear pattern on face for drilling and milling cycles: Page 338
- G744 Linear pattern on lateral surface for drilling and milling cycles: Page 340
- G745 Circular pattern on face for drilling and milling cycles: Page 339
- G746 Circular pattern on lateral surface for drilling and milling cycles: Page 341

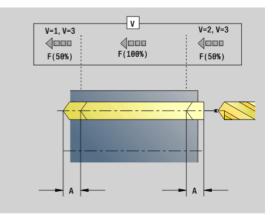
### Possibilities of defining a contour reference:

- Path definition directly in the cycle.
- Reference to a hole or pattern definition in the contour section (ID, NS) for machining on the front face or lateral surface.
- Centric hole in the turning contour (G49): Page 226
- Pattern definition in the block before the cycle call (G743 G746)

# ..22 Drilling cycles

### Drilling cycle G71


G71 is used for axial and radial bore holes using driven or stationary tools.


### Parameters

- ID Drilling contour—Name of the hole definition
- NS Block number of contour
  - Reference to the contour of the hole (G49-Geo, G300-Geo or G310-Geo)
  - No input: Single hole without contour description
- XS Starting point of radial hole (diameter value)
- ZS Starting point of axial hole
- XE End point of radial hole (diameter value)
- ZE End point of axial hole
- K Boring depth (hole depth) (alternative to XE/ZE)
- A Drilling lengths (default: 0)
- V Bore (through-drilling) variant (feed rate reduction 50%)— (default: 0)
  - 0: No feed rate reduction
  - 1: Feed reduction for through-drilling
  - 2: Feed reduction for pre-drilling
  - 3: Feed reduction for pre-drilling and through-drilling
- RB Retraction plane (radial holes, holes in the YZ plane: diameter)—(default: retract to starting position or to safety clearance)
- E Period of dwell for chip breaking at end of hole (in seconds)— (default: 0)
- D Retraction type (default: 0)
  - 0: Rapid traverse
  - 1: Feed rate
- BS Start element no. (number of the first hole to be machined in a pattern)
- BE End element no. (number of the last hole to be machined in a pattern)
- H (Spindle) Brake off (default: 0)
  - 0: Spindle brake on
  - 1: Spindle brake off

Single hole without contour description: Program XS or ZS as alternative.

- Hole with contour description: Do not program XS, ZS.
- Hole pattern: NS refers to the hole contour, and not the definition of the pattern.





| · · · ·                      |  |
|------------------------------|--|
| N1 T5 G97 S1000 G95 F0.2 M3  |  |
| N2 G0 X0 Z5                  |  |
| N3 G71 Z-25 A5 V2 [drilling] |  |
|                              |  |

| Parameter combinations for single holes without contour description |        |
|---------------------------------------------------------------------|--------|
| XS, XE                                                              | ZS, ZE |
| XS, K                                                               | ZS, K  |
| XE, K                                                               | ZE, K  |

### Feed rate reduction:

- Indexable insert drill and twist drill with 180° drilling angle
  - A feed rate reduction is only effective if the parameter "Drilling length A" has been defined.
- Other drills
  - Beginning of hole: Feed rate reduction as programmed in V
  - End of hole: Reduction as of hole end point—length of first cut safety clearance
- Length of first cut = tool tip
- Safety clearance: See user parameter or G47, G147

### Cycle run

- **1 Hole without contour definition:** Tool is located at the starting point (safety distance from the bore hole).
  - Hole with contour description: Tool moves at rapid traverse to the starting point:
    - RB not programmed: Moves up to the safety clearance
    - RB programmed: Moves to the position RB and then to the safety clearance
- 2 Spot drilling. Feed rate reduction depending on V
- 3 Drilling at feed rate.
- 4 Through drilling. Feed rate reduction depending on V
- **5** Retraction at rapid traverse or feed rate, depending on D.
- 6 Retraction position:
  - **RB** not programmed: Retraction to the starting point
  - RB programmed: Retraction to the position RB

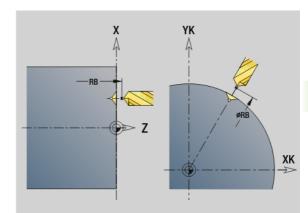
### HEIDENHAIN MANUALplus 620, CNC PILOT 640

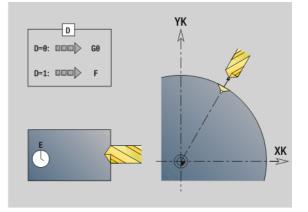
### Boring, countersinking G72

# .22 Drilling cycles

# G72 is used for holes with contour definition (individual hole or hole pattern). Use G72 for the following axial and radial drilling functions using driven or stationary tools:

- Boring
- Countersinking
- Reaming
- NC drilling
- Centering


### Parameters


- ID Drilling contour—Name of the hole definition
- NS Block number of contour. Reference to the contour of the hole (G49-Geo, G300-Geo or G310-Geo)
- RB Retraction plane (radial holes, holes in the YZ plane: diameter)—(default: retract to starting position or to safety clearance)
- E Period of dwell for chip breaking at end of hole (in seconds)— (default: 0)
- D Retraction type (default: 0)
  - 0: Rapid traverse
  - 1: Feed rate
- BS Start element no. (number of the first hole to be machined in a pattern)
- BE End element no. (number of the last hole to be machined in a pattern)
- H (Spindle) Brake off (default: 0)
  - 0: Spindle brake on
  - 1: Spindle brake off

### Cycle run

- 1 Moves to the starting point at rapid traverse, depending on RB:
  - RB not programmed: Moves up to the safety clearance
  - RB programmed: Moves to the position RB and then to the safety clearance
- **2** Drills at reduced feed rate (50%).
- **3** Moves at feed rate to end of hole.
- 4 Retraction at rapid traverse or feed rate, depending on D.
- **5** Return position depends on RB:
  - RB not programmed: Retraction to the starting point
  - RB programmed: Retraction to the position RB

Hole pattern: NS refers to the hole contour, and not the definition of the pattern.







# Tapping G73

4.22 Drilling cycles

G73 cuts axial/radial threads using driven or stationary tools.

### Parameters

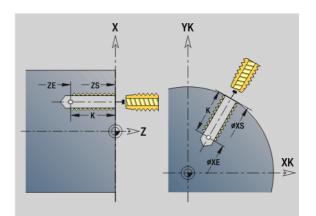
- ID Drilling contour—Name of the hole definition
- NS Block number of contour
  - Reference to the contour of the hole (G49-Geo, G300-Geo or G310-Geo)
  - No input: Single hole without contour description
- XS Starting point of radial hole (diameter value)—single hole without contour description
- ZS Starting point of axial hole

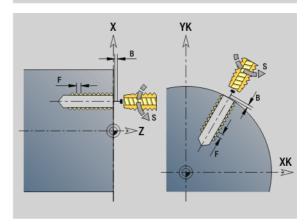
Single hole without contour description

XE End point of radial hole (diameter value)

Single hole without contour description

ZE End point of axial hole


Single hole without contour description


K Boring depth (hole depth) (alternative to XE/ZE)

Single hole without contour description

- F Thread pitch (prevails over the contour description)
- B Run-in length
- S Retraction speed (default: Shaft speed for tapping)
- J Retraction length when using floating tap holders (default: 0)
- RB Retraction plane (radial holes: diameter)—(default: retract to starting position or to safety clearance)
- P Chip breaking depth
- I Retraction distance
- BS Start element no. (number of the first hole to be machined in a pattern)
- BE End element no. (number of the last hole to be machined in a pattern)
- H (Spindle) Brake off (default: 0)
  - 0: Spindle brake on
  - 1: Spindle brake off

The starting position is calculated from the safety clearance and the run-in (slope) length  $\ensuremath{\mathsf{B}}.$ 





# Parameter combinations for single holes without contour description

| XS, XE | ZS, ZE |
|--------|--------|
| XS, K  | ZS, K  |
| XE, K  | ZE, K  |

**Retraction length J:** Use this parameter for floating tap holders. The cycle calculates a new nominal pitch on the basis of the thread depth, the programmed pitch, and the "retraction length." The nominal pitch is somewhat smaller than the pitch of the tap. During tapping, the tap is pulled away from the chuck by the retraction length. With this method you can achieve higher service life from the taps.



Hole pattern: NS refers to the hole contour, and not the definition of the pattern.

- Single hole without contour description: Program XS or ZS as alternative.
- Hole with contour description: Do not program XS, ZS.
- Cycle stop interrupts the tapping operation.
- Cycle start resumes the tapping operation.
- Use the feed rate override function for speed changes.
- Spindle override is not effective.
- Use a floating tap holder if the driven tool is not controlled, e.g. by a ROD encoder.

### Cycle run

- **1** Moves at rapid traverse to the starting point:
  - RB not programmed: Moves directly to the starting point
  - RB programmed: Moves to the position RB and then to the starting point
- **2** Moves along run-in length B at feed rate (synchronization of spindle and feed drives).
- 3 Cuts the thread.
- 4 Retracts with return speed S:
  - RB not programmed: To the starting point
  - RB programmed: To the position RB

### Tapping G36—Single path

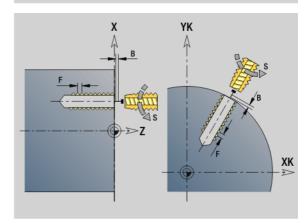
G36 cuts axial/radial threads using driven or stationary tools. Depending on X/Z, G36 decides whether a radial or axial hole will be machined.

Move to the starting point before G36. G36 returns to the starting position after having cut the thread.

### Parameters

- X End point of radial hole (diameter value)
- Z End point of axial hole
- F Feed per revolution (thread pitch)
- B Run-in length for synchronizing spindle and feed drive
- S Retraction speed (default: Shaft speed for tapping)
- P Chip breaking depth
- I Retraction distance

### Type of taps:


Stationary tap: Main spindle and feed drive are synchronized.

Driven tap: Driven tool and feed drive are synchronized.

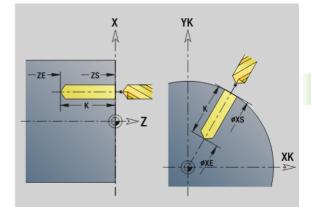


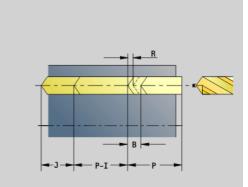
- Cycle stop interrupts the tapping operation.
- Cycle start resumes the tapping operation.Use the feed rate override function for speed changes.
- Spindle override is not effective.
- Use a floating tap holder if the driven tool is not controlled, e.g. by a ROD encoder.





| N1 T5 G97 S1000 G95 F0.2 M3   |
|-------------------------------|
| N2 G0 X0 Z5                   |
| N3 G71 Z-30                   |
| N4 G14 Q0                     |
| N5 T6 G97 S600 M3             |
| N6 G0 X0 Z8                   |
| N7 G36 Z-25 F1.5 B3 [tapping] |
|                               |


# I.22 Drilling cycles


### Deep-hole drilling G74

G74 is used for axial and radial holes in several stages using driven or stationary tools.

### Parameters

- ID Drilling contour—Name of the hole definition
- NS Block number of contour
  - Reference to the contour of the hole (G49-Geo, G300-Geo or G310-Geo)
  - No input: Single hole without contour description
- XS Starting point of radial hole (diameter value)
- ZS Starting point of axial hole
- XE End point of radial hole (diameter value)
- ZE End point of axial hole
- K Boring depth (hole depth) (alternative to XE/ZE)
- P First hole depth
- I Reduction value (default: 0)
- B Retraction distance (default: to starting point of hole)
- J Minimum hole depth (default: 1/10 of P)
- R Safety distance (inside)
- A Drilling lengths—(default: 0)
- V Bore (through-drilling) variant (feed rate reduction 50%)— (default: 0)
  - 0: No feed rate reduction
  - 1: Feed reduction for through-drilling
  - 2: Feed reduction for pre-drilling
  - 3: Feed reduction for pre-drilling and through-drilling
- RB Retraction plane (radial holes: diameter)—(default: to starting position or to safety clearance)
- E Period of dwell for chip breaking at end of hole (in seconds)— (default: 0)
- D Retraction speed and infeed within the hole (default: 0)
  - 0: Rapid traverse
  - 1: Feed rate
- BS Start element no. (number of the first hole to be machined in a pattern)
- BE End element no. (number of the last hole to be machined in a pattern)
- H (Spindle) Brake off (default: 0)
  - 0: Spindle brake on
  - 1: Spindle brake off



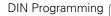


| N1 M5                                  |
|----------------------------------------|
| N2 T4 G197 S1000 G195 F0.2 M103        |
| N3 M14                                 |
| N4 G110 C0                             |
| N5 G0 X80 Z2                           |
| N6 G745 XK0 YK0 Z2 K80 Wi90 Q4 V2      |
| N7 G74 Z-40 R2 P12 I2 B0 J8 [drilling] |
| N8 M15                                 |
|                                        |

| Parameter combinations for single holes without contour description |        |
|---------------------------------------------------------------------|--------|
| XS, XE                                                              | ZS, ZE |
| XS, K                                                               | ZS, K  |
| XE, K                                                               | ZE, K  |

The cycle is used for:

- Single hole without contour description
- Hole with contour description (single hole or hole pattern)


"1st hole depth P" is used for the first pass. The control then automatically reduces the drilling depth with each subsequent pass by the reduction value I, however, without falling below the minimum drilling depth J. After each pass, the tool is retracted either by retraction distance B or to the starting point of the hole. If the safety distance R is defined, the tool is positioned to this distance at rapid traverse inside the hole.

### Feed rate reduction:

- Indexable insert drill and twist drill with 180° drilling angle
  - A feed rate reduction is only effective if the parameter "Drilling length A" has been defined.
- Other drills
  - Beginning of hole: Feed rate reduction as programmed in V
  - End of hole: Reduction as of hole end point—length of first cut safety clearance
- Length of first cut = tool tip
- Safety clearance: See user parameter or G47, G147

Single hole without contour description: Program XS or ZS as alternative.

- Hole with contour description: Do not program XS, ZS.
- Hole pattern: NS refers to the hole contour, and not the definition of the pattern.
- A "feed rate reduction at end" goes into effect only at the last drilling stage.



### Cycle run

- **1 Hole without contour definition:** Tool is located at the starting point (safety distance from the bore hole).
  - Hole with contour description: Tool moves at rapid traverse to the starting point:
    - RB not programmed: Moves up to the safety clearance
    - RB programmed: Moves to the position RB and then to the safety clearance
- 2 Spot drilling. Feed rate reduction depending on V
- **3** Drills the hole in several passes
- 4 Through drilling. Feed rate reduction depending on V
- **5** Retraction at rapid traverse or feed rate, depending on D.
- 6 Return position depends on RB:
  - RB not programmed: Retraction to the starting point
  - RB programmed: Retraction to the position RB

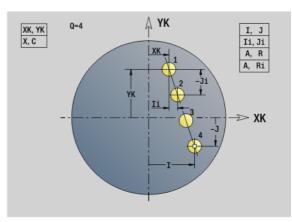
### Linear pattern, face G743

Cycle G743 is used to machine linear drilling or milling patterns in which the individual features are arranged at a regular spacing on the face.

If the Final point ZE has not been defined, the drilling/milling cycle of the next NC block is used as a reference. Using this principle, you can combine pattern definitions with

- Drilling cycles (G71, G74, G36)
- The milling cycle for a linear slot (G791)

The contour milling cycle with "free contour" (G793)


### Parameters

- XK Starting point of pattern in Cartesian coordinates
- YK Starting point of pattern in Cartesian coordinates
- ZS Starting point of drilling/milling operation
- ZE Final point of drilling/milling operation
- X Diameter (starting point of pattern in polar coordinates)
- C Angle (starting point of pattern in polar coordinates)
- A Pattern angle
- I Final point of pattern (Cartesian)
- li (Final point) Pattern distance (Cartesian)
- J Final point of pattern (Cartesian)
- Ji (Final point) Pattern distance (Cartesian)
- R Length (distance between first and last position)
- Ri Length (distance to next position)
- Q Number of holes/figures—(default: 1)

**Parameter combinations** for defining the starting point and the pattern positions:

Starting point of pattern:

- XK, YK
- X, C
- Pattern positions:
  - I, J and Q
  - Ii, Ji and Q
  - R, A and Q
  - Ri, Ai and Q



Beispiel: G743

| %743.nc                          |
|----------------------------------|
| [G743]                           |
| N1 T7 G197 S1200 G195 F0.2 M104  |
| N2 M14                           |
| N3 G110 C0                       |
| N4 G0 X100 Z2                    |
| N5 G743 XK20 YK5 A45 Ri30 Q2     |
| N6 G791 X50 C0 ZS0 ZE-5 P2 F0.15 |
| N7 M15                           |
| END                              |
|                                  |

### **Beispiel: Sequence of commands**

[Simple drilling pattern]

N.. G743 XK.. YK.. ZS.. ZE.. I.. J.. Q..

### • • •

[Drilling pattern with deep-hole drilling]

N.. G743 XK.. YK.. ZS.. I.. J.. Q..

N.. G74 ZE.. P.. I..

```
. . .
```

[Milling pattern with linear slot]

N.. G743 XK.. YK.. ZS.. I.. J.. Q..

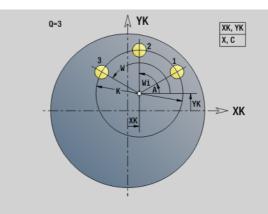
N.. G791 K.. A.. Z..

. . . .

### Circular pattern, face G745

Cycle G745 is used to machine drilling or milling patterns in which the individual features are arranged at a regular spacing in a circle or circular arc on the face.

If the **Final point ZE** has not been defined, the drilling/milling cycle of the next NC block is used as a reference. Using this principle, you can combine pattern definitions with


- Drilling cycles (G71, G74, G36)
- The milling cycle for a linear slot (G791)
- The contour milling cycle with "free contour" (G793)

### **Parameters**

- XK Center of pattern in Cartesian coordinates
- YΚ Center of pattern in Cartesian coordinates
- ZS Starting point of drilling/milling operation
- 7F Final point of drilling/milling operation
- Х Diameter (center point of pattern in polar coordinates)
- С Angle (center point of pattern in polar coordinates)
- А Starting angle (position of first hole/figure)
- W Final angle (position of last hole/figure)
- Wi Final angle (distance to the next position)
- Q Number of holes/figures—(default: 1)
- V Rotation direction (default: 0)
  - V=0, without W: Figures are arranged on a full circle
  - V=0, with W: Figures are arranged on the longer circular arc
  - V=0, with Wi: The algebraic sign of Wi defines the direction (Wi<0: clockwise)
  - V=1, with W: Clockwise
  - V=1, with Wi: Clockwise (algebraic sign of Wi has no effect)
  - V=2, with W: Counterclockwise
  - V=2, with Wi: Counterclockwise (algebraic sign of Wi has no effect)

Parameter combinations for defining the center of the pattern and the pattern positions:

- Center of pattern:
  - X. C
  - XK, YK
- Pattern positions:
  - A. W and Q
  - A, Wi and Q



**Beispiel: G745** 

### **Beispiel: Sequence of commands**

[Simple drilling pattern]

N.. G745 XK.. YK.. ZS.. ZE.. A.. W.. Q..

. . . .

. . .

[Drilling pattern with deep-hole drilling]

N.. G745 XK.. YK.. ZS.. A.. W.. Q..

N., G74 ZE., P., I.,

. . .

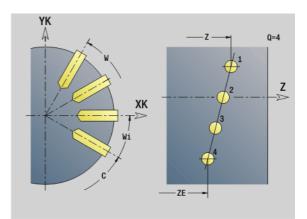
[Milling pattern with linear slot]

N.. G745 XK.. YK.. ZS.. ZE.. A.. W.. Q..

N., G791 K., A., Z.,

### Linear pattern, lateral surface G744

Cycle G744 is used to machine linear drilling patterns or milling patterns in which the individual features are arranged at a regular spacing on the lateral surface.


**Parameter combinations** for defining the starting point and the pattern positions:

- Starting point of pattern: Z, C
- Pattern positions:
  - W and Q
  - Wi and Q

If the **Final point XE** has not been defined, the drilling/milling cycle or the figure definition of the next NC block is used as a reference. Using this principle, you can combine pattern definitions with drilling cycles (G71, G74, G36) or milling cycles (figure definitions with G314, G315, G317).

### Parameters

- XS Starting point of drilling/milling operation (diameter value)
- Z Starting point of pattern in polar coordinates
- XE Final point of drilling/milling operation (diameter value)
- ZE Final point of pattern (default: Z)
- C Starting angle of pattern in polar coordinates
- W Final angle of pattern—No input: Holes/figures are arranged on the lateral surface at regular spacing
- Wi Final angle (angle increment), distance to the next position
- Q Number of holes/figures—(default: 1)
- A Angle (orientation angle of the pattern)
- R Length (distance between first and last position [mm], reference: unrolled lateral surface XS)
- Ri Length (distance from the next position [mm], reference: unrolled lateral surface XS)



### Beispiel: G744

| %744.nc                             |
|-------------------------------------|
| [G744]                              |
| N1 T6 G197 S1200 G195 F0.2 M104     |
| N2 M14                              |
| N3 G110 C0                          |
| N4 G0 X110 Z2                       |
| N5 G744 XS102 Z-10 ZE-35 C0 W270 Q5 |
| N6 G71 XS102 K7                     |
| N7 M15                              |
| END                                 |

**Beispiel: Sequence of commands** 

[Simple drilling pattern]

N.. G744 Z.. C.. XS.. XE.. ZE.. W.. Q..

### . . .

[Drilling pattern with deep-hole drilling]

N.. G744 Z.. C.. XS.. XE.. ZE.. W.. Q..

N.. G74 XE.. P.. I..

...

[Milling pattern with linear slot]

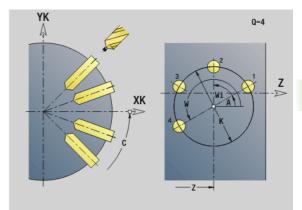
N.. G744 Z.. C.. XS.. XE.. ZE.. W.. Q..

N.. G792 K.. A.. XS..

# .22 Drilling cycles

### Circular pattern, lateral surface G746

Cycle G746 is used to machine drilling patterns or milling patterns in which the individual features are arranged at a regular spacing in a circle or circular arc on the lateral surface.


Parameter combinations for defining the center of the pattern and the pattern positions:

- Center of pattern: Z, C
- Pattern positions:
  - W and Q
  - Wi and Q

If the **Final point XE** has not been defined, the drilling/milling cycle or the figure definition of the next NC block is used as a reference. Using this principle, you can combine pattern definitions with drilling cycles (G71, G74, G36) or milling cycles (figure definitions with G314, G315, G317).

### Parameters

- Z Center of pattern in polar coordinates
- C Angle (center point of pattern in polar coordinates)
- XS Starting point of drilling/milling operation (diameter value)
- XE Final point of drilling/milling operation (diameter value)
- K (Pattern) diameter
- A Starting angle (position of first hole/figure)
- W Final angle (position of last hole/figure)
- Wi Final angle (angle increment), distance to the next position
- Q Number of holes/figures—(default: 1)
- V Rotation direction (default: 0)
  - V=0, without W: Figures are arranged on a full circle
  - V=0, with W: Figures are arranged on the longer circular arc
  - V=0, with Wi: The algebraic sign of Wi defines the direction (Wi<0: clockwise)</p>
  - V=1, with W: Clockwise
  - V=1, with Wi: Clockwise (algebraic sign of Wi has no effect)
  - V=2, with W: Counterclockwise
  - V=2, with Wi: Counterclockwise (algebraic sign of Wi has no effect)



### Beispiel: G746

| %746.nc                         |
|---------------------------------|
| [G746]                          |
| N1 T6 G197 S1200 G195 F0.2 M104 |
| N2 M14                          |
| N3 G110 C0                      |
| N4 G0 X110 Z2                   |
| N5 G746 Z-40 C0 K40 Q8          |
| N6 G71 XS102 K7                 |
| N7 M15                          |
| END                             |

### **Beispiel: Sequence of commands**

| [Simple drilling pattern]                  |
|--------------------------------------------|
| N G746 Z C XS XE K A W Q                   |
|                                            |
| [Drilling pattern with deep-hole drilling] |
| N G746 Z C XS K A W Q                      |
| N G74 XE P. I                              |
|                                            |
| [Milling pattern with linear slot]         |
| N G746 Z C XS K A W Q                      |
| N G792 K A XS                              |
|                                            |
|                                            |

1

# Thread milling, axial G799

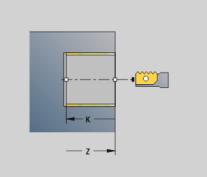
4.22 Drilling cycles

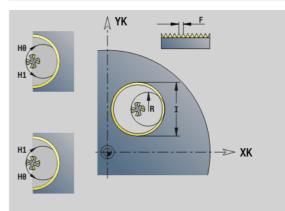
G799 mills a thread in existing holes.

Place the tool on the center of the hole before calling G799. The cycle positions the tool on the end point of the thread within the hole. Then the tool approaches on "approaching radius R" and mills the thread. During this, the tool advances by the thread pitch F. Following that, the cycle retracts the tool and returns it to the starting point. With parameter V, you can program whether the thread is to be milled in one rotation or, with single-point tools, in several rotations.

### Parameters

- Thread diameter
- Z Starting point Z
- K Thread depth
- R Approach radius
- F Thread pitch
- J Direction of thread (default: 0)
  - 0: Right-hand thread
  - 1: Left-hand thread
- H Cutting direction (default: 0)
  - 0: Up-cut milling
  - 1: Climb milling
- V Milling method
  - 0: The thread is milled in a 360-degree helix
  - 1: The thread is milled in several helical paths (single-point tool)





Use thread-milling tools for cycle G799.



### Danger of collision!

Be sure to consider the hole diameter and the diameter of the milling cutter when programming "approach radius R."





| %799.nc                      |
|------------------------------|
| [G799]                       |
| N1 T9 G195 F0.2 G197 S800    |
| N2 G0 X100 Z2                |
| N3 M14                       |
| N4 G110 Z2 C45 X100          |
| N5 G799 I12 Z0 K-20 F2 J0 H0 |
| N6 M15                       |
| END                          |

# 4.23 C-axis commands

### **Reference diameter G120**

G120 determines the reference diameter of the unrolled lateral surface. Program G120 if you use CY for G110 to G113. G120 is a modal function.

### Parameters

X Diameter

### Beispiel: G120

| · · · ·                           |
|-----------------------------------|
| N1 T7 G197 S1200 G195 F0.2 M104   |
| N2 M14                            |
| N3 G120 X100 [reference diameter] |
| N4 G110 C0                        |
| N5 G0 X110 Z5                     |
| N6 G41 Q2 H0                      |
| N7 G110 Z-20 CY0                  |
| N8 G111 Z-40                      |
| N9 G113 CY39.2699 K-40 J19.635    |
| N10 G111 Z-20                     |
| N11 G113 CY0 K-20 J19.635         |
| N12 G40                           |
| N13 G110 X105                     |
| N14 M15                           |
|                                   |

### Zero point shift, C axis G152

G152 defines an absolute zero point for the C axis (reference: Reference point, C axis). The zero point is valid until the end of the program.

### Parameters

C Angle: Spindle position of the new C-axis zero point

| N1 M5                              |
|------------------------------------|
| N2 T7 G197 S1010 G193 F0.08 M104   |
| N3 M14                             |
| N4 G152 C30 [zero point of C axis] |
| N5 G110 C0                         |
| N6 G0 X122 Z-50                    |
| N7 G71 X100                        |
| N8 M15                             |
|                                    |



### Standardize C axis G153

G153 resets a traverse angle >360° or <0° to an angle between 0° and 360°—without moving the C axis.



G153 is only used for lateral-surface machining. An automatic modulo 360° function is carried out on the face.

# Short path in C G154

G154 defines that the C axis moves on the shorter path during positioning.

### Parameters H Shorte

Shorter-path traverse ON/OFF

- 0: OFF
- 1: ON

Beispiel: G154

... N1 G110 C0

N2 G154 H1

N3 G110 C350 [path of traverse -10°]

N4 G110 C10 [path of traverse +20°]

N5 G154 H0

N6 G110 C350 [path of traverse +340°]

. . .

**DIN Programming** 

# 4.24 Front/rear-fa<mark>ce m</mark>achining

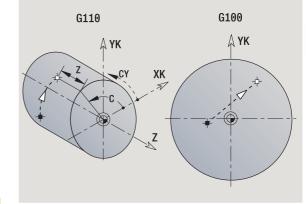
# 4.24 Front/rear-face machining

### Rapid traverse on front/rear face G100

G100 moves at rapid traverse along the shortest path to the end point.

### Parameters

- X End point (diameter)
- C End angle—for angle direction, see graphic support window
- XK End point (Cartesian)
- YK End point (Cartesian)
- Z End point (default: current Z position)


### **Programming:**

X, C, XK, YK, Z: Absolute, incremental or modal
 Program either X–C or XK–YK



### Danger of collision!

During G100 the tool moves on a linear path. To position the workpiece to a defined angle, use G110.



Beispiel: G100

| N1 T7 G197 S1200 G195 F0.2 M104           |
|-------------------------------------------|
| N2 M14                                    |
| N3 G110 C0                                |
| N4 G0 X100 Z2                             |
| N6 G100 XK20 YK5 [rapid traverse on face] |
| N7 G101 XK50                              |
| N8 G103 XK5 YK50 R50                      |
| N9 G101 XK5 YK20                          |
| N10 G102 XK20 YK5 R20                     |
| N11 G14                                   |
| N12 M15                                   |
|                                           |

1

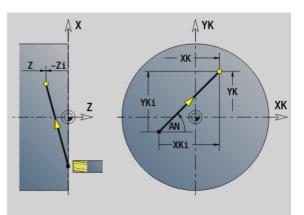
### Line segment on front/rear face G101

G101 moves the tool on a linear path at the feed rate to the "end point."

### Parameters

- X End point (diameter)
- C End angle—for angle direction, see graphic support window
- XK End point (Cartesian)
- YK End point (Cartesian)
- Z End point (default: current Z position)

### Parameters for contour description (G80)


- AN Angle to positive XK axis
- BR Chamfer/rounding. Defines the transition to the next contour element. When entering a chamfer/rounding, program the theoretical end point.
  - No input: Tangential transition
  - BR=0: No tangential transition
  - BR>0: Rounding radius
  - BR<0: Width of chamfer</p>
- Q Point of intersection. End point if the line segment intersects a circular arc (default: 0):
  - Q=0: Near point of intersection
  - Q=1: Far point of intersection

### Programming:

X, C, XK, YK, Z: Absolute, incremental or modal
 Program either X–C or XK–YK



Using the parameters AN, BR and Q is only allowed if the contour description is concluded by G80 and used for a cycle.



### Beispiel: G101

| N1        | T70 G197 S1200 G195 F0.2 M104   |
|-----------|---------------------------------|
| N2        | M14                             |
| N3        | G110 C0                         |
| N4        | G0 X110 Z2                      |
| N5        | G100 XK50 YK0                   |
| <b>N6</b> | G1 Z-5                          |
| N7        | G42 Q1                          |
| N8        | G101 XK40 [linear path on face] |
| N9        | G101 YK30                       |
| N10       | ) G103 XK30 YK40 R10            |
| N11       | G101 XK-30                      |
| N12       | 2 G103 XK-40 YK30 R10           |
| N13       | 3 G101 YK-30                    |
| N14       | I G103 XK-30 YK-40 R10          |
| N15       | 5 G101 XK30                     |
| N16       | 6 G103 XK40 YK-30 R10           |
| N17       | 7 G101 YK0                      |
| N18       | 3 G100 XK110 G40                |
| N19       | 9 G0 X120 Z50                   |
| N20       | ) M15                           |

...

### Circular arc on front/rear face G102/G103

G102/G103 moves the tool in a circular arc at the feed rate to the "end point." The direction of rotation is shown in the graphic support window.

### Parameters

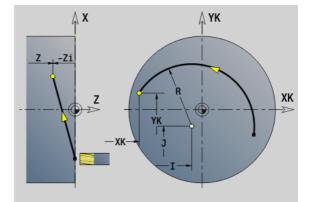
- X End point (diameter)
- C End angle—for angle direction, see graphic support window
- XK End point (Cartesian)
- YK End point (Cartesian)
- R Radius
- I Center point (Cartesian)
- J Center point (Cartesian)
- K Center point for H=2, 3 (Z direction)
- Z End point (default: current Z position)
- H Circular plane (working plane)—(default: 0)
  - H=0, 1: Machining in XY plane (front face)
  - H=2: Machining in YZ plane
  - H=3: Machining in XZ plane

### Parameters for contour description (G80)

- AN Angle to positive XK axis
- BR Chamfer/rounding. Defines the transition to the next contour element. When entering a chamfer/rounding, program the theoretical end point.
  - No input: Tangential transition
  - BR=0: No tangential transition
  - BR>0: Rounding radius
  - BR<0: Width of chamfer
- Q Point of intersection. End point if the line segment intersects a circular arc (default: 0):
  - Q=0: Near point of intersection
  - Q=1: Far point of intersection



Using the parameters AN, BR and  ${\rm Q}$  is only allowed if the contour description is concluded by G80 and used for a cycle.


If you program H=2 or H=3, you can machine linear slots with a circular base. If

- H=2: Define the circle center with I and K.
- H=3: Define the circle center with J and K.

### Programming:

- **X, C, XK, YK, Z:** Absolute, incremental or modal
- I, J, K: Absolute or incremental
- Program either X–C or XK–YK
- Program either center or radius
- For radius: Only arcs <= 180° are possible</p>
- End point in the coordinate origin: Program XK=0 and YK=0.





### Beispiel: G102, G103

| ····                                |
|-------------------------------------|
| N1 T7 G197 S1200 G195 F0.2 M104     |
| N2 M14                              |
| N3 G110 C0                          |
| N4 G0 X100 Z2                       |
| N6 G100 XK20 YK5                    |
| N7 G101 XK50                        |
| N8 G103 XK5 YK50 R50 [circular arc] |
| N9 G101 XK5 YK20                    |
| N10 G102 XK20 YK5 R20               |
| N12 M15                             |
|                                     |

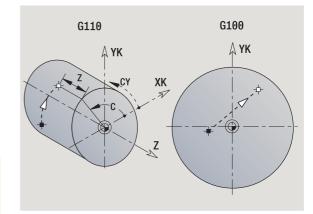
# 4.25 Lateral surface machining

### Rapid traverse, lateral surface G110

G110 moves at rapid traverse to the end point.

G110 is recommended for **positioning the C axis** to a defined angle (programming: N.. G110 C...).

### Parameters


- Z End point
- C End angle
- CY End point as linear value (referenced to unrolled reference diameter G120)
- X End point (diameter)



### Programming:

**Z, C, CY:** Absolute, incremental, or modal

Program either Z–C or Z–CY



### Beispiel: G110

| N1 T8 G197 S1200 G195 F0.2 M104     |
|-------------------------------------|
| N2 M14                              |
| N3 G120 X100                        |
| N4 G110 C0 [rapid, lateral surface] |
| N5 G0 X110 Z5                       |
| N6 G110 Z-20 CY0                    |
| N7 G111 Z-40                        |
| N8 G113 CY39.2699 K-40 J19.635      |
| N9 G111 Z-20                        |
| N10 G113 CY0 K-20 J19.635           |
| N11 M15                             |
|                                     |

i

# 4.25 Lateral surfa<mark>ce m</mark>achining

### Line segment on lateral surface G111

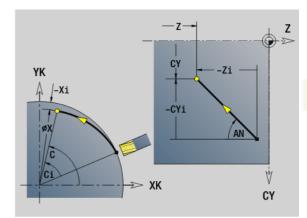
G111 moves the tool on a linear path at the feed rate to the "end point."

### Parameters

- Z End point
- C End angle—for angle direction, see graphic support window
- CY End point as linear value (referenced to unrolled reference diameter G120)
- X End point (diameter value)—(default: current X position)

### Parameters for contour description (G80)

- AN Angle to positive Z axis
- BR Chamfer/rounding. Defines the transition to the next contour element. When entering a chamfer/rounding, program the theoretical end point.
  - No input: Tangential transition
  - BR=0: No tangential transition
  - BR>0: Rounding radius
  - BR<0: Width of chamfer
  - Point of intersection. End point if the line segment intersects a circular arc (default: 0):
    - Q=0: Near point of intersection
    - Q=1: Far point of intersection


Using the parameters AN, BR and Q is only allowed if the contour description is concluded by G80 and used for a cycle.



0

### **Programming:**

- **Z, C, CY:** Absolute, incremental, or modal
- Program either Z–C or Z–CY



| [G111, G120]                                  |
|-----------------------------------------------|
| N1 T8 G197 S1200 G195 F0.2 M104               |
| N2 M14                                        |
| N3 G120 X100                                  |
| N4 G110 C0                                    |
| N5 G0 X110 Z5                                 |
| N6 G41 Q2 H0                                  |
| N7 G110 Z-20 CY0                              |
| N8 G111 Z-40 [linear path on lateral surface] |
| N9 G113 CY39.2699 K-40 J19.635                |
| N10 G111 Z-20                                 |
| N11 G113 CY0 K-20 J19.635                     |
| N12 G40                                       |
| N13 G110 X105                                 |
| N14 M15                                       |
| ····                                          |



### Circular arc on lateral surface G112/G113

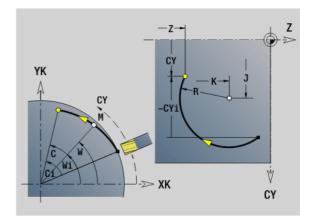
G112/G113 moves the tool in a circular arc at the feed rate to the "end point."

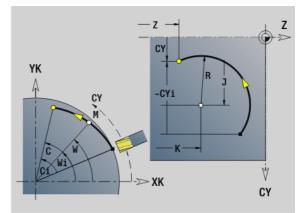
### Parameters

- Z End point
- C End angle—for angle direction, see graphic support window
- CY End point as linear value (referenced to unrolled reference diameter G120)
- R Radius
- K Center
- J Center point as linear value (referenced to unrolled G120 reference diameter)
- W Center of angle (for angle direction, see graphic support window)
- X End point (diameter value)—(default: current X position)

### Parameters for contour description (G80)

- AN Angle to positive Z axis
- BR Chamfer/rounding. Defines the transition to the next contour element. When entering a chamfer/rounding, program the theoretical end point.
  - No input: Tangential transition
  - BR=0: No tangential transition
  - BR>0: Rounding radius
  - BR<0: Width of chamfer
- Q Point of intersection. End point if the line segment intersects a circular arc (default: 0):
  - Q=0: Near point of intersection
  - Q=1: Far point of intersection





Using the parameters AN, BR and Q is only allowed if the contour description is concluded by G80 and used for a cycle.



### **Programming:**

- **Z, C, CY:** Absolute, incremental, or modal
- K, W, J: Absolute or incremental
- Program either Z–C or Z–CY and K–J
- Program either center or radius
- For radius: Only arcs <= 180° are possible







| · · · ·                                       |
|-----------------------------------------------|
| N1 T8 G197 S1200 G195 F0.2 M104               |
| N2 M14                                        |
| N3 G120 X100                                  |
| N4 G110 C0                                    |
| N5 G0 X110 Z5                                 |
| N7 G110 Z-20 CY0                              |
| N8 G111 Z-40                                  |
| N9 G113 CY39.2699 K-40 J19.635 [circular arc] |
| N10 G111 Z-20                                 |
| N11 G112 CY0 K-20 J19.635                     |
| N13 M15                                       |

# 4.26 Milling cycles

### **Overview of milling cycles**

- G791 Linear slot on the face. The position and length of the slot are defined directly in the cycle; slot width = cutter diameter: Page 352
- G792 Linear slot on the lateral surface. The position and length of the slot are defined directly in the cycle; slot width = cutter diameter: Page 353
- G793 Contour and figure milling cycle on the face. The contour is described directly after the cycle and concluded by G80 (compatibility cycle MANUALplus 4110): Page 354
- G794 Contour and figure milling cycle on the lateral surface. The contour is described directly after the cycle and concluded by G80 (compatibility cycle MANUALplus 4110): Page 356
- G797 Face milling. Mills figures (circles, polygons, individual surfaces, contours) as islands on the face: Page 358
- G798 Helical slot milling. Mills a helical slot on the lateral surface; slot width = cutter diameter: Page 360
- G840 Contour milling. Mills ICP contours and figures. Closed contours are machined inside/outside of the contour, or on the contour. Open contours are machined from the left/right of the contour, or on the contour. G840 is used on the face and lateral surface: Page 361
- G845 Pocket milling—roughing. Roughs out closed ICP contours and figures on the face and lateral surface: Page 370
- G846 Pocket milling—finishing. Finishes closed ICP contours and figures on the face and lateral surface: Page 376

### Contour definitions in the MACHINING section (figures)

- Face
  - G301 Linear slot: Page 241
  - G302/G303 Circular slot: Page 241
  - G304 Full circle: Page 242
  - G305 Rectangle: Page 242
  - G307 Eccentric polygon: Page 243
- Lateral surface
  - G311 Linear slot: Page 250
  - G312/G313 Circular slot: Page 250
  - G314 Full circle: Page 251
  - G315 Rectangle: Page 251
  - G317 Eccentric polygon: Page 252

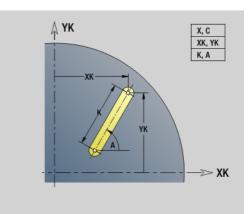
# Linear slot on face G791

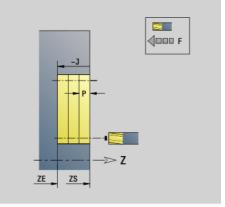
G791 mills a slot from the current tool position to the end point. The slot width equals the diameter of the milling cutter. Oversizes are not taken into account.

### Parameters

- X Final point of slot in polar coordinates (diameter)
- C Final angle. Final point of slot in polar coordinates (for angle direction, see help graphic)
- XK Final point of slot (Cartesian)
- YK Final point of slot (Cartesian)
- K Slot length referenced to center of cutter
- A Slot angle (reference: see help graphic)
- ZE Milling floor
- ZS Milling top edge
- J Milling depth
  - J>0: Infeed direction –Z
  - J<0: Infeed direction +Z
- P Maximum approach (default: total depth in one infeed)
- F Approach feed (infeed rate) (default: active feed rate)

**Parameter combinations** for definition of the end point: see help graphic


Parameter combinations for definition of the milling plane:


- Milling floor ZE, milling top edge ZS
- Milling floor ZE, milling depth J
- Milling top edge ZS, milling depth J
- Milling floor ZE



Rotate the spindle to the desired angle position before calling G791.

- If you use a spindle positioning device (no C axis), an axial slot is machined centrically to the rotary axis.
- If J or ZS is defined, the tool approaches to safety clearance in Z and then mills the slot. If J and ZS are not defined, the milling cycle starts from the current tool position.





| %791.nc                         |
|---------------------------------|
| [G791]                          |
| N1 T7 G197 S1200 G195 F0.2 M104 |
| N2 M14                          |
| N3 G110 C0                      |
| N4 G0 X100 Z2                   |
| N5 G100 XK20 YK5                |
| N6 G791 XK30 YK5 ZE-5 J5 P2     |
| N7 M15                          |
| END                             |

# 4.26 Milling cycles

# Linear slot on lateral surface G792

G792 mills a slot from the current tool position to the end point. The slot width equals the diameter of the milling cutter. Oversizes are not taken into account.

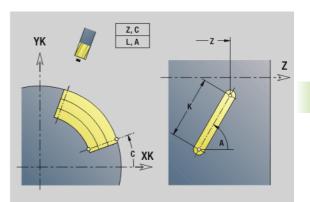
### Parameters

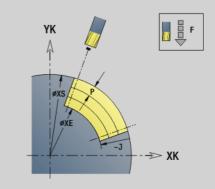
- Z Final point of slot
- C Final angle. Final point of slot (for angle direction, see help graphic)
- K Slot length referenced to center of cutter
- A Slot angle (reference: see help graphic)
- XE Milling floor
- XS Milling top edge
- J Milling depth

Ρ

- J>0: Infeed direction –X
- J<0: Infeed direction +X
- Maximum approach (default: total depth in one infeed)
- F Approach feed (infeed rate) (default: active feed rate)

**Parameter combinations** for definition of the end point: see help graphic


Parameter combinations for definition of the milling plane:


- Milling floor XE, milling top edge XS
- Milling floor XE, milling depth J
- Milling top edge XS, milling depth J
- Milling floor XE



Rotate the spindle to the desired angle position **before** calling G792.

- If you use a spindle positioning device (no C axis), a radial slot is machined parallel to the Z axis.
- If J or XS is defined, the tool approaches to safety clearance in X and then mills the slot. If J and XS are not defined, the milling cycle starts from the current tool position.





| %792.nc                          |
|----------------------------------|
| [G792]                           |
| N1 T8 G197 S1200 G195 F0.2 M104  |
| N2 M14                           |
| N3 G110 C0                       |
| N4 G0 X110 Z5                    |
| N5 G0 X102 Z-30                  |
| N6 G792 K25 A45 XE97 J3 P2 F0.15 |
| N7 M15                           |
| END                              |

### Contour and figure milling cycle, face G793

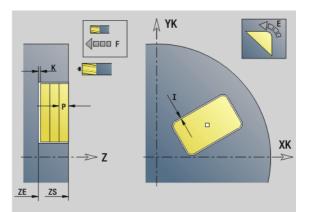
G793 mills figures or (open or closed) "free" contours.

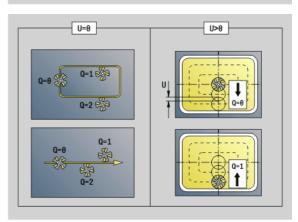
G793 is followed by:

### The figure to be milled with:

- Contour definition of the figure (G301 to G307)—See "Front and rear face contours" on page 237.
- Conclusion of milling contour (G80)

### **The free contour** with:


- Starting point of milling contour (G100)
- Milling contour (G101, G102, G103)
- Conclusion of milling contour (G80)




Preferentially use ICP and the G840, G845 and G846 cycles to program the contour description in the geometry section.

### Parameters

- ZS Milling top edge
- ZE Milling floor
- P Maximum approach (default: total depth in one infeed)
- U Overlap factor—contour milling or pocket milling (default: 0)
  - U=0: Contour milling
  - U>0: Pocket milling—minimum overlap of milling paths = U\*milling diameter
- R Approach radius (radius of approaching/departing arc)— (default: 0)
  - R=0: Contour element is approached directly; infeed to starting point above the milling plane—then vertical plunge
  - R>0: Tool moves on approaching/departing arc that connects tangentially to the contour element
  - R<0 for inside corners: Tool moves on approaching/ departing arc that connects tangentially to the contour element
  - R<0 for outside corners: Length of linear approaching/ departing element; contour element is approached/departed tangentially
- I Contour-parallel oversize
- K Oversize Z
- F Infeed rate
- E Reduced feed rate for circular elements (default: current feed rate)
- H Cutting direction (default: 0): The **cutting direction can be changed with H and the direction of tool rotation**.
  - 0: Up-cut milling
  - 1: Climb milling







### Parameters

- Q Cycle type (default: 0): Depending on U, the following applies:
  - Contour milling (U=0)
    - Q=0: Center of milling cutter on the contour
    - Q=1, closed contour: Inside milling
    - Q=1, open contour: Left in machining direction
    - Q=2, closed contour: Outside milling
    - Q=2, open contour: Right in machining direction
    - Q=3, open contour: Milling location depends on "H" and the direction of tool rotation—see help graphic

### Pocket milling (U>0)

- Q=0: From the inside toward the outside
- Q=1: From the outside toward the inside
- O Roughing/finishing
  - O: Roughing. With each infeed, the complete surface is machined.
  - 1: Finishing. The surface is machined with the last infeed. In all previous infeeds, the cycle machines only the contour.
    - Milling depth: The cycle calculates the depth from the Milling top edge and the Milling floor—taking the oversizes into account.
    - Milling cutter radius compensation: Effective (except for contour milling with Q=0).
    - Approach and departure: For closed contours, the point of the surface normal from the tool position to the first contour element is the point of approach and departure. If no surface normal intersects the tool position, the starting point of the first element is the point of approach and departure. For contour milling and finishing (pocket milling), define with the Approach radius whether the tool is to approach directly or in an arc.
    - G57/G58 oversizes are taken into account if the oversizes I, K are not programmed:
      - G57: Oversize in X, Z direction
      - G58: The oversize "shifts" the milling contour as follows:
        - With inside milling and closed contour: The contour is contracted
        - With outside milling and closed contour: The contour is expanded
        - With open contour and Q=1: Left in machining direction
        - With open contour and Q=2: Right in machining direction

# Contour and figure milling cycle, lateral surface G794

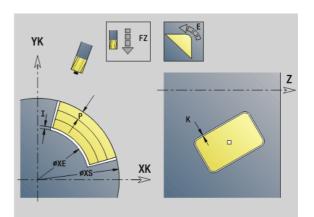
G794 mills figures or (open or closed) "free" contours.

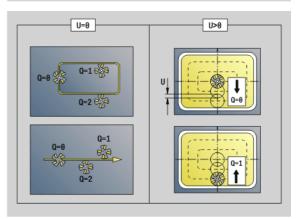
G794 is followed by:

### The figure to be milled with:

- Contour definition of the figure (G311 to G317)—See "Lateral surface contours" on page 246.
- Conclusion of contour definition (G80)

### **The free contour** with:


- Starting point (G110)
- Contour definition (G111, G112, G113)
- Conclusion of contour definition (G80)




Preferentially use ICP and the G840, G845 and G846 cycles to program the contour description in the geometry section.

### Parameters

- XS Milling top edge (diameter value)
- XE Milling floor (diameter value)
- P Maximum approach (default: total depth in one infeed)
- U Overlap factor—contour milling or pocket milling (default: 0)
  - U=0: Contour milling
  - U>0: Pocket milling—minimum overlap of milling paths = U\*milling diameter
- R Approach radius (radius of approaching/departing arc)— (default: 0)
  - R=0: Contour element is approached directly; infeed to starting point above the milling plane—then vertical plunge
  - R>0: Tool moves on approaching/departing arc that connects tangentially to the contour element
  - R<0 for inside corners: Tool moves on approaching/ departing arc that connects tangentially to the contour element
  - R<0 for outside corners: Length of linear approaching/ departing element; contour element is approached/departed tangentially
- I Oversize X
- K Contour-parallel oversize
- F Infeed rate
- E Reduced feed rate for circular elements (default: current feed rate)
- H Cutting direction (default: 0): The **cutting direction can be changed with H and the direction of tool rotation**.
  - 0: Up-cut milling
  - 1: Climb milling





| %314_G315.nc                             |
|------------------------------------------|
| [G314 / G315]                            |
| N1 T7 G197 S1200 G195 F0.2 M104          |
| N2 M14                                   |
| N3 G110 C0                               |
| N4 G0 X110 Z5                            |
| N5 G794 XS100 XE97 P2 U0.5 R0 K0.5 F0.15 |
| N6 G314 Z-35 C0 R20                      |
| N7 G80                                   |
| N8 M15                                   |
| END                                      |
|                                          |



### Parameters

- Q Cycle type (default: 0): Depending on U, the following applies:
  - Contour milling (U=0)
    - Q=0: Center of milling cutter on the contour
    - Q=1, closed contour: Inside milling
    - Q=1, open contour: Left in machining direction
    - Q=2, closed contour: Outside milling
    - Q=2, open contour: Right in machining direction
    - Q=3, open contour: Milling location depends on "H" and the direction of tool rotation—see help graphic

### Pocket milling (U>0)

- Q=0: From the inside toward the outside
- Q=1: From the outside toward the inside
- O Roughing/finishing
  - O: Roughing. With each infeed, the complete surface is machined.
  - 1: Finishing. The surface is machined with the last infeed. In all previous infeeds, the cycle machines only the contour.

• **Milling depth:** The cycle calculates the milling depth from the **Milling top edge** and the **Milling floor**— taking the oversizes into account.

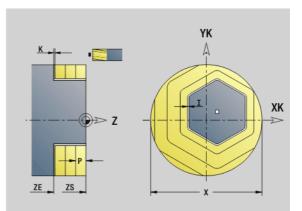
- Milling cutter radius compensation: Effective (except for contour milling with Q=0).
- Approach and departure: For closed contours, the point of the surface normal from the tool position to the first contour element is the point of approach and departure. If no surface normal intersects the tool position, the starting point of the first element is the point of approach and departure. For contour milling and finishing (pocket milling), define with the Approach radius whether the tool is to approach directly or in an arc.
- **G57/G58 oversizes** are taken into account if the **Oversizes I, K** are not programmed:
  - G57: Oversize in X, Z direction
  - G58: The oversize "shifts" the milling contour as follows:

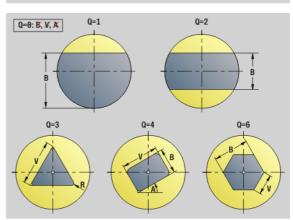
– With inside milling and closed contour: The contour is contracted

With outside milling and closed contour: The contour is expanded

– With open contour and Q=1: Left in machining direction

– With open contour and Q=2: Right in machining direction





# Area milling, face G797

Depending on Q, G797 mills surfaces, a polygon, or the figure defined in the command following G797.

### Parameters

- ID Milling contour—name of the contour to be milled
- NS Block number—beginning of contour section
  - Figures: Block number of the figure
  - Free closed contour: First contour element (not starting point)
- X Limit diameter
- ZS Milling top edge
- ZE Milling floor
- B Width across flats (omit for Q=0): B defines the remaining material. For an even number of surfaces, you can program B as an alternative to V.
  - Q=1: B=Residual depth
  - Q>=2: B=Width across flats
- V Edge length (omitted for Q=0)
- R Chamfer/rounding
- A Inclination angle (reference: see help graphic)—omitted for Q=0
- Q Number of surfaces (default: 0): Range: 0 <= Q <= 127
  - Q=0: G797 is followed by a figure definition (G301.. G307, G80) or a closed contour definition (G100, G101 to G103, G80)
  - Q=1: One surface
  - Q=2: Two surfaces offset by 180°
  - Q=3: Triangle
  - Q=4: Rectangle, square
  - Q>4: Polygon
- P Maximum approach (default: total depth in one infeed)
- U Overlap factor (default: 0.5): Minimum overlap of milling paths = U\*milling diameter
- I Contour-parallel oversize
- K Oversize Z
- F Infeed rate
- E Reduced feed rate for circular elements (default: current feed rate)
- H Cutting direction (default: 0): The **cutting direction** can be changed with H and the direction of tool rotation (see help graphic)
  - 0: Up-cut milling
  - 1: Climb milling







# 4.26 Milling cycles

### Parameters

- O Roughing/finishing
  - O: Roughing. With each infeed, the complete surface is machined.
  - 1: Finishing. The surface is machined with the last infeed. In all previous infeeds, the cycle machines only the contour.
- J Milling direction. For polygons without chamfers/rounding arcs, J defines whether a unidirectional or bidirectional milling operation is to be executed (see help graphic).
  - 0: Unidirectional
  - 1: Bidirectional

### **Programming notes:**

The cycle calculates the milling depth from ZS and ZE, taking the oversizes into account.

Surfaces and figures defined with G797 (Q>0) are symmetric with respect to the center. A figure defined in the following command can be **outside the center.** 

G797 Q0 .. is followed by:

### **The figure to be milled** with:

- Contour definition of the figure (G301 to G307)—See "Front and rear face contours" on page 237.
- Conclusion of milling contour (G80)

### **The free contour** with:

- Starting point of milling contour (G100)
- Milling contour (G101, G102, G103)
- Conclusion of milling contour (G80)

### Beispiel: G797

%797.nc [G797]

N1 T9 G197 S1200 G195 F0.2 M104

N2 M14

N3 G110 C0

N4 G0 X100 Z2

N5 G797 X100 Z0 ZE-5 B50 R2 A0 Q4 P2 U0.5

N6 G100 Z2

N7 M15

END

END

### Beispiel: G797/G304

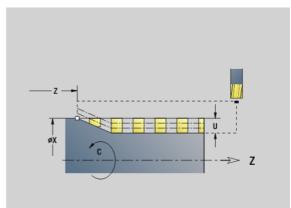
%304\_G305.nc [G304] N1 T7 G197 S1200 G195 F0.2 M104 N2 M14 N3 G110 C0 N4 G0 X100 Z2 N5 G797 X100 ZS0 ZE-5 Q0 P2 F0.15 N6 G304 XK20 YK5 R20 N7 G80 N4 G0 X100 Z2 N5 G797 X100 ZS0 ZE-5 Q0 P2 F0.15 N6 G305 XK20 YK5 R6 B30 K45 A20 N7 G80 N8 M15

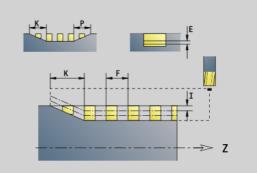


### Helical-slot milling G798

G798 mills a helical slot from the current tool position to the **Final point X, Z**. The slot width equals the diameter of the milling cutter.

### Parameters


- X Final point (diameter value)—(default: current X position)
- Z Final point of slot
- C Starting angle
- F Thread pitch:
  - F positive: Right-hand thread
  - F negative: Left-hand thread
- P Slop. length (run-in length)—ramp at the beginning of the slot (default: 0)
- K End. length (run-out length)—ramp at the end of the slot (default: 0)
- U Thread depth
- I Maximum approach (default: total depth in one infeed)
- E Reduction value for infeed reduction (default: 1)
- D No. of gears (threads per unit)


### Infeeds:

- **Infeed I** is used for the first infeed movement.
- The Control calculates all subsequent infeed movements as follows: Current infeed = I \* (1 – (n–1) \* E) (n: nth infeed)
- The infeed movement is reduced down to >= 0.5 mm. Following that, each infeed movement will amount to 0.5 mm.



You can mill a helical slot only from the outside.





| %798.nc                            |
|------------------------------------|
| [G798]                             |
| N1 T9 G197 S1200 G195 F0.2 M104    |
| N2 M14                             |
| N3 G110 C0                         |
| N4 G0 X80 Z15                      |
| N5 G798 X80 Z-120 C0 F20 K20 U5 I1 |
| N6 G100 Z2                         |
| N7 M15                             |
| END                                |

# **Contour milling G840**

#### G840-Fundamentals

G840 mills or deburrs open or closed contours (figures or "free contours").

**Plunge strategies:** Depending on the cutter you are using, select one of the following strategies:

- Vertical plunge: The cycle moves the tool to the starting point; the tool plunges and mills the contour.
- Calculate positions, predrill, mill. The machining process is performed in the following steps:
  - Insert drill.
  - Calculate hole positions with "G840 A1 ...".
  - Predrill with "G71 NF ..."
  - Call cycle "G840 A0 ...". The cycle positions the tool above the hole; the tool plunges and mills the contour.
- Predrilling, milling. The machining process is performed in the following steps:
  - Predrill with "G71 ..."
  - Position the cutter above the hole. Call cycle "G840 A0 ...". The cycle plunges and mills the contour or contour section.

If the milling contour consists of multiple sections, G840 takes all the sections of the contour into account for predrilling and milling. Call "G840 A0 .." separately for each section when calculating the hole positions without "G840 A1 ..".

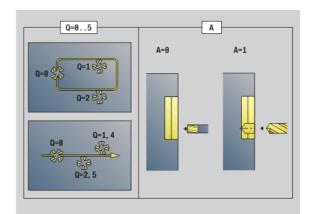
**Oversize:** A G58 oversize "shifts" the contour to be milled in the direction given in cycle type  $\mathbf{Q}$ .

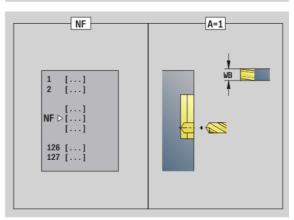
- With inside milling and closed contour: Shifted inward
- With outside milling and closed contour: Shifted outward
- Open contour: Shifts to the left or right depending on Q

If Q=0, oversizes are not taken into account.
 G57 and negative G58 oversizes are not taken into account.

#### G840-Calculating hole positions

"G840 A1 ..." calculates the hole positions and stores them at the reference specified in "NF." Program only the parameters given in the following table.


See also:


G840—Fundamentals: Page 361

G840—Milling: Page 364

#### Parameters-Calculating hole positions O

- Cycle type (= milling location)
  - Open contour. If there is any overlapping, Q defines whether the first section (as of starting point) or the entire contour is to be machined.
    - Q=0: Center of milling cutter on the contour (hole position = starting point)
    - Q=1: Machining at the left of the contour. If there is any overlapping, only the first area of the contour is machined.
    - Q=2: Machining at the right of the contour. If there is any overlapping, only the first area of the contour is machined.
    - O=3: Not allowed
    - Q=4: Machining at the left of the contour. If there is any overlapping, the entire contour is machined.
    - Q=5: Machining at the right of the contour. If there is any overlapping, the entire contour is machined.
  - Closed contours
    - Q=0: Center of milling cutter on the contour (hole position) = starting point)
    - Q=1: Inside milling
    - Q=2: Outside milling
    - Q=3 to 5: Not allowed
- ID Milling contour-name of the contour to be milled
- NS Contour start block number-beginning of contour section
  - Figures: Block number of the figure
  - Free closed contour: First contour element (not starting point)
  - Open contour: First contour element (not starting point)
- Contour end block number-end of contour section NE
  - Figures, free closed contour: No input
  - Open contour: last contour element
  - Contour consists of one element:
    - No input: Machining in contour direction
    - NS=NE programmed: Machining against the contour direction





#### Parameters-Calculating hole positions

D Starting element number for partial figures

The direction of contour definition for figures is counterclockwise. The first contour element for figures:

- Circular slot: The larger arc
- Full circle: The upper semicircle
- Rectangles, polygons and linear slots: The orientation angle points to the first contour element.
- V Ending element number for partial figures
- A Sequence for "Calculate hole positions": A=1
- NF Position mark—reference at which the cycle stores the hole positions [1 to 127].
- WB Rework diameter-diameter of the milling cutter

Program D and V to machine parts of a figure.

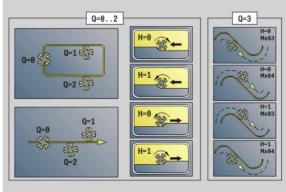


The cycle takes the diameter of the active tool into account when calculating the hole positions. Therefore, you need to insert the drill before calling "G840 A1 ...".

Program oversizes for calculating the hole positions and for milling.



G840 overwrites any hole positions that may still be stored at the reference "NF."


#### G840-Milling

See also:

- G840—Fundamentals: Page 361
- G840—Calculating hole positions: Page 362

#### Parameters – Milling Q Cycle type (= mill

- Cycle type (= milling location).
  - Open contour. If there is any overlapping, Q defines whether the first section (as of starting point) or the entire contour is to be machined.
    - Q=0: Center of milling cutter on the contour (without TRC)
    - Q=1: Machining at the left of the contour. If there is any overlapping, G840 machines only the first section of the contour (starting point: 1st point of intersection).
    - Q=2: Machining at the right of the contour. If there is any overlapping, G840 machines only the first section of the contour (starting point: 1st point of intersection).
    - Q=3: The contour is machined to the left or right depending on H and the direction of cutter rotation (see table). If there is any overlapping, G840 machines only the first section of the contour (starting point: 1st point of intersection).
    - Q=4: Machining at the left of the contour. If there is any overlapping, G840 machines the entire contour.
    - Q=5: Machining at the right of the contour. If there is any overlapping, G840 machines the entire contour.
  - Closed contours
    - Q=0: Center of milling cutter on the contour (hole position = starting point)
    - Q=1: Inside milling
    - Q=2: Outside milling
    - Q=3 to 5: Not allowed
  - Milling contour-name of the contour to be milled
- NS Block number—beginning of contour section
  - Figures: Block number of the figure
  - Free open or closed contour: First contour element (not starting point)



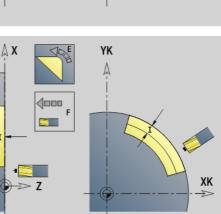
dit\Common\_Gfkt\Allg\_Fra\_G840\_QH.png

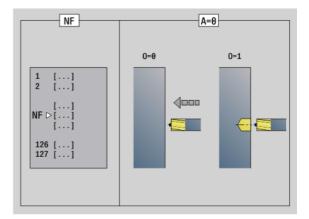
ID

# 4.26 Milling cycles

#### Parameters – Milling

- NE Block number—end of contour section
  - Figures, free closed contour: No input
  - Free open contour: Last contour element
  - Contour consists of one element:
    - No input: Machining in contour direction
    - NS=NE programmed: Machining against the contour direction
- H Cutting direction (default: 0)
  - 0: Up-cut milling
  - 1: Climb milling
- I (Maximum) infeed (default: milling in one infeed)
- F Infeed rate (depth infeed)—(default: active feed rate)
- E Reduced feed rate for circular elements (default: current feed rate)
- R Radius of approaching/departing arc (default: 0)
  - R=0: Contour element is approached directly; infeed to starting point above the milling plane, then vertical plunge
  - R>0: Tool moves on approaching/departing arc that connects tangentially to the contour element
  - R<0 for inside corners: Tool moves on approaching/ departing arc that connects tangentially to the contour element
  - R<0 for outside corners: Contour element is approached/ departed tangentially on a linear path
- P Milling depth (default: depth from the contour description)
- XS Milling top edge—lateral surface (replaces the reference plane from the contour definition)
- ZS Milling top edge—face (replaces the reference plane from the contour definition)
- RB Retraction plane (default: back to starting position)
  - Front or rear face: Retraction position in Z direction
  - Lateral surface: Retraction position in X direction (diameter)
  - Starting element number when partial figures are machined.
- V End element number when partial figures are machined.


The direction of contour definition for figures is counterclockwise. The first contour element for figures:


Circular slot: The larger arc

D

- Full circle: The upper semicircle
- Rectangles, polygons and linear slots: The orientation angle points to the first contour element.
- A Sequence for "Milling, deburring": A=0 (default=0)
- NF Position mark—reference from which the cycle reads the hole positions [1 to 127].







#### Parameters-Milling

- O Plunging behavior (default: 0)
  - O=0: Vertical plunging
  - O=1: With predrilling
  - If NF is programmed: The cycle positions the milling cutter above the first hole position saved in NF, then plunges and mills the first section. If applicable, the cycle positions the tool to the next pre-drilled hole and mills the next section, etc.
  - If NF is not programmed: The tool plunges at the current position and mills the section. If required, repeat this operation for the next section, etc.

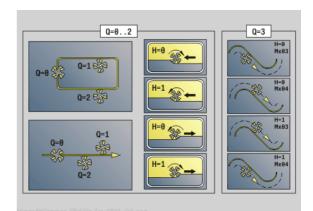
**Approach and departure:** For closed contours, the point of the surface normal from the tool position to the first contour element is the point of approach and departure. If no surface normal intersects the tool position, the starting point of the first element is the point of approach and departure. For figures, use D and V to select the approach/departure element.

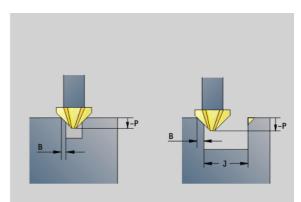
#### Cycle run for milling

- 1 Starting position (X, Z, C) is the position before the cycle begins.
- **2** Calculates the milling depth infeeds.
- 3 Approaches to safety clearance.
  - If O=0: Infeed to the first milling depth.
  - If O=1: Plunges to the first milling depth.
- 4 Mills the contour.
- For open contours and slots with slot width equal to the cutter diameter: Advances to the next milling depth, or plunges to the next milling depth and mills the contour in reverse direction.
  - For closed contours and slots: Retracts by the safety clearance, approaches and advances to the next milling depth, or plunges to the next milling depth.
- 6 Repeats steps 4 and 5 until the complete contour is milled.
- 7 Returns to retraction plane RB.

You can change the **machining direction and the milling cutter radius compensation** (MCRC) with the **cycle type Q**, the **cutting direction H** and the rotational direction of the tool (see following table). Program only the parameters given in the following table.

| Contour          | milling G840               |                                  |       |           |                  |                            |                                  |       |           |
|------------------|----------------------------|----------------------------------|-------|-----------|------------------|----------------------------|----------------------------------|-------|-----------|
| Cycle<br>type    | Cutting<br>direction       | Direction<br>of tool<br>rotation | MCRC  | Execution | Cycle<br>type    | Cutting<br>direction       | Direction<br>of tool<br>rotation | MCRC  | Execution |
| Contour<br>(Q=0) | -                          | Mx03                             | -     |           | Outside          | Up-cut<br>milling<br>(H=0) | Mx04                             | Left  |           |
| Contour          | -                          | Mx03                             | _     |           | Outside          | Climb<br>milling<br>(H=1)  | Mx03                             | Left  |           |
| Contour          | _                          | Mx04                             | _     |           | Outside          | Climb<br>milling<br>(H=1)  | Mx04                             | Right |           |
| Contour          | -                          | Mx04                             | _     |           | Contour<br>(Q=0) | -                          | Mx03                             | -     |           |
| Inside<br>(Q=1)  | Up-cut<br>milling<br>(H=0) | Mx03                             | Right |           | Contour          | -                          | Mx04                             | _     |           |
| Inside           | Up-cut<br>milling<br>(H=0) | Mx04                             | Left  |           | Right<br>(Q=3)   | Up-cut<br>milling<br>(H=0) | Mx03                             | Right |           |
| Inside           | Climb<br>milling<br>(H=1)  | Mx03                             | Left  |           | Left<br>(Q=3)    | Up-cut<br>milling<br>(H=0) | Mx04                             | Left  |           |
| Inside           | Climb<br>milling<br>(H=1)  | Mx04                             | Right |           | Left<br>(Q=3)    | Climb<br>milling<br>(H=1)  | Mx03                             | Left  |           |
| Outside<br>(Q=2) | Up-cut<br>milling<br>(H=0) | Mx03                             | Right |           | Right<br>(Q=3)   | Climb<br>milling<br>(H=1)  | Mx04                             | Right |           |





#### G840-Deburring

G840 deburrs when you program **chamfer width B**. If there is any overlapping of the contour, specify with **cycle type Q** whether the first section (as of starting point) or the entire contour is to be machined. Program only the parameters given in the following table.

#### Parameters – Deburring

- Cycle type (= milling location).
  - Open contour. If there is any overlapping, Q defines whether the first section (as of starting point) or the entire contour is to be machined.
    - Q=0: Center of milling cutter on the contour (without TRC)
    - Q=1: Machining at the left of the contour. If there is any overlapping, G840 machines only the first section of the contour (starting point: 1st point of intersection).
    - Q=2: Machining at the right of the contour. If there is any overlapping, G840 machines only the first section of the contour (starting point: 1st point of intersection).
    - Q=3: The contour is machined to the left or right depending on H and the direction of cutter rotation (see table). If there is any overlapping, G840 machines only the first section of the contour (starting point: 1st point of intersection).
    - Q=4: Machining at the left of the contour. If there is any overlapping, G840 machines the entire contour.
    - Q=5: Machining at the right of the contour. If there is any overlapping, G840 machines the entire contour.
  - Closed contours
    - Q=0: Center of milling cutter on the contour (hole position = starting point)
    - Q=1: Inside milling
    - Q=2: Outside milling
    - Q=3 to 5: Not allowed
- ID Milling contour—name of the contour to be milled
- NS Block number—beginning of contour section
  - Figures: Block number of the figure
  - Free open or closed contour: First contour element (not starting point)
- NE Block number—end of contour section
  - Figures, free closed contour: No input
  - Free open contour: Last contour element
  - Contour consists of one element:
    - No input: Machining in contour direction
    - NS=NE programmed: Machining against the contour direction
- E Reduced feed rate for circular elements (default: current feed rate)





4.26 Milling cycles

#### Parameters – Deburring

- R Radius of approaching/departing arc (default: 0)
  - R=0: Contour element is approached directly; infeed to starting point above the milling plane, then vertical plunge
  - R>0: Tool moves on approaching/departing arc that connects tangentially to the contour element
  - R<0 for inside corners: Tool moves on approaching/ departing arc that connects tangentially to the contour element
  - R<0 for outside corners: Contour element is approached/ departed tangentially on a linear path
- P Milling depth (indicated as a negative value)
- XS Milling top edge—lateral surface (replaces the reference plane from the contour definition)
- ZS Milling top edge—face (replaces the reference plane from the contour definition)
- RB Retraction plane (default: back to starting position)
  - Front or rear face: Retraction position in Z direction
  - Lateral surface: Retraction position in X direction (diameter)
- B Chamfer width when deburring the edges
- J Preparation diameter. For open contours, the contour to be deburred is calculated from the programmed contour and J.

#### Remember that:

- J programmed: The cycle deburrs both sides of the slot (see 1 in the illustration).
- J not programmed: The deburring tool is so wide that both sides of the slot are deburred in one pass (see 2 in the illustration).
- D Starting element number when partial figures are machined.
- V End element number when partial figures are machined.

The direction of contour definition for figures is counterclockwise. The first contour element for figures:

- Circular slot: The larger arc
- Full circle: The upper semicircle
- Rectangles, polygons and linear slots: The orientation angle points to the first contour element.
- A Sequence for "Milling, deburring": A=0 (default=0)

**Approach and departure:** For closed contours, the point of the surface normal from the tool position to the first contour element is the point of approach and departure. If no surface normal intersects the tool position, the starting point of the first element is the point of approach and departure. For figures, use D and V to select the approach/departure element.

#### Cycle run for deburring

- **1** Starting position (X, Z, C) is the position before the cycle begins.
- **2** Moves to the safety clearance and infeed to the first milling depth.
- **3** J not programmed: Mills the programmed contour.
  - J programmed, open contour: Calculates and mills the "new" contour.
- 4 Returns to retraction plane RB.

# Pocket milling, roughing G845

#### G840-Fundamentals

G845 roughs closed contours. Choose one of the following **plunge strategies**, depending on the milling cutter you are using:

Plunge vertically

4.26 Milling cycles

- Plunge at a pre-drilled position
- Plunge in a reciprocating or helical motion

When "plunging at a pre-drilled position," you have the following alternatives:

**Calculate positions, drill, mill.** The machining process is performed in the following steps:

Insert drill.

- Calculate hole positions with "G845 A1 ..." or set the hole position at the center of the figure with A2
- Predrill with "G71 NF ..."
- Call cycle "G845 A0 ..." The cycle positions the tool above the hole; the tool plunges and mills the pocket.



The parameters O=1 and NF must be defined.

- Drill, mill. The machining process is performed in the following steps:
  - Drill a hole inside the pocket with "G71 ..."
  - Position the milling cutter above the hole and call "G845 A0 ..." The tool plunges and mills the section.

If the pocket consists of multiple sections, G845 takes all the sections of the pocket into account for drilling and milling. Call "G845 A0 ..." separately for each section when calculating the hole positions without "G845 A1 ...".



#### G845 takes the following oversizes into account:

G57: Oversize in X, Z direction

G58: Equidistant oversize in the milling plane

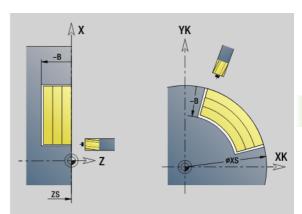
Program oversizes for calculating the hole positions **and** for milling.

#### G845-Calculating hole positions

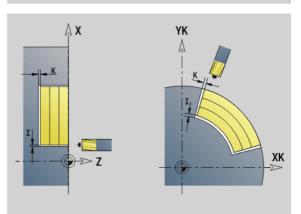
"G845 A1 ..." calculates the hole positions and stores them at the reference specified in "NF." The cycle takes the diameter of the active tool into account when calculating the hole positions. Therefore, you need to insert the drill before calling "G845 A1 ...". Program only the parameters given in the following table.

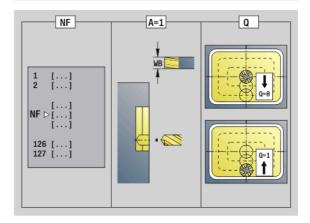
See also:

 $\Lambda$ 


- G845—Fundamentals: Page 370
- G845—Milling: Page 372

#### Parameters-Calculating hole positions


- ID Milling contour—name of the contour to be milled
- NS Starting block no. of contour
  - Figures: Block number of the figure
  - Free closed contour: A contour element (not starting point)
- B Milling depth (default: depth from the contour description)
- XS Milling top edge—lateral surface (replaces the reference plane from the contour definition)
- ZS Milling top edge—face (replaces the reference plane from the contour definition)
- I Oversize in X direction (radius)
- K Oversize in Z direction
- Q Machining direction (default: 0)
  - 0: From the inside out (from the inside towards the outside)
  - 1: From the outside in (from the outside towards the inside)
- A Sequence for "Calculate hole positions": A=1
- NF Position mark—reference at which the cycle stores the hole positions [1 to 127].
- WB Plunge length—diameter of the milling cutter


G845 overwrites any hole positions that may still be stored at the reference "NF."

The parameter "WB" is used both for calculating the hole positions and for milling. When calculating the hole positions, "WB" describes the diameter of the milling cutter.



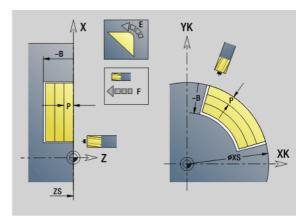
4.26 Milling cycles

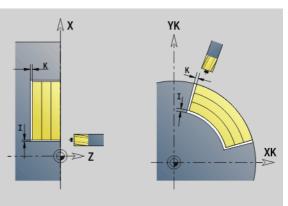


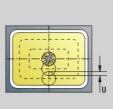


#### G845-Milling

See also:


- G845—Fundamentals: Page 370
- G845—Calculating hole positions: Page 371


#### Parameters – Milling


- ID Milling contour—name of the contour to be milled
- NS Starting block no. of contour
  - Figures: Block number of the figure
  - Free closed contour: A contour element (not starting point)
- B Milling depth (default: depth from the contour description)
- P (Maximum) infeed (default: milling in one infeed)
- XS Milling top edge—lateral surface (replaces the reference plane from the contour definition)
- ZS Milling top edge—face (replaces the reference plane from the contour definition)
- I Oversize in X direction (radius)
- K Oversize in Z direction
- U (Minimum) overlap factor. Defines the overlap of milling paths (default: 0.5).

Overlap = U\*milling diameter

- V Overrun factor (no effect with C-axis machining)
- H Cutting direction (default: 0)
  - 0: Up-cut milling
  - 1: Climb milling
- F Feed rate for infeed (default: active feed rate)
- E Reduced feed rate for circular elements (default: current feed rate)
- RB Retraction plane (default: back to starting position)
  - Front or rear face: Retraction position in Z direction
  - Lateral surface: Retraction position in X direction (diameter)
- Q Machining direction (default: 0)
  - 0: From the inside out (from the inside towards the outside)
  - 1: From the outside in (from the outside towards the inside)









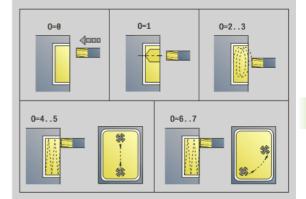
# 4.26 <mark>Mill</mark>ing cycles

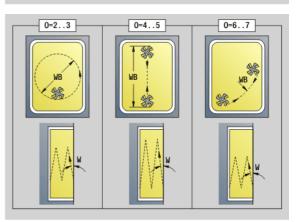
#### Parameters – Milling

- A Sequence for "Milling": A=0 (default=0)
- NF Position mark—reference from which the cycle reads the hole positions [1 to 127].
- O Plunging behavior (default: 0)

**O=0 (vertical plunge):** The cycle moves the tool to the starting point; the tool plunges at the feed rate for infeed and mills the pocket.

#### **O=1** (plunge at pre-drilled position):


- If "NF" is programmed: The cycle positions the milling cutter above the first pre-drilled hole; the tool plunges and mills the first area. If applicable, the cycle positions the tool to the next pre-drilled hole and mills the next area, etc.
- If "NF" is not programmed: The tool plunges at the current position and mills the area. If applicable, position the tool to the next pre-drilled hole and mill the next area, etc.


**O=2, 3 (helical plunge):** The tool plunges at the angle "W" and mills full circles with the diameter "WB." As soon as it reaches the milling depth "P," the cycle switches to face milling.

- O=2—manually: The cycle plunges at the current position and machines the area that can be reached from this position.
- O=3—automatically: The cycle calculates the plunging position, plunges and machines this area. The plunging motion ends at the starting point of the first milling path, if possible. If the pocket consists of multiple areas, the cycle successively machines all the areas.

**O=4, 5 (reciprocating linear plunge):** The tool plunges at the angle "W" and mills a linear path of the length "WB." You can define the orientation angle in "WE." The cycle then mills along this path in the opposite direction. As soon as it reaches the milling depth "P," the cycle switches to face milling.

- O=4—manually: The cycle plunges at the current position and machines the area that can be reached from this position.
- O=5—automatically: The cycle calculates the plunging position, plunges and machines this area. The plunging motion ends at the starting point of the first milling path, if possible. If the pocket consists of multiple areas, the cycle successively machines all the areas. The plunging position is determined from the type of figure and from "Q" as follows:





#### Parameters – Milling

- Q0 (from the inside toward the outside):
  - Linear slot, rectangle, polygon: Reference point of the figure
  - Circle: Circle center
  - Circular slot, "free" contour: Starting point of the innermost milling path
- Q1 (from the outside toward the inside):
  - Linear slot: Starting point of the slot
  - Circular slot, circle: Not machined
  - Rectangle, polygon: Starting point of the first linear element
  - "Free" contour: Starting point of the first linear element (at least one linear element must exist)

**O=6, 7 (reciprocating circular plunge):** The tool plunges at the plunging angle "W" and mills a circular arc of 90°. The cycle then mills along this path in the opposite direction. As soon as it reaches the milling depth "P," the cycle switches to face milling. "WE" defines the arc center, "WB" the arc radius.

- O=6—manually: The tool position corresponds to the center of the circular arc. The tool moves to the arc starting point and plunges.
- O=7—automatically (only permitted for circular slots and circles): The cycle calculates the plunging position on the basis of "Q":
  - Q0 (from the inside toward the outside):
     Circular slot: The circular arc lies on the curvature radius of the slot
    - Circle: Not permitted
  - Q1 (from the outside toward the inside): Circular slot, circle: The circular arc lies on the outermost milling path
- W Plunging angle in infeed direction
- WE Orientation angle of the milling path/circular arc. Reference axis:
  - Front or rear face: Positive XK axis
  - Lateral surface: Positive Z axis

Default orientation angle, depending on "O":

■ O=4: WE= 0°

- O=5 and
  - Linear slot, rectangle, polygon: WE= orientation angle of the figure
  - Circular slot, circle: WE=0°
  - "Free" contour and Q0 (from the inside toward the outside): WE=0°
  - "Free" contour and Q1 (from the outside toward the inside): Orientation angle of the starting element
- WB Plunge length/plunge diameter (default: 1.5 \* milling diameter)



For the machining direction Q=1 (from the outside toward the inside), please note:

- The contour must start with a linear element.
- If the starting element is < WB, WB is reduced to the length of the starting element.
- The length of the starting element must not be less than 1.5 times the diameter of the milling cutter.

#### Cycle run

- **1** Starting position (X, Z, C) is the position before the cycle begins.
- **2** Calculates the number of cuts (infeeds to the milling planes, infeeds in the milling depths) and the plunging positions and paths for reciprocating or helical plunges.
- **3** Approaches to safety clearance and, depending on O, feeds to the first milling depth or approaches helically or on a reciprocating path.
- 4 Mills a plane.
- **5** Retracts by the safety clearance, returns and cuts to the next milling depth.
- 6 Repeats steps 4 and 5 until the complete surface is milled.
- 7 Returns to retraction plane RB.

You can change the **milling direction** with the cutting direction H, the machining direction Q and the direction of tool rotation (see following table). Program only the parameters given in the following table.

| Pocket milling          | , roughing G84        | 5                                |           |                        |                       |                                  |           |
|-------------------------|-----------------------|----------------------------------|-----------|------------------------|-----------------------|----------------------------------|-----------|
| Cutting direction       | Machining direction   | Direction<br>of tool<br>rotation | Execution | Cutting<br>direction   | Machining direction   | Direction<br>of tool<br>rotation | Execution |
| Up-cut milling<br>(H=0) | From inside<br>(Q=0)  | Mx03                             |           | Climb milling<br>(H=1) | From inside<br>(Q=0)  | Mx03                             |           |
| Up-cut milling<br>(H=0) | From inside<br>(Q=0)  | Mx04                             |           | Climb milling<br>(H=1) | From inside<br>(Q=0)  | Mx04                             |           |
| Up-cut milling<br>(H=0) | From outside<br>(Q=1) | Mx03                             |           | Climb milling<br>(H=1) | From outside<br>(Q=1) | Mx03                             |           |
| Up-cut milling<br>(H=0) | From outside<br>(Q=1) | Mx04                             |           | Climb milling<br>(H=1) | From outside<br>(Q=1) | Mx04                             |           |

i

# Pocket milling, finishing G846

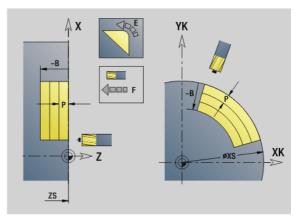
G846 finish-machines closed contours.

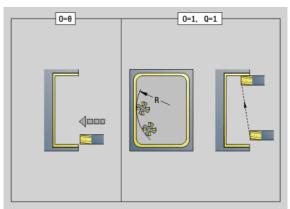
If the pocket consists of multiple sections, G846 takes all the sections of the pocket into account.

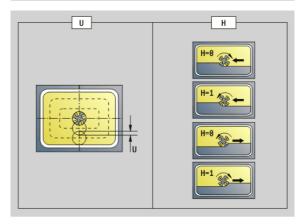
You can change the **milling direction** with the **cutting direction H**, the **machining direction Q** and the direction of tool rotation (see following table).

#### Parameters-finishing

- ID Milling contour—name of the contour to be milled
- NS Starting block no. of contour
  - Figures: Block number of the figure
  - Free closed contour: A contour element (not starting point)
- B Milling depth (default: depth from the contour description)
- P (Maximum) infeed (default: milling in one infeed)
- XS Milling top edge—lateral surface (replaces the reference plane from the contour definition)
- ZS Milling top edge—face (replaces the reference plane from the contour definition)
- R Radius of approaching/departing arc (default: 0)
  - R=0: Contour element is approached directly. Feed to the starting point above the milling plane, then vertical plunge.
  - R>0: Tool moves on approaching/departing arc that connects tangentially to the contour element.
- U (Minimum) overlap factor. Defines the overlap of milling paths (default: 0.5).


Overlap = U\*milling diameter


- V Overrun factor—no effect with C-axis machining
- H Cutting direction (default: 0)


0: Up-cut milling

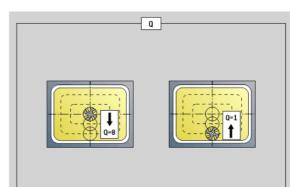
■ 1: Climb milling

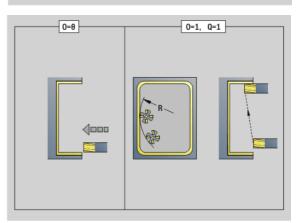
- F Feed rate for infeed (default: active feed rate)
- E Reduced feed rate for circular elements (default: current feed rate)
- RB Retraction plane (default: back to starting position)
  - Front or rear face: Retraction position in Z direction
  - Lateral surface: Retraction position in X direction (diameter)








#### Parameters - finishing


- Q Machining direction (default: 0)
  - 0: From the inside out (from the inside towards the outside)
  - 1: From the outside in (from the outside towards the inside)
- O Plunging behavior (default: 0)
  - O=0 (vertical plunge): The cycle moves the tool to the starting point; the tool plunges and finishes the pocket.
  - O=1 (approaching arc with depth feed): When machining the upper milling planes, the tool advances to the milling plane and then approaches on an arc. When machining the bottom milling plane, the tool plunges to the milling depth while moving on the approaching arc (three-dimensional approaching arc). You can use this approach behavior only in conjunction with an approaching arc "R" and when machining from the outside toward the inside (Q=1).

#### Cycle run

- **1** Starting position (X, Z, C) is the position before the cycle begins.
- **2** Calculates the number of cutting passes (infeeds to the milling planes, infeeds in the milling depths).
- **3** Moves to the safety clearance and feeds to the first milling depth.
- 4 Mills a plane.
- **5** Retracts by the safety clearance, returns and cuts to the next milling depth.
- 6 Repeats steps 4 and 5 until the complete surface is milled.
- 7 Returns to retraction plane RB.

# You can change the **milling direction** with the **cutting direction H**, the **machining direction Q** and the direction of tool rotation (see following table).





| Pocket milling, fini    | ishing G846                |           |                     |                            |           |
|-------------------------|----------------------------|-----------|---------------------|----------------------------|-----------|
| Cutting direction       | Direction of tool rotation | Execution | Cutting direction   | Direction of tool rotation | Execution |
| Up-cut milling<br>(H=0) | Mx03                       |           | Climb milling (H=1) | Mx03                       |           |
| Up-cut milling<br>(H=0) | Mx04                       |           | Climb milling (H=1) | Mx04                       |           |

# 4.27 Engraving cycles

# **Character set**

The Control can realize the characters listed in the following table. The text to be engraved is entered as a character string. Diacritics and special characters that you cannot enter in the editor can be defined, character by character, in NF. If text is defined in "ID" and a character is defined in "NF," the text is engraved before the character.

| Smal | letters   | Capit | al letters | Nume<br>diacri |           | Specia<br>charae |           |                        |
|------|-----------|-------|------------|----------------|-----------|------------------|-----------|------------------------|
| NF   | Character | NF    | Character  | NF             | Character | NF               | Character | Meaning                |
| 97   | а         | 65    | А          | 48             | 0         | 32               |           | Space                  |
| 98   | b         | 66    | В          | 49             | 1         | 37               | %         | Per cent sign          |
| 99   | С         | 67    | С          | 50             | 2         | 40               | (         | Opening parenthesis    |
| 100  | d         | 68    | D          | 51             | 3         | 41               | )         | Closing parenthesis    |
| 101  | е         | 69    | E          | 52             | 4         | 43               | +         | Plus character         |
| 102  | f         | 70    | F          | 53             | 5         | 44               | 1         | Comma                  |
| 103  | g         | 71    | G          | 54             | 6         | 45               | -         | Minus sign             |
| 104  | h         | 72    | Н          | 55             | 7         | 46               |           | Point                  |
| 105  | i         | 73    |            | 56             | 8         | 47               | /         | Forward slash          |
| 106  | j         | 74    | J          | 57             | 9         | 58               | :         | Colon                  |
| 107  | k         | 75    | К          |                |           | 60               | <         | Less than character    |
| 108  |           | 76    | L          | 196            | Ä         | 61               | =         | Equal sign             |
| 109  | m         | 77    | Μ          | 214            | Ö         | 62               | >         | Greater than character |
| 110  | n         | 78    | Ν          | 220            | Ü         | 64               | @         | at                     |
| 111  | 0         | 79    | 0          | 223            | ß         | 91               | [         | Opening brackets       |
| 112  | р         | 80    | Р          | 228            | ä         | 93               | ]         | Closing brackets       |
| 113  | q         | 81    | Q          | 246            | ö         | 95               | _         | Underscore             |
| 114  | r         | 82    | R          | 252            | ü         | 8364             |           | Euro sign              |
| 115  | S         | 83    | S          |                |           | 181              | μ         | Micro                  |

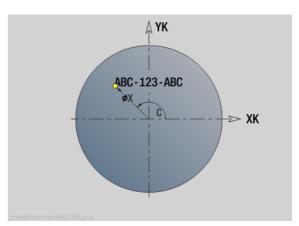
1

| Smal | l letters | Capit | al letters | Nume<br>diacrit | · · · · · · · · · · · · · · · · · · · | Speci<br>chara |           |                     |
|------|-----------|-------|------------|-----------------|---------------------------------------|----------------|-----------|---------------------|
| NF   | Character | NF    | Character  | NF              | Character                             | NF             | Character | Meaning             |
| 116  | t         | 84    | Т          |                 |                                       | 186            | 0         | Degrees             |
| 117  | u         | 85    | U          |                 |                                       | 215            | *         | Multiplication sign |
| 118  | V         | 86    | V          |                 |                                       | 33             | !         | Exclamation point   |
| 119  | W         | 87    | W          |                 |                                       | 38             | &         | Ampersand and       |
| 120  | х         | 88    | Х          |                 |                                       | 63             | ?         | Question mark       |
| 121  | У         | 89    | Y          |                 |                                       | 174            | ®         | Trademark           |
| 122  | Z         | 90    | Z          |                 |                                       | 216            | Ø         | Diameter sign       |

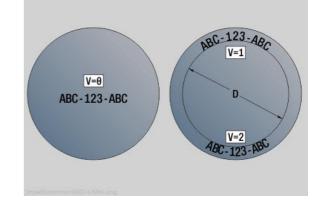


# **Engraving on front face G801**

G801 engraves character strings in linear or polar layout on the front face. For character set and more information, see page 378


The cycles start engraving from the starting position or from the current position, if no starting position is defined.

Example: If a character string is engraved with several calls, define the starting position in the first call. All other calls are programmed without a starting position.


### **Parameters**

| Х, С   | Polar starting point     |
|--------|--------------------------|
| ΧΚ, ΥΚ | Cartesian starting point |

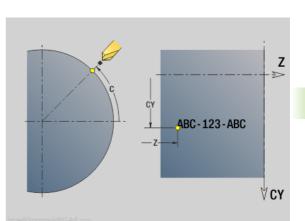
- Ζ End point. Z position, infeed depth during milling.
- RΒ Retraction plane. Z position retracted to for positioning. ID
- Text to be engraved
- NF Character number (character to be engraved)
- W Inclination angle. Example:  $0^{\circ}$  = Vertical characters: the characters are aligned in sequence in positive X direction
- Н Font height
- Е Distance factor (for calculation see figure)
- V Execution
  - 0: Linear
  - 1: Arched above
  - 2: Arched below
- D Reference diameter F
  - Plunging feed rate factor (plunging feed rate = current feed rate \* F)

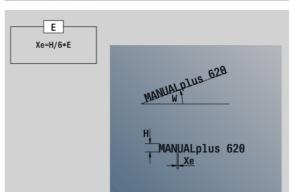


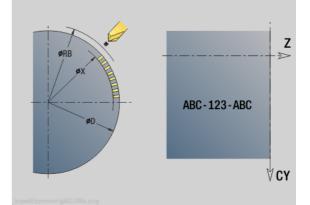




# Engraving on lateral surface G802


G802 engraves character strings aligned linearly on the lateral surface. For character set and more information, see page 378


The cycles start engraving from the starting position or from the current position, if no starting position is defined.


Example: If a character string is engraved with several calls, define the starting position in the first call. All other calls are programmed without a starting position.

#### Parameters

- Z Starting point
- C Starting angle
- CY Starting point
- X End point (diameter). X position, infeed depth during milling.
- RB Retraction plane. X position retracted to for positioning.
- ID Text to be engraved
- NF Character number. ASCII code of the character to be engraved
- W Inclination angle
- H Font height
- E Distance factor (for calculation see figure)
- D Reference diameter
- F Plunging feed rate factor (plunging feed rate = current feed rate \* F)







# 4.28 Contour follow-up

Automatic contour follow-up is not possible with program branches or repetitions. In these cases you control the contour follow up with the following commands.

# Saving/loading contour follow-up G702

G702 saves the current contour or loads a saved contour.

#### Parameters

- ID Workpiece blank contour—name of the auxiliary workpiece blank
- Q Save/load contour
  - 0: Saves the current contour. The contour follow-up is not affected.
  - 1: Loads the specified contour. The contour follow-up is continued with the loaded contour.
  - 2: The following cycle uses the "internal workpiece blank."
- H Memory number (0 .. 9)
- V The following information is saved:
  - 0: Everything (variable contents and workpiece blank contours)
  - 1: Variable contents
  - 2: Workpiece blank contours

G702 Q=2 switches off the global contour follow-up for the following cycle. Once the cycle has been executed, the global contour follow-up is effective again.

The affected cycle uses the "internal workpiece blank." The cycle determines the internal workpiece blank from the contour and the tool position.

G702 Q2 must be programmed before the cycle.

# Contour follow-up on/off G703

G703 is used to deactivate/reactivate the contour follow-up.

#### Parameters

Q Contour follow-up on/off

- 0: Off
- 🔳 1: On

# 4.29 Other G codes

# **Chucking equipment in simulation G65**

G65 displays the selected chucking equipment in the simulation graphics.

#### Parameters

- H No. of clamping (no. of chuck) (always program H=0)
- D No. of spindle—No input:
- X Diameter of workpiece blank
- Z Start point—No input
- Q Chuck form
  - 4: Externally clamped
  - 5: Internally clamped
- B Clamping length (B+P = length of blank)
- P Free length
- V Delete chucking equipment

# Workpiece blank contour G67 (for graphics)

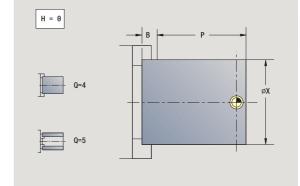
G67 displays an auxiliary workpiece blank in the **Simulation** submode.

#### Parameters

- ID ID of auxiliary workpiece blank
- NS Block number of contour

# Period of dwell G4

With G4, the Control interrupts the program run for the time F or until the revolutions on the recess floor D have been completed before executing the next program block. If G4 is programmed together with a path of traverse in the same block, the dwell time or the number of revolutions on the recess floor only become effective after the path of traverse has been executed.


#### Parameters

- F Dwell time [sec] (0 < F <= 999)
- D Revolutions on recessing floor

# **Precision stop G7**

G7 switches precision stop on. It is a modal function. With a precision stop, the Control does not run the following block until the last point has been reached in the tolerance window for position. The tolerance window is a configuration parameter ("ParameterSets PX(PZ)/CfgControllerTol/posTolerance").

Precision stop affects single paths and cycles. The NC block containing G7 is also executed with a precision stop.





# Precision stop off G8

G8 switches precision stop off. The block containing G8 is executed **without** a precision stop.

# Precision stop G9

G9 activates a precision stop for the NC block in which it is programmed. With a precision stop, the Control does not run the following block until the last point has been reached in the tolerance window for position. The tolerance window is a configuration parameter ("ParameterSets PX / PZ > CfgControllerTol > posTolerance").

# Switch off protection zone G60

G60 is used to cancel protection zone monitoring. G60 is programmed **before** the traversing command to be monitored or not monitored.

#### Parameters

- Q Activate/Deactivate
  - 0: Activate protection zone (modal)
  - 1: Deactivate protection zone (modal)

**Application example:** With G60, you can temporarily deactivate a programmed monitoring of the protection zone in order to machine a centric through hole.

# Actual values in variables G901

G901 transfers the actual values of all the axes of a slide into the variables for the interpolation information.

See G904 Page 385.

# Zero-point shift in variables G902

G902 transfers the zero-point shifts into the variables for the interpolation information.

See G904 Page 385.

# Lag error in variables G903

G903 transfers the current following error (distance by which the actual values lags the nominal value) into the variables for the interpolation information.

See G904 Page 385.

Beispiel: G60

. . .

N1 T4 G97 S1000 G95 F0.3 M3

N2 G0 X0 Z5

N3 G60 Q1 [Deactivate the protection zone]

N4 G71 Z-60 K65

N5 G60 Q0 [Activate the protection zone]

. . .



# **Read interpolation information G904**

G904 transfers all the current interpolation information on the current slide to the variable memory.

| Interpolatio | on information                                 |
|--------------|------------------------------------------------|
| #a0(Z,1)     | Zero-point shift of the Z axis of slide \$1    |
| #a1(Z,1)     | Actual position of the Z axis of slide \$1     |
| #a2(Z,1)     | Nominal position of the Z axis of slide \$1    |
| #a3(Z,1)     | Lag error of the Z axis of slide \$1           |
| #a4(Z,1)     | Distance to go in the Z axis of slide \$1      |
| #a5(Z,1)     | Logical axis number of the Z axis of slide \$1 |
| #a5(0,1)     | Logical axis number of the main spindle        |
| #a6(0,1)     | Rotational direction of main spindle \$1       |
| #a9(Z,1)     | Trigger position of the touch probe            |
| #a10(Z,1)    | IPO axis value                                 |

| Interpola | tion information syntax       |
|-----------|-------------------------------|
| Syntax:   | #an(axis,channel)             |
|           | n = number of the information |
|           | axis = name of the axis       |
|           | channel = slide number        |

### Feed rate override 100 % G908

G908 sets the feed override for traverse paths (G0, G1, G2, G3, G12, G13) block by block to 100 %.

Program G908 and the traverse path in the same NC block.

#### **Interpreter stop G909**

The Control pre-interprets the NC blocks. If variables are assigned shortly before the evaluation, "old values" would be processed. G909 stops the pre-interpretation. The NC blocks are processed up to G909. Only after G909, are the subsequent NC blocks processed.

Apart from G909, the NC block should only contain synchronous functions. (Some G codes generate an interpreter stop.)

## Spindle override 100 % G919

G919 is used to deactivate/activate the spindle speed override.

#### Parameters

- Q Spindle number (default: 0)
- H Type of limit (default: 0)
  - 0: Activate spindle speed override
  - 1: Spindle override at 100 %-modal
  - 2: Spindle override at 100 %—for the current NC block



## Deactivate zero-point shifts G920

G920 deactivates the workpiece zero point and zero-point shifts. Traverse paths and position values are referenced to the **distance tool tip—machine zero point**.

# Deactivate zero-point shifts, tool lengths G921

G921 deactivates the workpiece zero point, zero-point shifts and tool dimensions. Traverse paths and position values are referenced to the **slide reference point—machine zero point.** 

# End position of tool G922

With G922 you can position the active tool to a defined angle.

#### Parameters

C Angular position for tool orientation

# Fluctuating spindle speed G924

To reduce resonant vibrations you can use G924 to program a changing spindle speed. In G924 you define the time interval and the range for the speed change. The G924 function is automatically reset at the end of the program. You can also deactivate the function through another call with the setting H=0 (off).

#### Parameters

- Q Spindle number (machine-dependent)
- K Repetition rate: Time interval in hertz (repetitions per second)
- I Change of spindle speed
- H Switch on/off the G924 function

■ 0: Off

🔳 1: On

# **Convert lengths G927**

Function G927 is used to convert the tool lengths at the current tool insert angle to the initial position of the tool (reference position in B axis = 0).

The results can be interrogated in the variables #n927(X), #n927(Z), and #n927(Y).

#### Parameters

- H Method of conversion:
  - 0: Convert tool length to reference position (take I + K of the tool into account)
  - 1: Convert tool length to reference position (do not take I + K of the tool into account)
  - 2: Convert tool length from the reference position to the current work position (take I + K of the tool into account)
  - 3: Convert tool length from the reference position to the current work position (do not take I + K of the tool into account)
- X, Y, Z Axis values (X value = radius). If nothing is entered, the value 0 is used.

# **Calculate variables automatically G940**

Use G940 to convert metric values to inch values. When you create a new program you can select between **metric** units and **inches**. Internally the control always calculates with metric values. If you read out variables in an "inch" program, the variables are always output as metric values. Use G940 to convert the variables to INCH values.

#### Parameters H Swi

- Switch on/off the G940 function
  - 0: Unit conversion active
  - 1: Values remain metric

In inch programs, a conversion is required for variables that refer to a metric unit of measurement:

#### Machine dimensions

#m1(n) Machine dimensions of an axis, e.g. #m1(X) for machine dimensions of the X axis

| Reading to | ool data                                          |
|------------|---------------------------------------------------|
| #wn(NL)    | Usable length (inside turning and drilling tools) |
| #wn(RS)    | Cutting edge radius                               |
| #wn(ZD)    | Stud diameter                                     |
| #wn(DF)    | Cutter diameter                                   |
| #wn(SD)    | Shank diameter                                    |
| #wn(SB)    | Cutting width                                     |
| #wn(AL)    | Length of first cut                               |
| #wn(FB)    | Cutter width                                      |
| #wn(ZL)    | Tool setting dimension in Z                       |
| #wn(XL)    | Tool setting dimension in X                       |
| #wn(YL)    | Tool setting dimension in Y                       |
| #wn(l)     | Position of tool tip center in X                  |
| #wn(K)     | Position of tool tip center in Z                  |
| #wn(ZE)    | Distance between tool tip and slide zero point Z  |
| #wn(XE)    | Distance between tool tip and slide zero point X  |
| #wn(YE)    | Distance between tool tip and slide zero point Y  |

# Reading the current NC information

#n0(Z) Last programmed position Z



| Reading th | ne current NC information                    |
|------------|----------------------------------------------|
| #n120(X)   | Reference diameter X for calculating CY      |
| #n57(X)    | Oversize in X                                |
| #n57(Z)    | Oversize in Z                                |
| #n58(P)    | Equidistant oversize                         |
| #n150(X)   | Cutting width shifted in X by G150           |
| #n95(F)    | Last programmed feed rate                    |
| #n47(P)    | Current safety clearance                     |
| #n147(l)   | Current safety clearance in working plane    |
| #n147(K)   | Current safety clearance in infeed direction |

| Internal in | formation for defining constants            |
|-------------|---------------------------------------------|
| n0_x        | 768 Last programmed position X              |
| n0_y        | 769 Last programmed position Y              |
| n0_z        | 770 Last programmed position Z              |
| n120_x      | 787 Reference diameter X for calculating CY |
| n57_x       | 791 Oversize in X                           |
| n57_z       | 792 Oversize in Z                           |
| n58_p       | 793 Equidistant oversize                    |
| n150_x      | 794 Cutting width shifted in X by G150/G151 |
| n150_z      | 795 Cutting width shifted in Z by G150/G151 |
| n95_f       | 800 Last programmed feed rate               |
|             |                                             |

| Reading interpolation information G904 |                                             |  |  |  |  |
|----------------------------------------|---------------------------------------------|--|--|--|--|
| #a0(Z,1)                               | Zero-point shift of the Z axis of slide \$1 |  |  |  |  |
| #a1(Z,1)                               | Actual position of the Z axis of slide \$1  |  |  |  |  |
| #a2(Z,1)                               | Nominal position of the Z axis of slide \$1 |  |  |  |  |
| #a3(Z,1)                               | Lag error of the Z axis of slide \$1        |  |  |  |  |
| #a4(Z,1)                               | Distance to go in the Z axis of slide \$1   |  |  |  |  |

1

# **Misalignment compensation G976**

With the G976 function (misalignment compensation) you can run the following operations on tapering contours (e.g. to counter a mechanical offset). The G976 function is automatically reset at the end of the program. You can also deactivate the function through another call with the setting H=0 (off).

#### Parameters Z Star

Κ

L

Starting point

- Length
- Incremental distance
- J Incremental distance
- H Switch on/off the G976 function
  - 0: Off
  - 1: On

# Activate zero-point shifts G980

G980 activates the workpiece zero point and all zero-point shifts. Traverse paths and position values are referenced to the distance of the **tool tip to the workpiece zero point**, while taking the zero point shifts into consideration.

## Activate zero-point shifts, tool lengths G981

G981 activates the workpiece zero point, all zero-point shifts and the tool dimensions. Traverse paths and position values are referenced to the distance of the **tool tip to the workpiece zero point**, while taking the zero point shifts into consideration.

# 4.29 Other G codes

# Monitoring zone G995

G995 defines the monitoring zone and the axes to be monitored. The monitoring zone corresponds to the program section that is to be monitored by the control.

To begin the monitoring zone, program G995 with the following parameters. To end the monitoring zone, program G995 without parameters.

#### Parameters

- H No. of the zone (range:1 to 99)
- ID Code for axes
  - X: X axis
  - Y: Y axis
  - Z: Z axis
  - 0: Spindle 1 (main spindle, C axis)
  - 1: Spindle 2
  - 2: Spindle 3

 $\bigcirc$ 

The monitoring zones must be unambiguously defined in the program. Use the H parameter to assign a unique number to each monitoring zone.

If you would like to monitor more than one drive within a monitoring zone, enter the respective combination of individual parameters in the ID parameter. Please keep in mind, however, that the control can monitor a maximum of four drives per monitoring zone. To simultaneously monitor the Z axis and the main spindle, enter Z0 in the ID parameter.



In addition to defining the monitoring zone with G995, you need to activate the load monitoring function (see "Load monitoring G996" on page 392).

#### **Beispiel: G995**

#### ... N1 T4

N2 G995 H1 ID"X0" [Beginning of monitoring zone; monitoring of X axis and main spindle]

... [Machining]

G995 [End of monitoring zone]

. . .



# Load monitoring G996

G996 defines the type of load monitoring or deactivates the load monitoring temporarily.

#### Parameters Q Lib.

Lib. switch (type of activation): Scope of load monitoring (default: 0)

- 0: Off
- 1: G0 Off (do not monitor rapid traverse)
- 2: G0 On (monitor rapid traverse)

Q Monitoring: Type of load monitoring (default: 0)

- 0: Utilization and total utilization
- 1: Utilization only
- 2: Total utilization only



In addition to defining the type of load monitoring with G996, you need to specify the monitoring zone with G995 (see "Monitoring zone G995" on page 391).



Before using the load monitoring feature, you also need to define limit values and perform reference machining (see User's Manual).

# Activate direct program-run continuation G999

With the G999 function, when running a program in Single Block mode, the following NC blocks are run with a single NC start to the end of the program. G999 is then deactivated by again calling the function with the setting Q=0 (off).

#### Beispiel: G996

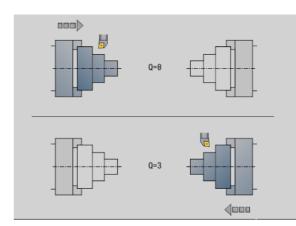
. . .

| N1 G996 Q1 H1 [Activate load monitoring; do<br>not monitor rapid traverse] |
|----------------------------------------------------------------------------|
| N2 T4                                                                      |
| N3 G995 H1 ID"X0"                                                          |
| [Machining]                                                                |
| N9 G995                                                                    |

# **Converting and mirroring G30**

The G30 function converts G codes, M functions and spindle numbers. G30 mirrors traverse paths and tool dimensions and shifts the machine zero point about the "zero point offset" of the axis (machine parameter: Trans\_Z1).

#### Parameters


- H Table number of the conversion table (possible only if the machine tool builder has configured a conversion table).
- Q Spindle number

**Application:** For full-surface machining, you describe the complete contour, machine the front face, rechuck the workpiece using an expert program, and then machine the rear face. To enable you to program rear-face machining in the same way as front-face machining (Z-axis orientation, arc rotational direction, etc.), the expert program includes commands for converting and mirroring.



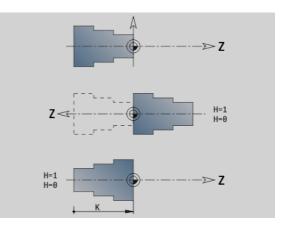
#### Danger of collision!

- In the transition from AUTOMATIC to MANUAL OPERATION, conversions and mirror images are retained
- Switch off the conversion/mirroring if you activate the front-face machining after rear-face machining (for example during program section repeats with M99)
- After a new program selection, the conversion/mirroring is switched off (example: transition from MANUAL to AUTOMATIC mode)



# **Transformations of contours G99**

With the G99 function you can select a contour group, mirror contours, shift them and bring the workpiece to the desired machining position.


#### Parameters

- Q Number of the contour group
- D Spindle number
- X Shift in X (diameter value)
- Z Shift in Z
- V Mirroring the Z axis of the coordinate system
  - Q=0: Do not mirror
  - Q=1: Mirror
- H Transformation type
  - H=0: Contour shift, not mirroring
  - H=1: Contour shift, mirroring and reversing the direction of the contour description
- K Length of workpiece shift: Shift coordinate system in Z direction
- O Hide elements during transformation
  - O=0: All contours are transformed
  - O=1: Auxiliary contours are not transformed
  - O=2: Face contours are not transformed
  - O=4: Lateral contours are not transformed

You can also add input values in order to combine various settings (e.g. O=3 Do not transform auxiliary contours or face contours)



Program G99 again if the workpiece is transferred to another spindle and/or moves its position in the working space.



# Spindle synchronization G720



Machine and control must be specially prepared by the machine tool builder for use of this cycle. Refer to your machine manual.

G720 controls the workpiece transfer from the master to the slave spindle and synchronizes functions such as polygonal turning jobs. The function stays active until you deactivate G720 with the setting H0.

If you would like to synchronize more than two spindles you can program G720 several times in succession.

#### Parameters

- S Number of the master spindle
- H Number of the slave spindle—no input or H=0: Switches off the spindle synchronization
- C Offset angle [°]
- Q Master spindle speed factor

Range: -100 <= Q <= 100

F Slave spindle speed factor

Range: -100 <= F <= 100

Y Type of cycle

Your machine manual provides more detailed information about machine-dependent functions.

Program the speed of the master spindle with Gx97 S. and define the speed ratio between the master spindle and the slave spindle with Q, F. If you enter a negative value for Q or F, the direction of rotation of the slave spindle will be reversed.

#### Remember that: Q \* master speed = F \* slave speed

#### Example: G720

| · · · ·                  |                                                                                                                                                                                    |
|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| N G397 S1500 M3          | Spindle speed and direction of rotation of master spindle                                                                                                                          |
| N G720 C180 S0 H1 Q2 F-1 | Synchronization of master spindle and slave<br>spindle. The slave spindle precedes the master<br>spindle by 180°. Slave spindle: Direction of rotation<br>M4; rotational speed 750 |
| N G1 X Z                 |                                                                                                                                                                                    |
|                          |                                                                                                                                                                                    |

# C-angle offset G905

G905 measures the angular offset of workpiece transfer with rotating spindle. The sum of angle C and the angle offset goes into effect as the zero point shift of C axis. If you request the zero point shift of the current C-axis in the variable #a0 (C,1) the sum of the programmed zero point shift and the measured offset angle is transferred.

The zero offset is effective internally as a direct zero point shift for the respective C axis. The contents of the variables are retained even if the control has been switched off.

You can also examine and reset the respectively active zero point shift of the C axis in the "Setup" menu in the "Set C-axis value" function.

### Parameters

- Q Number of the C axis
- C Angle of additional zero point shift for offset gripping (–360°  $<= C <= 360^{\circ}$ )—(default: 0°)



#### Danger of collision!

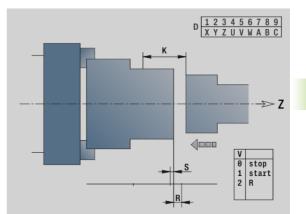
- For narrow workpieces the jaws have to grip at an offset.
- The zero point shift of the C axis remains in effect:
  - After switch from Automatic to Manual mode
  - After switch-off

# Traversing to a fixed stop G916



The machine tool builder determines the scope of function and behavior of G916. The machine manual provides further information.

G916 switches on the "monitoring of the traverse path" and moves to a fixed stop (example: transferring a premachined workpiece to a second traveling spindle if you do not know the exact position of the workpiece).


The control stops the slide and saves the stop position. G916 generates an interpreter stop.

### Parameters

- H Clamping force in daNewtons (1 daNewton = 10 newtons)
- D Axis number (X=1, Y=2, Z=3, U=4, V=5, W=6, A=7, B=8, C=9)
- K Incremental distance
- R Return path of traverse
- V Type of departure
  - V=0: Stay at fixed stop
  - V=1: Return to start position
  - V=2: Retract by return path R
- O Error evaluation
  - O=0: Error evaluation in expert program
  - O=1: The control issues an error message

Lag error monitoring is not activated until the acceleration phase has been completed.

The feed rate override is not effective during cycle execution.



### Traversing to a fixed stop

When traversing to a fixed stop, the control moves

- up to the fixed stop and stops as soon as the following error has been reached. The remaining path of traverse is deleted
- back to starting position
- back by the return traverse path

Programming "traverse to a fixed stop":

- ▶ Position the slide at a sufficient distance before the fixed stop.
- Use a moderate feed rate (< 1000 mm/min)</p>

Example of traversing to a fixed stop:

| N G0 Z20                                                                                                         | Pre-position slide 2                          |
|------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|
| N G916 H100 D6 K-20 V0 O1                                                                                        | Activate monitoring, traverse to a fixed stop |
| and the second |                                               |

# Controlled parting using lag error monitoring G917



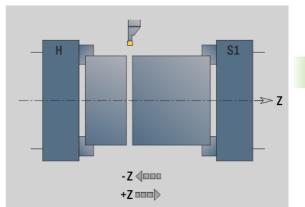
The machine tool builder determines the scope of function and behavior of G917. The machine manual provides further information.

G917 "monitors" the path of traverse. The controlled parting function (cut-off control) prevents collisions caused by incomplete parting processes.

The control stops the slide when the tensile force is too high and generates an "interpreter stop."

### Parameters

- H Tensile force
- D Axis number (X=1, Y=2, Z=3, U=4, V=5, W=6, A=7, B=8, C=9)
- K Incremental distance
- O Error evaluation
  - O=0: Error evaluation in expert program
  - O=1: The control issues an error message


During parting control, the parted workpiece moves in the positive Z direction. If a following error occurs, the workpiece is considered unparted.

The result is saved in the variable #i99:

- O: Workpiece was not correctly cut off (following error detected)
- 1: Workpiece was correctly cut off (no following error detected)

Lag error monitoring is not activated until the acceleration phase has been completed.

The feed rate override is not effective during cycle execution.





# Force reduction G925



The machine tool builder determines the scope of function and behavior of G925. The machine manual provides further information.

G925 activates/deactivates the force reduction. When the monitoring is activated, the maximum contact force for one axis is defined. Force reduction can be activated for only one axis per NC channel.

The G925 function limits the contact force for subsequent movements of the defined axis. G925 does not execute any traverse.

### Parameters

- H Contact force [dN]—The contact force is limited to the given value
- Q Axis number (X=1, Y=2, Z=3, U=4, V=5, W=6, A=7, B=8, C=9)

Spindle number, e.g. spindle 0 = number 10 (0=10, 1=11, 2=12, 3=13, 4=14, 5=15)

- S Sleeve monitoring
  - 0: Deactivate (the contact force is not monitored)
  - 1: Activate (the contact force is monitored)

Lag error monitoring is not activated until the acceleration phase has been completed.



# Sleeve monitoring G930



The machine tool builder determines the scope of function and behavior of G930. The machine manual provides further information.

G930 activates/deactivates the sleeve monitoring. When the monitoring is activated, the maximum contact force for one axis is defined. Sleeve monitoring can be activated for only one axis per NC channel.

G930 moves the defined axis by the programmed distance  ${\bf D}$  until the defined contact force  ${\bf H}$  has been reached.

### Parameters

- H Contact force [dN]—The contact force is limited to the given value
- Q Axis number (X=1, Y=2, Z=3, U=4, V=5, W=6, A=7, B=8, C=9)
- D Incremental distance

**Application example:** G930 is applied to use the opposing spindle as a mechatronic tailstock. In this case the opposing spindle is equipped with a dead center and the contact force is limited with G930. A prerequisite for this application is a PLC program from the machine tool builder that enables the user to operate the mechatronic tailstock in the Manual and Automatic operating mode.



Lag error monitoring is not activated until the acceleration phase has been completed.

### **Tailstock function**

With the tailstock function, the control moves up to the workpiece and stops as soon as the contact force has been reached. The remaining path of traverse is deleted.

### Example of tailstock function

| N G0 Z20                                                                                                         | Pre-position slide 2                                  |
|------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|
| N G930 H250 D6 K-20                                                                                              | Activate the tailstock function—contact force 250 daN |
| and the second |                                                       |

# **Eccentric turning G725**

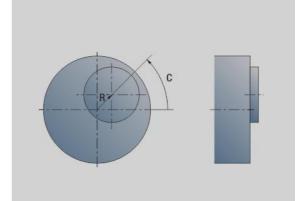
G725 is used to machine turning contours outside the original turning center.

The turning contours are programmed using separate turning cycles.



Machine and control must be specially prepared by the machine tool builder for use of this cycle. Refer to your machine manual.

Prerequisites:


- Software option **Y-Axis Machining**
- Software option **Synchronizing Functions**

### Parameters

H Activate coupling

■ H=0: Deactivate coupling

- H=1: Activate coupling
- Q Reference spindle: Number of the spindle that is coupled with the X and Y axes (machine-dependent)
- R Center offset: Distance between the eccentric center and the original turning center (radius value)
- C Position C: C-axis angle of the center offset
- F Maximum rapid traverse: Permissible rapid traverse for the X and Y axes while coupling is active
- V Direction reversal in Y (machine-dependent)
  - V=0: The control uses the configured axis direction for Yaxis movements
  - V=1: The control reverses the configured axis direction for Y-axis movements





Please note while programming:

- Program a workpiece blank increased by the center offset in the radius if you are using turning cycles that are referenced to the workpiece-blank definition.
- Program a starting point increased by the center offset in the radius if you are using turning cycles that are not referenced to the workpiece-blank definition.
- Reduce the spindle speed if you increase the center offset.
- Reduce the maximum rapid traverse F if you increase the center offset.
- Use identical values for the parameter Q when activating and deactivating the coupling.

### **Programming sequence:**

- ▶ Position the cursor in the MACHINING program section
- Program G725 with H=1 (activate coupling)
- Program turning cycles
- Program G725 with H=0 (deactivate coupling)

Please note when executing the program:

In the event of a program cancelation, the control automatically deactivates the coupling.

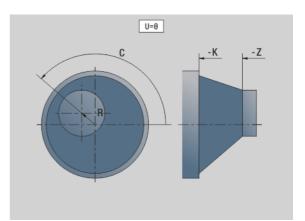


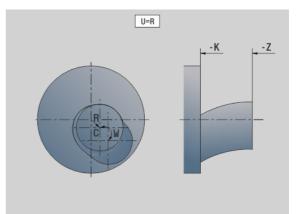
# **Transition to eccentric G726**

G726 is used to machine turning contours outside the original turning center. In addition, G726 offers the possibility to continuously change the position of the turning center along a straight line or a curve.

The turning contours are programmed using separate turning cycles.




Machine and control must be specially prepared by the machine tool builder for use of this cycle. Refer to your machine manual.


Prerequisites:

- Software option **Y-Axis Machining**
- Software option Synchronizing Functions

### Parameters

- H Activate coupling
  - H=0: Deactivate coupling
  - H=1: Activate coupling
- Q Reference spindle: Number of the spindle that is coupled with the X and Y axes (machine-dependent)
- R Center offset at Z start: Distance between the eccentric center and the original turning center (radius value)
- C Position of C at Z start: C-axis angle of the center offset
- F Maximum rapid traverse: Permissible rapid traverse for the X and Y axes while coupling is active
- V Direction reversal in Y (machine-dependent)
  - V=0: The control uses the configured axis direction for Yaxis movements
  - V=1: The control reverses the configured axis direction for Y-axis movements
- Z Z start: Reference value for the parameters **R** and **C**, as well as coordinate for tool pre-positioning
- K Z end: Reference value for the parameters **W** and **U**
- W Delta C [Z start Z end]: Difference in C-axis angle between Z start and Z end
- U Eccentricity at Z end: Distance between the eccentric center and the original turning center (radius value)









Please note while programming:

- Program a workpiece blank increased by the center offset in the radius if you are using turning cycles that are referenced to the workpiece-blank definition.
- Program a starting point increased by the center offset in the radius if you are using turning cycles that are not referenced to the workpiece-blank definition.
- Reduce the spindle speed if you increase the center offset.
- Reduce the maximum rapid traverse F if you increase the center offset.
- Use identical values for the parameter Q when activating and deactivating the coupling.

### **Programming sequence:**

- ▶ Position the cursor in the MACHINING program section
- Program G726 with H=1 (activate coupling)
- Program turning cycles
- Program G726 with H=0 (deactivate coupling)



Please note when executing the program:

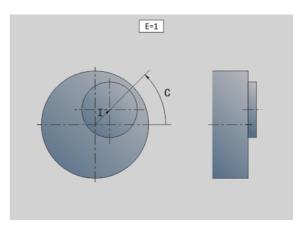
- When the coupling is activated, the control positions the tool in the Z axis to the value of the parameter **Z**.
- In the event of a program cancelation, the control automatically deactivates the coupling.

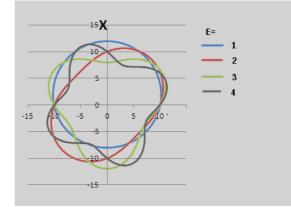
# Eccentric X G727

G727 is used to machine elliptical polygons.

The turning contours are programmed using separate turning cycles.




Machine and control must be specially prepared by the machine tool builder for use of this cycle. Refer to your machine manual.


Requirement:

Software option Synchronizing Functions

### Parameters

- H Activate coupling
  - H=0: Deactivate coupling
  - H=1: Activate coupling
- Q Reference spindle: Number of the spindle that is coupled with the X axis (machine-dependent)
- I X stroke +/-: Half of the superimposed X-axis movement (radius value)
- C Position of C at Z start: C-axis angle of X stroke
- F Maximum rapid traverse: Permissible rapid traverse for the X axis while coupling is active
- E Form factor: Number of X strokes with respect to one spindle revolution
- Z Z start: Reference value for the parameter C
- W Delta C [°/mm Z]: Difference in C-axis angle with respect to a distance of 1 mm in the Z axis







Please note while programming:

- Program a workpiece blank increased by the center offset in the radius if you are using turning cycles that are referenced to the workpiece-blank definition.
- Program a starting point increased by the center offset in the radius if you are using turning cycles that are not referenced to the workpiece-blank definition.
- Reduce the spindle speed if you increase the center offset.
- Reduce the maximum rapid traverse F if you increase the center offset.
- Use identical values for the parameter Q when activating and deactivating the coupling.

### **Programming sequence:**

- ▶ Position the cursor in the MACHINING program section
- Program G727 with H=1 (activate coupling)
- Program turning cycles
- Program G727 with H=0 (deactivate coupling)

Please note when executing the program:

- When the coupling is activated, the control positions the tool in the Z axis to the value of the parameter **Z**.
- In the event of a program cancelation, the control automatically deactivates the coupling.

# 4.30 Data input and data output

# "WINDOW" - Output window for variables

WINDOW (x) opens an output window with x lines. The window is opened as a result of the first input/output. WINDOW (0) closes the window.

### Syntax:

WINDOW(line number) (0 <= line number <= 20)

The standard window comprises 3 lines. You do not need to program it.

# "WINDOW" - Output file for variables

The command WINDOW (x, "filename") saves the PRINT instruction in a file with the defined name and the extension **.LOG**, in the directory "V:\nc\_prog\". The file is overwritten when the WINDOW command is run again.

Saving the .LOG file is only possible in the Program Run submode.

### Syntax:

WINDOW(line number,"filename")

### **Beispiel:**

| Ν | 1 WINDOW(8)                          |
|---|--------------------------------------|
| Ν | 2 INPUT("query: ",#I1)               |
| Ν | 3 #I2=17*#I1                         |
| Ν | 4 PRINT("result: ",#I1,"*17 = ",#I2) |
|   |                                      |

### **Beispiel:**

| Ν | 1 WINDOW(8,"VARIO")                  |
|---|--------------------------------------|
| Ν | 2 INPUT("query: ",#I1)               |
| Ν | 3 #I2=17*#I1                         |
| Ν | 4 PRINT("result: ",#I1,"*17 = ",#I2) |
|   |                                      |

# "INPUT" – Input of variables

Use INPUT to program the input of variables.

### Syntax:

INPUT("text",variable)

You define the input text and the number of the variable. The Control stops the interpretation at INPUT, outputs the text and waits for input of the variable value. Instead of an input text, you can also program a string variable, such as #x1.

The Control displays the input after having completed the INPUT command.

| → Program run                                                                                                                                                    | 🚯 smart.Tu      | ırn                               | 🌓 Tool edi      | itor      | 8                                         |                              |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------------------------------|-----------------|-----------|-------------------------------------------|------------------------------|
| X <sup>©</sup> 23.405 ∠<br>Z 31.703 ∠<br>Y 0.000 ∠<br>SI 1 0 0.0 m/hin                                                                                           | 7Z              | U<br>K C 1<br>C 4<br>245.0° S 1 0 | 0.00            | T<br>⊯∰∳⊕ | 0 <sup>x</sup> 0.0000<br>z 0.000<br>0.000 |                              |
| TNC:\Proj Sequence                                                                                                                                               |                 | 0.nc                              |                 |           | *                                         | END PGM<br>→ ↔ OFF<br>DFF ON |
| N 1 WINDOW(8)<br>N 2 INPUT("number: ",<br>N 3 #12=17*#11<br>N 4 PRINT ("result: "<br>N 5 MG                                                                      |                 | 12)                               |                 |           |                                           | M07                          |
| N9980 UNIT ID"END"<br>N9981 [ <unit <="" id="END" td=""><td>' ME="30" NS=""</td><td>G14="-1" MC</td><td>PUT MEELIN (K)</td><td></td><td></td><td>M08</td></unit> | ' ME="30" NS="" | G14="-1" MC                       | PUT MEELIN (K)  |           |                                           | M08                          |
|                                                                                                                                                                  |                 | nu                                | mber:<br>#11: ( | 12        | _                                         | 09:46                        |
|                                                                                                                                                                  |                 |                                   |                 |           | Take over                                 | Back                         |

# "PRINT" – Output of # variables

PRINT can be used to output texts and variable values during program run. You can program a succession of several texts and variables.

### Syntax:

PRINT("text", variable, "text", variable, ..)

### Example:

PRINT("result: ",#I1,"\*17 = ",#I2)

| Program run 🚯 smart.Turn 🖺 Tool editor 🗒                                                                                                                                                                                                                                                          |            |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
|                                                                                                                                                                                                                                                                                                   |            |
| X <sup>®</sup> 23.405 △X W 0.000 ID                                                                                                                                                                                                                                                               | _          |
| Z 31.703 ΔZ 🔀 C1 T O z 0.0000                                                                                                                                                                                                                                                                     | - <b>-</b> |
| Y 0,000 △Y C₄ H <sup>2</sup> ⊕ 0.000 f                                                                                                                                                                                                                                                            | _          |
| $\underset{\textbf{L}}{\overset{\text{S1}}{\blacksquare}1} 1 \textcircled{\textcircled{0}} \xrightarrow{0.0 \text{ m/nin}} 1 1 0 \xrightarrow{0.0 \text{ cm}} 245.0^{\circ} S_1 \xrightarrow{0 \text{ cm}} 3000 \text{ U/nin} \xrightarrow{\text{ec}} 1 \xrightarrow{\textbf{F}} 100\% S_1 100\%$ |            |
| Prog Sequence Display                                                                                                                                                                                                                                                                             | END PGM    |
| TNC:\Project\SMART_KAPITEL4\ncps\77880.nc N 1 WINDOW(8)                                                                                                                                                                                                                                           | 🔶 🔶 🔶 🔶    |
| N 2 INPUT("number: ",#11)                                                                                                                                                                                                                                                                         | OFF ON     |
| N 3 #12=17*#11<br>N 4 PRINT ("result: ",#11,"*17= ",#12)                                                                                                                                                                                                                                          | M07        |
| N 5 M0<br>N9900 UNIT ID"END"                                                                                                                                                                                                                                                                      | MU7        |
| N9901 [ <unit g14="-1" id="END" me="30" mfe="" mfs="" ns=""></unit> ]                                                                                                                                                                                                                             | m / M08    |
| N9982 M38                                                                                                                                                                                                                                                                                         | /          |
| number: 12 (#11)                                                                                                                                                                                                                                                                                  | OFF        |
|                                                                                                                                                                                                                                                                                                   |            |
|                                                                                                                                                                                                                                                                                                   | 09:46      |
| Contin. Single Dock Correct. Base blocks                                                                                                                                                                                                                                                          | Back       |



# 4.31 Programming variables

The Control provides a variety of variable types.

The following rules apply to the use of variables:

- Multiplication/division before addition/subtraction
- Up to 6 bracket levels
- Integer variables: Integer values between –32767 and +32768
- Real variables: Floating point numbers with max. 10 integers and 7 decimal places
- Do not use any blank spaces when programming variables.
- The variable number itself and an index value, if applicable, can be described by another variable, e.g.: #g(#c2)
- See the table for the available functions



The distinction made by CNCPILOT XXXX and

- MANUALplus X110 controls between variables that can be modified at runtime and those that cannot, does not apply any longer. The NC program is no longer compiled before the program run, but at runtime.
- Program NC blocks containing variable calculations with "slide code \$.." if your lathe has more than one slide. Otherwise, the calculations are repeated.
- Positions and dimensions transferred into system variables are always indicated in metric form. This also applies when an NC program is run in inches.



You can also program the listed functions by soft key.

The soft-key row is available when the variable assignment function is active and the on-screen alphabetic keyboard is closed.

| Syntax | Operator functions |
|--------|--------------------|
| +      | Addition           |
| -      | Subtraction        |
| *      | Multiplication     |
| /      | Division           |
| ()     | Parenthesizing     |
| =      | Equate function    |

| Syntax   | Arithmetic functions                             |
|----------|--------------------------------------------------|
| ABS()    | Absolute amount                                  |
| ROUND()  | Round                                            |
| SQRT()   | Square root                                      |
| SQRTA(,) | Square root of (a <sup>2</sup> +b <sup>2</sup> ) |
| SQRTS(,) | Square root of (a <sup>2</sup> –b <sup>2</sup> ) |
| INT()    | Truncate decimal places                          |

| Syntax | Trigonometric functions  |
|--------|--------------------------|
| SIN()  | Sine (in degrees)        |
| COS()  | Cosine (in degrees)      |
| TAN()  | Tangent (in degrees)     |
| ASIN() | Arc sine (in degrees)    |
| ACOS() | Arc cosine (in degrees)  |
| ATAN() | Arc tangent (in degrees) |

| Syntax   | Other functions         |
|----------|-------------------------|
| LOGN()   | Natural logarithm       |
| EXP()    | Exponential function ex |
| BITSET() | Bitset function         |
| STRING() | String                  |
| PARA()   | Configuration data      |

# 4.31 Programm<mark>ing</mark> variables

# Variable types

The Control distinguishes the following variable types:

### **General variables**

- **#I1 .. #I99 Channel-independent, local variables** are effective within a main or a subprogram.
- #c1..#c30 Channel-dependent, global variables can be used for each slide (NC channel). Identical variable numbers on different slides are no problem. The variable content is provided globally by one channel; globally means that a variable described in a subprogram can be evaluated in the main program, and vice versa.
- #g1.. #g199 Channel-independent, global REAL variables are provided once within the control. If the NC program changes a variable, it applies to all slides. The variables are retained even when the control is switched off, and can be evaluated again after powerup.
- #g200..#g299 Channel-independent, global INTEGER variables are provided once within the control. If the NC program changes a variable, it applies to all slides. The variables are retained even when the control is switched off, and can be evaluated again after powerup.
- **#x1**..**#x20** Channel-dependent, local text variables are effective within a main or subprogram. They can only be read on the channel to which they were written.

If the variables are to be retained in the memory when the control is switched off, this feature must be activated by the machine tool builder (configuration parameter: "Channels/ChannelSettings/CH\_NC1/CfgNcPgmParState/ persistent=TRUE").

If this feature is not activated, the variables values will always be "zero" after power-up.



You can also use variables to program M functions.

### **Machine dimensions**

#m1(n) .. #m99(n): "n" is the designation of the axis (X, Z, Y) for which the machine dimension is to be read or written. The variable calculation uses the table "mach\_dim.hmd".

**Simulation:** During the startup of the control, the table "mach\_dim.hmd" is read by the simulation. The simulation function now uses the table of the simulation.

### Beispiel:

. . .

. . .

N., #I1=#I1+1

N.. G1 X#c1

N.. G1 X(SQRT(3\*(SIN(30)))

N.. #g1=(ABS(#2+0.5))

N.. G1 Z#m(#I1)(Z)

N.. #x1="Text"

N.. #g2=#g1+#l1\*(27/9\*3.1415)

. . .

### **Beispiel: Machine dimensions**

| N G1 X(#m1(X)*2) |  |
|------------------|--|
| N G1 Z#m3(Z)     |  |
| N #m4(Z)=350     |  |
|                  |  |

### **Tool compensation**

**#dt(n):** "n" is the compensation direction (X, Z, Y, S) and "t" is the turret pocket number assigned to the tool. The variable calculation uses the table "toolturn.htt".

**Simulation:** When the program is selected, the table "toolturn.htt" is read by the simulation. The simulation function now uses the table of the simulation.



Tool information can also be interrogated directly via the ID number. This may be necessary, for example, if no turret pocket has been assigned. For this purpose, program a comma and the ID number of the tool after the desired identification, e.g. **#I1 = #d1(Z, "001")**.

**Event bits:** Variable programming interrogates a bit of the event for 0 or 1. The meaning of the event is determined by the machine manufacturer.

- **#en(key):** "n" is the channel number and "key" is the event name. Used for reading external events set by the PLC.
- **#e0(key[n].xxx):** "n" is the channel number, "key" is the event name, and "xxx" is the name extension. Used for reading external events set by the PLC.

### **Beispiel: Tool compensation**

| N #d3(X)=0   |
|--------------|
| N #d3(Z)=0.1 |
| N #d3(S)=0.1 |
| •••          |

### **Beispiel: Events**

| N #g1 = #e1( "NP_DG_Achs_Modul_warten")      |
|----------------------------------------------|
| N PRINT( "NP_DG_Achs_Modul_warten<br>=",#g1) |
| N #g2 = #e1( "DG_DATEN[1]")                  |
| N PRINT( "DG_DATEN[1] =",#g2)                |
| N #g3 = #e1( "SPI[1].DG_TEST[1]")            |
| N PRINT( "SPI[1].DG_TEST[1] =",#g3)          |
|                                              |
| NIF#e1("NP_DG_Achs_Modul_warten")==4         |
| N., THEN                                     |
|                                              |
| N G0 X40 Z40                                 |
| N G0 X40 Z40<br>N ELSE                       |
|                                              |
| N ELSE                                       |

# **Reading tool data**



This function is also available on machines with a tool magazine. The control uses the magazine list instead of the turret list.

Use the following syntax to read the data of tools currently entered in the turret list: **#wn(select)**.

To obtain information on the currently inserted tool, use the following syntax: **#w0(select)**.

Tool information can also be interrogated directly via the ID number. This may be necessary, for example, if no turret pocket has been assigned: **#I1= #w1(select, "ID")**.

If a sequence of exchange is defined, program the first tool of the sequence. The Control determines the data of the active tool.

### Identification codes for tool information

| #wn(ID)  | Tool ID number (assign in text variable (#xn))    |
|----------|---------------------------------------------------|
| #wn(PT)  | P key of the tool *10 (e.g.: 12.3 becomes 123)    |
| #wn(WT)  | Tool type (3-digit number)                        |
| #wn(WTV) | 1st position of tool type                         |
| #wn(WTH) | 2nd position of tool type                         |
| #wn(WTL) | 3rd position of tool type                         |
| #wn(NL)  | Usable length (inside turning and drilling tools) |
| #wn(HR)  | Main machining direction (see table at right)     |
| #wn(NR)  | Secondary machining direction of turning tools    |
| #wn(AS)  | Execution (see at right)                          |
| #wn(ZZ)  | Number of teeth (milling tools)                   |
| #wn(RS)  | Cutting edge radius                               |
| #wn(ZD)  | Stud diameter                                     |
| #wn(DF)  | Cutter diameter                                   |
| #wn(SD)  | Shank diameter                                    |
| #wn(SB)  | Cutting width                                     |
| #wn(SL)  | Tooth length                                      |
| #wn(AL)  | Length of first cut                               |
| #wn(FB)  | Cutter width                                      |
|          |                                                   |

# Access to tool data of turret

### Syntax: #wn(select)

- n = turret pocket number
- $\blacksquare$  n = 0 for the current tool
- select = designates the information to be read

### Main machining direction

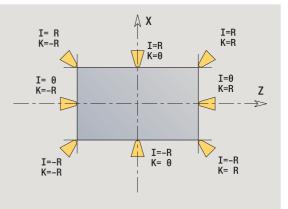
| #wn(HR) | Primary machining directions: |
|---------|-------------------------------|
|         | 0: Undefined                  |
|         | ■ 1: +Z                       |
|         | ■ 2: +X                       |
|         | ■ 3: -Z                       |
|         | ■ 4: -X                       |
|         | ■ 5: +/-Z                     |
|         | ■ 6: +/-X                     |
|         |                               |

### Execution

| ersions |
|---------|
|         |

1: Right-hand

2: Left-hand


### **Tool orientation**

#wn(WL) Tool orientation (reference: machining direction of tool):

0: On the contour

■ 1: To the right of the contour

– 1: To the left of the contour



| Identificati | on codes for tool information                                                                               |
|--------------|-------------------------------------------------------------------------------------------------------------|
| #wn(WL)      | Tool orientation                                                                                            |
| #wn(ZL)      | Tool setting dimension in Z (from tool list)                                                                |
| #wn(XL)      | Tool setting dimension in X (from tool list)                                                                |
| #wn(YL)      | Tool setting dimension in Y (from tool list)                                                                |
| #wn(TL)      | Tool status (tool locked)                                                                                   |
| #wn(l)       | Position of tool tip center in X (see illustration)                                                         |
| #wn(J)       | Position of tool tip center in Y                                                                            |
| #wn(K)       | Position of tool tip center in Z (see illustration)                                                         |
| #wn(ZE)      | Length of the tool in the current insert position:<br>Distance between tool tip and slide reference point Z |
| #wn(XE)      | Length of the tool in the current insert position:<br>Distance between tool tip and slide reference point X |
| #wn(YE)      | Length of the tool in the current insert position:<br>Distance between tool tip and slide reference point Y |
| #wn(DN)      | Diameter of drilling and milling tools                                                                      |
| #wn(HW)      | Principal angle in the normalized system (0° to 360°)                                                       |
| #wn(NW)      | Secondary angle in the normalized system (0° to 360°)                                                       |
| #wn(EW)      | Tool angle                                                                                                  |
| #wn(SW)      | Point angle                                                                                                 |
| #wn(AW)      | <ul><li>0: No driven tool</li><li>1: Driven tool</li></ul>                                                  |
| #wn(MD)      | Direction of rotation:                                                                                      |
|              | ■ 3: M3<br>■ 4: M4                                                                                          |
| #wn(CW)      | Tilting plane angle                                                                                         |
| #wn(BW)      | Angular offset                                                                                              |
| #wn(WTL)     | Orientation                                                                                                 |
| #wn(AC)      | Cutting-edge insert angle                                                                                   |
| #wn(ZS)      | Maximum cutting depth                                                                                       |
| #wn(GH)      | Thread pitch                                                                                                |
| #wn(NE)      | Number of secondary cutting edges                                                                           |
| #wn(NS)      | Number of the secondary cutting edge                                                                        |



i

| Identification codes for tool information |                                                                          |
|-------------------------------------------|--------------------------------------------------------------------------|
| #wn(FP)                                   | Tool type: 0 = normal tool, 1 = master tools, 2 = secondary cutting edge |
| #wn(Q)                                    | Number of tool spindle                                                   |
| #wn(AS)                                   | Execution left/right                                                     |
| #wn(X)                                    | Setting dimension of holder in X                                         |
| #wn(Z)                                    | Setting dimension of holder in Z                                         |
| #wn(Y)                                    | Setting dimension of holder in Y                                         |
| #wn(DX)                                   | Compensation in X                                                        |
| #wn(DY)                                   | Compensation in Y                                                        |
| #wn(DZ)                                   | Compensation in Z                                                        |
| #wn(DS)                                   | 2nd compensation                                                         |



# Reading diagnostic bits



This function is also available on machines with a tool magazine. The control uses the magazine list instead of the turret list.

Use the following syntax to read diagnostic bits. You can access tools that are entered in the turret list.



You can also read diagnostic bits for multifix tools. For this purpose, program a comma and the ID number of the tool after the desired identification code, e.g. **#l1 = #t( 3, "001")**.

| Identification codes for diagnostic bits |                                                          |
|------------------------------------------|----------------------------------------------------------|
| #tn(1)                                   | Tool life expired/workpiece quantity reached             |
| #tn(2)                                   | Breakage according to load monitoring (limit 2 exceeded) |
| #tn(3)                                   | Wear according to load monitoring (limit 1 exceeded)     |
| #tn(4)                                   | Wear according to load monitoring (total load limit)     |
| #tn(5)                                   | Wear determined by tool measurement                      |
| #tn(6)                                   | Wear determined by in-process measurement of workpiece   |
| #tn(7)                                   | Wear determined by post-process measurement of workpiece |
| #tn(8)                                   | Cutting edge new =1 / used = 0                           |

### Access to turret data

### Syntax: #tn(select)

- n = turret pocket number
- n = 0 for the current tool
- select = designates the information to be read

# **Reading the current NC information**

Use the following syntax to read NC information that was programmed with  $\ensuremath{\mathsf{G}}$  codes.

| Identificati | on codes for NC information                      |
|--------------|--------------------------------------------------|
| #n0(X)       | Last programmed position X                       |
| #n0(Y)       | Last programmed position Y                       |
| #n0(Z)       | Last programmed position Z                       |
| #n0(A)       | Last programmed position A                       |
| #n0(B)       | Last programmed position B                       |
| #n0(C)       | Last programmed position C                       |
| #n0(U)       | Last programmed position U                       |
| #n0(V)       | Last programmed position V                       |
| #n0(W)       | Last programmed position W                       |
| #n0(CW)      | Tool insert angle (0 or 180 degrees)             |
| #n18(G)      | Active working plane (see table at right)        |
| #n40(G)      | Status of TRC (see table at right)               |
| #n47(P)      | Current safety clearance                         |
| #n52(G)      | Oversize G52_Geo taken into account 0=no / 1=yes |
| #n57(X)      | Oversize in X                                    |
| #n57(Z)      | Oversize in Z                                    |
| #n58(P)      | Equidistant oversize                             |
| #n95(G)      | Programmed feed type (G93/G94/G95)               |
| #n95(Q)      | Spindle number of the last programmed feed rate  |
| #n95(F)      | Last programmed feed rate                        |
| #n97(G)      | Programmed speed type (G96/G97)                  |
| #n97(Q)      | Spindle number of the last programmed speed type |
| #n97(S)      | Last programmed speed                            |
| #n120(X)     | Reference diameter X for calculating CY          |
| #n147(l)     | Current safety clearance in working plane        |
| #n147(K)     | Current safety clearance in infeed direction     |
| #n148(O)     | Active wear compensation (see table at right)    |
| -            |                                                  |

| Syntax:   | #nx(select)                                                                        |
|-----------|------------------------------------------------------------------------------------|
| -         | <ul> <li>x = G-code number</li> <li>select = designates the information</li> </ul> |
|           | to be read                                                                         |
| Active wo | orking plane                                                                       |
| ‡n18(G)   | Active working plane:                                                              |
|           | 17: XY plane (front or rear)                                                       |
|           | 18: XZ plane (turning)                                                             |
|           | <ul> <li>19: YZ plane (plan view / lateral<br/>surface)</li> </ul>                 |
|           |                                                                                    |
| Status of |                                                                                    |
| #n40(G)   | TRC/MCRC status:                                                                   |
|           | ■ 40: G40 active                                                                   |
|           | <ul> <li>41: G41 active</li> <li>42: G42 active</li> </ul>                         |
|           |                                                                                    |
| Active we | ear compensation                                                                   |
| #n148(O)  | Active wear compensation (G148):                                                   |
|           | ■ 0: DX, DZ                                                                        |
|           | ■ 1: DS, DZ                                                                        |
|           | 2: DX, DS                                                                          |
| Pocket da | ta of entered tool                                                                 |
| #n601(n)  | Output in the format "SMppp":                                                      |
|           | S: Number of cutting edge                                                          |
|           | ■ M: Magazine number                                                               |
|           | ppp: Pocket number                                                                 |
| Free mag  | azine pocket                                                                       |
| #n610(H)  | Output in the format "Mppp":                                                       |
| /         | M: Magazine number                                                                 |
|           |                                                                                    |

ppp: Pocket number

' (

1

| Identificatio | n codes for NC information                                                 |
|---------------|----------------------------------------------------------------------------|
| #n150(X)      | Cutting width shifted in X by G150/G151                                    |
| #n150(Z)      | Cutting width shifted in Z by G150/G151                                    |
| #n601(n)      | Pocket data of the tool entered in the magazine table (see table at right) |
| #n610(H)      | Next free magazine pocket (see table at right)                             |
| #n707(n, 1)   | Read minimum value of software limit switch of axis (see table at right)   |
| #n707(n, 2)   | Read maximum value of software limit switch of axis (see table at right)   |
| #n920(G)      | Status of G920/G921 (see table at right)                                   |
| #n922(C)      | Insert angle of cutting edge (for B axis)                                  |
| #n922(H)      | Mirroring status of cutting edge (0 = normal position,<br>1 = 180 degrees) |
| #n927(X)      | Result of conversion function G927 for tool length in X (for B axis)       |
| #n927(Z)      | Result of conversion function G927 for tool length in Z (for B axis)       |
| #n927(Y)      | Result of conversion function G927 for tool length in Y (for B axis)       |
| #n995(H)      | Query of current zone number for load monitoring                           |

### Software limit switches

| #n707(n,1) | Identification code of axis:        |
|------------|-------------------------------------|
|            | ■ n: Axis X, Y, Z, U, V, W, A, B, C |
|            | 1: Minimum value                    |
|            | 2: Maximum value                    |
|            |                                     |

| Zero point shift |                                |
|------------------|--------------------------------|
| #n920(G)         | Status of functions G920/G921: |
|                  | 0: G920/G921 not active        |
|                  | 1: G920 active                 |
|                  | 2: G921 active                 |

i

# **Reading general NC information**

Use the following syntax to read general NC information.

| Identificatio | on codes for tool information                                                                                                                              |
|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| #i1           | Active operating mode (see table at right)                                                                                                                 |
| #i2           | Active unit of measure (inches/metric)                                                                                                                     |
| #i3           | <ul> <li>Main spindle = 0</li> <li>Counterspindle with mirroring Z = 1</li> <li>Tool mirroring in Z = 2</li> <li>Tool + path mirroring in Z = 3</li> </ul> |
| #i4           | G16 active = 1 (currently not used)                                                                                                                        |
| #i5           | Last programmed T number                                                                                                                                   |
| #i6           | Start block search active = 1                                                                                                                              |
| #i7           | System is DataPilot = 1                                                                                                                                    |
| #i8           | Selected language                                                                                                                                          |
| #i9           | If Y axis is configured = 1                                                                                                                                |
| #i10          | If B axis is configured = 1                                                                                                                                |
| #i11          | If the tool pocket in X is mirrored to the machine system = 1                                                                                              |
| #i12          | If U axis is programmable = 1                                                                                                                              |
| #i13          | If V axis is programmable = 1                                                                                                                              |
| #i14          | If W axis is programmable = 1                                                                                                                              |
| #i15          | If U axis is configured = 1                                                                                                                                |
| #i16          | If V axis is configured = 1                                                                                                                                |
| #i17          | If W axis is configured = 1                                                                                                                                |
| #i18          | Zero point shift of the Z axis                                                                                                                             |
| #i19          | Zero point shift of the X axis                                                                                                                             |
| #i20          | Last programmed path function (G0, G1, G2)                                                                                                                 |
| #i21          | Current quantity (workpiece counter)                                                                                                                       |
| #i22          | If U axis is coupled with X axis = $1$                                                                                                                     |
| #i23          | If V axis is coupled with Y axis = $1$                                                                                                                     |
| #i24          | If W axis is coupled with Z axis = 1                                                                                                                       |
| #i25          | If magazine exists = 1                                                                                                                                     |

| Active o | perating mode                                          |
|----------|--------------------------------------------------------|
| #i1      | Active operating mode:                                 |
|          | 2: Machine                                             |
|          | 3: Simulation                                          |
|          | ■ 5: TSF menu                                          |
|          |                                                        |
| Active u | nit of measure                                         |
| #i2      | Active unit of measure:                                |
|          | 0: Metric [mm]                                         |
|          | 1: Inches [in]                                         |
| _        |                                                        |
| Languag  | jes                                                    |
| #i8      | Available languages:                                   |
|          | ■ 0: ENGLISH                                           |
|          | ■ 1: GERMAN                                            |
|          | 2: CZECH                                               |
|          | ■ 3: FRENCH                                            |
|          | 4: ITALIAN                                             |
|          | ■ 5: SPANISH                                           |
|          | 6: PORTUGUESE                                          |
|          | 7: SWEDISH                                             |
|          | 8: DANISH                                              |
|          | 9: FINNISH                                             |
|          |                                                        |
|          |                                                        |
|          | <ul> <li>12: HUNGARIAN</li> <li>14: RUSSIAN</li> </ul> |
|          | <ul> <li>14: HO3SIAN</li> <li>15: CHINESE</li> </ul>   |
|          | <ul> <li>16: CHINESE TRAD</li> </ul>                   |
|          | 17: SLOVENIAN                                          |
|          | ■ 19: KOREAN                                           |
|          | 21: NORWEGIAN                                          |
|          | 22: ROMANIAN                                           |
|          | 23: SLOVAK                                             |
|          | 24: TURKISH                                            |
|          |                                                        |

Í

| Identifica | ation codes for tool information                                      |
|------------|-----------------------------------------------------------------------|
| #i26       | P key of actual tool *10 from tool preselection                       |
| #i27       | P key of desired tool *10 from tool preselection                      |
| #i28       | Angle of oblique axis Y                                               |
| #i29       | P key of the tool *10 that has reached the maximum tool life          |
| #i30       | P key of the tool *10 that has reached the maximum workpiece quantity |
| #i99       | Return code of subprograms                                            |

i

# Reading configuration data-PARA

The PARA function is used to read configuration data. To do this, use the parameter designations from the configuration parameters. You also use the designations from the configuration parameters to read user parameters.

When you read optional parameters, check whether the return value is valid. Depending on the data type of the parameter (REAL/STRING), the value "0" or the text "\_EMPTY" is returned when reading an optional attribute that has not been set.

### **Example: PARA function**

### Access to configuration data

### Syntax: PARA(key, entity, attribute, index)

- Key: Key word
- Entity: Name of the configuration group
- Attribute: Element name
- Index: Array number if the attribute is from an array

| <pre>N #110=PARA("","CfgDisplayLanguage","ncLanguage")</pre>          | Reads the number of the currently selected language            |
|-----------------------------------------------------------------------|----------------------------------------------------------------|
|                                                                       |                                                                |
| N #11=PARA("","CfgGlobalTechPara","safetyDistWorkpOut")               | Reads the external safety clearance on the machined part (SAT) |
|                                                                       |                                                                |
| N #11=PARA("Z1","CfgAxisProperties","threadSafetyDist")               | Reads the thread safety clearance for Z1                       |
|                                                                       |                                                                |
| <pre>N #11=PARA("","CfgCoordSystem","coordSystem")</pre>              | Reads the machine orientation number                           |
|                                                                       |                                                                |
|                                                                       |                                                                |
| <pre>#x2=PARA("#x30","CfgCAxisProperties","relatedWpSpindle",0)</pre> | Check whether the optional parameter is set                    |
| IF #x2<>"_EMPTY"                                                      | Evaluation:                                                    |
| THEN                                                                  |                                                                |
| [ The parameter "relatedWpSpindle" was set ]                          |                                                                |
| ELSE                                                                  |                                                                |
| [ The parameter "relatedWpSpindle" was not set]                       |                                                                |
| ENDIF                                                                 |                                                                |

## Determining the index of a parameter element— PARA

You activate the index search for an element by appending the name of the list element to the attribute, separated by a comma.

### Example:

Determining the logical axis number of spindle S1

#c1 = PARA( "", "CfgAxes", "axisList,S1", 0)

The function returns the index of the "S1" element in the "axisList" attribute of the "CfgAxes" entity. The index of element S1 equals the logical axis number in this example.



Without the attribute extension "S1", the function would read the element located at the list index number 0. Since the element is a string in this example, the result has to be assigned to a string variable.

#x1 = PARA( "", "CfgAxes", "axisList", 0)

The function reads the string name of the element at list index number  $\ensuremath{\mathsf{0}}.$ 

### Access to configuration data

- Syntax: PARA("key","entity","attribute,elem ent", index)
  - Key: Key word
  - Entity: Name of the configuration group
  - Attribute,name: Attribute name and element name
  - Index: 0 (not required)

# 4.31 Programm<mark>ing</mark> variables

# Expanded variable syntax CONST – VAR

By defining the key words **CONST** or **VAR**, you can assign names to variables. The key words can be used in the main program and subprogram. To use the definitions in a subprogram, you need to declare the constant or variable before the **MACHINING** section code.

### Rules for defining constants and variables:

The names of constants and variables must be preceded by an underscore. They can comprise lower case letters, numbers and the underscore character. The maximum length must not exceed 20 characters.

### Variable names with VAR

By assigning variable names, you make it easier to read an NC program. To do this, you must insert the program section VAR. In this program section, you assign the variable designations to the variables.

### **Beispiel: Free-text variables**

| %abc.nc | bc.nc |
|---------|-------|
|---------|-------|

VAR

#\_rohdm=#l1 [#\_rohdm is a synonym of #l1]

- BLANK
- N..

FINISHED

Ν..

MACHINING

- Ν..
- . . .

### **Beispiel: Subprogram**

| %SP1.ncS                      |
|-------------------------------|
| VAR                           |
| #_wo = #c1 [tool orientation] |
| MACHINING                     |
| N #_wo = #w0(WTL)             |
| N G0 X(#_posx*2)              |
| N G0 X#_start_x               |
|                               |

i

### Definition of constants-CONST

Possibilities of defining constants:

- Direct assignment of values
- Internal interpreter information as constants
- Assignment of names to the transfer variables of subprograms

Use the following internal information to define constants in the CONST section.

| Internal info | ormation for defining constants                         |
|---------------|---------------------------------------------------------|
| n0_x          | 768 Last programmed position X                          |
| n0_y          | 769 Last programmed position Y                          |
| n0_z          | 770 Last programmed position Z                          |
| n0_c          | 771 Last programmed position C                          |
| n40_g         | 774 Status of TRC                                       |
| n148_o        | 776 Active wear compensation                            |
| n18_g         | 778 Active working plane                                |
| n120_x        | 787 Reference diameter X for calculating CY             |
| n52_g         | 790 Oversize G52_Geo taken into account 0=no /<br>1=yes |
| n57_x         | 791 Oversize in X                                       |
| n57_z         | 792 Oversize in Z                                       |
| n58_p         | 793 Equidistant oversize                                |
| n150_x        | 794 Cutting width shifted in X by G150/G151             |
| n150_z        | 795 Cutting width shifted in Z by G150/G151             |
| n95_g         | 799 Programmed feed type _G93/G94/G95)                  |
| n95_q         | 796 Spindle number of the programmed feed rate          |
| n95_f         | 800 Last programmed feed rate                           |
| n97_g         | Programmed speed type _G96/G97)                         |
| n97_q         | 797 Spindle number of the programmed speed type         |
| n97_s         | Last programmed speed                                   |
| laz           | Subprogram transfer values                              |

### Beispiel: Main program

| %abc.nc                                               |
|-------------------------------------------------------|
| CONST                                                 |
| _square_root2 = 1.414213 [direct value<br>assignment] |
| _square_root_2 = SQRT(2) [direct value<br>assignment] |
| _posx =n0_x [internal information]                    |
| VAR                                                   |
|                                                       |
| BLANK                                                 |
| N                                                     |
| FINISHED                                              |
| N                                                     |
| MACHINING                                             |
| N                                                     |
|                                                       |

### **Beispiel: Subprogram**

| %SP1.ncS                                |
|-----------------------------------------|
| CONST                                   |
| _start_x=la [subprogram transfer value] |
| _posx =n0_x [internal constant]         |
| VAR                                     |
| #_wo = #c1 [tool orientation]           |
| MACHINING                               |
| N #_wo = #w0(WTL)                       |
| N G0 X(#_posx*2)                        |
| N G0 X#_start_x                         |
|                                         |



The constant "\_pi" is predefined to the value 3.1415926535989 and can be used directly in every NC program.

# 4.32 Conditional block run

# Program branching IF..THEN..ELSE..ENDIF

A conditional branch consists of the elements:

- IF, followed by a condition. The condition includes a variable or mathematical expression on either side of the relational operator.
- THEN. If the condition is fulfilled, the THEN branch is executed.
- ELSE. If the condition is not fulfilled, the ELSE branch is executed.
- ENDIF concludes the conditional program branch.

**Interrogate bitset:** You can also use the BITSET function as condition. The function returns 1 if the numerical value contains the requested bit. The function returns 0 if the numerical value does not contain the requested bit.

### Syntax: BITSET (x,y)

x: Bit number (0 to 15)

y: Numerical value (0 to 65535)

The relationship between bit number and numerical value is shown in the table at right. You can also use variables for x, y.

### **Programming:**

- Select "Extras > DINplus word...". The Control opens the "Insert DIN PLUS word" selection list.
- ▶ Select IF.
- Enter the condition.
- ▶ Insert NC blocks of the THEN branch.
- ▶ If required: Insert NC blocks of the ELSE branch.

NC blocks with IF, THEN, ELSE, ENDIF can have no further commands.

You can combine up to two conditions.

| Relational operators  |                          |
|-----------------------|--------------------------|
| <                     | Less than                |
| <=                    | Less than or equal to    |
| <>                    | Not equal to             |
| >                     | Greater than             |
| >=                    | Greater than or equal to |
| ==                    | Equal to                 |
| Combining conditions: |                          |
| AND                   | Logical AND operation    |
| -                     |                          |

Logical OR operation

| Bit | which means<br>numerical<br>value | Bit | which means<br>numerical<br>value |
|-----|-----------------------------------|-----|-----------------------------------|
| 0   | 1                                 | 8   | 256                               |
| 1   | 2                                 | 9   | 512                               |
| 2   | 4                                 | 10  | 1024                              |
| 3   | 8                                 | 11  | 2048                              |
| 4   | 16                                | 12  | 4096                              |
| 5   | 32                                | 13  | 8192                              |
| 6   | 64                                | 14  | 16384                             |
| 7   | 128                               | 15  | 32768                             |

### Beispiel: IF..THEN..ELSE..ENDIF

OR

| N IF (#I1==1) AND (#g250>50) |  |
|------------------------------|--|
| N THEN                       |  |
| N G0 X100 Z100               |  |
| N ELSE                       |  |
| N G0 X0 Z0                   |  |
| N ENDIF                      |  |
|                              |  |
| N IF 1==BITSET(0,#I1)        |  |
| N THEN                       |  |
| N PRINT("bit 0: OK")         |  |
|                              |  |

# **Requesting variables and constants**

With the DEF, NDEF, and DVDEF elements you can inquire whether a valid value was assigned to a variable or a constant. For example, an undefined variable can return the value 0, just like a variable that has been assigned the value 0. You can prevent undesired program jumps by examining the variables.

### **Programming:**

- Select "Extras > DINplus word...". The Control opens the "Insert DIN PLUS word" selection list
- Select the IF command
- ▶ Enter the required inquiry element (DEF, NDEF or DVDEF)
- Enter the name of a variable or a constant



Enter the variable name without the character "#", e.g. IF NDEF(\_\_la).

Inquiry elements of variables and constants:

- DEF: A value is assigned to a variable or constant
- NDEF: No value is assigned to a variable or constant
- DVDEF: Inquiry of an internal constant

### Beispiel: Requesting variable in subprogram

| N IF DEF(la)                  |
|-------------------------------|
| N THEN                        |
| N PRINT("Value:",#la)         |
| N ELSE                        |
| N PRINT("#la is not defined") |
| N ENDIF                       |
|                               |

### Beispiel: Requesting variable in subprogram

| N IF NDEF(Ib)                 |
|-------------------------------|
| N THEN                        |
| N PRINT("#Ib is not defined") |
| N ELSE                        |
| N PRINT("Value:",#lb)         |
| N ENDIF                       |
|                               |

### **Beispiel: Requesting constants**

| N IF DVDEF(n97_s)                  |
|------------------------------------|
| N THEN                             |
| N PRINT("n97_s is defined",#n97_s) |
| N ELSE                             |
| N PRINT("#n97_s is not defined")   |
| N ENDIF                            |
| · · · ·                            |
|                                    |

# .32 Conditio<mark>nal</mark> block run

# WHILE..ENDWHILE program repeat

A program repeat consists of the elements:

- WHILE, followed by a condition. The condition includes a variable or mathematical expression on either side of the relational operator.
- ENDWHILE concludes the conditional program repeat.

NC blocks programmed between WHILE and ENDWHILE are executed repeatedly for as long as the condition is fulfilled. If the condition is not fulfilled, the Control continues execution of the program with the block programmed after ENDWHILE.

Interrogate bitset: You can also use the BITSET function as condition. The function returns 1 if the numerical value contains the requested bit. The function returns 0 if the numerical value does not contain the requested bit.

### Syntax: BITSET (x,y)

x: Bit number (0 to 15)

v: Numerical value (0 to 65535)

The relationship between bit number and numerical value is shown in the table at right. You can also use variables for x, y.

### **Programming:**

- Select "Extras > DINplus word...". The Control opens the "Insert DIN PLUS word" selection list.
- ▶ Select WHILE.
- Enter the condition.
- Insert NC blocks between WHILE and ENDWHILE.

You can combine up to two conditions.

If the condition you program in the WHILE command is always true, the program remains in an endless loop. This is one of the most frequent causes of error when working with program repeats.

| Relational operators  |                          |  |
|-----------------------|--------------------------|--|
| <                     | Less than                |  |
| <=                    | Less than or equal to    |  |
| <>                    | Not equal to             |  |
| >                     | Greater than             |  |
| >=                    | Greater than or equal to |  |
| ==                    | Equal to                 |  |
| Combining conditions: |                          |  |
| AND                   | Logical AND operation    |  |

| AND Logical AND operat | tion |
|------------------------|------|
|------------------------|------|

OR Logical OR operation

| Bit | which means<br>numerical<br>value | Bit | which means<br>numerical<br>value |
|-----|-----------------------------------|-----|-----------------------------------|
| 0   | 1                                 | 8   | 256                               |
| 1   | 2                                 | 9   | 512                               |
| 2   | 4                                 | 10  | 1024                              |
| 3   | 8                                 | 11  | 2048                              |
| 4   | 16                                | 12  | 4096                              |
| 5   | 32                                | 13  | 8192                              |
| 6   | 64                                | 14  | 16384                             |
| 7   | 128                               | 15  | 32768                             |

### **Beispiel: WHILE..ENDWHILE**

| N WHILE (#I4<10) AND (#I5>=0) |
|-------------------------------|
| N G0 Xi10                     |
| ····                          |
| N ENDWHILE                    |
| · · · ·                       |

# SWITCH..CASE-program branching

The switch statement consists of the elements:

- SWITCH, followed by a variable. The content of the variable is interrogated in the following CASE statement.
- CASE x: The CASE branch is run with the variable value x. CASE can be programmed repeated times.
- DEFAULT: This branch is executed if no CASE statement matched the variable value. DEFAULT can be omitted.
- BREAK: Concludes the CASE branch or DEFAULT branch.

### Programming:

- Select "Extras > DINplus word...". The Control opens the "Insert DIN PLUS word" selection list.
- Select SWITCH.
- Enter the switch variable.
- For each CASE branch:
  - Select CASE (in "Extras > DINplus word...").
  - Enter the SWITCH condition (value of the variable) and Insert the NC blocks to be executed.
- ▶ For the DEFAULT branch: Insert the NC blocks to be executed.

### Example: SWITCH..CASE

| N S | WITCH #g2 | 01                    |                                              |
|-----|-----------|-----------------------|----------------------------------------------|
| N   | CASE 1    | [executed if #g201=1] | Executed if #g201=1                          |
| N   | G0 Xi10   |                       |                                              |
|     |           |                       |                                              |
| N   | BREAK     |                       |                                              |
| N   | CASE 2    | [executed if #g201=2] | Executed if #g201=2                          |
| N   | G0 Xi20   |                       |                                              |
|     |           |                       |                                              |
| N   | BREAK     |                       |                                              |
| N   | DEFAULT   |                       | No CASE statement matched the variable value |
| N   | G0 Xi30   |                       |                                              |
|     |           |                       |                                              |
| N   | BREAK     |                       |                                              |
| N   | ENDSWIT   | СН                    |                                              |
|     |           |                       |                                              |

# **Skip level**

In the **Program Run** submode, you can set/activate skip levels. The next time the program is run, the NC blocks defined by the set/active skip level will not be executed by the control (see User's Manual).

Before you can set/activate skip levels, you need to define them in the program:

Open the program in the **smart.Turn** operating mode.

Position the cursor in the MACHINING program section on the NC block to be skipped.

Select "Skip level..." in the Extras menu.

Enter the number of the skip level in the "Deletion" parameter and press the OK soft key to confirm.



You can assign more than one skip level to an NC block by entering a string of numerals in the "Deletion" parameter. The entry "159" corresponds to the skip levels 1, 5 and 9.

To clear the defined skip levels, program the parameter without a value and press the OK soft key to confirm.



# 4.33 Subprograms

# Subprogram call: L"xx" V1

The subprogram contains the following elements:

- L: Identifying letter for subprogram call
- "xx": Name of the subprogram—file name for external subprograms (max. 16 letters or numbers)
- V1: Identification code for external subprograms—omitted for local subprograms

### Note on using subprograms:

- External subprograms are defined in a separate file. They can be called from any main program or other subprogram.
- Local subprograms are in the main program file. They can be called only from the main program.
- Subprograms can be nested up to 6 times. Nesting means that another subprogram is called from within a subprogram.
- Recursion should be avoided.
- Vou can program up to 29 transfer values in a subprogram call.
- Designations: LA to LF, LH, I, J, K, O, P, R, S, U, W, X, Y, Z, BS, BE, WS, AC, WC, RC, IC, KC and JC
- The identification code within the subprogram is: #\_\_.., followed by the parameter designation in lowercase letters (for example: #\_\_la).
- You can use these transfer values when programming with variables within the subprogram.
- String variables: ID and AT
- The variables #11 #199 are available in every subprogram as local variables.
- To transfer a variable to the main program, program the variable after the fixed word RETURN. In the main program, the information is available in #i99.
- If a subprogram is to be executed repeatedly, define in the "number of repeats" Q parameter the number of times the subprogram is to be repeated.
- A subprogram ends with RETURN.



The parameter LN is reserved for the transfer of block numbers. This parameter may receive a new value when the NC program is renumbered.

| ➡ Machine                      |                                                   | smart.Tu                   | rn                                             | 🍴 Tool ed                                                                                                   | itor                                          | B                    |                   |
|--------------------------------|---------------------------------------------------|----------------------------|------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-----------------------------------------------|----------------------|-------------------|
| N 160 END_OF<br>N9900 UNIT I   | _UNIT S117486<br>D"END"<br>it ID="END" M<br>_UNIT |                            | G14= Subp<br>S14= Exte<br>Star<br>Star<br>Cutt | nfig ∰Misc<br>rogram call<br>of program<br>rnal=1<br>t point X (X)<br>t point Z (Z)<br>ing speed (S)<br>(F) | ##Extras ##<br><b>LD1</b><br>L<br>U<br>U<br>U | V (1)<br>A<br>B<br>C |                   |
|                                | Uso<br>Picto                                      |                            | Infe                                           | ed (P)                                                                                                      | L                                             | E                    | M97<br>OFF<br>M98 |
| TNC:\Project<br>Turret<br>list | \SMART_KAPITE<br>Help<br>graphic                  | L4\ncps\bar.n<br>Variables | 1                                              | rnal=1                                                                                                      | Contour                                       | ≤ 1/3 ≥ Save         | 09:37<br>Cancel   |

# Dialog texts in subprogram call

You can define up to 30 parameter descriptions that precede/follow the input fields in an external subprogram. The units of measure are defined using code numbers. Depending on the setting "metric" or "inches," the Control shows the designations (of the units of measure). When calling external subprograms that contain a parameter list, then parameters not contained in this list are omitted from the call dialog.

The parameter descriptions can be positioned within the subprogram as desired. The control searches for subprograms in the sequence: current project, standard directory and then machine manufacturer directory.

Parameter descriptions (see table at right):

[//] - Beginning

[pn=n; s=parameter text (up to 25 characters) ]

[//] – End

- pn: Parameter designations (la, lb, ...)
- n: Code number for units of measure
  - 0: Non-dimensional
  - 1: mm or inches
  - 2: mm/rev or in./rev
  - 3: mm/min or in./min
  - 4: m/min or ft/min
  - 5: Rev/min
  - 6: Degrees (°)
  - 7: µm or µinch

### **Beispiel:**

| [//]                                 |
|--------------------------------------|
| [la=1; s=bar diameter]               |
| [lb=1; s=starting point in Z]        |
| [lc=1; s=chamfer/rounding arc (-/+)] |
| •••                                  |
| [//]                                 |
| · · · ·                              |

# Help graphics for subprogram calls

With help graphics you illustrate the call parameters of subprograms. The Control places the help graphics to the left next to the dialog box of the subprogram call.

If you append an underscore "\_" and the input field name in capital letters (beginning with L) to the name of the file, a separate graphic will be displayed for that input field. If no separate help graphic exists for an input field, the graphic for the subprogram will be displayed (if available). By default, the help window is displayed only if there is a graphic for the subprogram. Even if you want to use individual graphics for the address letters, you should define a graphic for the subprogram.

Graphic format:

- BMP, PNG, JPG images
- Size 440x320 pixels

You integrate help graphics for subprogram calls as follows:

- The subprogram name, entry field name and the appropriate extension (BMP, PNG, JPG) must be used as file name for the help graphic.
- ▶ Transfer the help graphic to the directory: \nc\_prog\Pictures

4.33 Subprograms

# 4.34 M commands

# M commands for program-run control

The effect of machine commands depends on the configuration of your machine. On your lathe, other M commands may apply for the listed functions. Refer to your machine manual.

| <b>Overview:</b> I | N commands for program-run control                                                                                                                                                                                                                |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| M00                | Program stop                                                                                                                                                                                                                                      |
|                    | The program run stops. <b>Cycle start</b> resumes the program run.                                                                                                                                                                                |
| M01                | Optional stop                                                                                                                                                                                                                                     |
|                    | If the <b>Continuous run</b> soft key is not active in<br>Automatic mode, the program run stops with M01.<br><b>Cycle start</b> resumes the program run. If <b>Continuous</b><br><b>run</b> is active, the program continues without<br>stopping. |
| M18                | Counting pulse                                                                                                                                                                                                                                    |
| M30                | End of program                                                                                                                                                                                                                                    |
|                    | M30 means "end of program" (you do not need to program M30). If you press <b>Cycle start</b> after M30, program execution is repeated from the start of the program.                                                                              |
| M417               | Activate protection zone monitoring                                                                                                                                                                                                               |
| M418               | Deactivate protection zone monitoring                                                                                                                                                                                                             |
| M99 NS             | Program end with restart                                                                                                                                                                                                                          |
|                    | M99 means end program and start again. Control restarts program execution from:                                                                                                                                                                   |
|                    | <ul><li>The start of program if no NS is entered</li><li>The block number NS if a NS is entered</li></ul>                                                                                                                                         |



Modal functions (feed rate, spindle speed, tool number, etc.) which are effective at the end of program remain in effect when the program is restarted. You should therefore reprogram the modal functions at the start of program or at the startup block (if M99 is used).

4.34 M commands

i

# **Machine commands**

The effect of machine commands depends on the configuration of your machine. The following table lists the M commands used on most machines.

| M comman | ds as machine commands          |
|----------|---------------------------------|
| M03      | Main spindle on (cw)            |
| M04      | Main spindle on (ccw)           |
| M05      | Main spindle stop               |
| M12      | Lock main spindle brake         |
| M13      | Release main spindle brake      |
| M14      | C axis on                       |
| M15      | C axis off                      |
| M19      | Spindle stop at position C      |
| M40      | Shift gear to range 0 (neutral) |
| M41      | Shift gear to range 1           |
| M42      | Shift gear to range 2           |
| M43      | Shift gear to range 3           |
| M44      | Shift gear to range 4           |
| Mx03     | Spindle x on (cw)               |
| Mx04     | Spindle x on (ccw)              |
| Mx05     | Spindle x stop                  |



For more information on the M commands, refer to your machine manual.

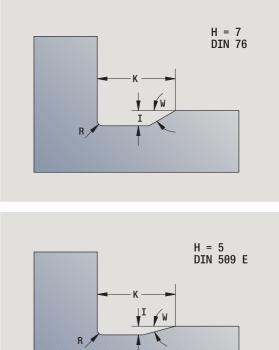


# 4.35 G codes from previous controls

The commands described in the following are supported to enable you to use NC programs from previous controls. HEIDENHAIN recommends against using these commands in new NC programs.

# Contour definitions in the machining section

# Undercut contour G25


G25 generates an undercut form element (DIN 509 E, DIN 509 F, DIN 76) that can be integrated in the contour description of roughing or finishing cycles. The help graphic illustrates the undercut parameters.

#### Parameters H Under

- Undercut type (default: 0)
  - H=0, 5: DIN 509 E
  - H=6: DIN 509 F
  - H=7: DIN 76
- I Undercut depth (default: value from standard table)
- K Undercut width (default: value from standard table)
- R Undercut radius (default: value from standard table)
- P Face depth (default: value from standard table)
- W Undercut angle (default: value from standard table)
- A Face angle (default: value from standard table)
- FP Thread pitch—no value: Pitch calculated from thread diameter
- U Grinding oversize (default: 0)
- E Reduced feed for machining the undercut (default: active feed rate)

If the parameters are not defined, the Control determines the following values from the diameter or the thread pitch in the standard table:

- DIN 509 E: I, K, W, R
- DIN 509 F: I, K, W, R, P, A
- DIN 76: I, K, W, R (determined from the thread pitch)





All parameters that you enter will be accounted foreven if the standard table prescribes other values.

If you are programming an internal thread, it is advisable to preset the **thread pitch FP** since the diameter of the longitudinal element is not the thread diameter. If you have the Control calculate the thread pitch automatically, slight deviations may occur.

# Beispiel: G25

| %25.nc                              |
|-------------------------------------|
| [G25]                               |
| N1 T1 G95 F0.4 G96 S150 M3          |
| N2 G0 X62 Z2                        |
| N3 G819 P4 H0 I0.3 K0.1             |
| N4 G0 X13 Z0                        |
| N5 G1 X16 Z-1.5                     |
| N6 G1 Z-30                          |
| N7 G25 H7 I1.15 K5.2 R0.8 W30 FP1.5 |
| N8 G1 X20                           |
| N9 G1 X40 Z-35                      |
| N10 G1 Z-55 B4                      |
| N11 G1 X55 B-2                      |
| N12 G1 Z-70                         |
| N13 G1 X60                          |
| N14 G80                             |
| END                                 |



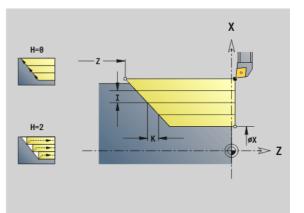
# Simple turning cycles

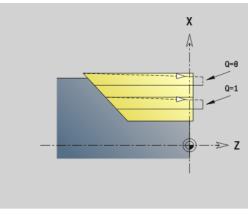
# Simple longitudinal roughing G81

G81 roughs the contour area defined by the current tool position and X, Z. If you wish to machine an oblique cut, you can define the angle with I and K.

# Parameters

- X Starting point of contour in X (diameter value)
- Z Contour end point
- I Maximum infeed in X
- K Offset in Z direction (default: 0)
- Q G code for infeed (default: 0)
  - 0: Infeed with G0 (rapid traverse)
  - 1: Infeed with G1 (feed rate)
- V Type of retraction (default: 0)
  - O: Return to cycle starting point in Z and last retraction diameter in X
  - 1: Return to cycle starting point
  - Type of departure (default: 0)
    - 0: With each cut (machine contour outline after each pass)
    - 2: No smoothing (retracts at 45°; no contour smoothing)


The Control uses the position of the target point to distinguish between external and internal machining. The number of cutting passes is calculated so that an abrasive cut is avoided and the calculated infeed distance is <= 1.




Н

Programming X, Z: Absolute, incremental or modal

- The tool radius compensation is not active.
- Safety clearance after each pass: 1 mm
- A G57 oversize
  - Is calculated with algebraic sign (oversizes are therefore impossible for inside contour machining)
  - Remains effective after cycle end
- A G58 oversize is not taken into account.

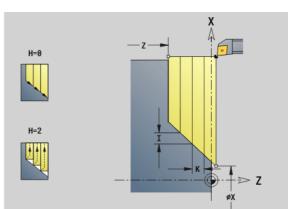


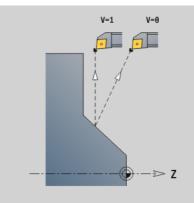




| N1 T3 G95 F0.25 G96 S200 M3 |  |
|-----------------------------|--|
| N2 G0 X120 Z2               |  |
| N3 G81 X100 Z-70 I4 K4 Q0   |  |
| N4 G0 X100 Z2               |  |
| N5 G81 X80 Z-60 I-4 K2 Q1   |  |
| N6 G0 X80 Z2                |  |
| N7 G81 X50 Z-45 l4 Q1       |  |
|                             |  |

# Simple face roughing G82


G82 roughs the contour area defined by the current tool position and X, Z. If you wish to machine an oblique cut, you can define the angle with I and K.


#### Parameters

- X Contour end point in X (diameter value)
- Z Contour starting point
- I Offset in X direction (default: 0)
- K Maximum infeed in Z
- Q G code for infeed (default: 0)
  - 0: Infeed with G0 (rapid traverse)
  - 1: Infeed with G1 (feed rate)
- V Type of retraction (default: 0)
  - 0: Return to cycle starting point in X and last retraction position in Z
  - 1: Return to cycle starting point
- H Type of departure (default: 0)
  - 0: With each cut (machine contour outline after each pass)
  - 2: No smoothing (retracts at 45°; no contour smoothing)

The Control uses the position of the target point to distinguish between external and internal machining. The number of cutting passes is calculated so that an abrasive cut is avoided and the calculated infeed distance is <= K.

- Programming X, Z: Absolute, incremental or modal
- The **tool radius compensation** is not active.
- Safety clearance after each pass: 1 mm
- A G57 oversize
  - Is calculated with algebraic sign (oversizes are therefore impossible for inside contour machining)
  - Remains effective after cycle end
- A G58 oversize is not taken into account.





## Beispiel: G82

| ····                        |
|-----------------------------|
| N1 T3 G95 F0.25 G96 S200 M3 |
| N2 G0 X120 Z2               |
| N3 G82 X20 Z-15 I4 K4 Q0    |
| N4 G0 X120 Z-15             |
| N5 G82 X50 Z-26 I2 K-4 Q1   |
| N6 G0 X120 Z-26             |
| N7 G82 X80 Z-45 K4 Q1       |
|                             |

## Simple contour repeat cycle G83

G83 carries out the functions programmed in the following blocks (simple traverses or cycles without a contour definition) more than once. G80 ends the machining cycle.

# Parameters

- X Contour target point (diameter)—(default: Load the last X coordinate)
- Z Contour target point (default: Load the last Z coordinate)
- I Maximum infeed in X direction (radius)—(default: 0)
- K Maximum infeed in Z direction (default: 0)

If the number of infeeds differs for the X and Z axes, the tool first advances in both axes with the programmed values. The infeed is set to zero if the target value for one direction is reached.

# Programming:

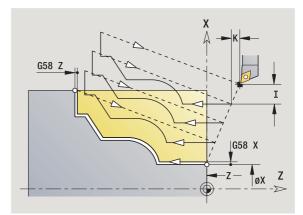
- G83 is alone in the block
- G83 must not be nested, not even by calling subprograms



4.35 G codes from previous controls

The **tool radius compensation** is not active. You can program the TRC separately with G40 to G42.

Safety clearance after each pass: 1 mm


#### A G57 oversize

- Is calculated with algebraic sign (oversizes are therefore impossible for inside contour machining)
- Remains effective after cycle end
- A G58 oversize
  - Is taken into account if you work with TRC
  - Remains effective after cycle end



## Danger of collision!

After each pass, the tool returns on a diagonal path before it advances for the next pass. If required, program an additional rapid traverse path to avoid a collision.



## Beispiel: G83

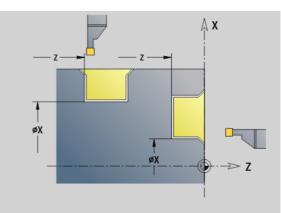
| ····                        |  |
|-----------------------------|--|
| N1 T3 G95 F0.25 G96 S200 M3 |  |
| N2 G0 X120 Z2               |  |
| N3 G83 X80 Z0 I4 K0.3       |  |
| N4 G0 X80 Z0                |  |
| N5 G1 Z-15 B-1              |  |
| N6 G1 X102 B2               |  |
| N7 G1 Z-22                  |  |
| N8 G1 X90 Zi-12 B1          |  |
| N9 G1 Zi-6                  |  |
| N10 G1 X100 A80 B-1         |  |
| N11 G1 Z-47                 |  |
| N12 G1 X110                 |  |
| N13 G0 Z2                   |  |
| N14 G80                     |  |

# 4.35 G codes from prev<mark>iou</mark>s controls

# **Recessing G86**

G86 machines simple radial and axial recesses with chamfers. From the tool position, the Control determines whether a radial or axial recess, or an inside or outside recess is to be machined.

#### Parameters


- X Base corner point (diameter)
- Z Base corner point
- I Radial recess: Oversize
  - I>0: Oversize (roughing and finishing)
  - I=0: No finishing

Axial recess: Recess width

- I>0: Recess width
- No input: Recess width = tool width
- K Radial recess: Recess width
  - K>0: Recess width
  - No input: Recess width = tool width

## Axial recess: Oversize

- K>0: Oversize (roughing and finishing)
- K=0: No finishing
- E Dwell time (for chip breaking)—(default: length of time for one revolution)
  - With finishing oversize: Only for finishing
  - Without finishing oversize: For every recess





"Oversize" programmed: First roughing, then finishing

G86 machines chamfers at the sides of the recess. If you do not wish to cut the chamfers, you must position the tool at a sufficient distance from the workpiece. Calculate the starting position XS (diameter) as follows:

XS = XK + 2 \* (1.3 - b)

- XK: Contour diameter
- b: Chamfer width



The tool radius compensation is active.

• Oversizes are not taken into account.

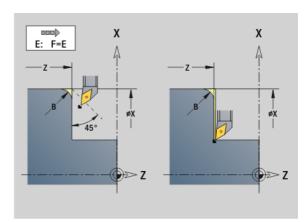
# Beispiel: G86

| N1 T30 G95 F0.15 G96 S200 M3        |  |
|-------------------------------------|--|
| N2 G0 X62 Z2                        |  |
| N3 G86 X54 Z-30 I0.2 K7 E2 [radial] |  |
| N4 G14 Q0                           |  |
| N5 T38 G95 F0.15 G96 S200 M3        |  |
| N6 G0 X120 Z1                       |  |
| N7 G86 X102 Z-4 I7 K0.2 E1 [axial]  |  |
|                                     |  |

# Radius cycle G87

G87 machines transition radii at orthogonal, paraxial inside and outside corners. The direction is taken from the position/machining direction of the tool.

## Parameters


- X Corner point (diameter)
- Z Corner point
- B Radius
- E Reduced feed rate (default: active feed)

A preceding longitudinal or transverse element is machined if the tool is located at the X or Z coordinate of the corner before the cycle is executed.



The tool radius compensation is active.

• Oversizes are not taken into account.



#### **Beispiel: G87**

- ...
- N1 T3 G95 F0.25 G96 S200 M3

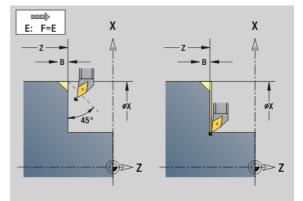
N2 G0 X70 Z2

- N3 G1 Z0
- N4 G87 X84 Z0 B2 [radius]

# Chamfer cycle G88

G88 machines chamfers at orthogonal, paraxial outside corners. The direction is taken from the position/machining direction of the tool.

#### Parameters


- X Corner point (diameter)
- Z Corner point
- B Chamfer width
- E Reduced feed rate (default: active feed)

A preceding longitudinal or transverse element is machined if the tool is located at the X or Z coordinate of the corner before the cycle is executed.



The tool radius compensation is active.

• Oversizes are not taken into account.



#### **Beispiel: G88**

| •••                         |
|-----------------------------|
| N1 T3 G95 F0.25 G96 S200 M3 |
| N2 G0 X70 Z2                |
| N3 G1 Z0                    |
| N4 G88 X84 Z0 B2 [chamfer]  |

# Thread cycles (4110)

# Simple longitudinal single-start thread G350

G350 cuts a longitudinal thread (internal or external). The thread starts at the current tool position and ends at the end point Z.

## Parameters

- Z Corner point of thread
- F Thread pitch
- U Thread depth
  - U>0: Internal thread
  - U<0: External thread
  - U= +999 or -999: Thread depth is calculated
- I Maximum infeed (no input: I is calculated from the thread pitch and the thread depth)

Internal or external threads: See algebraic sign of "U."

**Handwheel superposition** (provided that your machine is equipped accordingly): The superposition is limited to the following range:

- **X direction:** Depending on the current cutting depth without exceeding the starting and end points of the thread.
- **Z direction:** Maximal 1 thread groove, without exceeding the starting and end points of the thread.

**Cycle stop** becomes effective at the end of a thread cut.

- The feed rate and spindle speed overrides are not effective during cycle run.
- Handwheel superimpositioning can be activated with a switch located on the machine operating panel if your machine is equipped accordingly.
- **Feedforward control** is switched off.



# Simple longitudinal multi-start thread G351

G351 machines a single or multi-start longitudinal thread (internal or external thread) with variable pitch. The thread starts at the current tool position and ends at the end point Z.

## Parameters

- Z Corner point of thread
- F Thread pitch
- U Thread depth
  - U>0: Internal thread
  - U<0: External thread
  - U= +999 or -999: Thread depth is calculated
- Maximum infeed (no input: I is calculated from the thread pitch and the thread depth)
- A Approach (infeed) angle (default: 30°; range: -60°<A<60°)
  - A>0: Infeed on right thread flank
  - A<0: Infeed on left thread flank
- D Threads per unit (default: 1)
- J Remaining cutting depth (default: 1/100 mm)
- E Variable pitch (default: 0)
  - E>0: Increases the pitch per revolution by E
  - E<=: Decreases the pitch per revolution by E

Internal or external threads: See algebraic sign of "U."

Number of cutting passes: "I" is used for the first pass. The cutting depth is reduced with each further pass until the "remaining cutting depth J" is reached.

**Handwheel superposition** (provided that your machine is equipped accordingly): The superposition is limited to the following range:

- **X direction:** Depending on the current cutting depth without exceeding the starting and end points of the thread.
- **Z direction:** Maximal 1 thread groove, without exceeding the starting and end points of the thread.



• Cycle stop becomes effective at the end of a thread cut.

- The feed rate and spindle speed overrides are not effective during cycle run.
- Handwheel superimpositioning can be activated with a switch located on the machine operating panel if your machine is equipped accordingly.
- **Feedforward control** is switched off.

# 4.36 DINplus program example

# Example of a subprogram with contour repetitions

Contour repetitions, including saving of the contour

| HEADER                |                            |
|-----------------------|----------------------------|
| #SLIDE \$1            |                            |
|                       |                            |
| TURRET 1              |                            |
| T2 ID "121-55-040.1"  |                            |
| T3 ID "111-55.080.1"  |                            |
| T4 ID "161-400.2"     |                            |
| T8 ID "342-18.0-70"   |                            |
| T12 ID "112-12-050.1" |                            |
|                       |                            |
| BLANK                 |                            |
| N1 G20 X100 Z120 K1   |                            |
|                       |                            |
| FINISHED              |                            |
| N2 G0 X19.2 Z-10      |                            |
| N3 G1 Z-8.5 BR0.35    |                            |
| N4 G1 X38 BR3         |                            |
| N5 G1 Z-3.05 BR0.2    |                            |
| N6 G1 X42 BR0.5       |                            |
| N7 G1 Z0 BR0.2        |                            |
| N8 G1 X66 BR0.5       |                            |
| N9 G1 Z-10 BR0.5      |                            |
| N10 G1 X19.2 BR0.5    |                            |
|                       |                            |
| MACHINING             |                            |
| N11 G26 S2500         |                            |
| N12 G14 Q0            |                            |
| N13 G702 Q0 H1        | Save contour               |
| N14 L"1" V0 Q2        | Qx = number of repetitions |
| N15 M30               |                            |
| SUBPROGRAM "1"        |                            |
| N16 M108              |                            |
| N17 G702 Q1 H1        | Load saved contour         |



| N18 G14 Q0                                    |                                                        |
|-----------------------------------------------|--------------------------------------------------------|
| N19 T8                                        |                                                        |
| N20 G97 S2000 M3                              |                                                        |
| N21 G95 F0.2                                  |                                                        |
| N22 G0 X0 Z4                                  |                                                        |
| N23 G147 K1                                   |                                                        |
| N24 G74 Z-15 P72 I8 B20 J36 E0.1 K0           |                                                        |
| N25 G14 Q0                                    |                                                        |
| N26 T3                                        |                                                        |
| N27 G96 S300 G95 F0.35 M4                     |                                                        |
| N28 G0 X72 Z2                                 |                                                        |
| N29 G820 NS8 NE8 P2 K0.2 W270 V3              |                                                        |
| N30 G14 Q0                                    |                                                        |
| N31 T12                                       |                                                        |
| N32 G96 S250 G95 F0.22                        |                                                        |
| N33 G810 NS7 NE3 P2 I0.2 K0.1 Z-12 H0 W180 Q0 |                                                        |
| N34 G14 Q2                                    |                                                        |
| N35 T2                                        |                                                        |
| N36 G96 S300 G95 F0.08                        |                                                        |
| N37 G0 X69 Z2                                 |                                                        |
| N38 G47 P1                                    |                                                        |
| N39 G890 NS8 V3 H3 Z-40 D3                    |                                                        |
| N40 G47 P1                                    |                                                        |
| N41 G890 NS9 V1 H0 Z-40 D1 I74 K0             |                                                        |
| N42 G14 Q0                                    |                                                        |
| N43 T12                                       |                                                        |
| N44 G0 X44 Z2                                 |                                                        |
| N45 G890 NS7 NE3                              |                                                        |
| N46 G14 Q2                                    |                                                        |
| N47 T4                                        | Insert parting tool                                    |
| N48 G96 S160 G95 F0.18 M4                     |                                                        |
| N49 G0 X72 Z-14                               |                                                        |
| N50 G150                                      | Shift reference point to the right of the cutting edge |
| N51 G1 X60                                    |                                                        |
| N52 G1 X72                                    |                                                        |
| N53 G0 Z-9                                    |                                                        |
| N54 G1 X66 G95 F0.18                          |                                                        |
| N55 G42                                       | Activate TRC                                           |

| n example |
|-----------|
| ran       |
| prog      |
| Vplus     |
| DID       |
| 4.36      |

| N56 G1 Z-10 B0.5    |                              |
|---------------------|------------------------------|
| N57 G1 X17          |                              |
| N58 G0 X72          |                              |
| N59 G0 X80 Z-10 G40 | Deactivate TRC               |
| N60 G14 Q0          |                              |
| N61 G56 Z-14.4      | Incremental zero point shift |
| RETURN              |                              |
| END                 |                              |

# 4.37 Connection between geometry and machining commands

# **Turning Operations**

| Function             | Geometry             | Machining                               |
|----------------------|----------------------|-----------------------------------------|
| Individual elements  | ■ G0G3               | G810 Longitudinal roughing cycle        |
|                      | ■ G12/G13            | G820 Face roughing cycle                |
|                      |                      | G830 Contour-parallel roughing cycle    |
|                      |                      | G835 Contour-parallel with neutral tool |
|                      |                      | G860 Universal recessing cycle          |
|                      |                      | G869 Recess turning cycle               |
|                      |                      | G890 Finishing cycle                    |
| Recess               | G22 (standard)       | ■ G860 Universal recessing cycle        |
|                      |                      | G870 Simple recessing cycle             |
|                      |                      | G869 Recess turning cycle               |
| Recess               | ■ G23                | ■ G860 Universal recessing cycle        |
|                      |                      | G869 Recess turning cycle               |
| Thread with undercut | ■ G24                | G810 Longitudinal roughing cycle        |
|                      |                      | G820 Face roughing cycle                |
|                      |                      | G830 Contour-parallel roughing cycle    |
|                      |                      | G890 Finishing cycle                    |
|                      |                      | G31 Thread cycle                        |
| Undercut             | ■ G25                | G810 Longitudinal roughing cycle        |
|                      |                      | ■ G890 Finishing cycle                  |
| Thread               | ■ G34 (standard)     | ■ G31Thread cycle                       |
|                      | G37 (general)        |                                         |
| Hole                 | G49 (turning center) | G71 Simple drilling cycle               |
|                      |                      | G72 Counterboring, countersinking, etc. |
|                      |                      | ■ G73 Tapping cycle                     |
|                      |                      | ■ G74 Deep hole drilling cycle          |

| Function            | Geometry                                                                                                                                                | Machining                                                                                                                                                       |
|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Individual elements | ■ G100 to G103                                                                                                                                          | <ul> <li>G840 Contour milling</li> <li>G845/G846 Pocket milling, roughing/finishing</li> </ul>                                                                  |
| Figures             | <ul> <li>G301 Linear slot</li> <li>G302/G303 Circular slot</li> <li>G304 Full circle</li> <li>G305 Rectangle</li> <li>G307 Eccentric polygon</li> </ul> | <ul> <li>G840 Contour milling</li> <li>G845/G846 Pocket milling, roughing/finishing</li> </ul>                                                                  |
| Hole                | ■ G300                                                                                                                                                  | <ul> <li>G71 Simple drilling cycle</li> <li>G72 Counterboring, countersinking, etc.</li> <li>G73 Tapping cycle</li> <li>G74 Deep hole drilling cycle</li> </ul> |

# C-axis machining-lateral surface

| Function            | Geometry                                                                                                                                                | Machining                                                                                                                                                       |
|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Individual elements | G110 to G113                                                                                                                                            | <ul> <li>G840 Contour milling</li> <li>G845/G846 Pocket milling, roughing/finishing</li> </ul>                                                                  |
| Figures             | <ul> <li>G311 Linear slot</li> <li>G312/G313 Circular slot</li> <li>G314 Full circle</li> <li>G315 Rectangle</li> <li>G317 Eccentric polygon</li> </ul> | <ul> <li>G840 Contour milling</li> <li>G845/G846 Pocket milling, roughing/finishing</li> </ul>                                                                  |
| Hole                | ■ G310                                                                                                                                                  | <ul> <li>G71 Simple drilling cycle</li> <li>G72 Counterboring, countersinking, etc.</li> <li>G73 Tapping cycle</li> <li>G74 Deep hole drilling cycle</li> </ul> |



# 4.38 Full-surface machining

# Fundamentals of full-surface machining

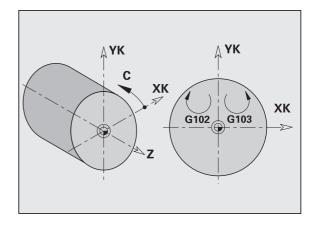
In "full-surface machining," the front and rear ends can be machined in **one** NC program. The control supports full-surface machining for all common machine designs. The features include angle-synchronous part transfer with rotating spindle, traversing to a stop, controlled parting, and coordinate transformation. This ensures efficient full-surface machining and simple programming.

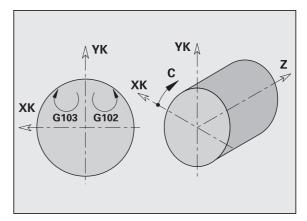
You describe the turning contour, the contours for the C axis as well as full-surface machining functions in one NC program. Expert programs are available for configuring the lathe.

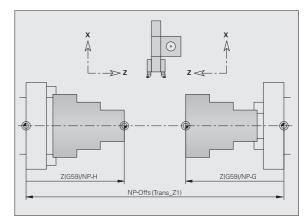
You can also enjoy the benefits of full-surface machining on lathes with only one spindle.

**Rear-face contours with C axis:** The XK axis and therefore also the C axis are oriented with respect to the workpiece, not to the spindle. Therefore, for the rear face:

- Orientation of the XK axis: To the left (front face: to the right)
- Orientation of the C axis: Clockwise
- Direction of rotation for circular arcs G102: Counterclockwise.
- Direction of rotation for circular arcs G103: Clockwise.


**Turning:** The control supports full-surface machining with conversion and mirroring functions. This makes it possible to keep the usual directions of movement for rear-side machining as well.


- Program a **positive value** to depart the workpiece
- Program a **negative value** to approach the workpiece.


The machine manufacturer can provide your lathe with suitable **expert programs** for workpiece transfer.

**Reference points and coordinate system:** The position of the machine and workpiece zero points as well as the coordinate systems for the spindle and opposing spindle are illustrated in the figure at bottom. With this design of lathe it is recommended to mirror only the Z axis. Then, for either spindle, moving in positive direction will stand for motion away from the workpiece.

Usually the expert program contains the mirroring of the Z axis and the zero-point shift by the dimension "NP-Offs."







# Programming of full-surface machining

When programming a contour on the rear face, be sure to consider the orientation of the XK axis (or X axis) and rotational direction of arcs.

Insofar as you use drilling and milling cycles, there are no special aspects to rear-face machining, since these cycles refer to predefined contours.

For rear-face machining with the basic commands G100 to G103 the same conditions apply as for rear-face contours.

**Turning:** The expert programs for rechucking contain converting and mirroring functions. The following principle applies for rear-face machining (2nd setup):

- + direction: Goes away from the workpiece
- direction: Goes toward the workpiece
- G2/G12: Circular arc clockwise
- G3/G13: Circular arc counterclockwise

#### Working without expert programs

If you do not use the expert programs or the converting and mirroring functions, the following principle applies:

- **+ direction:** Goes away from the main spindle
- direction: Goes toward the main spindle
- G2/G12: Circular arc clockwise
- **G3/G13:** Circular arc counterclockwise

# Full-surface machining with opposing spindle

**G30:** The expert program switches the kinematics of the counterspindle. In addition, G30 activates the mirroring of the Z axis and converts other functions (e.g. circular arcs G2, G3).

**G99:** The expert program shifts the contour and mirrors the coordinate system (Z axis). Further programming of G99 is normally not required for machining the rear face after rechucking.

**Example:** The workpiece is machined on the front face, transferred to the opposing spindle through an expert program and machined on the rear face (see illustrations).

The expert program is used for:

- Angle-synchronous workpiece transfer to the opposing spindle
- Mirroring traverse paths in the Z axis
- Activating a conversion list
- Mirroring the contour description and shifting for the 2nd setup

## Full-surface machining on machines with opposing spindles

| HEADER                             |  |
|------------------------------------|--|
| #MATERIAL STEEL                    |  |
| #MEASURE_UNITS METRIC              |  |
|                                    |  |
| TURRET                             |  |
| T1 ID "512-600.10"                 |  |
| T2 ID "111-80-080.1"               |  |
| T102 ID "115-80-080.1"             |  |
|                                    |  |
| BLANK                              |  |
| N1 G20 X100 Z100 K1                |  |
|                                    |  |
| FINISHED                           |  |
| ••••                               |  |
| FACE_C Z0                          |  |
| N 13 G308 ID"Line" P-1             |  |
| N 14 G100 XK-15 YK10               |  |
| N 15 G101 XK-10 YK12 BR2           |  |
| N 16 G101 XK-4.0725 YK-12.6555 BR4 |  |
| N 18 G101 XK10                     |  |
| N 19 G309                          |  |
| REAR_C Z-98                        |  |
|                                    |  |
| MACHINING                          |  |



| N27 G59 Z233                                                                                                                                 | Zero point shift for 1st setup                                                                                                                                                                                                                    |
|----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| N28 G0 W#iS18                                                                                                                                | Counterspindle to machining position                                                                                                                                                                                                              |
| N30 G14 Q0                                                                                                                                   |                                                                                                                                                                                                                                                   |
| N31 G26 S2500                                                                                                                                |                                                                                                                                                                                                                                                   |
| N32 T2                                                                                                                                       |                                                                                                                                                                                                                                                   |
|                                                                                                                                              |                                                                                                                                                                                                                                                   |
| N63 M5                                                                                                                                       |                                                                                                                                                                                                                                                   |
| N64 T1                                                                                                                                       |                                                                                                                                                                                                                                                   |
| N65 G197 S1485 G193 F0.05 M103                                                                                                               | C-axis machining in the main spindle                                                                                                                                                                                                              |
| N66 M14                                                                                                                                      |                                                                                                                                                                                                                                                   |
| N67 M107                                                                                                                                     |                                                                                                                                                                                                                                                   |
| N68 G0 X36.0555 Z3                                                                                                                           |                                                                                                                                                                                                                                                   |
| N69 G110 C146.31                                                                                                                             |                                                                                                                                                                                                                                                   |
| N70 G147 I2 K2                                                                                                                               |                                                                                                                                                                                                                                                   |
| N71 G840 Q0 NS15 NE18 I0.5 R0 P1                                                                                                             |                                                                                                                                                                                                                                                   |
| N72 G0 X31.241 Z3                                                                                                                            |                                                                                                                                                                                                                                                   |
| N73 G14 Q0                                                                                                                                   |                                                                                                                                                                                                                                                   |
| N74 M105 M109                                                                                                                                |                                                                                                                                                                                                                                                   |
| N76 M15                                                                                                                                      | Deactivate C axis                                                                                                                                                                                                                                 |
| N80 L"RECHUCK" V1 LA., LB., LC.,                                                                                                             | Expert prog. for part transfer with following functions:                                                                                                                                                                                          |
|                                                                                                                                              | G720 Spindle synchronization<br>G916 Traversing to a fixed stop<br>G30 Switch the kinematics<br>G99 Mirroring and shifting of the workpiece<br>contour                                                                                            |
| N90 G59 Z222                                                                                                                                 | G916 Traversing to a fixed stop<br>G30 Switch the kinematics<br>G99 Mirroring and shifting of the workpiece                                                                                                                                       |
| N90 G59 Z222                                                                                                                                 | G916 Traversing to a fixed stop<br>G30 Switch the kinematics<br>G99 Mirroring and shifting of the workpiece<br>contour                                                                                                                            |
|                                                                                                                                              | G916 Traversing to a fixed stop<br>G30 Switch the kinematics<br>G99 Mirroring and shifting of the workpiece<br>contour                                                                                                                            |
|                                                                                                                                              | G916 Traversing to a fixed stop<br>G30 Switch the kinematics<br>G99 Mirroring and shifting of the workpiece<br>contour                                                                                                                            |
| <br>Ν91 G14 Q0                                                                                                                               | G916 Traversing to a fixed stop<br>G30 Switch the kinematics<br>G99 Mirroring and shifting of the workpiece<br>contour                                                                                                                            |
| <br>N91 G14 Q0<br>N92 T102                                                                                                                   | G916 Traversing to a fixed stop<br>G30 Switch the kinematics<br>G99 Mirroring and shifting of the workpiece<br>contour<br>Zero point shift for 2nd setup                                                                                          |
| <br>N91 G14 Q0<br>N92 T102<br>N93 G396 S220 G395 F0.2 M304                                                                                   | G916 Traversing to a fixed stop<br>G30 Switch the kinematics<br>G99 Mirroring and shifting of the workpiece<br>contour<br>Zero point shift for 2nd setup<br>Technology data for opposing spindle<br>Turning in the counterspindle                 |
| N91 G14 Q0         N92 T102         N93 G396 S220 G395 F0.2 M304         N94 M107         N95 G0 X120 Z3         N96 G810                    | G916 Traversing to a fixed stop<br>G30 Switch the kinematics<br>G99 Mirroring and shifting of the workpiece<br>contour<br>Zero point shift for 2nd setup<br>Technology data for opposing spindle<br>Turning in the counterspindle<br>Fixed cycles |
| N91 G14 Q0         N92 T102         N93 G396 S220 G395 F0.2 M304         N94 M107         N95 G0 X120 Z3                                     | G916 Traversing to a fixed stop<br>G30 Switch the kinematics<br>G99 Mirroring and shifting of the workpiece<br>contour<br>Zero point shift for 2nd setup<br>Technology data for opposing spindle<br>Turning in the counterspindle                 |
| N91 G14 Q0         N92 T102         N93 G396 S220 G395 F0.2 M304         N94 M107         N95 G0 X120 Z3         N96 G810         N97 G30 Q0 | G916 Traversing to a fixed stop<br>G30 Switch the kinematics<br>G99 Mirroring and shifting of the workpiece<br>contour<br>Zero point shift for 2nd setup<br>Technology data for opposing spindle<br>Turning in the counterspindle<br>Fixed cycles |
| N91 G14 Q0         N92 T102         N93 G396 S220 G395 F0.2 M304         N94 M107         N95 G0 X120 Z3         N96 G810         N97 G30 Q0 | G916 Traversing to a fixed stop<br>G30 Switch the kinematics<br>G99 Mirroring and shifting of the workpiece<br>contour<br>Zero point shift for 2nd setup<br>Technology data for opposing spindle<br>Turning in the counterspindle<br>Fixed cycles |

1

# Full-surface machining with single spindle

G30: Normally not required

**G99:** The expert program mirrors the contour. Further programming of G99 is normally not required for machining the rear face after rechucking.

**Example:** Describes the machining of the front and rear face, using **one** NC program. The workpiece is first machined on the front face; then it is rechucked manually. The rear face is machined subsequently.

The expert program mirrors and shifts the contour for the 2nd setup.

# Full-surface machining on machine with one spindle

| HEADER                        |  |
|-------------------------------|--|
| #MATERIAL STEEL               |  |
| #MEASURE_UNITS METRIC         |  |
|                               |  |
| TURRET                        |  |
| T1 ID "512-600.10"            |  |
| T2 ID "111-80-080.1"          |  |
| T4 ID "121-55-040.1"          |  |
|                               |  |
| BLANK                         |  |
| N1 G20 X100 Z100 K1           |  |
|                               |  |
| FINISHED                      |  |
| ····                          |  |
| FACE_C Z0                     |  |
|                               |  |
| REAR_C Z-98                   |  |
| N20 G308 ID"R" P-1            |  |
| N21 G100 XK5 YK-10            |  |
| N22 G101 YK15                 |  |
| N23 G101 XK-5                 |  |
| N24 G103 XK-8 YK3.8038 R6 I-5 |  |
| N25 G101 XK-12 YK-10          |  |
| N26 G309                      |  |
|                               |  |
|                               |  |
|                               |  |
| MACHINING                     |  |

| N27 G59 Z233                                                                                                     | Zero point shift for 1st setup                       |
|------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
|                                                                                                                  |                                                      |
| N82 M15                                                                                                          | Prepare the rechucking                               |
| N86 G99 H1 V0 K-98                                                                                               | Contour mirroring and shifting for manual rechucking |
| N87 M0                                                                                                           | Stop for rechucking                                  |
| N88 G59 Z222                                                                                                     | Zero point shift for 2nd setup                       |
| and the second |                                                      |
| N125 M5                                                                                                          | Milling – rear face                                  |
| N126 T1                                                                                                          |                                                      |
| N127 G197 S1485 G193 F0.05 M103                                                                                  |                                                      |
| N128 M14                                                                                                         |                                                      |
| N130 M107                                                                                                        |                                                      |
| N131 G0 X22.3607 Z3                                                                                              |                                                      |
| N132 G110 C-116.565                                                                                              |                                                      |
| N134 G147 I2 K2                                                                                                  |                                                      |
| N135 G840 Q0 NS22 NE25 I0.5 R0 P1                                                                                |                                                      |
| N136 G0 X154 Z-95                                                                                                |                                                      |
| N137 G0 X154 Z3                                                                                                  |                                                      |
| N138 G14 Q0                                                                                                      |                                                      |
| N139 M105 M109                                                                                                   |                                                      |
| N142 M15                                                                                                         |                                                      |
| N143 G30 Q0                                                                                                      | Switch off rear-face machining                       |
| N144 M30                                                                                                         |                                                      |
| END                                                                                                              |                                                      |

4.38 Full-surfa<mark>ce m</mark>achining





# Touch probe cycles

# 5.1 General information on touch probe cycles (software option)



The control must be specially prepared by the machine tool builder for the use of a 3-D touch probe. The machine manual provides further information.

Please note that HEIDENHAIN grants a warranty for the function of the touch probe cycles only if HEIDENHAIN touch probes are used!

# Principle of function of touch probe cycles

When you run a touch probe cycle, the 3-D touch probe is prepositioned at positioning feed rate. The actual probing movement is then executed from there at probing feed rate. The machine tool builder determines the positioning feed rate for the touch probe in a machine parameter. You define the probing feed rate in the respective touch probe cycle.

When the probe stylus contacts the workpiece,

- the 3-D touch probe transmits a signal to the control: the coordinates of the probed position are stored,
- the touch probe stops moving, and
- returns to the starting position of the probing procedure at positioning feed rate.

If the stylus is not deflected within a defined distance, the control displays an error message.

# Touch probe cycles for automatic operation

The control provides numerous touch probe cycles for various applications:

- Calibrating a touch trigger probe
- Measuring circles, circle segments, angle and position of the C axis
- Misalignment compensation
- Single-point and double-point measurement
- Finding a hole or stud
- Zero point setting in the Z or C axis
- Automatic tool measurement

Touch probe cycles are programmed in DIN PLUS using G codes. Just like the fixed cycles, also the touch probe cycles use transfer parameters.

To simplify programming, the control shows a graphic during cycle definition. The appropriate input parameters are displayed in the help graphic (see figure at right).

The touch probe cycles save status information and measuring results in the variable #i99. Depending on the input parameters in the touch probe cycle you can interrogate the following values:

| Result #i99 | Meaning                                       |
|-------------|-----------------------------------------------|
| < 999997    | Measuring result                              |
| 999999      | Touch probe not deflected                     |
| -999999     | Invalid measuring axis programmed             |
| 999998      | Maximum deviation <b>WE</b> exceeded          |
| 999997      | Maximum compensation value ${\bf E}$ exceeded |

# Programming the touch probe cycle in DIN PLUS

- Select DIN PLUS programming and place the cursor in the MACHINING program section
- Select the "Machining" menu item
- Select the "G menu" menu item
- Select the "Touch probe cycles" menu item
- Select measuring cycle group
- Select the cycle

| Group of measuring cycles | Page     |
|---------------------------|----------|
| Single-point measurements | Page 459 |
| Double-point measurements | Page 467 |
| Calibration cycles        | Page 475 |
| Probing                   | Page 478 |
| Search cycles             | Page 483 |
| Circle measurement        | Page 491 |
| Angle position            | Page 495 |
| In-process measurement    | Page 499 |

Beispiel: Touch probe cycle in the DINplus program

| HEADER                               |
|--------------------------------------|
| #MATERIAL Steel                      |
| #MEASURE_UNITS METRIC                |
|                                      |
| TURRET 1                             |
| T1 ID"342-300.1"                     |
| T2 ID"111-80-080.1"                  |
|                                      |
|                                      |
| BLANK                                |
| N1 G20 X120 Z120 K2                  |
|                                      |
| FINISHED                             |
| N2 G0 X60 Z-115                      |
| N3 G1 Z-105                          |
|                                      |
| MACHINING                            |
| N19 T1                               |
| N19 G0 X0 Z5                         |
| N20 G771 R1 D0 K-30 AC0 BD2 Q0 P0 H0 |
| N1 T2 G97 S1000 G95 F0.2 M3          |
| N2 G0 X0 Z5                          |
| N3 G71 Z-25 A5 V2 [drilling]         |
|                                      |
| END                                  |

\_

\_

\_

ISO Mode

# 5.2 Touch probe cycles for singlepoint measurement

# Single-point measurement for tool compensation G770

Cycle G770 measures with the programmed measuring axis in the specified direction. If the tolerance value defined in the cycle is exceeded, the cycle saves the measured deviation either as tool compensation or as an additive compensation. The result of the measurement is saved additionally in the variable #i99 (See "Touch probe cycles for automatic operation" on page 457.).

# Cycle run

From the current position the touch probe moves along the defined measuring axis toward the measuring point. When the stylus touches the workpiece, the measured value is saved and the touch probe is positioned back to the starting point.

The control outputs an error message if the touch probe does not reach any touch point within the defined measuring path. If a maximum deviation **WE** was programmed, the measuring point is approached twice and the mean value is saved as result. If the difference of the measurements is greater than the maximum deviation **WE**, the program run is interrupted and an error message is displayed.

# Parameters

- R Type of compensation:
  - 1: Tool compensation DX/DZ for turning tool or additive compensation
  - 2: Recessing tool **Dx/DS**
  - 4: Milling tool DD
- D Measuring axis: Axis in which the measurement is to be made
- K Incremental measuring path with direction (signed): Maximum measuring path for probing. The algebraic sign determines the probing direction.
- AC Nominal value for target position: Touch point coordinate
- BD Tolerance +/-: Measurement result range in which no compensation is applied
- WT Compensation number T or G149:
  - **T**: Tool at turret position **T** to compensate the difference to the nominal value
  - G149: Additive compensation D9xx to compensate the difference to the nominal value (only possible with compensation type R =1)
- E Maximum compensation value for the tool compensation
- WE Maximum deviation: Probe twice and monitor the dispersion of the measured values

Beispiel: G770—Single-point measurement for tool compensation

...

MACHINING

N3 G770 R1 D0 K20 AC0 BD0.2 WT3 V1 O1 Q0 P0 H0

. . .



#### **Parameters** V Retracti

- Retraction type
  - O: Without: Only position touch probe back to the starting point if the touch probe was deflected
  - 1: Automatic: Always position touch probe back to the starting point
- O Error evaluation
  - 0: Program: Do not interrupt program run, no error message
  - 1: Automatic: Interrupt program run and output error message if touch probe is not deflected within measuring path
- F Measuring feed rate: Feed rate for probing. If nothing is entered, the measuring feed rate from the touch probe table is used. If the entered measuring feed rate **F** is higher than the one in the touch probe table, the feed rate is reduced to the value from the touch probe table.
- C Tool orientation: Orient the touch probe in the programmed probing direction before each probing operation (machinedependent function)
- P PRINT outputs
  - 0: OFF: Do not display measuring results
  - 1: ON: Display measuring results
  - INPUT instead of measurement
    - 0: Default: Obtain measured values by probing
  - 1: PC test: Simulate probing cycle on the programming station
- AN Log no.: Save measurement results in "TNC:\table\messpro.mep" table (line numbers 0–99; the table can be expanded if necessary)

Н

# Single-point measurement for zero point G771

Cycle G771 measures with the programmed measuring axis in the specified direction. If the tolerance value defined in the cycle is exceeded, the cycle saves the measured deviation as zero point shift. The result of the measurement is saved additionally in the variable #i99 (See "Touch probe cycles for automatic operation" on page 457.).

# Cycle run

From the current position the touch probe moves along the defined measuring axis toward the measuring point. When the stylus touches the workpiece, the measured value is saved and the touch probe is positioned back to the starting point.

The control outputs an error message if the touch probe does not reach any touch point within the defined measuring path. If a maximum deviation **WE** was programmed, the measuring point is approached twice and the mean value is saved as result. If the difference of the measurements is greater than the maximum deviation **WE**, the program run is interrupted and an error message is displayed.

## Parameters

- R Type of zero point shift:
  - 1: Table and G59: Activate zero point shift and additionally save in zero point table. The zero-point shift also remains active after the program run.
  - 2: Activate zero point shift with G59 for the further program run. Zero point shift no longer active after program run.
- D Measuring axis: Axis in which the measurement is to be made
- K Incremental measuring path with direction (signed): Maximum measuring path for probing. The algebraic sign determines the probing direction.
- AC Nominal value for target position: Touch point coordinate
- BD Tolerance +/-: Measurement result range in which no compensation is applied
- WE Maximum deviation: Probe twice and monitor the dispersion of the measured values
- F Measuring feed rate: Feed rate for probing. If nothing is entered, the measuring feed rate from the touch probe table is used. If the entered measuring feed rate **F** is higher than the one in the touch probe table, the feed rate is reduced to the value from the touch probe table.

# Beispiel: G771 Single-point measurement for tool compensation

# ...

MACHINING

N3 G771 R1 D0 K20 AC0 BD0.2 Q0 P0 H0

• • •

#### Parameters

- Q Tool orientation: Orient the touch probe in the programmed probing direction before each probing operation (machine-dependent function)
- P PRINT outputs
  - 0: OFF: Do not display measuring results
  - 1: ON: Display measuring results
- H INPUT instead of measurement
  - 0: Default: Obtain measured values by probing
  - 1: PC test: Simulate probing cycle on the programming station
- AN Log no.: Save measurement results in "TNC:\table\messpro.mep" table (line numbers 0–99; the table can be expanded if necessary)

1

# Zero point C axis, single-point measurement G772

Cycle G772 measures with the C axis in the specified direction. If the tolerance value defined in the cycle is exceeded, the cycle saves the measured deviation as zero point shift. The result of the measurement is saved additionally in the variable #i99 (See "Touch probe cycles for automatic operation" on page 457.).

#### Cycle run

From the current position, the element to be probed is moved toward the touch probe by a rotation of the C axis. When the workpiece touches the stylus, the measured value is saved and the workpiece is returned.

The control outputs an error message if the touch probe does not reach any touch point within the defined measuring path. If a maximum deviation **WE** was programmed, the measuring point is approached twice and the mean value is saved as result. If the difference of the measurements is greater than the maximum deviation **WE**, the program run is interrupted and an error message is displayed.

#### Parameters

- R Type of zero point shift:
  - 1: Table and G152: Activate zero point shift and additionally save in zero point table. The zero-point shift also remains active after the program run.
  - 2: Activate zero point shift with G152 for the further program run. Zero point shift no longer active after program run.
- C Incremental measuring path with direction: Measuring path of the C axis (in degrees), starting from the current position. The algebraic sign determines the probing direction.
- AC Nominal value for target position: Absolute coordinate of touch point in degrees
- BD Tolerance +/-: Measurement result range (in degrees) in which no compensation is applied
- KC Compensation offset: Additional compensation value that is applied to the zero point result
- WE Maximum deviation: Probe twice and monitor the dispersion of the measured values
- F Measuring feed rate: Feed rate for probing. If nothing is entered, the measuring feed rate from the touch probe table is used. If the entered measuring feed rate **F** is higher than the one in the touch probe table, the feed rate is reduced to the value from the touch probe table.

# Beispiel: G772—Single-point measurement zero point C axis

. . .

MACHINING

N3 G772 R1 C20 AC0 BD0.2 Q0 P0 H0

. . .

#### Parameters

- Q Tool orientation: Orient the touch probe in the programmed probing direction before each probing operation (machine-dependent function)
- P PRINT outputs
  - 0: OFF: Do not display measuring results
  - 1: ON: Display measuring results
- H INPUT instead of measurement
  - 0: Default: Obtain measured values by probing
  - 1: PC test: Simulate probing cycle on the programming station
- AN Log no.: Save measurement results in "TNC:\table\messpro.mep" table (line numbers 0–99; the table can be expanded if necessary)

1

# Zero point C-axis object center G773

Cycle G773 measures an element with the C axis from two opposite sides and places the center of the element to a defined position. The result of the measurement is saved additionally in the variable #i99 (See "Touch probe cycles for automatic operation" on page 457.).

## Cycle run

From the current position, the element to be probed is moved toward the touch probe by a rotation of the C axis. When the workpiece touches the stylus, the measured value is saved and the workpiece is returned. Then the touch probe is pre-positioned for the opposite probing procedure. When the second measured value has been determined, the cycle computes the mean value of the two measurements and applies a zero point shift in the C axis. The nominal position **AC** defined in the cycle is then in the center of the probed element.

The control outputs an error message if the touch probe does not reach any touch point within the defined measuring path. If a maximum deviation **WE** was programmed, each measuring point is approached twice and the mean value is saved as result. If the difference of the measurements is greater than the maximum deviation **WE**, the program run is interrupted and an error message is displayed.

#### Parameters

- R Type of zero point shift:
  - 1: Table and G152: Activate zero point shift and additionally save in zero point table. The zero-point shift also remains active after the program run.
  - 2: Activate zero point shift with G152 for the further program run. Zero point shift no longer active after program run.
- C Incremental measuring path with direction: Measuring path of the C axis (in degrees), starting from the current position. The algebraic sign determines the probing direction.
- E Circumnavigation axis: Axis that is positioned back by RB in order to circumnavigate the element
- RB Circumnavigation direction offset: Retraction value in the circumnavigation axis **E** for pre-positioning for the next probing position
- RC C-angle offset: Difference in the C axis between the first and the second measuring position
- AC Nominal value for target position: Absolute coordinate of touch point in degrees
- BD Tolerance +/-: Measurement result range (in degrees) in which no compensation is applied
- KC Compensation offset: Additional compensation value that is applied to the zero point result
- WE Maximum deviation: Probe twice and monitor the dispersion of the measured values
- F Measuring feed rate: Feed rate for probing. If nothing is entered, the measuring feed rate from the touch probe table is used. If the entered measuring feed rate **F** is higher than the one in the touch probe table, the feed rate is reduced to the value from the touch probe table.

# Beispiel: G773—Single-point measurement C-axis object center

# ...

## MACHINING

N3 G773 R1 C20 E0 RB20 RC45 AC30 BD0.2 Q0 P0 H0

. . .



#### Parameters

- Q Tool orientation: Orient the touch probe in the programmed probing direction before each probing operation (machine-dependent function)
- P PRINT outputs
  - 0: OFF: Do not display measuring results
  - 1: ON: Display measuring results
- H INPUT instead of measurement
  - 0: Default: Obtain measured values by probing
  - 1: PC test: Simulate probing cycle on the programming station
- AN Log no.: Save measurement results in "TNC:\table\messpro.mep" table (line numbers 0–99; the table can be expanded if necessary)

1

# 5.3 Touch probe cycles for twopoint measurement

# Two-point measurement G18 transverse G775

Cycle G775 measures two opposite points in the **X/Z plane** with the **measuring axis X**. If the tolerance values defined in the cycle are exceeded, the cycle saves the measured deviation either as tool compensation or as an additive compensation. The result of the measurement is saved additionally in the variable #i99 (See "Touch probe cycles for automatic operation" on page 457.).

# Cycle run

From the current position the touch probe moves along the defined measuring axis toward the measuring point. When the stylus touches the workpiece, the measured value is saved and the touch probe is positioned back to the starting point. For the pre-positioning for the second measurement, the cycle first moves the touch probe by the offset in the circumnavigation direction **RB** and then by the offset in the measuring direction **RC**. The cycle executes the second probing operation in the opposite direction, saves the result and positions the touch probe back with the circumnavigation axis by the circumnavigation value.

The control outputs an error message if the touch probe does not reach any touch point within the defined measuring path. If a maximum deviation **WE** was programmed, the measuring points are approached twice and the mean value is saved as result. If the difference of the measurements is greater than the maximum deviation **WE**, the program run is interrupted and an error message is displayed.

## Parameters

- R Type of compensation:
  - 1: Tool compensation **DX/DZ** for turning tool or additive compensation
  - 2: Recessing tool Dx/DS
  - 3: Milling tool **DX/DD**
  - 4: Milling tool DD
- K Incremental measuring path with direction (signed): Maximum measuring path for probing. The algebraic sign determines the probing direction.
- E Circumnavigation axis: Selection of axis for retraction movement between the probing positions:
  - 0: Z axis
  - 2: Y axis
- RB Circumnavigation direction offset: Distance
- RC Offset X: Distance for pre-positioning before the second measurement
- XE Nominal value for target position X: Absolute coordinate of touch point
- BD Tolerance +/-: Range for the first measurement result in which no compensation is applied

Beispiel: G775—Two-point measurement for tool compensation

MACHINING

N3 G775 R1 K20 E1 XE30 BD0.2 X40 BE0.3 WT5 Q0 P0 H0

. . .

HEIDENHAIN MANUALplus 620, CNC PILOT 640

#### Parameters

- X Nominal width X: Coordinate for the second probing position
- BE Tolerance width +/-: Range for the second measurement result in which no compensation is applied
- WT Compensation number T or G149, first measured edge:
  - T: Tool at turret position T to compensate the difference to the nominal value
  - G149: Additive compensation D9xx to compensate the difference to the nominal value (only possible with compensation type R =1)
- AT Compensation number T or G149, second measured edge:
  - **T**: Tool at turret position **T** to compensate the difference to the nominal value
  - G149: Additive compensation D9xx to compensate the difference to the nominal value (only possible with compensation type R =1)
- FP Maximum permissible compensation
- WE Maximum deviation: Probe twice and monitor the dispersion of the measured values
- F Measuring feed rate: Feed rate for probing. If nothing is entered, the measuring feed rate from the touch probe table is used. If the entered measuring feed rate F is higher than the one in the touch probe table, the feed rate is reduced to the value from the touch probe table.
- Q Tool orientation: Orient the touch probe in the programmed probing direction before each probing operation (machine-dependent function)
- P PRINT outputs
  - 0: OFF: Do not display measuring results
  - 1: ON: Display measuring results
  - INPUT instead of measurement
    - 0: Default: Obtain measured values by probing
    - 1: PC test: Simulate probing cycle on the programming station
- AN Log no.: Save measurement results in "TNC:\table\messpro.mep" table (line numbers 0–99; the table can be expanded if necessary)



The cycle computes the compensation value  ${\tt WT}$  from the result of the first measurement and the compensation value  ${\tt AT}$  from the result of the second measurement.

5.3 Touch probe cycles for two-poi<mark>nt m</mark>easurement

Touch probe cycles

## Two-point measurement G18 longitudinal G776

Cycle G776 measures two opposite points in the **X/Z plane** with the **measuring axis Z**. If the tolerance values defined in the cycle are exceeded, the cycle saves the measured deviation either as tool compensation or as an additive compensation. The result of the measurement is saved additionally in the variable #i99 (See "Touch probe cycles for automatic operation" on page 457.).

#### Cycle run

From the current position the touch probe moves along the defined measuring axis toward the measuring point. When the stylus touches the workpiece, the measured value is saved and the touch probe is positioned back to the starting point. For the pre-positioning for the second measurement, the cycle first moves the touch probe by the offset in the circumnavigation direction **RB** and then by the offset in the measuring direction **RC**. The cycle executes the second probing operation in the opposite direction, saves the result and positions the touch probe back with the circumnavigation axis by the circumnavigation value.

The control outputs an error message if the touch probe does not reach any touch point within the defined measuring path. If a maximum deviation **WE** was programmed, the measuring points are approached twice and the mean value is saved as result. If the difference of the measurements is greater than the maximum deviation **WE**, the program run is interrupted and an error message is displayed.

#### Parameters

- R Type of compensation:
  - 1: Tool compensation DX/DZ for turning tool or additive compensation
  - 2: Recessing tool **Dx/DS**
  - 3: Milling tool DX/DD
  - 4: Milling tool DD
- K Incremental measuring path with direction (signed): Maximum measuring path for probing. The algebraic sign determines the probing direction.
- E Circumnavigation axis: Selection of axis for retraction movement between the probing positions:
  - 🔳 0: X axis
  - 2: Y axis
- RB Circumnavigation direction offset: Distance
- RC Offset Z: Distance for pre-positioning before the second measurement
- ZE Nominal value for target position Z: Absolute coordinate of touch point
- BD Tolerance +/-: Range for the first measurement result in which no compensation is applied
- Z Nominal width Z: Coordinate for the second probing position
- BE Tolerance width +/-: Range for the second measurement result in which no compensation is applied

#### HEIDENHAIN MANUALplus 620, CNC PILOT 640

## Beispiel: G776—Two-point measurement for tool compensation

#### ...

#### MACHINING

N3 G776 R1 K20 E1 ZE30 BD0.2 Z40 BE0.3 WT5 Q0 P0 H0



- WT Compensation number T or G149, first measured edge:
  - T: Tool at turret position T to compensate the difference to the nominal value
  - **G149**: Additive compensation D9xx to compensate the difference to the nominal value (only possible with compensation type  $\mathbf{R} = 1$ )
- AT Compensation number T or G149, second measured edge:
  - T: Tool at turret position T to compensate the difference to the nominal value
  - **G149**: Additive compensation D9xx to compensate the difference to the nominal value (only possible with compensation type  $\mathbf{R} = 1$ )
- FP Maximum permissible compensation
- WE Maximum deviation: Probe twice and monitor the dispersion of the measured values
- F Measuring feed rate: Feed rate for probing. If nothing is entered, the measuring feed rate from the touch probe table is used. If the entered measuring feed rate **F** is higher than the one in the touch probe table, the feed rate is reduced to the value from the touch probe table.
- C Tool orientation: Orient the touch probe in the programmed probing direction before each probing operation (machinedependent function)
- P PRINT outputs
  - 0: OFF: Do not display measuring results
  - 1: ON: Display measuring results
- H INPUT instead of measurement
  - 0: Default: Obtain measured values by probing
  - 1: PC test: Simulate probing cycle on the programming station
- AN Log no.: Save measurement results in "TNC:\table\messpro.mep" table (line numbers 0–99; the table can be expanded if necessary)



The cycle computes the compensation value **WT** from the result of the first measurement and the compensation value **AT** from the result of the second measurement.

## Two-point measurement G17 longitudinal G777

Cycle G777 measures two opposite points in the **X/Y plane** with the **measuring axis Y**. If the tolerance values defined in the cycle are exceeded, the cycle saves the measured deviation either as tool compensation or as an additive compensation. The result of the measurement is saved additionally in the variable #i99 (See "Touch probe cycles for automatic operation" on page 457.).

#### Cycle run

From the current position the touch probe moves along the defined measuring axis toward the measuring point. When the stylus touches the workpiece, the measured value is saved and the touch probe is positioned back to the starting point. For the pre-positioning for the second measurement, the cycle first moves the touch probe by the offset in the circumnavigation direction **RB** and then by the offset in the measuring direction **RC**. The cycle executes the second probing operation in the opposite direction, saves the result and positions the touch probe back with the circumnavigation axis by the circumnavigation value.

The control outputs an error message if the touch probe does not reach any touch point within the defined measuring path. If a maximum deviation **WE** was programmed, the measuring points are approached twice and the mean value is saved as result. If the difference of the measurements is greater than the maximum deviation **WE**, the program run is interrupted and an error message is displayed.

#### Parameters

- R Type of compensation:
  - 1: Tool compensation DX/DZ for turning tool or additive compensation
  - 2: Recessing tool Dx/DS
  - 3: Milling tool DX/DD
  - 4: Milling tool DD
- K Incremental measuring path with direction (signed): Maximum measuring path for probing. The algebraic sign determines the probing direction.
- RB Circumnavigation direction offset: Distance in circumnavigation direction X
- RC Offset Z: Distance for pre-positioning before the second measurement
- YE Nominal value for target position Y: Absolute coordinate of touch point
- BD Tolerance +/-: Range for the first measurement result in which no compensation is applied
- Y Nominal width Z: Coordinate for the second probing position
- BE Tolerance width +/-: Range for the second measurement result in which no compensation is applied

## Beispiel: G777—Two-point measurement for tool compensation

#### . . .

#### MACHINING

N3 G777 R1 K20 YE10 BD0.2 Y40 BE0.3 WT5 Q0 P0 H0



- WT Compensation number T or G149, first measured edge:
  - T: Tool at turret position T to compensate the difference to the nominal value
  - **G149**: Additive compensation D9xx to compensate the difference to the nominal value (only possible with compensation type  $\mathbf{R} = 1$ )
- AT Compensation number T or G149, second measured edge:
  - T: Tool at turret position T to compensate the difference to the nominal value
  - **G149**: Additive compensation D9xx to compensate the difference to the nominal value (only possible with compensation type  $\mathbf{R} = 1$ )
- FP Maximum permissible compensation
- WE Maximum deviation: Probe twice and monitor the dispersion of the measured values
- F Measuring feed rate: Feed rate for probing. If nothing is entered, the measuring feed rate from the touch probe table is used. If the entered measuring feed rate **F** is higher than the one in the touch probe table, the feed rate is reduced to the value from the touch probe table.
- C Tool orientation: Orient the touch probe in the programmed probing direction before each probing operation (machinedependent function)
- P PRINT outputs
  - 0: OFF: Do not display measuring results
  - 1: ON: Display measuring results
- H INPUT instead of measurement
  - 0: Default: Obtain measured values by probing
  - 1: PC test: Simulate probing cycle on the programming station
- AN Log no.: Save measurement results in "TNC:\table\messpro.mep" table (line numbers 0–99; the table can be expanded if necessary)



The cycle computes the compensation value **WT** from the result of the first measurement and the compensation value **AT** from the result of the second measurement.

## Two-point measurement G19 longitudinal G778

Cycle G778 measures two opposite points in the **Y/Z plane** with the **measuring axis Y**. If the tolerance values defined in the cycle are exceeded, the cycle saves the measured deviation either as tool compensation or as an additive compensation. The result of the measurement is saved additionally in the variable #i99 (See "Touch probe cycles for automatic operation" on page 457.).

#### Cycle run

From the current position the touch probe moves along the defined measuring axis toward the measuring point. When the stylus touches the workpiece, the measured value is saved and the touch probe is positioned back to the starting point. For the pre-positioning for the second measurement, the cycle first moves the touch probe by the offset in the circumnavigation direction **RB** and then by the offset in the measuring direction **RC**. The cycle executes the second probing operation in the opposite direction, saves the result and positions the touch probe back with the circumnavigation axis by the circumnavigation value.

The control outputs an error message if the touch probe does not reach any touch point within the defined measuring path. If a maximum deviation **WE** was programmed, the measuring points are approached twice and the mean value is saved as result. If the difference of the measurements is greater than the maximum deviation **WE**, the program run is interrupted and an error message is displayed.

#### Parameters

- R Type of compensation:
  - 1: Tool compensation **DX/DZ** for turning tool or additive compensation
  - 2: Recessing tool Dx/DS
  - 3: Milling tool DX/DD
  - 4: Milling tool DD
- K Incremental measuring path with direction (signed): Maximum measuring path for probing. The algebraic sign determines the probing direction.
- RB Circumnavigation direction offset: Distance in circumnavigation direction  $\boldsymbol{X}$
- RC Offset Y: Distance for pre-positioning before the second measurement
- ZE Nominal value for target position Y: Absolute coordinate of touch point
- BD Tolerance +/-: Range for the first measurement result in which no compensation is applied
- Z Nominal width Y: Coordinate for the second probing position
- BE Tolerance width +/-: Range for the second measurement result in which no compensation is applied

## Beispiel: G778—Two-point measurement for tool compensation

#### . . .

#### MACHINING

N3 G778 R1 K20 YE30 BD0.2 Y40 BE0.3 WT5 Q0 P0 H0



- WT Compensation number T or G149, first measured edge:
  - T: Tool at turret position T to compensate the difference to the nominal value
  - **G149**: Additive compensation D9xx to compensate the difference to the nominal value (only possible with compensation type  $\mathbf{R} = 1$ )
- AT Compensation number T or G149, second measured edge:
  - T: Tool at turret position T to compensate the difference to the nominal value
  - **G149**: Additive compensation D9xx to compensate the difference to the nominal value (only possible with compensation type  $\mathbf{R} = 1$ )
- FP Maximum permissible compensation
- WE Maximum deviation: Probe twice and monitor the dispersion of the measured values
- F Measuring feed rate: Feed rate for probing. If nothing is entered, the measuring feed rate from the touch probe table is used. If the entered measuring feed rate **F** is higher than the one in the touch probe table, the feed rate is reduced to the value from the touch probe table.
- C Tool orientation: Orient the touch probe in the programmed probing direction before each probing operation (machinedependent function)
- P PRINT outputs
  - 0: OFF: Do not display measuring results
  - 1: ON: Display measuring results
- H INPUT instead of measurement
  - 0: Default: Obtain measured values by probing
  - 1: PC test: Simulate probing cycle on the programming station
- AN Log no.: Save measurement results in "TNC:\table\messpro.mep" table (line numbers 0–99; the table can be expanded if necessary)



The cycle computes the compensation value **WT** from the result of the first measurement and the compensation value **AT** from the result of the second measurement.

## 5.4 Calibrating the touch probe

## Calibrate touch probe standard G747

Cycle G747 measures with the programmed axis and, depending on the selected calibration method, calculates the touch probe adjustment dimension or the ball diameter. If the tolerance values defined in the cycle are exceeded, the cycle corrects the touch probe data. The result of the measurement is saved additionally in the variable #i99 (See "Touch probe cycles for automatic operation" on page 457.).

#### Cycle run

From the current position the touch probe moves along the defined measuring axis toward the measuring point. When the stylus touches the workpiece, the measured value is saved and the touch probe is positioned back to the starting point.

The control outputs an error message if the touch probe does not reach any touch point within the defined measuring path. If a maximum deviation **WE** was programmed, the measuring point is approached twice and the mean value is saved as result. If the difference of the measurements is greater than the maximum deviation **WE**, the program run is interrupted and an error message is displayed.

#### Parameters

- R Calibration method:
  - 0: Change ball diameter
  - 1: Change adjustment dimension
- D Measuring axis: Axis in which the measurement is to be made
- K Incremental measuring path with direction (signed): Maximum measuring path for probing. The algebraic sign determines the probing direction.
- AC Nominal value for target position: Touch point coordinate
- BD Tolerance +/-: Measurement result range in which no compensation is applied
- WE Maximum deviation: Probe twice and monitor the dispersion of the measured values
- F Measuring feed rate: Feed rate for probing. If nothing is entered, the measuring feed rate from the touch probe table is used. If the entered measuring feed rate **F** is higher than the one in the touch probe table, the feed rate is reduced to the value from the touch probe table.

#### Beispiel: G747 Calibrate touch probe

MACHINING

N3 G747 R1 K20 AC10 BD0.2 Q0 P0 H0



- Q Tool orientation: Orient the touch probe in the programmed probing direction before each probing operation (machine-dependent function)
- P PRINT outputs
  - 0: OFF: Do not display measuring results
  - 1: ON: Display measuring results
- H INPUT instead of measurement
  - 0: Default: Obtain measured values by probing
  - 1: PC test: Simulate probing cycle on the programming station
- AN Log no.: Save measurement results in "TNC:\table\messpro.mep" table (line numbers 0–99; the table can be expanded if necessary)

1

## Calibrate touch probe via two points G748

Cycle G748 measures two opposite points and computes the touch probe adjustment dimension and the ball diameter. If the tolerance values defined in the cycle are exceeded, the cycle corrects the touch probe data. The result of the measurement is saved additionally in the variable #i99 (See "Touch probe cycles for automatic operation" on page 457.).

#### Cycle run

From the current position the touch probe moves along the defined measuring axis toward the measuring point. When the stylus touches the workpiece, the measured value is saved and the touch probe is positioned back to the starting point. For the pre-positioning for the second measurement, the cycle first moves the touch probe by the offset in the circumnavigation direction **RB** and then by the offset in the measuring direction **RC**. The cycle performs the second probing operation in the opposite direction and saves the result.

The control outputs an error message if the touch probe does not reach any touch point within the defined measuring path. If a maximum deviation **WE** was programmed, the measuring points are approached twice and the mean value is saved as result. If the difference of the measurements is greater than the maximum deviation **WE**, the program run is interrupted and an error message is displayed.

#### Parameters

- K Incremental measuring path with direction (signed): Maximum measuring path for probing. The algebraic sign determines the probing direction.
- RB Circumnavigation direction offset: Distance
- RC Measuring direction offset: Distance for pre-positioning before the second measurement
- AC Nominal value for target position: Absolute touch point coordinate
- EC Nominal width: Coordinate for the second probing position
- BE Tolerance width +/-: Range for the second measurement result in which no compensation is applied
- WE Maximum deviation: Probe twice and monitor the dispersion of the measured values
- F Measuring feed rate: Feed rate for probing. If nothing is entered, the measuring feed rate from the touch probe table is used. If the entered measuring feed rate **F** is higher than the one in the touch probe table, the feed rate is reduced to the value from the touch probe table.
- Q Tool orientation: Orient the touch probe in the programmed probing direction before each probing operation (machine-dependent function)
- P PRINT outputs
  - 0: OFF: Do not display measuring results
  - 1: ON: Display measuring results
- H INPUT instead of measurement
  - 0: Default: Obtain measured values by probing
  - 1: PC test: Simulate probing cycle on the programming station
- AN Log no.: Save measurement results in "TNC:\table\messpro.mep" table (line numbers 0–99; the table can be expanded if necessary)

## Beispiel: G748 Calibrate touch probe via two points

#### . . .

MACHINING

N3 G748 K20 AC10 EC33 Q0 P0 H0



# 5.5 Measuring with touch probe cycles

## Paraxial probing G764

Cycle G764 measures with the programmed axis and displays the measured values on the control screen. The result of the measurement is saved additionally in the variable #i99 (See "Touch probe cycles for automatic operation" on page 457.).

#### Cycle run

From the current position the touch probe moves along the defined measuring axis toward the measuring point. When the stylus touches the workpiece, the measured value is saved and the touch probe is positioned back to the starting point.

The control outputs an error message if the touch probe does not reach any touch point within the defined measuring path.

#### Parameters

- D Measuring axis: Axis in which the measurement is to be made
- K Incremental measuring path with direction (signed): Maximum measuring path for probing. The algebraic sign determines the probing direction.
- V Retraction type
  - O: Without: Only position touch probe back to the starting point if the touch probe was deflected
  - 1: Automatic: Always position touch probe back to the starting point
- O Error evaluation
  - 0: Program: Do not interrupt program run, no error message
  - 1: Automatic: Interrupt program run and output error message if touch probe is not deflected within measuring path
- F Measuring feed rate: Feed rate for probing. If nothing is entered, the measuring feed rate from the touch probe table is used. If the entered measuring feed rate **F** is higher than the one in the touch probe table, the feed rate is reduced to the value from the touch probe table.
- C Tool orientation: Orient the touch probe in the programmed probing direction before each probing operation (machinedependent function)
- P PRINT outputs
  - 0: OFF: Do not display measuring results
  - 1: ON: Display measuring results
- H INPUT instead of measurement
  - 0: Default: Obtain measured values by probing
  - 1: PC test: Simulate probing cycle on the programming station

#### Beispiel: G764 Paraxial probing

MACHINING

N3 G764 D0 K20 V1 O1 Q0 P0 H0

. . .



## Probing in C axis G765

Cycle G765 measures with the C axis and displays the measured values on the control screen. The result of the measurement is saved additionally in the variable #i99 (See "Touch probe cycles for automatic operation" on page 457.).

#### Cycle run

From the current position, the element to be probed is moved toward the touch probe by a rotation of the C axis. When the workpiece touches the stylus, the measured value is saved and the workpiece is returned.

The control outputs an error message if the touch probe does not reach any touch point within the defined measuring path.

#### Parameters

- C Incremental measuring path with direction: Measuring path of the C axis (in degrees), starting from the current position. The algebraic sign determines the probing direction.
- V Retraction type
  - 0: Without: Only position touch probe back to the starting point if the touch probe was deflected
  - 1: Automatic: Always position touch probe back to the starting point
- O Error evaluation
  - 0: Program: Do not interrupt program run, no error message
  - 1: Automatic: Interrupt program run and output error message if touch probe is not deflected within measuring path
- F Measuring feed rate: Feed rate for probing. If nothing is entered, the measuring feed rate from the touch probe table is used. If the entered measuring feed rate **F** is higher than the one in the touch probe table, the feed rate is reduced to the value from the touch probe table.
- Q Tool orientation: Orient the touch probe in the programmed probing direction before each probing operation (machine-dependent function)
- P PRINT outputs
  - 0: OFF: Do not display measuring results
  - 1: ON: Display measuring results
- H INPUT instead of measurement
  - 0: Default: Obtain measured values by probing
  - 1: PC test: Simulate probing cycle on the programming station

#### Beispiel: G765 Probing in C axis

MACHINING

N3 G765 C20 V1 O1 AC0 BD0.2 Q0 P0 H0

. . .



## Probing in two axes G766

Cycle G766 measures the position programmed in the cycle in the **X/Z plane** and displays the measured values on the control screen. In parameter **NF** you can additionally define the variables in which the measurement results should be saved.

#### Cycle run

The touch probe moves from the current position toward the measuring point. When the stylus touches the workpiece, the measured value is saved and the touch probe is positioned back to the starting point.

The control outputs an error message if the touch probe does not reach any touch point within the defined measuring path.

#### Parameters

- Z Target point Z: Z coordinate of measuring point
- X Target point X: X coordinate of measuring point
- V Retraction type
  - O: Without: Only position touch probe back to the starting point if the touch probe was deflected
  - 1: Automatic: Always position touch probe back to the starting point
- O Error evaluation
  - 0: Program: Do not interrupt program run, no error message
  - 1: Automatic: Interrupt program run and output error message if touch probe is not deflected within measuring path
- F Measuring feed rate: Feed rate for probing. If nothing is entered, the measuring feed rate from the touch probe table is used. If the entered measuring feed rate **F** is higher than the one in the touch probe table, the feed rate is reduced to the value from the touch probe table.
- C Tool orientation: Orient the touch probe in the programmed probing direction before each probing operation (machinedependent function)
- P PRINT outputs
  - 0: OFF: Do not display measuring results
  - 1: ON: Display measuring results
- H INPUT instead of measurement
  - 0: Default: Obtain measured values by probing
  - 1: PC test: Simulate probing cycle on the programming station

#### Beispiel: G766 Probing in two axes in X/Z plane

## MACHINING

N3 G766 Z-5 X30 V1 O1 AC0 BD0.2 Q0 P0 H0

. . .

. . . .



## Probing in two axes G768

Cycle G768 measures the position programmed in the cycle in the **Z/Y plane** and displays the measured values on the control screen. In parameter **NF** you can additionally define the variables in which the measurement results should be saved.

#### Cycle run

The touch probe moves from the current position toward the measuring point. When the stylus touches the workpiece, the measured value is saved and the touch probe is positioned back to the starting point.

The control outputs an error message if the touch probe does not reach any touch point within the defined measuring path.

#### Parameters

- Z Target point Z: Z coordinate of measuring point
- Y Target point Y: Y coordinate of measuring point
- V Retraction type
  - 0: Without: Only position touch probe back to the starting point if the touch probe was deflected
  - 1: Automatic: Always position touch probe back to the starting point
- O Error evaluation
  - 0: Program: Do not interrupt program run, no error message
  - 1: Automatic: Interrupt program run and output error message if touch probe is not deflected within measuring path
- F Measuring feed rate: Feed rate for probing. If nothing is entered, the measuring feed rate from the touch probe table is used. If the entered measuring feed rate **F** is higher than the one in the touch probe table, the feed rate is reduced to the value from the touch probe table.
- Q Tool orientation: Orient the touch probe in the programmed probing direction before each probing operation (machine-dependent function)
- NF Result variable no.: Number of the first global variable in which the result is saved (no entry = variable 810). The second measurement result is saved automatically under the next consecutive number.
- P PRINT outputs
  - 0: OFF: Do not display measuring results
  - 1: ON: Display measuring results
- H INPUT instead of measurement
  - 0: Default: Obtain measured values by probing
  - 1: PC test: Simulate probing cycle on the programming station

#### Beispiel: G768 Probing in two axes in Z/Y plane

#### MACHINING

N3 G768 Z-5 Y10 V1 O1 AC0 BD0.2 Q0 P0 H0

• •



## Probing in two axes G769

Cycle G769 measures the position programmed in the cycle in the X/Y plane and displays the measured values on the control screen. In parameter NF you can additionally define the variables in which the measurement results should be saved. .

#### Cycle run

The touch probe moves from the current position toward the measuring point. When the stylus touches the workpiece, the measured value is saved and the touch probe is positioned back to the starting point.

The control outputs an error message if the touch probe does not reach any touch point within the defined measuring path.

#### Parameters

- X Target point X: X coordinate of measuring point
- Y Target point Y: Y coordinate of measuring point
- V Retraction type
  - O: Without: Only position touch probe back to the starting point if the touch probe was deflected
  - 1: Automatic: Always position touch probe back to the starting point
- O Error evaluation
  - 0: Program: Do not interrupt program run, no error message
  - 1: Automatic: Interrupt program run and output error message if touch probe is not deflected within measuring path
- F Measuring feed rate: Feed rate for probing. If nothing is entered, the measuring feed rate from the touch probe table is used. If the entered measuring feed rate **F** is higher than the one in the touch probe table, the feed rate is reduced to the value from the touch probe table.
- Tool orientation: Orient the touch probe in the programmed probing direction before each probing operation (machinedependent function)
- NF Result variable no.: Number of the first global variable in which the result is saved (no entry = variable 810). The second measurement result is saved automatically under the next consecutive number.
- P PRINT outputs

482

- 0: OFF: Do not display measuring results
- 1: ON: Display measuring results
- H INPUT instead of measurement
  - 0: Default: Obtain measured values by probing
  - 1: PC test: Simulate probing cycle on the programming station

#### Beispiel: G769 Probing in two axes in X/Y plane

#### MACHINING

N3 G769 X25 Y10 V1 O1 AC0 BD0.2 Q0 P0 H0

. . .



## 5.6 Search cycles

## Find hole in C face G780

Cycle G780 probes the workpiece face several times with the Z axis. Prior to each probing, the touch probe is shifted by a distance defined in the cycle until a hole is found. Optionally, the cycle determines the mean value by two probing operations in the hole.

If the tolerance value defined in the cycle is exceeded, the cycle saves the measured deviation as zero point shift. The result of the measurement is saved additionally in the variable #i99.

| Result #i99 | Meaning                                                                                               |
|-------------|-------------------------------------------------------------------------------------------------------|
| < 999997    | Result of first measurement                                                                           |
| 999999      | Deviation of probing operations was higher than programmed in Maximum Deviation parameter <b>WE</b> . |

#### Cycle run

From the current position the touch probe moves along the measuring axis **Z** toward the measuring point. When the stylus touches the workpiece, the measured value is saved and the touch probe is positioned back to the starting point. Then the cycle rotates the C axis by the angle defined in the Search Grid parameter **RC** and probes again with the Z axis. This process is repeated until a hole is found. In the hole the cycle performs two probing operations with the C axis, calculates the center of the hole and places the zero point in the C axis.

The control outputs an error message if the touch probe does not reach any touch point within the defined measuring path. If a maximum deviation **WE** was programmed, the measuring point is approached twice and the mean value is saved as result. If the difference of the measurements is greater than the maximum deviation **WE**, the program run is interrupted and an error message is displayed.

#### Parameters

- R Type of zero point shift:
  - 1: Activate table and G152 zero point shift and additionally save in zero point table. The zero-point shift also remains active after the program run.
  - 2: Activate zero point shift with G152 for the further program run. Zero point shift no longer active after program run.
- D Result:
  - 1: Position: Set zero point without determining the hole center. No probing operation in the hole.
  - 2: Object center: Before the zero point is set, determine hole center in two probing operations with the C axis.
- K Incremental measuring path Z (signed): Maximum measuring path for probing. The algebraic sign determines the probing direction.
- C Starting position C: Position of the C axis for the first probing operation

#### Beispiel: Find hole in C face G780

#### MACHINING

N3 G780 R1 D1 K2 C0 RC10 IC20 AC0 BD0.2 Q0 P0 H0



- RC Search grid Ci: Stepping angle of the C axis for the subsequent probing operations
- A Number of points: Maximum number of probing operations
- IC Measuring path C: Measuring path of the C axis (in degrees), starting from the current position. The algebraic sign determines the probing direction.
- AC Nominal value for target position: Absolute coordinate of touch point in degrees
- BD Tolerance +/-: Measurement result range (in degrees) in which no compensation is applied
- KC Compensation offset: Additional compensation value that is applied to the zero point result
- WE Maximum deviation: Probe twice and monitor the dispersion of the measured values
- F Measuring feed rate: Feed rate for probing. If nothing is entered, the measuring feed rate from the touch probe table is used. If the entered measuring feed rate **F** is higher than the one in the touch probe table, the feed rate is reduced to the value from the touch probe table.
- C Tool orientation: Orient the touch probe in the programmed probing direction before each probing operation (machinedependent function)
- NF Result variable no.: Number of the first global variable in which the result is saved (no entry = variable 810). The second measurement result is saved automatically under the next consecutive number.
- P PRINT outputs
  - 0: OFF: Do not display measuring results
  - 1: ON: Display measuring results
- H INPUT instead of measurement
  - 0: Default: Obtain measured values by probing
  - 1: PC test: Simulate probing cycle on the programming station
- AN Log no.: Save measurement results in "TNC:\table\messpro.mep" table (line numbers 0–99; the table can be expanded if necessary)

## Find hole in C lateral surface G781

Cycle G780 probes the lateral surface of a workpiece several times with the X axis. Prior to each probing, the C axis is rotated by a distance defined in the cycle until a hole is found. Optionally, the cycle determines the mean value by two probing operations in the hole.

If the tolerance value defined in the cycle is exceeded, the cycle saves the measured deviation as zero point shift. The result of the measurement is saved additionally in the variable #i99.

| Result #i99 | Meaning                                                                                               |
|-------------|-------------------------------------------------------------------------------------------------------|
| < 999997    | Result of first measurement                                                                           |
| 999999      | Deviation of probing operations was higher than programmed in Maximum Deviation parameter <b>WE</b> . |

#### Cycle run

From the current position the touch probe moves along the measuring axis **X** toward the measuring point. When the stylus touches the workpiece, the measured value is saved and the touch probe is positioned back to the starting point. Then the cycle rotates the C axis by the angle defined in the Search Grid parameter **RC** and probes again with the X axis. This process is repeated until a hole is found. In the hole the cycle performs two probing operations with the C axis, calculates the center of the hole and sets the zero point in the C axis.

The control outputs an error message if the touch probe does not reach any touch point within the defined measuring path. If a maximum deviation **WE** was programmed, the measuring point is approached twice and the mean value is saved as result. If the difference of the measurements is greater than the maximum deviation **WE**, the program run is interrupted and an error message is displayed.

#### Parameters

- R Type of zero point shift:
  - 1: Activate table and G152 zero point shift and additionally save in zero point table. The zero-point shift also remains active after the program run.
  - 2: Activate zero point shift with G152 for the further program run. Zero point shift no longer active after program run.
- D Result:
  - 1: Position: Set zero point without determining the hole center. No probing operation in the hole.
  - 2: Object center: Before the zero point is set, determine hole center in two probing operations with the C axis.
- K Incremental measuring path X (signed): Maximum measuring path for probing. The algebraic sign determines the probing direction.
- C Starting position C: Position of the C axis for the first probing operation
- RC Search grid Ci: Stepping angle of the C axis for the subsequent probing operations
- A Number of points: Maximum number of probing operations

# 5.6 Search cycles

#### Beispiel: G781 Find hole in C face

#### MACHINING

. . .

N3 G781 R1 D1 K2 C0 RC10 IC20 AC0 BD0.2 Q0 P0 H0



- IC Measuring path C: Measuring path of the C axis (in degrees), starting from the current position. The algebraic sign determines the probing direction.
- AC Nominal value for target position: Absolute coordinate of touch point in degrees
- BD Tolerance +/-: Measurement result range (in degrees) in which no compensation is applied
- KC Compensation offset: Additional compensation value that is applied to the zero point result
- WE Maximum deviation: Probe twice and monitor the dispersion of the measured values
- F Measuring feed rate: Feed rate for probing. If nothing is entered, the measuring feed rate from the touch probe table is used. If the entered measuring feed rate F is higher than the one in the touch probe table, the feed rate is reduced to the value from the touch probe table.
- C Tool orientation: Orient the touch probe in the programmed probing direction before each probing operation (machinedependent function)
- P PRINT outputs
  - 0: OFF: Do not display measuring results
  - 1: ON: Display measuring results
- H INPUT instead of measurement
  - 0: Default: Obtain measured values by probing
  - 1: PC test: Simulate probing cycle on the programming station
- AN Log no.: Save measurement results in "TNC:\table\messpro.mep" table (line numbers 0–99; the table can be expanded if necessary)

## Find stud in C face G782

Cycle G782 probes the workpiece face several times with the Z axis. Prior to each probing, the C axis is rotated by a distance defined in the cycle until a stud is found. Optionally, the cycle determines the mean value by two probing operations on the stud diameter.

If the tolerance value defined in the cycle is exceeded, the cycle saves the measured deviation as zero point shift. The result of the measurement is saved additionally in the variable #i99.

| Result #i99 | Meaning                                                                                               |
|-------------|-------------------------------------------------------------------------------------------------------|
| < 999997    | Result of first measurement                                                                           |
| 999999      | Deviation of probing operations was higher than programmed in Maximum Deviation parameter <b>WE</b> . |

#### Cycle run

From the current position the touch probe moves along the measuring axis **X** toward the measuring point. When the stylus touches the workpiece, the measured value is saved and the touch probe is positioned back to the starting point. Then the cycle rotates the C axis by the angle defined in the Search Grid parameter **RC** and probes again with the X axis. This process is repeated until a stud is found. The cycle performs two probing operations on the stud diameter with the C axis, calculates the center of the hole and sets the zero point in the C axis.

The control outputs an error message if the touch probe does not reach any touch point within the defined measuring path. If a maximum deviation **WE** was programmed, the measuring point is approached twice and the mean value is saved as result. If the difference of the measurements is greater than the maximum deviation **WE**, the program run is interrupted and an error message is displayed.

#### Parameters

- R Type of zero point shift:
  - 1: Activate table and G152 zero point shift and additionally save in zero point table. The zero-point shift also remains active after the program run.
  - 2: Activate zero point shift with G152 for the further program run. Zero point shift no longer active after program run.
- D Result:
  - 1: Position: Set zero point without determining the stud center. The stud diameter is not probed.
  - 2: Object center: Before the zero point is set, determine stud center in two probing operations with the C axis.
- K Incremental measuring path X (signed): Maximum measuring path for probing. The algebraic sign determines the probing direction.
- C Starting position C: Position of the C axis for the first probing operation
- RC Search grid Ci: Stepping angle of the C axis for the subsequent probing operations

#### Beispiel: G782 Find stud in C face

MACHINING

N3 G782 R1 D1 K2 C0 RC10 IC20 AC0 BD0.2 Q0 P0 H0

. . .

. . .

i

- A Number of points: Maximum number of probing operations
- IC Measuring path C: Measuring path of the C axis (in degrees), starting from the current position. The algebraic sign determines the probing direction.
- AC Nominal value for target position: Absolute coordinate of touch point in degrees
- BD Tolerance +/-: Measurement result range (in degrees) in which no compensation is applied
- KC Compensation offset: Additional compensation value that is applied to the zero point result
- WE Maximum deviation: Probe twice and monitor the dispersion of the measured values
- F Measuring feed rate: Feed rate for probing. If nothing is entered, the measuring feed rate from the touch probe table is used. If the entered measuring feed rate **F** is higher than the one in the touch probe table, the feed rate is reduced to the value from the touch probe table.
- C Tool orientation: Orient the touch probe in the programmed probing direction before each probing operation (machinedependent function)
- P PRINT outputs
  - 0: OFF: Do not display measuring results
  - 1: ON: Display measuring results
- H INPUT instead of measurement
  - 0: Default: Obtain measured values by probing
  - 1: PC test: Simulate probing cycle on the programming station
- AN Log no.: Save measurement results in "TNC:\table\messpro.mep" table (line numbers 0–99; the table can be expanded if necessary)

## Find stud in C lateral surface G783

Cycle G783 probes the workpiece face several times with the X axis. Prior to each probing, the touch probe is shifted by a distance defined in the cycle until a stud is found. Optionally, the cycle determines the mean value by two probing operations on the stud diameter.

If the tolerance value defined in the cycle is exceeded, the cycle saves the measured deviation as zero point shift. The result of the measurement is saved additionally in the variable #i99.

| Result #i99 | Meaning                                                                                               |
|-------------|-------------------------------------------------------------------------------------------------------|
| < 999997    | Result of first measurement                                                                           |
| 999999      | Deviation of probing operations was higher than programmed in Maximum Deviation parameter <b>WE</b> . |

#### Cycle run

From the current position the touch probe moves along the measuring axis **Z** toward the measuring point. When the stylus touches the workpiece, the measured value is saved and the touch probe is positioned back to the starting point. Then the cycle rotates the C axis by the angle defined in the Search Grid parameter **RC** and probes again with the Z axis. This process is repeated until a stud is found. The cycle performs two probing operations on the stud diameter with the C axis, calculates the center of the hole and sets the zero point in the C axis.

The control outputs an error message if the touch probe does not reach any touch point within the defined measuring path. If a maximum deviation **WE** was programmed, the measuring point is approached twice and the mean value is saved as result. If the difference of the measurements is greater than the maximum deviation **WE**, the program run is interrupted and an error message is displayed.

5.6 Search cycles

#### Beispiel: G783 Find stud in C lateral surface

MACHINING

N3 G783 R1 D1 K2 C0 RC10 IC20 AC0 BD0.2 Q0 P0 H0

. . .

- R Type of zero point shift:
  - 1: Activate table and G152 zero point shift and additionally save in zero point table. The zero-point shift also remains active after the program run.
  - 2: Activate zero point shift with G152 for the further program run. Zero point shift no longer active after program run.
- D Result:
  - 1: Position: Set zero point without determining the stud center. The stud diameter is not probed.
  - 2: Object center: Before the zero point is set, determine stud center in two probing operations with the C axis.
- K Incremental measuring path Z (signed): Maximum measuring path for probing. The algebraic sign determines the probing direction.
- C Starting position C: Position of the C axis for the first probing operation
- RC Search grid Ci: Stepping angle of the C axis for the subsequent probing operations
- A Number of points: Maximum number of probing operations
- IC Measuring path C: Measuring path of the C axis (in degrees), starting from the current position. The algebraic sign determines the probing direction.
- AC Nominal value for target position: Absolute coordinate of touch point in degrees
- BD Tolerance +/-: Measurement result range (in degrees) in which no compensation is applied
- KC Compensation offset: Additional compensation value that is applied to the zero point result
- WE Maximum deviation: Probe twice and monitor the dispersion of the measured values
- F Measuring feed rate: Feed rate for probing. If nothing is entered, the measuring feed rate from the touch probe table is used. If the entered measuring feed rate **F** is higher than the one in the touch probe table, the feed rate is reduced to the value from the touch probe table.
- Q Tool orientation: Orient the touch probe in the programmed probing direction before each probing operation (machine-dependent function)
- P PRINT outputs
  - 0: OFF: Do not display measuring results
  - 1: ON: Display measuring results
- H INPUT instead of measurement
  - 0: Default: Obtain measured values by probing
  - 1: PC test: Simulate probing cycle on the programming station
- AN Log no.: Save measurement results in "TNC:\table\messpro.mep" table (line numbers 0–99; the table can be expanded if necessary)

## 5.7 Circular measurement

#### **Circular measurement G785**

Cycle G785 determines the circle center and diameter by probing three times in the programmed plane and shows the measured values on the control screen. The result of the measurement is saved additionally in the variable #i99 (See "Touch probe cycles for automatic operation" on page 457.).

#### Cycle run

From the current position the touch probe moves in the defined measuring plane toward the measuring point. When the stylus touches the workpiece, the measured value is saved and the touch probe is positioned back to the starting point. Another two probing operations are carried out with the defined stepping angle. If a starting diameter **D** was programmed, the cycle positions the touch probe on a circular path before the respective measuring process.

The control outputs an error message if the touch probe does not reach any touch point within the defined measuring path. If a maximum deviation **WE** was programmed, the measuring point is approached twice and the mean value is saved as result. If the difference of the measurements is greater than the maximum deviation **WE**, the program run is interrupted and an error message is displayed.

#### Parameters

- R Type of zero point shift:
  - 0: X/Y plane G17: Probe circle in X/Y plane
  - 1: Z/X plane G18: Probe circle in Z/X plane
  - 2: Y/Z plane G19: Probe circle in Y/Z plane
- BR Inside/outside:
  - 0: Inside: Probe inside diameter
  - 1: Outside: Probe outside diameter
- K Incremental measuring path (signed): Maximum measuring path for probing. The algebraic sign determines the probing direction.
- C Angle of 1st measurement: Angle for the first probing operation
- RC Incremental angle: Stepping angle for the subsequent probing operations
- D Starting diameter: Diameter on which the touch probe is prepositioned before the measurements.
- WB Position in infeed direction: Measuring height to which the touch probe is positioned before the measuring process. No input: The circle is probed from the current position.
- I Circle center in axis 1: Nominal position of the circle center in first axis
- J Circle center in axis 2: Nominal position of the circle center in second axis
- WE Maximum deviation: Probe twice and monitor the dispersion of the measured values

#### Beispiel: G785 Circular measurement

MACHINING

N3 G785 R0 BR0 K2 C0 RC60 I0 J0 Q0 P0 H0



#### **Parameters** F Measurir

- Measuring feed rate: Feed rate for probing. If nothing is entered, the measuring feed rate from the touch probe table is used. If the entered measuring feed rate **F** is higher than the one in the touch probe table, the feed rate is reduced to the value from the touch probe table.
- C Tool orientation: Orient the touch probe in the programmed probing direction before each probing operation (machinedependent function)
- NF Result variable no.: Number of the first global variable in which the result is saved (no entry = variable 810). The second measurement result is saved automatically under the next consecutive number.
- P PRINT outputs
  - 0: OFF: Do not display measuring results
  - 1: ON: Display measuring results
- H INPUT instead of measurement
  - 0: Default: Obtain measured values by probing
  - 1: PC test: Simulate probing cycle on the programming station
- AN Log no.: Save measurement results in "TNC:\table\messpro.mep" table (line numbers 0–99; the table can be expanded if necessary)

## **Determine pitch circle G786**

Cycle G786 determines the center and diameter of a pitch circle by measuring three holes and shows the measured values on the control screen. The result of the measurement is saved additionally in the variable #i99 (See "Touch probe cycles for automatic operation" on page 457.).

#### Cycle run

From the current position the touch probe moves in the defined measuring plane toward the measuring point. When the stylus touches the workpiece, the measured value is saved and the touch probe is positioned back to the starting point. Another two probing operations are carried out with the defined stepping angle. If a starting diameter **D** was programmed, the cycle positions the touch probe on a circular path before the respective measuring process.

The control outputs an error message if the touch probe does not reach any touch point within the defined measuring path. If a maximum deviation **WE** was programmed, the measuring point is approached twice and the mean value is saved as result. If the difference of the measurements is greater than the maximum deviation **WE**, the program run is interrupted and an error message is displayed.

#### Parameters

- R Type of zero point shift:
  - 0: X/Y plane G17: Probe circle in X/Y plane
  - 1: Z/X plane G18: Probe circle in Z/X plane
  - 2: Y/Z plane G19: Probe circle in Y/Z plane
- K Incremental measuring path: Maximum measuring path for measurement in the holes.
- C Angle of 1st hole: Angle for the first probing operation
- AC Angle of 2nd hole: Angle for the second probing operation
- RC Angle of 3rd hole: Angle for the third probing operation
- WB Position in infeed direction: Measuring height to which the touch probe is positioned before the measuring process. No input: The hole is probed from the current position.
- I Pitch circle center in axis 1: Nominal position of the pitch circle center in first axis
- J Pitch circle center in axis 2: Nominal position of the pitch circle center in second axis
- D Nominal diameter: Diameter on which the touch probe is prepositioned before the measurements.
- WS Max. diameter of pitch circle
- WC Min. diameter of pitch circle
- BD Tolerance for center in first axis
- BE Tolerance for center in second axis
- WE Maximum deviation: Probe twice and monitor the dispersion of the measured values

#### Beispiel: G786 Determine pitch circle

#### MACHINING

N3 G786 R0 K8 I0 J0 D50 WS50.1 WC49.9 BD0.1 BE0.1 P0 H0

. . .



#### **Parameters** F Measurir

- Measuring feed rate: Feed rate for probing. If nothing is entered, the measuring feed rate from the touch probe table is used. If the entered measuring feed rate **F** is higher than the one in the touch probe table, the feed rate is reduced to the value from the touch probe table.
- C Tool orientation: Orient the touch probe in the programmed probing direction before each probing operation (machinedependent function)
- NF Result variable no.: Number of the first global variable in which the result is saved (no entry = variable 810). The second measurement result is saved automatically under the next consecutive number.
- P PRINT outputs
  - 0: OFF: Do not display measuring results
  - 1: ON: Display measuring results
- H INPUT instead of measurement
  - 0: Default: Obtain measured values by probing
  - 1: PC test: Simulate probing cycle on the programming station
- AN Log no.: Save measurement results in "TNC:\table\messpro.mep" table (line numbers 0–99; the table can be expanded if necessary)

## 5.8 Angular measurement

## Angular measurement G787

Cycle G787 probes twice in the programmed direction and computes the angle. If the tolerance value defined in the cycle is exceeded, the cycle saves the measured deviation for a subsequent misalignment compensation. Program Cycle G788 next in order to activate the misalignment compensation. The result of the measurement is saved additionally in the variable #i99 (See "Touch probe cycles for automatic operation" on page 457.).

#### Cycle run

From the current position the touch probe moves along the defined measuring axis toward the measuring point. When the stylus touches the workpiece, the measured value is saved and the touch probe is retracted. Then the touch probe is pre-positioned for the second measurement and the workpiece is probed.

The control outputs an error message if the touch probe does not reach any touch point within the defined measuring path. If a maximum deviation **WE** was programmed, the measuring point is approached twice and the mean value is saved as result. If the difference of the measurements is greater than the maximum deviation **WE**, the program run is interrupted and an error message is displayed.

#### Parameters

#### R Evaluation:

- 1: Prepare tool compensation and misalignment compensation:
- 2: Prepare misalignment compensation
- 3: Angle output:
- D Directions:
  - 0: X measurement, Z offset
  - 1: Y measurement Z offset
  - 2: Z measurement, X offset
  - 3: Y measurement, X offset
  - 4: Z measurement, Y offset
  - 5: X measurement, Y offset
- K Incremental measuring path (signed): Maximum measuring path for probing. The algebraic sign determines the probing direction.
- WS Position of first measuring point
- WC Position of second measuring point
- AC Nominal angle of measured surface
- BE Angle tolerance +/-: Measurement result range (in degrees) in which no compensation is applied
- RC Target position of first measurement: Nominal value of first measuring point
- BD Tolerance of first measurement +/-: Measurement result range in which no compensation is applied

#### **Beispiel: G787 Angular measurement**

MACHINING

N3 G787 R1 D0 BR0 K2 WS-2 WC15 AC170 BE1 RC0 BD0.2 WT3 Q0 P0 H0



- WT Compensation number T or G149, first measured edge:
  - T: Tool at turret position T to compensate the difference to the nominal value
  - **G149**: Additive compensation D9xx to compensate the difference to the nominal value (only possible with compensation type  $\mathbf{R} = 1$ )
- FP Maximum permissible compensation
- WE Maximum deviation: Probe twice and monitor the dispersion of the measured values
- F Measuring feed rate: Feed rate for probing. If nothing is entered, the measuring feed rate from the touch probe table is used. If the entered measuring feed rate **F** is higher than the one in the touch probe table, the feed rate is reduced to the value from the touch probe table.
- Q Tool orientation: Orient the touch probe in the programmed probing direction before each probing operation (machine-dependent function)
- NF Result variable no.: Number of the first global variable in which the result is saved (no entry = variable 810). The second measurement result is saved automatically under the next consecutive number.
- P PRINT outputs
  - 0: OFF: Do not display measuring results
  - 1: ON: Display measuring results
- H INPUT instead of measurement
  - 0: Default: Obtain measured values by probing
  - 1: PC test: Simulate probing cycle on the programming station
- AN Log no.: Save measurement results in "TNC:\table\messpro.mep" table (line numbers 0–99; the table can be expanded if necessary)

# Misalignment compensation after angle measurement G788

Cycle G788 activates a misalignment compensation determined with Cycle G787 Angle Measurement.

#### Parameters

- NF Result variable no.: Number of the first global variable in which the result is saved (no entry = variable 810). The second measurement result is saved automatically under the next consecutive number.
- P Compensation
  - 0: OFF: Do not perform misalignment compensation
  - 1: ON: Perform misalignment compensation

Beispiel: G788 Misalignment compensation after angle measurement

... MACHINING

N3 G788 NF1 P0

...



#### 5.9 In-process measurement

## Measure workpieces (option)

In-process measurement is measurement at the workpiece with a touch probe located in a tool holder of the machine. In the tool list, enter your touch probe as a new tool. Use the tool type "length gauge." The following cycles for "in-process measurement" are basic cycles for probing functions that you can use to program individually adapted probing sequences.

## Switch on measurement G910

G910 activates the selected touch probe.

#### **Parameters**

- Measuring direction (no function) Н V
  - Type of measurement
    - 0: Touch probe (for workpiece measurement)
    - 1: Table-mounted touch probe (for tool measurement)

#### **Beispiel: In-process measurement**

| N1 G0 X105 Z-20                         |
|-----------------------------------------|
| N2 G94 F500                             |
| N3 G910 H0 V0                           |
| N4 G911 V0                              |
| N4 G1 Xi-10                             |
| N5 G914                                 |
| N4 G912 Q1                              |
| N4 G913                                 |
| N4 G0 X115                              |
| N4 #I1=#a9(X,0)                         |
| N4 IF NDEF(#I1)                         |
| N4 THEN                                 |
| N4 PRINT("Probe not reached")           |
| N4 ELSE                                 |
| N4 PRINT ("Result of measurement:",#I1) |
| N4 ENDIF                                |
|                                         |

## Measuring path monitoring G911

G911 activates the measuring path monitoring. Then only a single feed path is permissible.

#### Parameters ∨ ■ 0:

- O: Axes stay stationary with deflected touch probe
  - 1: Axes automatically retract after deflection of the touch probe

## Measured value capture G912

G912 puts the positions at which the touch probe was deflected into the result variables.

#### Parameters

- Q Error evaluation when the touch probe is not reached
  - 0: Error message of NC, program stops
  - 1: Error evaluation in the NC program, measuring results="NDEF"

The measurement results are available in the following variables:

#a9(axis,channel) Axis=axis name Channel=channel number, 0=current channel

#### End in-process measuring G913

G913 ends the measuring process.

## Switch off measuring-path monitoring G914

G914 deactivates the measuring-path monitoring.

Beispiel: Measurement results:

| ••••                                         |
|----------------------------------------------|
| N1 #I1=#a9(X,0) [X value of current channel] |
| N2 #I2=#a9(Z,1) [Z value of channel 1 ]      |
| N3 #I3=#a9(Y,0) [Y value of current channel] |
| N4 #I4=#a9(C,0) [C value of current channel] |
|                                              |

## In-process measurement example: Measuring and compensating workpieces

The Control provides subprograms for the measurement of workpieces:

- measure\_pos.ncs (German dialog texts)
- measure\_pos\_e.ncs (English dialog texts)

The programs require a touch probe as a tool. Beginning from the current position or the defined starting position, the Control moves along a measuring path in the entered axis direction. At the end it returns again to the previous position. The result of measurement can be included in error compensation.

The following subprograms are used:

- measure\_pos\_move.ncs
- \_Print\_txt\_lang.ncs

#### Parameters

- LA Measurement starting point in X (diameter value)—no input, current position.
- LB Measurement starting point in Z (no input = current position).
- LC Type of approach to measurement starting point
  - 0: Diagonal
  - 1: First X, then Z
  - 2: First Z, then X
- LD Measuring axis
  - 0: X axis
  - 1: Z axis
  - 2: Y axis
- LE Incremental measurement path. The algebraic sign defines the direction of traverse.
- LF Measuring feed rate in mm/min—no input, the measuring feed rate from the touch probe table is used.
- LH Nominal value of the target position
- LI Tolerance +/-. If the measured deviation lies within this tolerance, the entered compensation value is not changed.
- LJ 1: The measurement result is output as PRINT.
- LK Number of the compensation value to be changed.
  - 1-xx Turret pocket number of the tool to be compensated
  - 901-916 Additive compensation
  - Current tool number for touch probe calibration
- LO Number of measurements:
  - >0: The measurements are evenly distributed on the circumference with M19.
  - <0: The measurements are made at the same position.</p>

- LP Maximum permissible difference between the measurement results at a position. The program stops if the limit is violated.
- LR Maximum permissible compensation value, <10 mm
- LS 1: Program runs on the PC. Measurement results are interrogated through INPUT. For test purposes.

#### In-process measurement example: Measuring and compensating workpieces (measure\_pos\_move.ncs)

For the program "measure\_pos\_move.ncs" you have to use a touch probe as tool. The control moves the touch probe from the actual position in the given axis direction. After reaching the contact position, it returns again to the previous position. The measurement result can then be used again.

#### Parameters

- LA Measuring axis:
  - 0: X axis
  - 1: Z axis
  - 2: Y axis
  - 3: C axis
- LB Incremental measurement path. The algebraic sign defines the direction of traverse.
- LC Measuring feed rate in mm/min
- LD Retraction type
  - 0: Return with G0 to starting point
  - 1: Return automatically to starting point
- LO Error response from missing stylus deflection:
  - 0: A PRINT output follows and the program does not stop. A further response in the program is possible.
  - 1: The programs stops with an NC error message.
- LF 1: The measurement result is output as PRINT.
- LS 1: Program runs on the PC. Measurement results are interrogated through INPUT. For test purposes.



5.9 In-proce<mark>ss m</mark>easurement

i



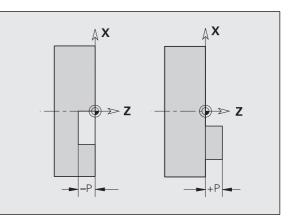


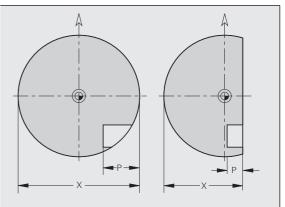
DIN programming for the Y axis

## 6.1 Y-axis contours – Fundamentals

## **Position of milling contours**

Define the reference plane or the reference diameter in the section code. Specify the depth and position of a milling contour (pocket, island) in the contour definition:


- With **depth P** programmed in the previous G308 cycle
- Alternatively on figures: Cycle parameter depth P


The algebraic sign of "P" defines the position of the milling contour:

■ P<0: Pocket

■ P>0: Island

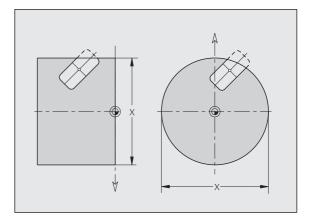
| Position of milling<br>Section | contour<br>P | Surface | Milling floor |
|--------------------------------|--------------|---------|---------------|
| FACE                           | P<0          | Z       | Z+P           |
|                                | P>0          | Z+P     | Z             |
| REAR                           | P<0          | Z       | Z–P           |
|                                | P>0          | Z–P     | Z             |
| LATERAL                        | P<0          | Х       | X+(P*2)       |
|                                | P>0          | X+(P*2) | Х             |





#### X: Reference diameter from the section code

Z: Reference plane from the section code


P: Depth from G308 or from the figure definition



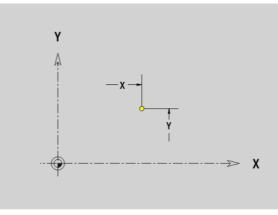
The area milling cycles mill the surface specified in the contour definition. **Islands** within this surface are not taken into consideration.

## **Cutting limit**

If parts of the milling contour lie outside of the turning contour, you must limit the machining area with the **area diameter X** / **reference diameter X** (parameters of the section code or of the figure definition).






## 6.2 Contours in the XY plane

### Starting point of contour in XY plane G170-Geo

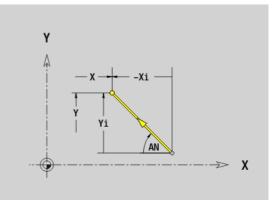
G170 defines the starting point of a contour in the XY plane.

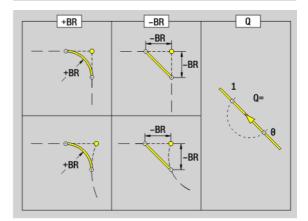
### Parameters

- X Starting point of contour (radius)
- Y Starting point of contour
- PZ Starting point (polar radius)
- W Starting point (polar angle)



### Line segment in XY plane G171-Geo


G171 defines a line segment in a contour of the XY plane.


### Parameters

- X End point (radius)
- Y End point
- AN Angle to X axis (for direction of angle, see help graphic)
- Q Point of intersection. End point if the line segment intersects a circular arc (default: 0):
  - 0: Near point of intersection
  - 1: Far point of intersection
- BR Chamfer/rounding. Defines the transition to the next contour element. When entering a chamfer/rounding, program the theoretical end point.
  - No input: Tangential transition
  - BR=0: No tangential transition
  - BR>0: Rounding radius
  - BR<0: Width of chamfer</p>
- PZ End point (polar radius; reference: workpiece zero point)
- W End point (polar angle; reference: workpiece zero point)
- AR Angle (AR corresponds to AN)
- R Length of line

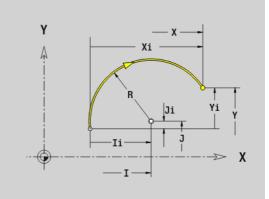
### Programming

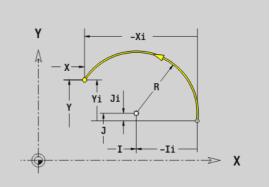
- **X, Y:** Absolute, incremental, modal or "?"
- ANI: Angle to the subsequent element
- ARi: Angle to the previous element

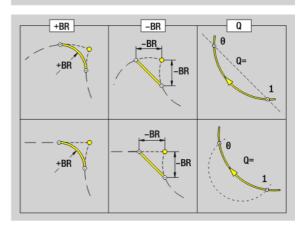




### Circular arc in XY plane G172-Geo/G173-Geo


G172/G173 defines a circular arc in a contour of the XY plane. Direction of rotation: See help graphic


### Parameters


- X End point (radius)
- Y End point
- R Radius
- I Center in X direction (radius)
- J Center in Y direction
  - Point of intersection. End point if the circular arc intersects a line segment or another circular arc (default: 0):
    - 0: Near point of intersection
    - 1: Far point of intersection
- BR Chamfer/rounding. Defines the transition to the next contour element. When entering a chamfer/rounding, program the theoretical end point.
  - No input: Tangential transition
  - BR=0: No tangential transition
  - BR>0: Rounding radius
  - BR<0: Width of chamfer
- PZ End point (polar radius; reference: workpiece zero point)
- W End point (polar angle; reference: workpiece zero point)
- PM Center point (polar radius; reference: workpiece zero point)
- WM Center point (polar angle; reference: workpiece zero point)
- AR Starting angle (tangential angle to rotary axis)
- AN End angle (tangential angle to rotary axis)

### Programming

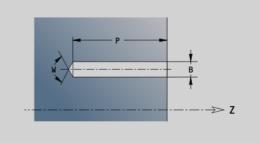
- **X, Y:** Absolute, incremental, modal or "?"
- I, J: Absolute or incremental
- **PZ, W, PM, WM:** Absolute or incremental
- **ARi:** Angle to the previous element
- **ANI:** Angle to the subsequent element
- End point must not be the starting point (no full circle).

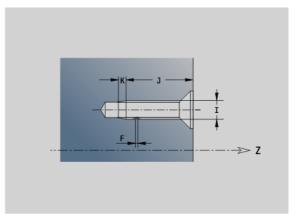







Q


### Hole in XY plane G370-Geo

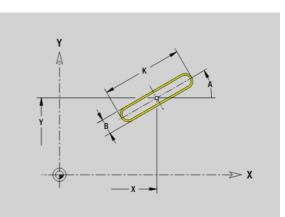

G370 defines a hole with countersinking and thread in the XY plane.

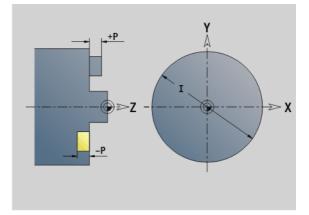
### Parameters

- X Center of hole (radius)
- Y Center of hole
- B Hole diameter
- P Depth of hole (excluding point)
- W Point angle (default: 180°)
- R Sinking diameter
- U Sinking depth
- E Sinking angle
- I Thread diameter
- J Thread depth
- K Start of thread (runout length)
- F Thread pitch
- V Left-hand or right-hand thread (default: 0)
  - 0: Right-hand thread
  - 1: Left-hand thread
- A Angle to Z axis. Inclination of the hole
  - Front face (range: –90° < A < 90°; default: 0°)
  - Rear face (range: 90° < A < 270°; default: 180°)
- O Centering diameter









### Linear slot in XY plane G371-Geo

G371 defines the contour of a linear slot in the XY plane.

### Parameters

- X Center of slot (radius)
- Y Center of slot
- K Slot length
- B Slot width
- A Position angle (reference: positive X axis; default: 0°)P Depth/height (default: "P" from G308)
  - P<0: Pocket
  - P>0: Island
  - Limit diameter (as cutting limit)
    - No input: "X" from section code
    - "I" overwrites "X" from section code

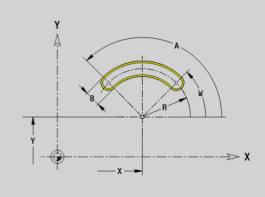


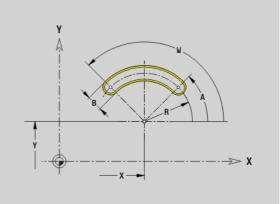


# 6.2 Contours in the XY plane

### Circular slot in XY plane G372-Geo/G373-Geo

G372/G373 defines a circular slot in the XY plane.


- G372: Circular slot clockwise
- G373: Circular slot counterclockwise

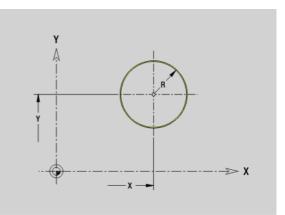

### Parameters

- X Center of slot curvature (radius)
- Y Center of slot curvature
- R Curvature radius (reference: center point path of the slot)
- A Starting angle (reference: positive X axis; default: 0°)
- W End angle (reference: positive X axis; default: 0°)
- B Slot width

L

- P Depth/height (default: "P" from G308)
  - P<0: Pocket
  - P>0: Island
  - Limit diameter (as cutting limit)
    - No input: "X" from section code
    - "I" overwrites "X" from section code






### Full circle in XY plane G374-Geo

G374 defines a full circle in the XY plane.

### Parameters

- X Circle center (radius)
- Y Circle center
- R Circle radius
- P Depth/height (default: "P" from G308)
  - P<0: Pocket
  - P>0: Island
- I Limit diameter (as cutting limit)
  - No input: "X" from section code
  - "I" overwrites "X" from section code





### Rectangle in XY plane G375-Geo

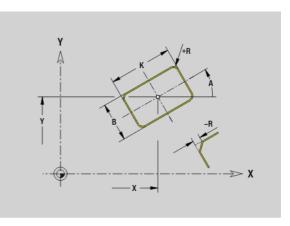
G375 defines a rectangle in the XY plane.

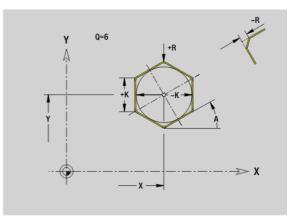
### Parameters

- X Center of rectangle (radius)
- Y Center of rectangle
- A Position angle (reference: positive X axis; default: 0°)
- K Length of rectangle
- B Width of rectangle
- R Chamfer/rounding (default: 0)
  - R>0: Radius of rounding arc
  - R<0: Chamfer width
- P Depth/height (default: "P" from G308)
  - P<0: Pocket
  - P>0: Island
  - Limit diameter (as cutting limit)
  - No input: "X" from section code
  - "I" overwrites "X" from section code

### Eccentric polygon in XY plane G377-Geo

G377 defines the contour of an eccentric polygon in the XY plane.


### Parameters


I

- X Center point of polygon (radius)
- Y Center point of polygon
- Q Number of corners (Q >= 3)
- A Position angle (reference: positive X axis; default: 0°)
- K Edge length / width across flats

K>0: Edge length

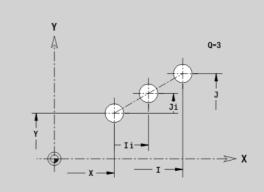
- K<0: Width across flats (inside diameter)</p>
- R Chamfer/rounding—default: 0
  - R>0: Radius of rounding arc
  - R<0: Chamfer width
- P Depth/height (default: "P" from G308)
  - P<0: Pocket
  - P>0: Island
- I Limit diameter (as cutting limit)
  - No input: "X" from section code
  - "I" overwrites "X" from section code

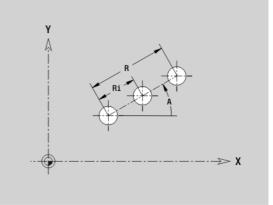




# 6.2 Contours in the XY plane

### Linear pattern in XY plane G471-Geo


G471 defines a linear pattern in the XY plane. G471 is effective for the hole or figure defined in the following block (G370 to G375, G377).


### Parameters

- Q Number of figures
- X 1st point of pattern (radius)
- Y 1st point of pattern
- I End point of pattern (X direction; radius)
- J End point of pattern (Y direction)
- li Distance in X direction between two figures
- Ji Distance in Y direction between two figures
- A Position angle of longitudinal axis of pattern (reference: positive X axis)
- R Length (overall length of pattern)
- Ri Pattern distance (distance between two figures)

### **Programming notes**

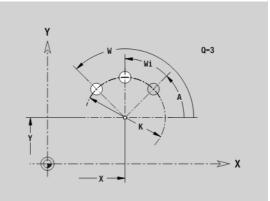
- Program the hole/figure in the following block without a center.
- The milling cycle (MACHINING section) calls the hole/ figure in the following block—not the pattern definition.

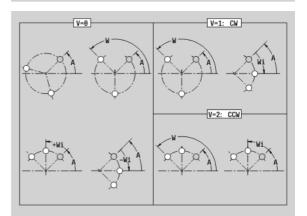


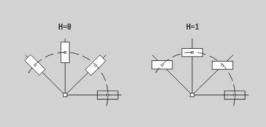


### Circular pattern in XY plane G472-Geo

G472 defines a circular pattern in the XY plane. G472 is effective for the figure defined in the following block (G370 to G375, G377).


### Parameters


- Q Number of figures
- K Diameter (pattern diameter)
- A Starting angle—position of the first figure (reference: positive X axis; default: 0°)
- W End angle—position of the last figure (reference: positive X axis; default: 360°)
- Wi Angle between two figures
- V Direction—orientation (default: 0)
  - V=0, without W: Figures are arranged on a full circle
  - $\blacksquare$  V=0, with W: Figures are arranged on the longer circular arc
  - V=0, with Wi: The algebraic sign of Wi defines the direction (Wi<0: clockwise)</p>
  - V=1, with W: Clockwise
  - V=1, with Wi: Clockwise (algebraic sign of Wi has no effect)
  - V=2, with W: Counterclockwise
  - V=2, with Wi: Counterclockwise (algebraic sign of Wi has no effect)
- X Center of pattern (radius)
- Y Center of pattern
- H Position of the figures (default: 0)
  - O: Normal position—the figures are rotated about the circle center (rotation)
  - 1: Original position—the position of the figures relative to the coordinate system remains unchanged (translation)




Program the hole/figure in the following block without a center. Exception: **circular slot**.

The milling cycle (MACHINING section) calls the hole/ figure in the following block—not the pattern definition.







# 6.2 Contours in the XY plane

### Single surface in XY plane G376-Geo

G376 defines a surface in the XY plane.

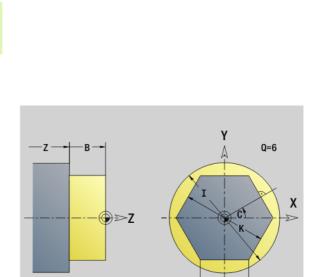
### Parameters

- Z Reference edge (default: "Z" from section code)
- K Residual depth
- Ki Depth
- B Width (reference: reference edge Z)
  - B<0: Surface in negative Z direction
  - B>0: Surface in positive Z direction
- I Limit diameter (as cutting limit and as reference for K/Ki)
  - No input: "X" from section code
  - "I" overwrites "X" from section code
- C Spindle angle of surface normal (default: "C" from section code)



Whether the surface lies on the front face or rear side has no effect on the evaluation of the algebraic sign for "width B."

### Centric polygon in XY plane G477-Geo


G477 defines polygonal surfaces in the XY plane.

### Parameters

- Z Reference edge (default: "Z" from section code)
- K Width across flats (inscribed circle diameter)
- Ki Edge length
- B Width (reference: reference edge Z)
  - B<0: Surface in negative Z direction
  - B>0: Surface in positive Z direction
- C Spindle angle of surface normal (default: "C" from section code)
- Q Number of sides  $(Q \ge 2)$
- I Limit diameter (as cutting limit)
  - No input: "X" from section code
  - "I" overwrites "X" from section code



Whether the surface lies on the front face or rear side has no effect on the evaluation of the algebraic sign for "width B."



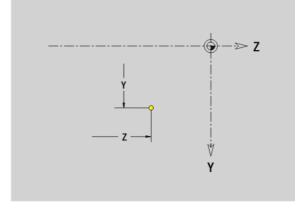
Ki-

γ

В

Ζ

i


## 6.3 Contours in the YZ plane

### Starting point of contour in YZ plane G180-Geo

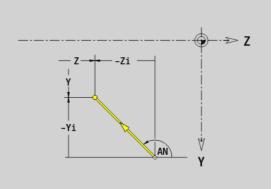
G180 defines the starting point of a contour in the YZ plane.

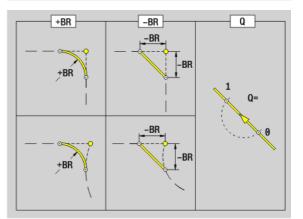
### Parameters

- Y Starting point of contour
- Z Starting point of contour
- PZ Starting point of contour (polar radius)
- W Starting point of contour (polar angle)



### Line segment in YZ plane G181-Geo


G181 defines a line segment in a contour of the YZ plane.


### Parameters

- Y End point
- Z End point
- AN Angle to positive Z axis
- Q Point of intersection. End point if the line segment intersects a circular arc (default: 0):
  - 0: Near point of intersection
  - 1: Far point of intersection
- BR Chamfer/rounding. Defines the transition to the next contour element. When entering a chamfer/rounding, program the theoretical end point.
  - No input: Tangential transition
  - BR=0: No tangential transition
  - BR>0: Rounding radius
  - BR<0: Width of chamfer</p>
- PZ End point (polar radius; reference: workpiece zero point)
- W End point (polar angle; reference: workpiece zero point)
- AR Angle to positive Z axis (AR corresponds to AN)
- R Length of line

### Programming

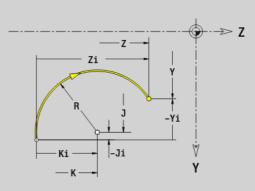
- **Y, Z:** Absolute, incremental, modal or "?"
- **ANI:** Angle to the subsequent element
- **ARi:** Angle to the previous element

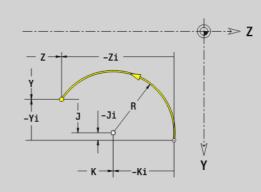


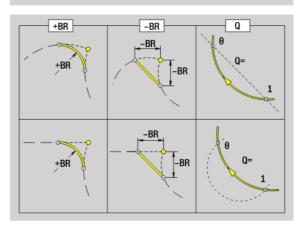


# 6.3 Contours in the YZ plane

### Circular arc in YZ plane G182-Geo/G183-Geo


G182/G183 defines a circular arc in a contour of the YZ plane. Direction of rotation: See help graphic


### Parameters

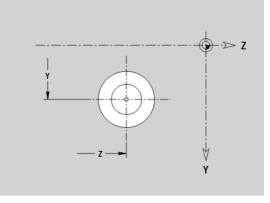

- Y End point (radius)
- Z End point
- R Radius
- J Center (Y direction)
- K Center (Z direction)
- Q Point of intersection. End point if the circular arc intersects a line segment or another circular arc (default: 0):
  - 0: Near point of intersection
  - 1: Far point of intersection
- BR Chamfer/rounding. Defines the transition to the next contour element. When entering a chamfer/rounding, program the theoretical end point.
  - No input: Tangential transition
  - BR=0: No tangential transition
  - BR>0: Rounding radius
  - BR<0: Width of chamfer
- PZ End point (polar radius; reference: workpiece zero point)
- W End point (polar angle; reference: workpiece zero point)
- PM Center point (polar radius; reference: workpiece zero point)
- WM Center point (polar angle; reference: workpiece zero point)
- AR Starting angle (tangential angle to rotary axis)
- AN End angle (tangential angle to rotary axis)

### Programming

- **Y, Z:** Absolute, incremental, modal or "?"
- J, K: Absolute or incremental
- **PZ, W, PM, WM:** Absolute or incremental
- ARi: Angle to the previous element
- **ANI:** Angle to the subsequent element
- End point must not be the starting point (no full circle).







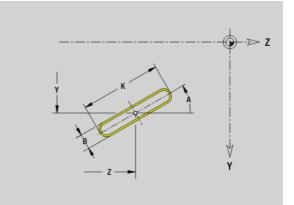

### Hole in YZ plane G380-Geo

G380 defines a single hole with countersinking and thread in the YZ plane.

### Parameters

- Y Center of hole
- Z Center of hole
- B Hole diameter
- P Depth of hole (excluding point)
- W Point angle (default: 180°)
- R Sinking diameter
- U Sinking depth
- E Sinking angle
- I Thread diameter
- J Thread depth
- K Start of thread (runout length)
- F Thread pitch
- V Left-hand or right-hand thread (default: 0)
  - 0: Right-hand thread
  - 1: Left-hand thread
- A Angle to X axis (range:  $-90^{\circ} < A < 90^{\circ}$ )
- O Centering diameter






### Linear slot in YZ plane G381-Geo

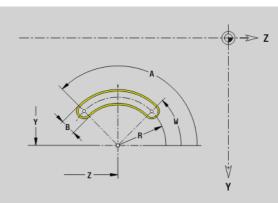
G381 defines the contour of a linear slot in the YZ plane.

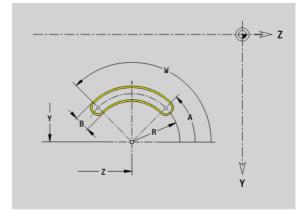
### Parameters

- Y Center of slot
- Z Center of slot
- X Reference diameter
  - No input: "X" from section code
  - "X" overwrites "X" from section code
- A Position angle (reference: positive Z axis; default: 0°)
- K Slot length
- B Slot width
- P Pocket depth (default: "P" from G308)



# 6.3 Cont<mark>our</mark>s in the YZ plane


### Circular slot in YZ plane G382-Geo/G383-Geo

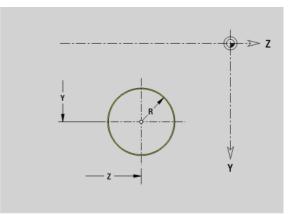

G382/G383 defines a circular slot in the YZ plane.

- G382: Circular slot clockwise
- G383: Circular slot counterclockwise

### Parameters

- Y Center of slot curvature
- Z Center of slot curvature
- X Reference diameter
  - No input: "X" from section code
  - "X" overwrites "X" from section code
- R Radius (reference: center point path of the slot)
- A Starting angle (reference: X axis; default: 0°)
- W End angle (reference: X axis; default: 0°)
- B Slot width
- P Pocket depth (default: "P" from G308)



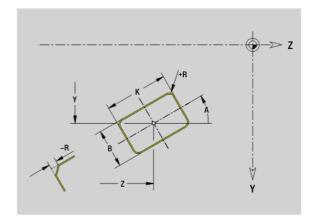



### Full circle in YZ plane G384-Geo

G384 defines a full circle in the YZ plane.

### Parameters

- Y Center of circle
- Z Center of circle
- X Reference diameter
  - No input: "X" from section code
  - "X" overwrites "X" from section code
- R Circle radius
- P Pocket depth (default: "P" from G308)



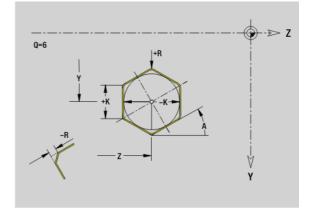

### **Rectangle in YZ plane G385-Geo**

G385 defines a rectangle in the YZ plane.

### **Parameters**

- Center of rectangle Υ
- Ζ Center of rectangle
- Х Reference diameter
  - No input: "X" from section code
  - "X" overwrites "X" from section code
- А Position angle (reference: positive Z axis; default: 0°)
- Κ Length of rectangle
- В Width of rectangle R
  - Chamfer/rounding (default: 0)
    - R>0: Radius of rounding arc
    - R<0: Chamfer width
  - Pocket depth (default: "P" from G308)




### Eccentric polygon in YZ plane G387-Geo

G387 defines the contour of an eccentric polygon in the YZ plane.

### **Parameters**

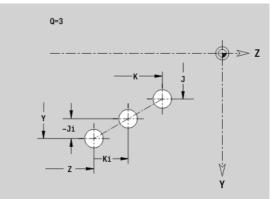
Ρ

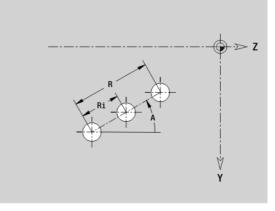
- Center point of polygon Y
- Ζ Center point of polygon
- Х Reference diameter
  - No input: "X" from section code
  - "X" overwrites "X" from section code
- Q Number of corners  $(Q \ge 3)$
- А Position angle (reference: positive Z axis; default: 0°)
- Κ Edge length / width across flats
  - K>0: Edge length
  - K<0: Width across flats (inside diameter)</p>
- Chamfer/rounding-default: 0 R
  - R>0: Radius of rounding arc
  - R<0: Chamfer width
- Ρ Pocket depth (default: "P" from G308)



# 6.3 Contours in the YZ plane

### Linear pattern in YZ plane G481-Geo


G481 defines a linear pattern in the YZ plane. G481 is effective for the figure defined in the following block (G380 to G385, G387).


### Parameters

- Q Number of figures
- Y 1st point of pattern
- Z 1st point of pattern
- J End point of pattern (Y direction)
- K End point of pattern (Z direction)
- Ji Distance between two figures (in Y direction)
- Ki Distance between two figures (in Z direction)
- A Position angle of longitudinal axis of pattern (reference: positive Z axis)
- R Length (overall length of pattern)
- Ri Pattern distance (distance between two figures)

### **Programming notes**

- Program the hole/figure in the following block without a center.
- The milling cycle (MACHINING section) calls the hole/ figure in the following block—not the pattern definition.

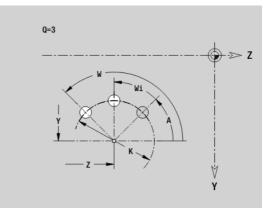


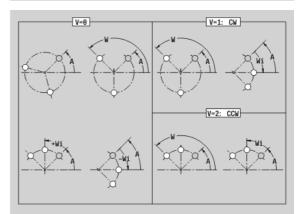


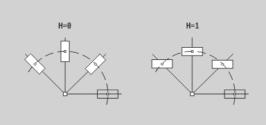
i

### Circular pattern in YZ plane G482-Geo

G482 defines a circular pattern in the YZ plane. G482 is effective for the figure defined in the following block (G380 to G385, G387).


### Parameters


- Q Number of figures
- K Diameter (pattern diameter)
- A Starting angle—position of the first figure; reference: Z axis (default: 0°)
- W End angle—position of the last figure; reference: Z axis (default: 360°)
- Wi Angle between two figures
- V Direction—orientation (default: 0)
  - V=0, without W: Figures are arranged on a full circle
  - $\blacksquare$  V=0, with W: Figures are arranged on the longer circular arc
  - V=0, with Wi: The algebraic sign of Wi defines the direction (Wi<0: clockwise)</li>
  - V=1, with W: Clockwise
  - V=1, with Wi: Clockwise (algebraic sign of Wi has no effect)
  - V=2, with W: Counterclockwise
  - V=2, with Wi: Counterclockwise (algebraic sign of Wi has no effect)
- Y Center of pattern
- Z Center of pattern
- H Position of the figures (default: 0)
  - O: Normal position—the figures are rotated about the circle center (rotation)
  - 1: Original position—the position of the figures relative to the coordinate system remains unchanged (translation)




Program the hole/figure in the following block without a center. Exception: circular slot.

The milling cycle (MACHINING section) calls the hole/ figure in the following block—not the pattern definition.







# 6.3 Cont<mark>our</mark>s in the YZ plane

### Single surface in YZ plane G386-Geo

G386 defines a surface in the YZ plane.

### Parameters

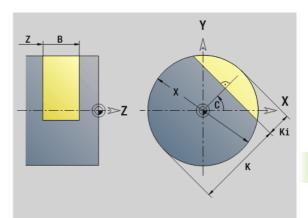
- Z Reference edge
- K Residual depth
- Ki Depth
- B Width (reference: reference edge Z)
  - B<0: Surface in negative Z direction
  - B>0: Surface in positive Z direction
- X Reference diameter
  - No input: "X" from section code
  - "X" overwrites "X" from section code
- C Spindle angle of surface normal (default: "C" from section code)

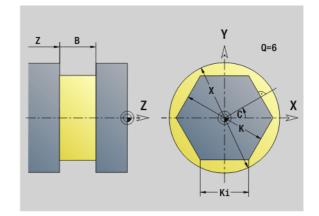


The **reference diameter X** limits the surface to be machined.

### Centric polygon in YZ plane G487-Geo

G487 defines polygonal surfaces in the YZ plane.


### Parameters

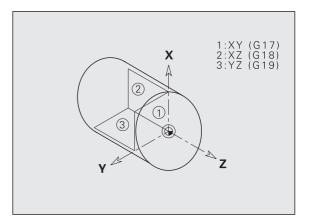

- Z Reference edge
- K Width across flats (inscribed circle diameter)
- Ki Edge length
- B Width (reference: reference edge Z)
  - B<0: Surface in negative Z direction
  - B>0: Surface in positive Z direction
- X Reference diameter
  - No input: "X" from section code
  - "X" overwrites "X" from section code
  - Spindle angle of surface normal (default: "C" from section code)
- Q Number of sides (Q  $\geq$ = 2)



С

The **reference diameter X** limits the surface to be machined.






## 6.4 Working planes

### Y-axis machining

When programming drilling or milling operations with the Y axis, you need to define the working plane.

If no working plane is programmed, the Control assumes a turning operation or a milling operation with the C axis (G18 XZ plane).



### G17 XY plane (front or rear face)

Milling cycles are executed in the XY plane, with the depth feed for milling and drilling cycles in the Z direction.

### G18 XZ plane (turning)

In the XZ plane, "normal turning operations" as well as drilling and milling operations are executed with the C axis.

### G19 YZ plane (lateral view / lateral surface)

Milling cycles are executed in the YZ plane, with the depth feed for milling and drilling cycles in the X direction.



# 6.4 Working planes

### Tilting the working plane G16

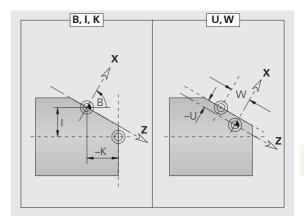
G16 executes the following transformations and rotations:

- Shifts the coordinate system to the position I, K
- Rotates the coordinate system by the angle B; reference point: I, K
- Shifts, if programmed, the coordinate system by U and W in the rotated coordinate system

### Parameters

- B Plane angle; reference: positive Z axis
- I Plane reference in X direction (radius)
- K Plane reference in Z direction
- U Shift in X direction
- W Shift in Z direction
- Q Enable/disable tilting the working plane
  - 0: Disable tilted working plane function
  - 1: Tilt working plane
  - 2: Restore previous G16 plane

 ${\bf G16}~{\bf Q0}$  resets the working plane. The zero point and coordinate system defined before G16 are then in effect again.


G16 Q2 restores the previous G16 plane.

The positive Z axis is the reference axis for the "plane angle B." This also applies to a mirrored coordinate system.



### Please note:

- X is the infeed axis in a tilted coordinate system. X coordinates are entered as diameter coordinates.
- Mirroring the coordinate system has no effect on the reference axis of the tilt angle ("B-axis angle" of the tool call).
- Other zero point shifts are not permitted while G16 is active.



Beispiel: "G16"

MACHINING

N.. G16 B130 I59 K0 Q1

N.. G1 x.. Z.. Y.. N.. G16 Q0

. . .

... N.. G19 N.. G15 B130

. . . .



## 6.5 Tool positioning in the Y axis

### Rapid traverse G0

G0 moves the tool at rapid traverse along the shortest path to the "target point X, Y, Z."

### Parameters

- X Diameter—target point
- Z Length—target point
- Y Length—target point

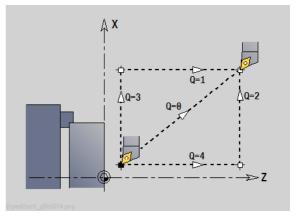


Programming X, Y, Z: Absolute, incremental or modal



If more axes are available on your machine, additional input parameters will be displayed, e.g. parameter **B** for the B axis.

### Approach tool change point G14


G14 moves at rapid traverse to the tool change position. In setup mode, define permanent coordinates for the tool change position.

### Parameters

- Q Sequence (default: 0)
  - 0: Move simultaneously in X and Z axes (diagonal path)
  - 1: First X, then Z direction
  - 2: First Z, then X direction
  - 3: Only X direction, Z remains unchanged
  - 4: Only Z direction, X remains unchanged
  - 5: Only Y direction
  - 6: Move simultaneously in X, Y and Z axes (diagonal path)



If Q=0 to 4, the Y axis does not move.



### Rapid traverse to machine coordinates G701

G701 moves the tool at rapid traverse along the shortest path to the "target point X, Y, Z."

### Parameters

- X End point (diameter)
- Y End point
- Z End point



## "X, Y, Z" refer to the machine zero point and the slide reference point.

If more axes are available on your machine, additional input parameters will be displayed, e.g. parameter **B** for the B axis.



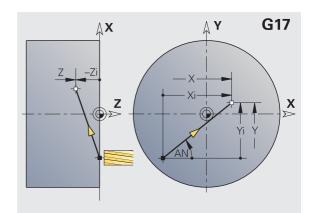
# 6.6 Linear and circular movements in the Y axis

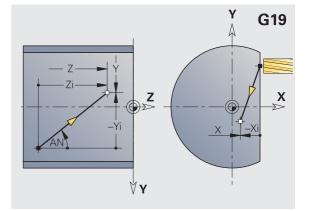
### Milling: Linear movement G1

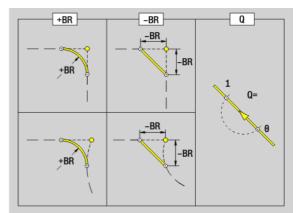
G1 moves the tool on a linear path at the feed rate to the "end point." The execution of G1 varies depending on the **working plane**:

- G17 Interpolation in the XY plane
  - Infeed in Z direction
  - Angle A—reference: positive X axis
- G18 Interpolation in the XZ plane
  - Infeed in Y direction
  - Angle A—reference: negative Z axis
- G19 Interpolation in the YZ plane
  - Infeed in X direction
  - Angle A—reference: positive Z axis

### Parameters


Х


- End point (diameter)
- Y End point
- Z End point
- AN Angle (reference: depends on the working plane)
- Q Point of intersection. End point if the circular arc intersects a line segment or another circular arc (default: 0):
  - 0: Near point of intersection
  - 1: Far point of intersection
- BR Chamfer/rounding. Defines the transition to the next contour element. When entering a chamfer/rounding, program the theoretical end point.
  - No input: Tangential transition
  - BR=0: No tangential transition
  - BR>0: Rounding radius
  - BR<0: Width of chamfer</p>
- BE Special feed factor for chamfer/rounding arc (default: 1)


Special feed rate = active feed rate \* BE (0 < BE <= 1)

Programming X, Y, Z: Absolute, incremental, modal or "?"

If more axes are available on your machine, additional input parameters will be displayed, e.g. parameter **B** for the B axis.







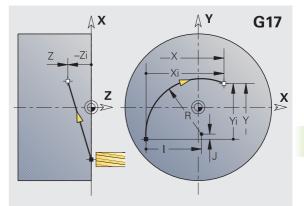


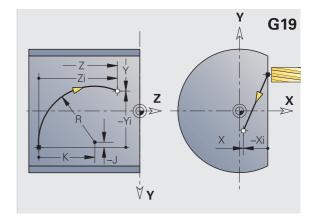
## Milling: Circular movement G2, G3—incremental center coordinates

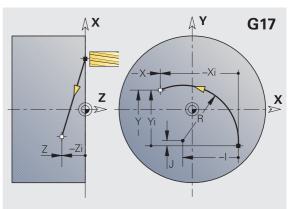
G2/G3 moves the tool in a circular arc at the feed rate to the "end point."

The execution of G2/G3 varies depending on the working plane:

- G17 Interpolation in the XY plane
  - Infeed in Z direction
  - Center definition: with I, J
- G18 Interpolation in the XZ plane
  - Infeed in Y direction
  - Center definition: with I, K
- G19 Interpolation in the YZ plane
  - Infeed in X direction
- Center definition: with J, K


### Parameters


- X End point (diameter)
- Y End point
- Z End point
- I Incremental center point (radius)
- J Incremental center point
- K Incremental center point
- R Radius
- Q Point of intersection. End point if the circular arc intersects a line segment or another circular arc (default: 0):
  - 0: Near point of intersection
  - 1: Far point of intersection
- BR Chamfer/rounding. Defines the transition to the next contour element. When entering a chamfer/rounding, program the theoretical end point.
  - No input: Tangential transition
  - BR=0: No tangential transition
  - BR>0: Rounding radius
  - BR<0: Width of chamfer
- BE Special feed factor for chamfer/rounding arc (default: 1)


Special feed rate = active feed rate \* BE (0 < BE <= 1)

If you do not program the center, the Control automatically calculates the possible solutions for the center and chooses that point as the center which results in the shortest arc.

Programming X, Y, Z: Absolute, incremental, modal or "?"





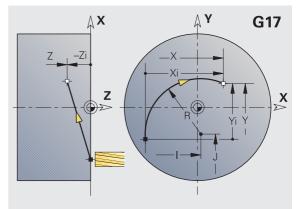


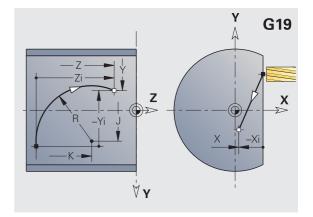
## Milling: Circular movement G12, G13-absolute center coordinates

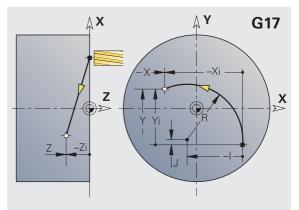
G12/G13 moves the tool in a circular arc at the feed rate to the "end point."

The execution of G12/G13 varies depending on the working plane:

- G17 Interpolation in the XY plane
  - Infeed in Z direction
  - Center definition: with I, J
- G18 Interpolation in the XZ plane
  - Infeed in Y direction
  - Center definition: with I, K
- G19 Interpolation in the YZ plane
  - Infeed in X direction
- Center definition: with J, K


### Parameters


- X End point (diameter)
- Y End point
- Z End point
- Absolute center point (radius)
- J Absolute center point
- K Absolute center point
- R Radius
- Point of intersection. End point if the line segment intersects a circular arc (default: 0):
  - Q=0: Near point of intersection
  - Q=1: Far point of intersection
- B Chamfer/rounding. Defines the transition to the next contour element. When entering a chamfer/rounding, program the theoretical end point.
  - No input: Tangential transition
  - B=0: No tangential transition
  - B>0: Radius of rounding
  - B<0: Width of chamfer
- E Special feed factor for the chamfer/rounding (default: 1)


Special feed rate = active feed rate \* E (0 < E <= 1)

If you do not program the center, the Control automatically calculates the possible solutions for the center and chooses that point as the center which results in the shortest arc.

Programming X, Y, Z: Absolute, incremental, modal or "?"







## 6.7 Milling cycles for the Y axis

### Area milling-roughing G841

G841 roughs surfaces defined with G376-Geo (XY plane) or with G386-Geo (YZ plane). The cycle mills from the outside toward the inside. The tool moves to the working plane outside of the workpiece material.

### Parameters

- ID Milling contour—name of the contour to be milled
- NS Block number—reference to the contour description
- P Milling depth (maximum infeed in the working plane)
- I Oversize in X direction
- K Oversize in Z direction
- U (Minimum) overlap factor. Defines the overlap of milling paths (default: 0.5).

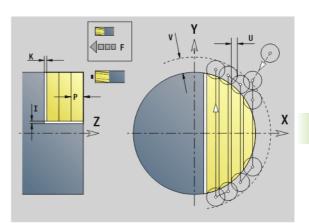
Overlap = U\*milling diameter

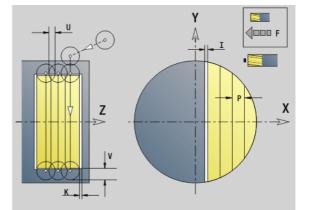
V Overrun factor. Defines the distance by which the tool should pass the outside radius of the workpiece (default: 0.5).

Overrun = V\*milling diameter

- F Feed rate for infeed (default: active feed rate)
- RB Retraction plane (default: back to starting position)

■ XY plane: Retraction position in Z direction


■ YZ plane: Retraction position in X direction (diameter)


Oversizes are taken into account:

G57: Oversize in X, Z direction

G58: Equidistant oversize in the milling plane

- 1 Starting position (X, Y, Z, C) is the position before the cycle begins.
- 2 Calculate the proportioning of cuts (infeeds to the milling planes, infeeds in the milling depths).
- 3 Move to the safety clearance and plunge to the first milling depth.
- 4 Mill the first plane.
- **5** Retract by the safety clearance, return and cut to the next milling depth.
- 6 Repeat steps 4 and 5 until the complete area is milled.
- 7 Return to retraction plane RB.





### Area milling—finishing G842

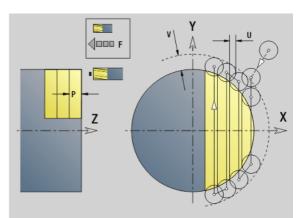
G842 finishes surfaces defined with G376-Geo (XY plane) or G386-Geo (YZ plane). The cycle mills from the outside toward the inside. The tool moves to the working plane outside of the workpiece material.

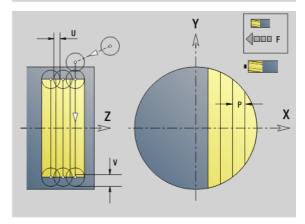
### Parameters

- ID Milling contour—name of the contour to be milled
- NS Block number—reference to the contour description
- P Milling depth (maximum infeed in the working plane)
- H Cutting direction for side finishing (default: 0)
  - H=0: Up-cut milling
  - H=1: Climb milling
- U (Minimum) overlap factor. Defines the overlap of milling paths (default: 0.5).

Overlap = U\*milling diameter

V Overrun factor. Defines the distance by which the tool should pass the outside radius of the workpiece (default: 0.5).


Overrun = V\*milling diameter


- F Feed rate for infeed (default: active feed rate)
- RB Retraction plane (default: back to starting position)

■ XY plane: Retraction position in Z direction

■ YZ plane: Retraction position in X direction (diameter)

- 1 Starting position (X, Y, Z, C) is the position before the cycle begins.
- 2 Calculate the proportioning of cuts (infeeds to the milling planes, infeeds in the milling depths).
- 3 Move to the safety clearance and plunge to the first milling depth.
- 4 Mill the first plane.
- **5** Retract by the safety clearance, return and cut to the next milling depth.
- 6 Repeat steps 4 and 5 until the complete area is milled.
- 7 Return to retraction plane RB.





### Centric polygon milling-roughing G843

G843 roughs centric polygons defined with G477-Geo (XY plane) or G487-Geo (YZ plane). The cycle mills from the outside toward the inside. The tool moves to the working plane outside of the workpiece material.

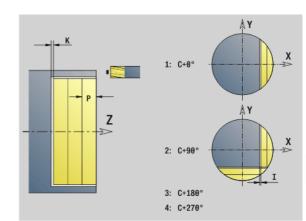
### Parameters

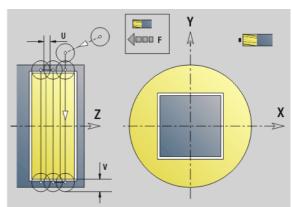
- ID Milling contour—name of the contour to be milled
- NS Block number—reference to the contour description
- P Milling depth (maximum infeed in the working plane)
- I Oversize in X direction
- K Oversize in Z direction
- U (Minimum) overlap factor. Defines the overlap of milling paths (default: 0.5).

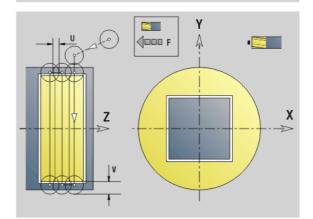
Overlap = U\*milling diameter

V Overrun factor. Defines the distance by which the tool should pass the outside radius of the workpiece (default: 0.5).

Overrun = V\*milling diameter


- F Feed rate for infeed (default: active feed rate)
- RB Retraction plane (default: back to starting position)
  - XY plane: Retraction position in Z direction
  - YZ plane: Retraction position in X direction (diameter)


Oversizes are taken into account:


G57: Oversize in X, Z direction

G58: Equidistant oversize in the milling plane

- 1 Starting position (X, Y, Z, C) is the position before the cycle begins.
- **2** Calculate the proportioning of cuts (infeeds to the milling planes, infeeds in the milling depths) and the spindle positions.
- **3** Spindle turns to the first position. The tool moves to the safety clearance and plunges to the first milling depth.
- 4 Mill the first plane.
- **5** Retract by the safety clearance, return and cut to the next milling depth.
- 6 Repeat steps 4 and 5 until the complete area is milled.
- 7 The tool returns to "retraction plane J." The spindle turns to the next position. The tool moves to the safety clearance and plunges to the first milling depth.
- 8 Repeat steps 4 to 7 until all polygonal surfaces are milled.
- 9 Return to retraction plane RB.







### Centric polygon milling-finishing G844

G844 finishes centric polygons defined with G477-Geo (XY plane) or with G487-Geo (YZ plane). The cycle mills from the outside toward the inside. The tool moves to the working plane outside of the workpiece material.

### Parameters

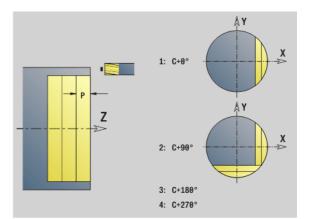
- ID Milling contour—name of the contour to be milled
- NS Block number—reference to the contour description
- P Milling depth (maximum infeed in the working plane)
- H Cutting direction for side finishing (default: 0)

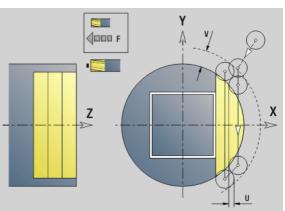
■ H=0: Up-cut milling

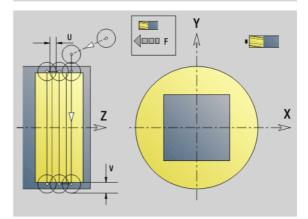
- H=1: Climb milling
- U (Minimum) overlap factor. Defines the overlap of milling paths (default: 0.5).

Overlap = U\*milling diameter

V Overrun factor. Defines the distance by which the tool should pass the outside radius of the workpiece (default: 0.5).


Overrun = V\*milling diameter


- F Feed rate for infeed (default: active feed rate)
- RB Retraction plane (default: back to starting position)


XY plane: Retraction position in Z direction

■ YZ plane: Retraction position in X direction (diameter)

- 1 Starting position (X, Y, Z, C) is the position before the cycle begins.
- 2 Calculate the proportioning of cuts (infeeds to the milling planes, infeeds in the milling depths) and the spindle positions.
- **3** Spindle turns to the first position. The tool moves to the safety clearance and plunges to the first milling depth.
- 4 Mill the first plane.
- **5** Retract by the safety clearance, return and cut to the next milling depth.
- 6 Repeat steps 4 and 5 until the complete area is milled.
- 7 The tool returns to "retraction plane J." The spindle turns to the next position. The tool moves to the safety clearance and plunges to the first milling depth.
- 8 Repeat steps 4 to 7 until all polygonal surfaces are milled.
- 9 Return to retraction plane RB.









### Pocket milling-roughing G845 (Y axis)

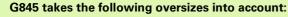
G845 roughs closed contours that are defined in the XY or YZ plane in the program sections:

- FACE\_Y
- REAR\_Y
- LATERAL\_Y

Choose one of the following **plunge strategies**, depending on the milling cutter you are using:

- Plunge vertically
- Plunge at a pre-drilled position
- Plunge in a reciprocating or helical motion

When "plunging at a pre-drilled position," you have the following alternatives:


- Calculate positions, drill, mill. The machining process is performed in the following steps:
  - Insert drill.
  - Calculate hole positions with "G845 A1 ..." or set the hole position at the center of the figure with A2
  - Drill holes with "G71 NF ..."
  - Call cycle "G845 A0 ..." The cycle positions the tool above the hole; the tool plunges and mills the pocket.



The parameters O=1 and NF must be defined.

- Drill, mill. The machining process is performed in the following steps:
  - Drill a hole inside the pocket with "G71 ..."
  - Position the milling cutter above the hole and call "G845 A0 ..." The tool plunges and mills the section.

If the pocket consists of multiple sections, G845 takes all the sections of the pocket into account for drilling and milling. Call "G845 A0 ..." separately for each section when calculating the hole positions without "G845 A1 ...".



G57: Oversize in X, Z direction

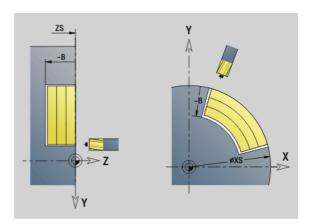
G58: Equidistant oversize in the milling plane

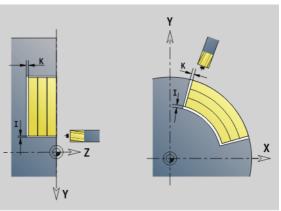
Program oversizes for calculating the hole positions **and** for milling.

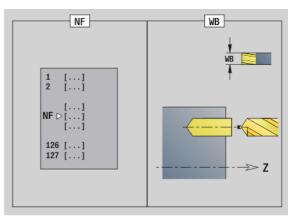
### G845 (Y axis)—Calculating hole positions

"G845 A1 ..." calculates the hole positions and stores them at the reference specified in "NF." The cycle takes the diameter of the active tool into account when calculating the hole positions. Therefore, you need to insert the drill before calling "G845 A1 ...". Program only the parameters given in the following table.

See also:


- G845—Fundamentals: Page 533
- G845—Milling: Page 535


### Parameters-Calculating hole positions


- ID Milling contour—name of the contour to be milled
- NS Starting block no. of contour
  - Figures: Block number of the figure
  - Free closed contour: A contour element (not starting point)
- B Milling depth (default: depth from the contour description)
- XS Milling top edge—lateral surface (replaces the reference plane from the contour definition)
- ZS Milling top edge—face (replaces the reference plane from the contour definition)
- I Oversize in X direction (radius)
- K Oversize in Z direction
- Q Machining direction (default: 0)
  - O: From the inside out (from the inside towards the outside)
  - 1: From the outside in (from the outside towards the inside)
- A Sequence for "Calculate hole positions": A=1
- NF Position mark—reference at which the cycle stores the hole positions [1 to 127].
- WB (Plunging length) Diameter of the milling cutter

G845 overwrites any hole positions that may still be stored at the reference "NF."

The parameter "WB" is used both for calculating the hole positions and for milling. When calculating the hole positions, "WB" describes the diameter of the milling cutter.







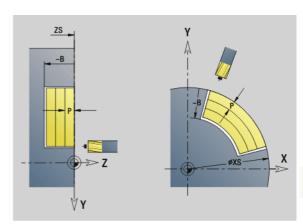
### G845 (Y axis)-Milling

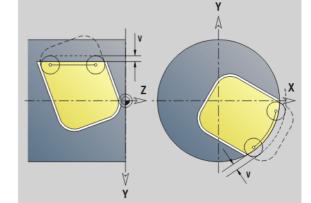
You can change the **milling direction** with the "cutting direction H," the "machining direction Q" and the direction of tool rotation (see table G845 in the User's Manual). Program only the parameters given in the following table.

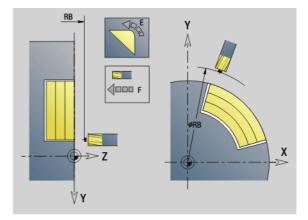
See also:

- G845—Fundamentals: Page 533
- G845—Calculating hole positions: Page 534

### Parameters – Milling


- ID Milling contour—name of the contour to be milled
- NS Starting block no. of contour
  - Figures: Block number of the figure
  - Free closed contour: A contour element (not starting point)
- B Milling depth (default: depth from the contour description)
- P Maximum infeed (default: milling in one infeed)
- XS Milling top edge in YZ plane (replaces the reference diameter from the contour description)
- ZS Milling top edge in XY plane (replaces the reference plane from the contour description)
- I Oversize in X direction (radius)
- K Oversize in Z direction
- U (Minimum) overlap factor. Defines the overlap of milling paths (default: 0.5).


Overlap = U\*milling diameter


- V Overrun factor (default: 0.5) Defines the distance by which the tool should pass the outside radius of the workpiece.
  - 0: The defined contour is milled completely
  - 0<V<=1: Overrun = V\*milling diameter
- H Cutting direction (default: 0)
  - 0: Up-cut milling
  - 1: Climb milling
- F Feed rate for infeed (default: active feed rate)
- E Reduced feed rate for circular elements (default: current feed rate)
- RB Retraction plane (default: back to starting position)

■ XY plane: Retraction position in Z direction

- YZ plane: Retraction position in X direction (diameter)
- Q Machining direction (default: 0)
  - 0: From the inside out (from the inside towards the outside)
  - 1: From the outside in (from the outside towards the inside)
- A Sequence for "Milling": A=0 (default=0)
- NF Position mark—reference from which the cycle reads the hole positions [1 to 127].







### Parameters-Milling

Ο

Plunging behavior (default: 0)

**O=0 (vertical plunge):** The cycle moves the tool to the starting point; the tool plunges at the feed rate for infeed and mills the pocket.

### O=1 (plunge at pre-drilled position):

- If "NF" is programmed: The cycle positions the milling cutter above the first pre-drilled hole; the tool plunges and mills the first area. If applicable, the cycle positions the tool to the next pre-drilled hole and mills the next area, etc.
- If "NF" is not programmed: The tool plunges at the current position and mills the area. If applicable, position the tool to the next pre-drilled hole and mill the next area, etc.

**O=2, 3 (helical plunge):** The tool plunges at the angle "W" and mills full circles with the diameter "WB." As soon as it reaches the milling depth "P," the cycle switches to face milling.

- O=2—manually: The cycle plunges at the current position and machines the area that can be reached from this position.
- O=3—automatically: The cycle calculates the plunging position, plunges and machines this area. The plunging motion ends at the starting point of the first milling path, if possible. If the pocket consists of multiple areas, the cycle successively machines all the areas.

**O=4, 5 (reciprocating linear plunge):** The tool plunges at the angle "W" and mills a linear path of the length "WB." You can define the orientation angle in "WE." The cycle then mills along this path in the opposite direction. As soon as it reaches the milling depth "P," the cycle switches to face milling.

- O=4—manually: The cycle plunges at the current position and machines the area that can be reached from this position.
- O=5—automatically: The cycle calculates the plunging position, plunges and machines this area. The plunging motion ends at the starting point of the first milling path, if possible. If the pocket consists of multiple areas, the cycle successively machines all the areas. The plunging position is determined from the type of figure and from "Q" as follows:
  - Q0 (from the inside toward the outside):

– Linear slot, rectangle, polygon: Reference point of the figure

- Circle: Circle center

- Circular slot, "free" contour: Starting point of the innermost milling path

- Q1 (from the outside toward the inside):
  - Linear slot: Starting point of the slot
  - Circular slot, circle: Not machined

- Rectangle, polygon: Starting point of the first linear element

- "Free" contour: Starting point of the first linear element (at least one linear element must exist)

### Parameters-Milling

**D=6, 7 (reciprocating circular plunge):** The tool plunges at the plunging angle "W" and mills a circular arc of 90°. The cycle then mills along this path in the opposite direction. As soon as it reaches the milling depth "P," the cycle switches to face milling. "WE" defines the arc center, "WB" the arc radius.

- O=6—manually: The tool position corresponds to the center of the circular arc. The tool moves to the arc starting point and plunges.
- O=7—automatically (only permitted for circular slots and circles): The cycle calculates the plunging position on the basis of "Q":
  - Q0 (from the inside toward the outside):
    - Circular slot: The circular arc lies on the curvature radius of the slot
    - Circle: Not permitted
  - Q1 (from the outside toward the inside): Circular slot, circle: The circular arc lies on the outermost milling path
- W Plunging angle in infeed direction
- WE Orientation angle of the milling path/circular arc. Reference axis:
  - Front or rear face: Positive XK axis
  - Lateral surface: Positive Z axis

Default orientation angle, depending on "O":

- O=4: WE= 0°
- O=5 and
  - Linear slot, rectangle, polygon: WE= orientation angle of the figure
  - Circular slot, circle: WE=0°
  - "Free" contour and Q0 (from the inside toward the outside): WE=0°
  - "Free" contour and Q1 (from the outside toward the inside): Orientation angle of the starting element
- WB Plunge length/plunge diameter (default: 1.5 \* milling diameter)

For the cutting direction, machining direction and direction of tool rotation, please refer to table G845 in the User's Manual.



For the machining direction  $\Omega$ =1 (from the outside toward the inside), please note:

- The contour must start with a linear element.
- If the starting element is < WB, WB is reduced to the length of the starting element.
- The length of the starting element must not be less than 1.5 times the diameter of the milling cutter.

### Cycle run

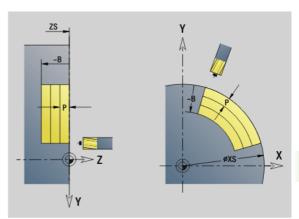
- 1 Starting position (X, Y, Z, C) is the position before the cycle begins.
- 2 Calculate the number of cuts (infeeds to the milling planes, infeeds in the milling depths) and the plunging positions and paths for reciprocating or helical plunges.
- **3** Approach to safety clearance and, depending on O, feed to the first milling depth or approach helically or on a reciprocating path.
- 4 Mill a plane.
- **5** Retract by the safety clearance, return and cut to the next milling depth.
- 6 Repeat steps 4 and 5 until the complete surface is milled.
- 7 Return to retraction plane RB.

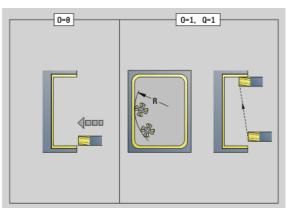
# 6.7 Milling <mark>cyc</mark>les for the Y axis

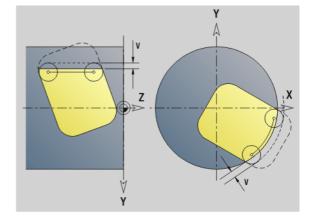
### Pocket milling-finishing G846 (Y axis)

G846 finishes closed contours defined in the XY or YZ plane in the program sections:

- FACE\_Y
- REAR\_Y
- LATERAL\_Y


You can change the **cutting direction** with the "cutting direction H," the "machining direction Q" and the direction of tool rotation.


### Parameters - finishing


- ID Milling contour—name of the contour to be milled
- NS Starting block no. of contour
  - Figures: Block number of the figure
  - Free closed contour: A contour element (not starting point)
- B Milling depth (default: depth from the contour description)
- P Maximum infeed (default: milling in one infeed)
- XS Milling top edge in YZ plane (replaces the reference diameter from the contour description)
- ZS Milling top edge in XY plane (replaces the reference plane from the contour description)
- R Radius of approaching/departing arc (default: 0)
  - R=0: Contour element is approached directly. Feed to the starting point above the milling plane, then vertical plunge.
  - R>0: Tool moves on approaching/departing arc that connects tangentially to the contour element.
- U (Minimum) overlap factor. Defines the overlap of milling paths (default: 0.5).

Overlap = U\*milling diameter

- V Overrun factor—no effect with C-axis machining
- H Cutting direction (default: 0)
  - 0: Up-cut milling
  - 1: Climb milling
- F Feed rate for infeed (default: active feed rate)
- E Reduced feed rate for circular elements (default: current feed rate)
- RB Retraction plane (default: back to starting position)
  - XY plane: Retraction position in Z direction
  - YZ plane: Retraction position in X direction (diameter)
- Q Machining direction (default: 0)
  - 0: From the inside out (from the inside towards the outside)
  - 1: From the outside in (from the outside towards the inside)







i

### Parameters-finishing

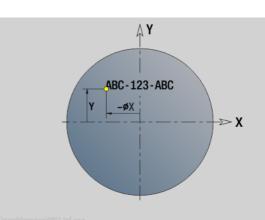
- O Plunging behavior (default: 0)
  - O=0 (vertical plunge): The cycle moves the tool to the starting point; the tool plunges and finishes the pocket.
  - O=1 (approaching arc with depth feed): When machining the upper milling planes, the tool advances to the milling plane and then approaches on an arc. When machining the bottom milling plane, the tool plunges to the milling depth while moving on the approaching arc (three-dimensional approaching arc). You can use this approach behavior only in conjunction with an approaching arc "R" and when machining from the outside toward the inside (Q=1).

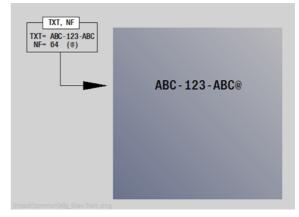
For the cutting direction, machining direction and direction of tool rotation, please refer to table G846 in the User's Manual.

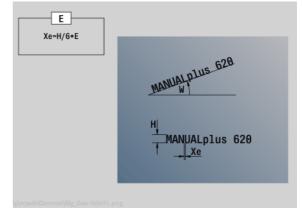
- 1 Starting position (X, Y, Z, C) is the position before the cycle begins.
- 2 Calculate the proportioning of cuts (infeeds to the milling planes, infeeds in the milling depths).
- 3 Move to the safety clearance and plunge to the first milling depth.
- 4 Mill the first plane.
- **5** Retract by the safety clearance, return and cut to the next milling depth.
- 6 Repeat steps 4 and 5 until the complete area is milled.
- 7 Return to "retraction plane J."

# 6.7 Milling cycles for the Y axis

# Engraving in XY plane G803


G803 engraves character strings aligned linearly in the XY plane. Character set: see page 378


The cycles start engraving from the starting position or from the current position, if no starting position is defined.


Example: If a character string is engraved with several calls, define the starting position in the first call. All other calls are programmed without a starting position.

#### Parameters

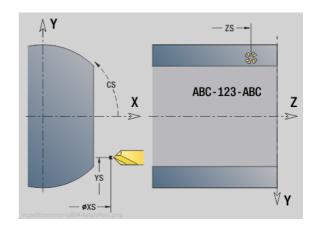
- X, Y Starting point
- Z End point. Z position, infeed depth during milling.
- RB Retraction plane. Z position retracted to for positioning.
- ID Text to be engraved
- NF Character number (character to be engraved)
- W Orientation angle of the character string. Example: 0° = Vertical characters: the characters are aligned in sequence in positive X direction.
- H Font height
- E Distance factor (for calculation see figure)
- F Plunging feed rate factor (plunging feed rate = current feed rate \* F)

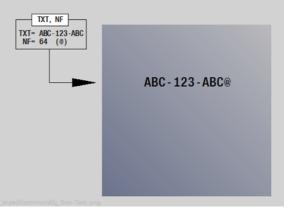


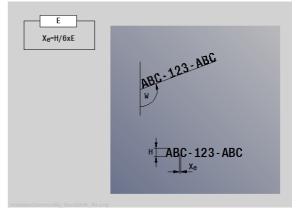




# Engraving in the YZ plane G804


The cycles start engraving from the starting position or from the current position, if no starting position is defined.


Example: If a character string is engraved with several calls, define the starting position in the first call. All other calls are programmed without a starting position.


G804 engraves character strings aligned linearly in the YZ plane. Character set: see page 378  $\,$ 

#### Parameters

- Y, Z Starting point
- X End point (diameter). X position, infeed depth during milling.
- RB Retraction plane. X position retracted to for positioning.
- ID Text to be engraved
- NF Character number. ASCII code of the character to be engraved
- H Font height
- E Distance factor (for calculation see figure)
- E Distance factor. The distance between the characters is calculated according to the following formula: H / 6 \* E
- F Plunging feed rate factor (plunging feed rate = current feed rate \* F)





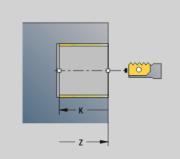


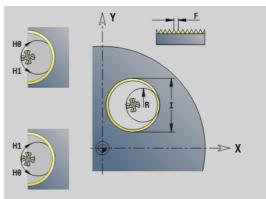
# Thread milling in XY plane G800

G800 mills a thread in existing holes.

Place the tool on the center of the hole before calling G799. The cycle positions the tool on the end point of the thread within the hole. Then the tool approaches on "approach radius R" and mills the thread. During this, the tool advances by the thread pitch F. Following that, the cycle retracts the tool and returns it to the starting point. With parameter V, you can program whether the thread is to be milled in one rotation or, with single-point tools, in several rotations.

#### Parameters


- I Thread diameter
- Z Starting point Z
- K Thread depth
- R Approach radius
- F Thread pitch
- J Direction of thread (default: 0)
  - 0: Right-hand thread
  - 1: Left-hand thread
- H Cutting direction (default: 0)
  - 0: Up-cut milling
  - 1: Climb milling
- V Milling method
  - 0: The thread is milled in a 360-degree helix
  - 1: The thread is milled in several helical paths (single-point tool)


Use thread-milling tools for cycle G800.



#### Danger of collision!

Be sure to consider the hole diameter and the diameter of the milling cutter when programming "approach radius R."





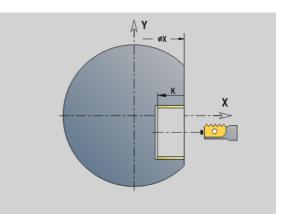
# Thread milling in YZ plane G806

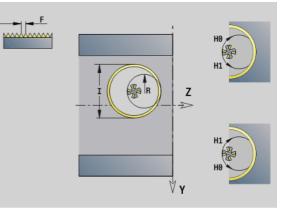
G806 mills a thread in existing holes.

Place the tool on the center of the hole before calling G799. The cycle positions the tool on the end point of the thread within the hole. Then the tool approaches on "approach radius R" and mills the thread. During this, the tool advances by the thread pitch F. Following that, the cycle retracts the tool and returns it to the starting point. With parameter V, you can program whether the thread is to be milled in one rotation or, with single-point tools, in several rotations.

# Parameters

- Thread diameter
- X Starting point in X
- K Thread depth
- R Approach radius
- F Thread pitch
- J Direction of thread (default: 0)
  - 0: Right-hand thread
  - 1: Left-hand thread
- H Cutting direction (default: 0)
  - 0: Up-cut milling
  - 1: Climb milling
- V Milling method
  - 0: The thread is milled in a 360-degree helix
  - 1: The thread is milled in several helical paths (single-point tool)





Use thread-milling tools for cycle G806.



#### Danger of collision!

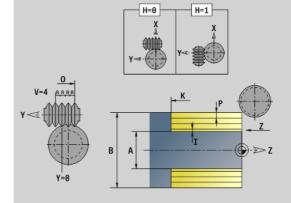
Be sure to consider the hole diameter and the diameter of the milling cutter when programming "approach radius R."





# 6.7 Milling <mark>cyc</mark>les for the Y axis

## Hobbing G808

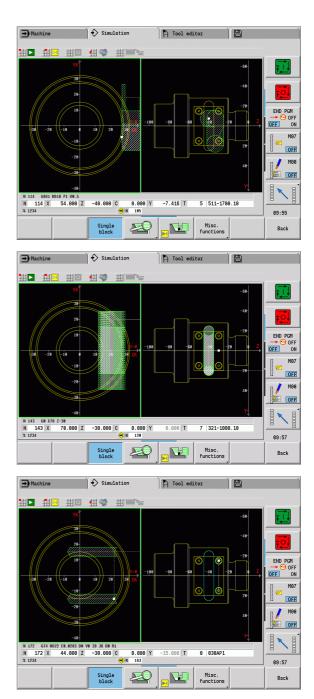

G808 mills a gear profile from the "starting point in Z" to the "end point K". In W you enter the angular position of the tool.

If an oversize has been programmed, hobbing is split up in roughmachining and subsequent finishing.

In parameters O, R and V you define the tool shift. Shifting by R ensures a uniform wear of the hob cutter.

#### Parameters

- Z Starting point
- K End point
- C Angle (offset angle of the C axis)
- A Root circle diameter
- B Outside diameter
- J Number of workpiece teeth
- W Angular position
- S Surface speed [m/min]
- I Oversize
- D Direction of rotation of the workpiece
  - 3: M3
  - 4: M4
- F Feed per revolution
- E Finishing feed rate
- P Maximum infeed
- O Shift starting position
- R Shift value
- V Number of shifts
- H Infeed axis
  - 0: Tool infeed is performed in the X axis
  - 1: Tool infeed is performed in the Y axis
- Q Workpiece spindle
  - 0: Spindle no. 0 (main spindle) holds the workpiece
  - 3: Spindle no. 3 (opposing spindle) holds the workpiece




# 6.8 Example program

# Machining with the Y axis

The milling and drilling contours are nested in the following NC program. A linear slot is machined on the single surface. On the same single surface, a hole pattern with two holes is machined both to the left and right of the slot.

At first, the turning operation is performed, and then the single surface is milled. Following that, the linear slot is machined using the "Pocket milling, lateral surface Y" unit. Then the slot is deburred. Further units are used to center the hole patterns, then drill them and finally tap the holes.



6.8 Example program

| HEADER                        |                                  |
|-------------------------------|----------------------------------|
| #MATERIAL Aluminum            |                                  |
| #WORKPIECE Example Y axis     |                                  |
| #MEASURE_UNITS Metric         |                                  |
|                               |                                  |
| TURRET 1                      |                                  |
| T1 ID"Roughing 80 G."         |                                  |
| T2 ID"NC center drill"        |                                  |
| T3 ID"Finishing 35 G."        |                                  |
| T4 ID"Drill 5.2mm"            |                                  |
| T5 ID"Thread outside"         |                                  |
| T6 ID"Tapping M6"             |                                  |
| T8 ID"Mill D16mm"             |                                  |
| T10 ID"Mill D6mm"             |                                  |
| T12 ID"Deburring_m"           |                                  |
|                               |                                  |
| BLANK                         |                                  |
| N 1 G20 X70 Z97 K1            |                                  |
| FINISHED                      |                                  |
| N 2 G0 X0 Z0                  |                                  |
| N 3 G1 X30 BR-2               |                                  |
| N 4 G1 Z-20                   |                                  |
| N 5 G25 H7 I1.5 K7 R1 W30 FP2 | [Undercut DIN 76]                |
| N 6 G1 X56 BR-1               |                                  |
| N 7 G1 Z-60                   |                                  |
| N 8 G1 X64 BR-1               |                                  |
| N 9 G1 Z-75 BR-1              |                                  |
| N 10 G1 X44 BR3               |                                  |
| N 11 G1 Z-95 BR-1             |                                  |
| N 12 G1 X0                    |                                  |
| N 13 G1 Z0                    |                                  |
| LATERAL_Y X56 C0              | [Define V7 plane]                |
| N 14 G308 ID"Surface"         | [Define YZ plane]                |
| N 15 G386 Z-55 Ki8 B30 X56 C0 | [Single surface]                 |
| N 16 G308 ID"Slot 10mm" P-2   |                                  |
| N 17 G381 Z-40 Y0 A90 K50 B10 | [] incar slot on single surface] |
| N 17 G301 2-40 TU ASU NOU DIU | [Linear slot on single surface]  |

i

| N 18 G309                                  |                                    |
|--------------------------------------------|------------------------------------|
| N 19 G308 ID"Hole_1 M6" P-15               |                                    |
| N 20 G481 Q2 Z-30 Y15 K-30 J-15            | [Linear pattern on single surface] |
| N 21 G380 B5.2 P15 W118 l6 J10 F1 V0 o7    | [Drilling, tapping, centering]     |
| N 22 G309                                  |                                    |
| N 23 G308 ID"Hole_2 M6" P-15               |                                    |
| N 24 G481 Q2 Z-50 Y15 K-50 J-15            | [Linear pattern on single surface] |
| N 25 G380 B5.2 P15 W118 I6 J10 F1 V0 O7    | [Drilling, tapping, centering]     |
| N 26 G309                                  |                                    |
| N 27 G309                                  |                                    |
|                                            |                                    |
| MACHINING                                  |                                    |
| N 28 UNIT ID"START"                        | [Start of program]                 |
| N 30 G26 S3500                             |                                    |
| N 31 G126 S2000                            |                                    |
| N 32 G59 Z256                              |                                    |
| N 33 G140 D1 X400 Y0 Z500                  |                                    |
| N 34 G14 Q0 D1                             |                                    |
| N 35 END_OF_UNIT                           |                                    |
|                                            |                                    |
| N 36 UNIT ID"G820_ICP"                     | [G820 Transverse roughing, ICP]    |
| N 38 T1                                    |                                    |
| N 39 G96 S220 G95 F0.35 M3                 |                                    |
| N 40 M8                                    |                                    |
| N 41 G0 X72 Z2                             |                                    |
| N 42 G47 P2                                |                                    |
| N 43 G820 NS3 NE3 P2 I0 K0 H0 Q0 V3 D0     |                                    |
| N 44 G47 M9                                |                                    |
| N 45 END_OF_UNIT                           |                                    |
|                                            |                                    |
| N 46 UNIT ID"G810_ICP"                     | [G810 Longitudinal roughing, ICP]  |
| N 48 T1                                    |                                    |
| N 49 G96 S220 G95 F0.35 M3                 |                                    |
| N 50 M8                                    |                                    |
| N 51 G0 X72 Z2                             |                                    |
| N 52 G47 P2                                |                                    |
| N 53 G810 NS4 NE9 P3 I0.5 K0.2 H0 Q0 V0 D0 |                                    |
| N 54 G14 Q0 D1                             |                                    |

i

| N 55 G47 M9                          |                                    |
|--------------------------------------|------------------------------------|
| N 56 END_OF_UNIT                     |                                    |
|                                      |                                    |
| N 57 UNIT ID"G890_ICP"               | [G890 Contouring in ICP]           |
| N 59 T3                              |                                    |
| N 60 G96 S260 G95 F0.18 M4           |                                    |
| N 61 M8                              |                                    |
| N 62 G0 X72 Z2                       |                                    |
| N 63 G47 P2                          |                                    |
| N 64 G890 NS4 NE9 V1 Q0 H3 O0 B0     |                                    |
| N 65 G14 Q0 D1                       |                                    |
| N 66 G47 M9                          |                                    |
| N 67 END_OF_UNIT                     |                                    |
|                                      |                                    |
| N 68 UNIT ID"G32_MAN"                | [G32 Cylindrical thread, direct]   |
| N 70 T5                              |                                    |
| N 71 G97 S800 M3                     |                                    |
| N 72 M8                              |                                    |
| N 73 G0 X30 Z5                       |                                    |
| N 74 G47 P2                          |                                    |
| N 75 G32 X30 Z-19 F1.5 BD0 IC8 H0 V0 |                                    |
| N 76 G14 Q0 D1                       |                                    |
| N 77 G47 M9                          |                                    |
| N 78 END_OF_UNIT                     |                                    |
|                                      |                                    |
| N 79 UNIT ID"C_AXIS_ON"              | [C axis on]                        |
| N 81 M14                             |                                    |
| N 82 G110 C0                         |                                    |
| N 83 END_OF_UNIT                     |                                    |
|                                      |                                    |
| N 84 UNIT ID"G841_Y_MANT"            | [Single surface in Y axis, latrl.] |
| N 86 T8                              |                                    |
| N 87 G197 S1200 G195 F0.25 M104      |                                    |
| N 88 M8                              |                                    |
| N 89 G19                             |                                    |
| N 90 G110 C0                         |                                    |
| N 91 G0 Y0                           |                                    |
| N 92 G0 X74 Z10                      |                                    |

6.8 Example program

1

| σ         |
|-----------|
| gra       |
| -         |
| pro       |
|           |
| <u>U</u>  |
| Φ         |
| Ē         |
| 0         |
| 2         |
|           |
|           |
| . <u></u> |
| ш.        |
| 00        |
|           |
| G         |

| N 93 G147 K2 I2                           |                                    |
|-------------------------------------------|------------------------------------|
| N 94 G841 ID"Surface" P5                  | [Mill a single surface]            |
| N 95 G47 M9                               |                                    |
| N 96 G14 Q0 D1                            |                                    |
| N 97 G18                                  |                                    |
| N 98 END_OF_UNIT                          |                                    |
|                                           |                                    |
| N 99 UNIT ID"G845_TAS_Y_MANT"             | [ICP pocket mill, lateral surf. Y] |
| N 101 T10                                 |                                    |
| N 102 G197 S1200 G195 F0.18 M104          |                                    |
| N 103 G19                                 |                                    |
| N 104 M8                                  |                                    |
| N 105 G110 C0                             |                                    |
| N 106 G0 Y0                               |                                    |
| N 107 G0 X74 Z-40                         |                                    |
| N 108 G147 I2 K2                          |                                    |
| N 109 G845 ID"Slot 10 mm" Q0 H0           | [Mill a slot on single surface]    |
| N 110 G47 M9                              |                                    |
| N 111 G14 Q0 D1                           |                                    |
| N 112 G18                                 |                                    |
| N 113 END_OF_UNIT                         |                                    |
|                                           |                                    |
| N 114 UNIT ID"G840_ENT_Y_MANT"            | [ICP deburring, lateral surf. Y]   |
| N 116 T12                                 |                                    |
| N 117 G197 S800 G195 F0.12 M104           |                                    |
| N 118 G19                                 |                                    |
| N 119 M8                                  |                                    |
| N 120 G110 C0                             |                                    |
| N 121 G0 Y0                               |                                    |
| N 122 G0 X74 Z-40                         |                                    |
| N 123 G147 I2 K2                          |                                    |
| N 124 G840 ID"Slot 10mm" Q1 H0 P0.8 B0.15 | [Deburr slot on single surface]    |
| N 125 G47 M9                              |                                    |
| N 126 G14 Q0 D1                           |                                    |
| N 127 G18                                 |                                    |
| N 128 END_OF_UNIT                         |                                    |
|                                           |                                    |
| N 129 UNIT ID"G72_ICP_Y"                  | [ICP boring, countersinking in Y]  |

i

| N 131 T2                         |                                          |
|----------------------------------|------------------------------------------|
| N 132 G197 S1000 G195 F0.22 M104 |                                          |
| N 133 M8                         |                                          |
| N 134 G147 K2                    |                                          |
| N 135 G72 ID"Hole_1 M6" D0       | [Center the holes of the first pattern]  |
| N 136 G47 M9                     |                                          |
| N 137 END_OF_UNIT                |                                          |
|                                  |                                          |
| N 138 UNIT ID"G72_ICP_Y"         | [ICP boring, countersinking in Y]        |
| N 140 T2                         |                                          |
| N 141 G197 S1000 G195 F0.22 M104 |                                          |
| N 142 M8                         |                                          |
| N 143 G147 K2                    |                                          |
| N 144 G72 ID"Hole_2 M6" D0       | [Center the holes of the second pattern] |
| N 145 G47 M9                     |                                          |
| N 146 G14 Q0 D1                  |                                          |
| N 147 END_OF_UNIT                |                                          |
|                                  |                                          |
| N 148 UNIT ID"G74_ICP_Y"         | [ICP drilling in Y axis]                 |
| N 150 T4                         |                                          |
| N 151 G197 S1200 G195 F0.24 M103 |                                          |
| N 152 M8                         |                                          |
| N 153 G147 K2                    |                                          |
| N 154 G74 ID"Hole_1 M6" D0 V2    | [Holes of the first pattern]             |
| N 155 G47 M9                     |                                          |
| N 156 END_OF_UNIT                |                                          |
|                                  |                                          |
| N 157 UNIT ID"G74_ICP_Y"         | [ICP drilling in Y axis]                 |
| N 159 T4                         |                                          |
| N 160 G197 S1200 G195 F0.24 M103 |                                          |
| N 161 M8                         |                                          |
| N 162 G147 K2                    |                                          |
| N 163 G74 ID"Hole_2 M6" D0 V2    | [Holes of the second pattern]            |
| N 164 G47 M9                     |                                          |
| N 165 G14 Q0 D1                  |                                          |
| N 166 END_OF_UNIT                |                                          |
|                                  |                                          |
| N 167 UNIT ID"G73_ICP_Y"         | [ICP tapping in Y axis]                  |

1

| N 169 T6                   |                           |
|----------------------------|---------------------------|
| N 170 G197 S800 M103       |                           |
| N 171 M8                   |                           |
| N 172 G147 K2              |                           |
| N 173 G73 ID"Hole_1 M6" F1 | [Tapping, first pattern]  |
| N 174 G47 M9               |                           |
| N 175 END_OF_UNIT          |                           |
|                            |                           |
| N 176 UNIT ID"G73_ICP_Y"   | [ICP tapping in Y axis]   |
| N 178 T6                   |                           |
| N 179 G197 S800 M103       |                           |
| N 180 M8                   |                           |
| N 181 G147 K2              |                           |
| N 182 G73 ID"Hole_2 M6" F1 | [Tapping, second pattern] |
| N 183 G47 M9               |                           |
| N 184 G14 Q0 D1            |                           |
| N 185 END_OF_UNIT          |                           |
|                            |                           |
| N 186 UNIT ID"C_AXIS_OFF"  | [C axis off]              |
| N 188 M15                  |                           |
| N 189 END_OF_UNIT          |                           |
|                            |                           |
| N 190 UNIT ID"END"         | [Program end]             |
| N 192 M30                  |                           |
| N 193 END_OF_UNIT          |                           |
| END                        |                           |

i





# **TURN PLUS**

# 7.1 The TURN PLUS function

To create programs with TURN PLUS, you program the blank and finished part with the aid of interactive graphics. The working plan is then generated automatically. As a result you get a commented and structured NC program.

With TURN PLUS you can create NC programs for the following applications:

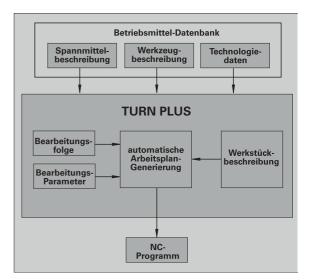
- Turning operations
- Drilling and milling with the C axis
- Drilling and milling with the Y axis

#### **TURN PLUS concept**

The workpiece description is the basis for working plan generation. The strategy for generating the working plan is specified in the **machining sequence.** The **machining parameters** define details of machining. This allows you to adapt TURN PLUS to your individual needs.

TURN PLUS generates the working plan, which takes technology attributes such as oversizes, tolerances, etc. into account.

On the basis of the **blank form update**, TURN PLUS optimizes the paths for approach and avoids air cuts or collisions between workpiece and cutting edge.


For tool selection, TURN PLUS uses the tools from the NC program or from the current turret assignment/magazine list, depending on the machine parameter settings. If there is no suitable tool in the turret assignment/magazine list, TURN PLUS looks for a suitable tool in the tool database.

When clamping the workpiece, TURN PLUS can determine the cutting limitations and the zero point shift for the NC program, depending on the machine parameter settings.

The technology database provides the cutting data to TURN PLUS.



**Before** generating the working plan, please note: The default values for the machining parameters as well as general settings are defined in the machine parameters (see "List of machine parameters" in the User's Manual).



# 7.2 Automatic Working Plan Generation (AWG) submode

The **AWG** submode generates the work blocks of the working plan in the sequence defined in "Machining sequence." You define the machining details in the **Machining Parameters** input form. TURN PLUS automatically finds all the elements of a work block. Use the **machining sequence editor** to specify the machining sequence.

#### A work block has the following content:

- Tool call
- Cutting values (technology data)
- Approach (may be omitted)
- Machining cycle
- Tool retraction (may be omitted)
- Moving to tool change point (may be omitted)

You can change or supplement the generated work blocks subsequently.

TURN PLUS simulates the machining in the AWG control graphic. You can set the sequence and representation of the control graphic via soft key (see "Simulation submode" in the User's Manual).



TURN PLUS outputs warnings during the contour analysis if certain areas cannot be machined at all or not completely. Check the respective sections after program creation and adapt them to your needs.



In machine parameter 602023, you define whether the control loads the programmed or calculated values into the NC program.

The AWG submode divides a circle at the quadrant boundaries. As a result, the program generated by the AWG may contain more contour elements than the original program.



After generating the working plan, please note: If no chucking equipment has been defined in the program yet, TURN PLUS defines the chucking equipment for a specific type of clamping/clamping length and adjusts the cutting limitation accordingly. Adapt the values in the finished NC program.

#### Generating a working plan with TURN PLUS

Select "TURN PLUS." TURN PLUS opens the most recently selected machining sequence.

| ANG  | Select the <b>AWG</b> submode. TURN PLUS shows the contours of the blank and the finished part in the graphics window. |
|------|------------------------------------------------------------------------------------------------------------------------|
|      | Press the "AWG control graphic" soft key: The AWG control graphic and program generation are started.                  |
| Back | Press the "Back" soft key to return to the TURN PLUS menu.                                                             |
|      |                                                                                                                        |
| Back | Press the "Back" soft key to switch to the <b>smart.Turn</b> mode of operation.                                        |
| Back |                                                                                                                        |



#### Machining sequence-Fundamentals

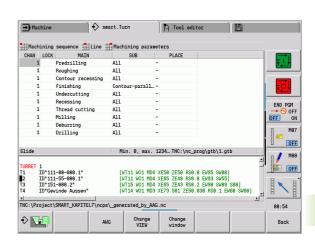
TURN PLUS analyzes the contour in the sequence defined in "Machining sequence." In this process the areas to be machined and the tool parameters are ascertained. The **AWG** submode analyzes the contour using the machining parameters.

TURN PLUS distinguishes between:

- Main machining operation (e.g. Undercutting)
- Submachining operation (e.g. type H, K, or U)
- Machining location (e.g. outside or inside)

"Submachining" and "machining location" refine the machining specification. If you do not define the submachining operation or machining location, the **AWG** submode generates machining blocks for **all** submachining operations/machining locations.

The following factors additionally influence the working plan generation:


- Geometry of the contour
- Attributes of the contour
- Tool availability
- Machining parameters

In the machining sequence you define the sequence in which the machining steps are carried out. If you only define the main machining operation in the sequence for a machining operation, all of the submachining operations comprised by it are executed in a specific sequence. However, you can also program the submachining operations and machining locations individually in any sequence. In this case you should define the associated main machining operation again after defining the submachining operations. This way you can ensure that all submachining operations and locations are taken into account.

The machining sequence and the program can be displayed in a horizontal or vertical window layout. Press the "Change VIEW" soft key to switch between the two views.

Press the "Change window" soft key to move the cursor between the Program and the Machining Sequence window.

The **AWG** submode does **not** generate the work blocks if any required preparatory step is missing, or if the appropriate tool is not available, etc. TURN PLUS skips machining operations/machining sequences that do not make sense in the machining process.



#### Organizing machining sequences:

- TURN PLUS always uses the current machining sequence. The current machining sequence can be edited or overwritten by loading another machining sequence.
- When you open TURN PLUS, the most recently used machining sequence is automatically displayed.



#### Danger of collision!

When executing drilling or milling operations, TURN PLUS does not check whether the turning operation has already been completed. Ensure that turning operations precede drilling or milling operations in the machining sequence.

#### Editing and managing machining sequences

TURN PLUS uses the currently active machining sequence. You can change the machining sequences and adapt them to your range of parts.

#### Managing the machining sequence files:

#### To open the machining sequence:

- Select "TURN PLUS > Machining sequence > Open." TURN PLUS opens the selection list with the machining sequence files.
   Select the desired file.

#### To save the machining sequence:

- Select "TURN PLUS > Machining sequence > Save as." TURN PLUS opens the selection list with the machining sequence files.
- Enter a new file name or overwrite an existing file.

#### To create a default machining sequence:

- Select "TURN PLUS > Machining sequence > Save HEIDENHAIN standard as..." TURN PLUS opens the selection list with the machining sequence files.
- Enter a file name under which you wish to store the HEIDENHAIN default machining sequence.

#### Editing a machining sequence

Position the cursor

Select "TURN PLUS > Machining sequence > Line." Select the function.

#### Inserting a new machining operation

To insert a new machining operation before the cursor position, select "Insert above the line."

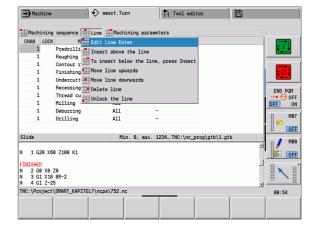
To insert a new machining operation after the cursor position, select "To insert below the line, press Insert."

#### Moving a machining operation

Select "Move line upwards" or "Move line downwards."

#### Editing the machining sequence

Select "Edit line."


"OK" confirms the new machining sequence.

#### **Deleting a machining operation**

"Delete line" deletes the selected machining sequence.

|          | ning sequence 👖 Line 👭 | Machining par  | aneters        |                 |          |
|----------|------------------------|----------------|----------------|-----------------|----------|
| Nev      |                        | SUB            | PLACE          |                 |          |
| 0pen .   |                        | 41             | -              |                 |          |
| Save a   |                        | 11             | -              |                 |          |
|          | HEIDENHAIN standard as | 11             | -              |                 |          |
| Save 1   | HEIDENHAIN Standard as | purcour purur. | 1              |                 |          |
| TNC : \r | nc_prog\gtb\1.gtb      | 41             | -              |                 |          |
| *        | neccosting             | A11            | -              |                 | END PGM  |
| 1        | Thread cutting         | A11            | -              |                 | 👔 🔶 😔 OF |
| 1        |                        | A11            | -              |                 | OFF C    |
| 1        |                        | A11            | -              |                 | E3 ME    |
| 1        | Drilling               | A11            | -              |                 |          |
|          |                        |                |                |                 |          |
| Slide    |                        | Min. 0, max    | . 1234 TNC:\nc | _prog\gtb\1.gtb |          |
|          |                        |                |                |                 | - I MB   |
| 1 G20    | X60 Z100 K1            |                |                |                 |          |
| INISHED  |                        |                |                |                 | 1        |
|          | X0 Z0                  |                |                |                 |          |
|          |                        |                |                |                 |          |
|          | X16 BR-2               |                |                |                 |          |

|         |            | uence 🏭 Line                                                                                                                |           |            |             |                |         |
|---------|------------|-----------------------------------------------------------------------------------------------------------------------------|-----------|------------|-------------|----------------|---------|
| CHAN    | LOCK       | MAIN                                                                                                                        | SUB       |            | PLACE       |                |         |
| 1       |            | drilling                                                                                                                    | A11       | -          |             |                |         |
| 1       |            | ghing                                                                                                                       | A11       | -          |             |                |         |
| 1       |            | tour recessing                                                                                                              | A11       | -          |             |                |         |
| 1       | Fin        | ishing                                                                                                                      | Contour-p | arall      |             |                |         |
| 1       | Und        | ercutting                                                                                                                   | A11       | -          |             |                |         |
| 1       | Rec        | essing                                                                                                                      | A11       | -          |             |                | END PGM |
| 1       | Thr        | ead cutting                                                                                                                 | A11       | -          |             |                |         |
| 1       | Mil        | ling                                                                                                                        | A11       | -          |             |                | OFF 0   |
| 1       | Deb        | urring                                                                                                                      | A11       | -          |             |                |         |
| 1       | Dri        | lling                                                                                                                       | A11       | -          |             |                | Me Me   |
|         |            |                                                                                                                             |           |            |             |                |         |
| Slide   |            |                                                                                                                             | Min. 0.   | max. 1234. | . TNC:\nc_p | prog\gtb\1.gtb |         |
|         |            |                                                                                                                             |           |            |             |                | B / ME  |
| URRET 1 | L          |                                                                                                                             |           |            |             | -              |         |
|         | CD"111-80  |                                                                                                                             |           |            |             | .8 EW95 SW80]  |         |
|         |            | "111-55-080.1" [WT11 W01 MD4 XE65 ZE48 RS0.8 EW93 SW55]                                                                     |           |            |             |                | 8       |
|         |            | 151-800.2" [W115 W01 MD4 XE65 ZE43 RS0.2 EN90 SW09 SB0]<br>Gewinde Aussen" [W114 W01 MD3 XE73.501 ZE50.038 RS0.1 EN60 SW60] |           |            |             |                |         |
| d       | to designa |                                                                                                                             | [         |            |             |                | • •     |
|         |            | RT_KAPITEL7\ncp                                                                                                             |           |            |             |                |         |



#### **Overview of machining sequences**

The following table lists the possible combinations of main machining operations with submachining operations and machining locations and explains the working method of the **AWG** submode.

#### Machining sequence for predrilling

| Main machining | Submachining | Location | Execution                                        |
|----------------|--------------|----------|--------------------------------------------------|
| Predrilling    |              |          | Contour analysis: Determining the drilling steps |
|                |              |          | Machining parameter: 3 – Centric predrilling     |
|                | All          | -        | Predrilling                                      |

#### Machining sequence for roughing

| Main machining | Submachining            | Location | Execution                                                                                                                                                                                                  |
|----------------|-------------------------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Roughing       |                         |          | <b>Contour analysis:</b> Dividing the contour into areas for longitudinal/<br>transverse outside machining and longitudinal/transverse inside<br>machining according to the transverse/longitudinal ratio. |
|                |                         |          | Sequence: First outside, then inside machining                                                                                                                                                             |
|                |                         |          | Machining parameter: 4 – Roughing                                                                                                                                                                          |
|                | All                     | _        | Transverse machining, longitudinal machining—outside and inside                                                                                                                                            |
|                | Longitudinal machining  | -        | Longitudinal machining—outside and inside                                                                                                                                                                  |
|                | Longitudinal machining  | Outside  | Longitudinal machining—outside                                                                                                                                                                             |
|                | Longitudinal machining  | Inside   | Longitudinal machining—inside                                                                                                                                                                              |
|                | Transverse<br>machining | -        | Transverse machining—outside and inside                                                                                                                                                                    |
|                | Transverse<br>machining | Outside  | Transverse machining—outside                                                                                                                                                                               |
|                | Transverse<br>machining | Inside   | Transverse machining—inside                                                                                                                                                                                |
|                | Contour-parallel        | _        | Contour-parallel machining—outside and inside                                                                                                                                                              |
|                | Contour-parallel        | Outside  | Contour-parallel machining—outside                                                                                                                                                                         |
|                | Contour-parallel        | Inside   | Contour-parallel machining—inside                                                                                                                                                                          |

1

#### Machining sequence for finishing

| Main machining | Submachining     | Location | Execution                                                                                  |
|----------------|------------------|----------|--------------------------------------------------------------------------------------------|
| Finishing      |                  |          | <b>Contour analysis:</b> Dividing the contour into areas for outside and inside machining. |
|                |                  |          | Sequence: First outside, then inside machining                                             |
|                |                  |          | Machining parameter: 5 – Finishing                                                         |
|                | Contour-parallel | -        | Outside/inside machining                                                                   |
|                | Contour-parallel | Outside  | Outside machining                                                                          |
|                | Contour-parallel | Inside   | Inside machining                                                                           |

#### Machining sequence for recess turning

| Main machining        | Submachining            | Location          | Execution                                                                                                                                            |
|-----------------------|-------------------------|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Recess turning</b> |                         |                   | Contour analysis:                                                                                                                                    |
|                       |                         |                   | Without previous roughing operation: The complete contour,<br>including recess areas (undefined recesses), is machined.                              |
|                       |                         |                   | With previous roughing operation: Recess areas (undefined<br>recesses) are determined and machined according to the<br>"inward copying angle (EKW)." |
|                       |                         |                   | Sequence: First outside, then inside machining                                                                                                       |
|                       |                         |                   | Machining parameter: 1 Global parameters for finished parts                                                                                          |
|                       | All                     | -                 | Radial/axial machining—outside and inside                                                                                                            |
|                       | Longitudinal machining  | Outside           | Radial machining—outside                                                                                                                             |
|                       | Longitudinal machining  | Inside            | Radial machining—inside                                                                                                                              |
|                       | Transverse<br>machining | Outside/<br>front | Axial machining—outside                                                                                                                              |
|                       | Transverse<br>machining | Inside/front      | Axial machining—inside                                                                                                                               |



Recess turning and contour turning are used alternatively.



#### Machining sequence for contour recessing

| Main machining    | Submachining            | Location          | Execution                                                                                                                      |
|-------------------|-------------------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------|
| Contour recessing |                         |                   | <b>Contour analysis:</b> Recess areas (recesses) are determined and machined according to the "inward copying angle (EKW)."    |
|                   |                         |                   | Sequence: First outside, then inside machining                                                                                 |
|                   |                         |                   | Machining parameter: 1 Global parameters for finished parts                                                                    |
|                   | All                     | _                 | Radial/axial machining—outside and inside<br>Shaft machining: Axial machining on the outside is performed on<br>front and back |
|                   | Longitudinal machining  | Outside           | Radial machining—outside                                                                                                       |
|                   | Longitudinal machining  | Inside            | Radial machining—inside                                                                                                        |
|                   | Transverse<br>machining | Outside/<br>front | Axial machining—outside                                                                                                        |
|                   | Transverse<br>machining | Inside/front      | Axial machining—inside                                                                                                         |

Recess turning and contour turning are used alternatively.

#### Machining sequence for recessing

| Main machining | Submachining     | Location          | Execution                                                                                                                                                                                                                                                          |
|----------------|------------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Recessing      |                  |                   | Contour analysis: Determining the "Recess" form elements:                                                                                                                                                                                                          |
|                |                  |                   | <ul> <li>Type S (guarding ring – recess type S)</li> <li>Type D (sealing ring – recess type D)</li> <li>Type A (recess general)</li> <li>Type FK (relief turn F) – FK is only machined using "Recessing" if the "inward copying angle (EKW) &lt;= mtw."</li> </ul> |
|                |                  |                   | Sequence: First outside, then inside machining                                                                                                                                                                                                                     |
|                |                  |                   | <b>Machining parameter</b> (with type FK): 1 Global parameters for finished parts                                                                                                                                                                                  |
|                | All              | -                 | All recess types; radial/axial machining; outside and inside                                                                                                                                                                                                       |
|                | Type S, D, A, FK | _                 | Radial/axial machining—outside and inside                                                                                                                                                                                                                          |
|                | Type S, D, A, FK | Outside           | Radial machining—outside                                                                                                                                                                                                                                           |
|                | Type S, D, A, FK | Inside            | Radial machining—inside                                                                                                                                                                                                                                            |
|                | Type S, D, A, FK | Outside/<br>front | Axial machining—outside                                                                                                                                                                                                                                            |
|                | Type S, D, A, FK | Inside/front      | Axial machining—inside                                                                                                                                                                                                                                             |

i

#### Machining sequence for undercuts

| Main machining | Submachining | Location | Execution                                                                                 |
|----------------|--------------|----------|-------------------------------------------------------------------------------------------|
| Undercutting   |              |          | <b>Contour analysis/machining:</b> Determining the "Undercuts" form elements:             |
|                |              |          | Type H – Machining using single paths of traverse; copying tool<br>(type 22x)             |
|                |              |          | Type K – Machining using single paths of traverse; copying tool<br>(type 22x)             |
|                |              |          | Type U – Machining using single paths of traverse; recessing<br>tool (type 15x)           |
|                |              |          | <b>Sequence:</b> First outside, then inside machining; first radial, then axial machining |
|                | All          | -        | All recess types—outside and inside                                                       |
|                | All          | Outside  | All recess types—outside                                                                  |
|                | All          | Inside   | All recess types—inside                                                                   |
|                | Type H, K, U | -        | Radial/axial machining—outside and inside                                                 |
|                | Type H, K, U | Outside  | Machining—outside                                                                         |
|                | Type H, K, U | Inside   | Machining—inside                                                                          |



#### Machining sequence for thread cutting

| Main machining | Submachining | Location | Execution                                                                                                                                 |
|----------------|--------------|----------|-------------------------------------------------------------------------------------------------------------------------------------------|
| Thread cutting |              |          | Contour analysis: Determining the "Thread" form elements                                                                                  |
|                |              |          | <b>Sequence:</b> First outside, then inside machining; the elements are then machined according to the sequence of geometrical definition |
|                | All          | -        | Machining cylindric (longitudinal), tapered and transverse threads on the outside and inside of a contour                                 |
|                | All          | Outside  | Machining cylindric (longitudinal), tapered and transverse threads on the outside of a contour                                            |
|                | All          | Inside   | Machining cylindric (longitudinal), tapered and transverse threads on the inside of a contour                                             |
|                | Cylinder     | -        | Machining cylindric outside and inside threads                                                                                            |
|                | Cylinder     | Outside  | Machining cylindric outside threads                                                                                                       |
|                | Cylinder     | Inside   | Machining cylindric inside threads                                                                                                        |
|                | Transverse   | -        | Machining transverse threads on the outside and inside of the contour                                                                     |
|                | Transverse   | Outside  | Machining transverse threads on the outside                                                                                               |
|                | Transverse   | Inside   | Machining transverse threads on the inside                                                                                                |
|                | Taper        | -        | Machining taper threads on the outside and inside                                                                                         |
|                | Taper        | Outside  | Machining taper threads on the outside.                                                                                                   |
|                | Taper        | Inside   | Machining taper threads on the inside.                                                                                                    |

i

#### Machining sequence for drilling

| Main machining | Submachining                                                | Location | Execution                                                                                                                                                                                                             |
|----------------|-------------------------------------------------------------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Drilling       |                                                             |          | Contour analysis: Determining the "Hole" form elements.                                                                                                                                                               |
|                |                                                             |          | Sequence – Drilling operations/drilling combinations:                                                                                                                                                                 |
|                |                                                             |          | <ul> <li>Centering / Centering and countersinking</li> <li>Drilling</li> <li>Countersinking / Drilling and countersinking</li> <li>Reaming / Drilling with reaming</li> <li>Tapping / Drilling with thread</li> </ul> |
|                |                                                             |          | Sequence – Location:                                                                                                                                                                                                  |
|                |                                                             |          | <ul> <li>Centric</li> <li>Front (also machines Y front)</li> <li>Lateral surface (also machines Y surface)</li> </ul>                                                                                                 |
|                |                                                             |          | <ul> <li>then the elements are machined according to the sequence of<br/>geometrical definition</li> </ul>                                                                                                            |
|                | All                                                         | -        | All drilling/boring operations at all machining locations                                                                                                                                                             |
|                | All                                                         | Centric  | Centric machining of all drilling/boring operations                                                                                                                                                                   |
|                | All                                                         | Face     | All drilling/boring operations on the front face                                                                                                                                                                      |
|                | All                                                         | Lateral  | All drilling/boring operations on the lateral surface                                                                                                                                                                 |
|                | Centering, drilling,<br>countersinking,<br>reaming, tapping | -        | Machining at all machining locations                                                                                                                                                                                  |
|                | Centering, drilling,<br>countersinking,<br>reaming, tapping | Centric  | Centric machining on the face                                                                                                                                                                                         |
|                | Centering, drilling,<br>countersinking,<br>reaming, tapping | Face     | Machining on the face                                                                                                                                                                                                 |
|                | Centering, drilling,<br>countersinking,<br>reaming, tapping | Lateral  | Machining on the lateral surface                                                                                                                                                                                      |



#### Machining sequence for milling

| Main machining | Submachining                              | Location | Execution                                                                                                                                     |
|----------------|-------------------------------------------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| Milling        |                                           |          | Contour analysis: Determining the milling contours.                                                                                           |
|                |                                           |          | Sequence – Milling operation:                                                                                                                 |
|                |                                           |          | <ul> <li>Linear and circular slots</li> <li>Open contours</li> <li>Closed contours (pockets), single surfaces and centric polygons</li> </ul> |
|                |                                           |          | Sequence – Location:                                                                                                                          |
|                |                                           |          | <ul> <li>Front (also machines Y front)</li> <li>Lateral surface (also machines Y surface)</li> </ul>                                          |
|                |                                           |          | <ul> <li>then the elements are machined according to the sequence of<br/>geometrical definition</li> </ul>                                    |
|                | All                                       | _        | All milling operations at all machining locations                                                                                             |
|                | Surface, contour,<br>slot milling, pocket | Face     | All milling operations on the front face                                                                                                      |
|                | Surface, contour,<br>slot milling, pocket | Lateral  | All milling operations on the lateral surface                                                                                                 |
|                | Surface, contour,<br>slot milling, pocket | -        | Milling at all machining locations                                                                                                            |
|                | Surface, contour,<br>slot milling, pocket | Face     | Milling the end face                                                                                                                          |
|                | Surface, contour,<br>slot milling, pocket | Lateral  | Milling on the lateral surface                                                                                                                |

#### Machining sequence for deburring

| Main machining | Submachining                 | Location | Execution                                                                                                  |
|----------------|------------------------------|----------|------------------------------------------------------------------------------------------------------------|
| Deburring      |                              |          | <b>Contour analysis:</b> Determining milling contours with "Deburring" attribute.                          |
|                |                              |          | Sequence – Location:                                                                                       |
|                |                              |          | <ul> <li>Front (also machines Y front)</li> <li>Lateral surface (also machines Y surface)</li> </ul>       |
|                |                              |          | <ul> <li>then the elements are machined according to the sequence of<br/>geometrical definition</li> </ul> |
|                | All                          | -        | All milling operations at all machining locations                                                          |
|                | Contour, slot,<br>pocket (*) | Face     | Deburring of all milling operations on the front face                                                      |
|                | Contour, slot,<br>pocket (*) | Lateral  | Deburring of all milling operations on the lateral surface                                                 |
|                | Contour, slot,<br>pocket (*) | -        | Deburr selected element at all machining locations                                                         |

ĺ

| Main machining | Submachining                 | Location   | Execution                                      |
|----------------|------------------------------|------------|------------------------------------------------|
|                | Contour, slot,<br>pocket (*) | Face       | Deburr selected element on the face            |
|                | Contour, slot,<br>pocket (*) | Lateral    | Deburr selected element on the lateral surface |
|                | *: Define the type           | of contour |                                                |

| <b>Machining sequence</b> | for milling an | d finishing |
|---------------------------|----------------|-------------|
|---------------------------|----------------|-------------|

| Main machining | Submachining                 | Location | Execution                                                                                                                                     |
|----------------|------------------------------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| Finish-milling |                              |          | Contour analysis: Determining the milling contours.                                                                                           |
|                |                              |          | Sequence – Milling operation:                                                                                                                 |
|                |                              |          | <ul> <li>Linear and circular slots</li> <li>Open contours</li> <li>Closed contours (pockets), single surfaces and centric polygons</li> </ul> |
|                |                              |          | Sequence – Location:                                                                                                                          |
|                |                              |          | <ul> <li>Front (also machines Y front)</li> <li>Lateral surface (also machines Y surface)</li> </ul>                                          |
|                |                              |          | <ul> <li>then the elements are machined according to the sequence<br/>of geometrical definition</li> </ul>                                    |
|                | -                            | -        | Finish-machine all elements at all machining locations                                                                                        |
|                | -                            | Face     | Finish-machine all elements on the front face                                                                                                 |
|                | -                            | Lateral  | Finish-machine all elements on the lateral surface                                                                                            |
|                | Contour, slot, pocket<br>(*) | _        | Finish selected element at all machining locations                                                                                            |
|                | Contour, slot, pocket<br>(*) | Face     | Finish selected element on the face                                                                                                           |
|                | Contour, slot, pocket<br>(*) | Lateral  | Finish selected element on the lateral surface                                                                                                |
|                | *: Define the milling op     | peration |                                                                                                                                               |

#### Machining sequence for parting

| Main machining | Submachining           | Location | Execution                              |
|----------------|------------------------|----------|----------------------------------------|
| Parting        | All                    | -        | The workpiece is cut off               |
|                | Full-surface machining | -        | The workpiece is cut off and rechucked |

#### Machining sequence for rechucking

| Main machining | Submachining           | Location | Execution                   |
|----------------|------------------------|----------|-----------------------------|
| Rechucking     | Full-surface machining | -        | The workpiece is rechucked. |

# 7.3 AWG control graphic

When you create a program with the **AWG** submode, the programmed blank and finished part are displayed in the simulation window and in addition, all machining steps are simulated successively. The workpiece blank **takes on a contour** during machining.

# Setting the AWG control graphic

When you start the automatic program creation with the AWG soft key, the control automatically opens the AWG control graphic. The simulation displays dialogs in which you get machining and tool information. After you have simulated the machining process, you can close the graphics window with the "Back" soft key. The "Save as" dialog box opens once you exit the TURN PLUS menu with the "Back" soft key. The name of the opened program is displayed in the "File name" dialog field. If you do not enter another file name, the opened program will be overwritten. Alternatively, you can save the machining operation in another program.

The AWG control graphic is indicated in the soft-key symbol by a contour outlined in red.

The display of the **tool paths** and the **simulation mode** can be set as in the **Simulation** submode (see "Simulation submode" in the User's Manual).



# 7.4 Machining information

#### Tool selection, turret assignment



This function is also available on machines with a tool magazine. The control uses the magazine list instead of the turret list.

#### The **tool selection** is determined by:

- Machining direction
- Contour to be machined
- Machining sequence
- Setting of the machining parameter Type of tool access
- Machine parameter settings



You can influence the **Type of tool access** parameter both with the machining parameters and with the machine parameter **602001**.

If the ideal tool is not available, TURN PLUS

First looks for a replacement tool,

Then for an emergency tool.

If necessary, TURN PLUS adapts the machining cycle to the requirements of the replacement or emergency tool. If more than one tool is suitable for a machining operation, TURN PLUS uses the optimal tool. If no tool is found by TURN PLUS, select the tools manually.

The **Mount type** distinguishes between different tool holders (see "Tool editor" in the User's Manual). TURN PLUS checks whether the mount type in the tool holder description and the mount type in the turret pocket description are the same.



Depending on the setting of the "Zero point shift" machine parameter (602022), TURN PLUS automatically calculates the required zero point shift for the workpiece and activates it with G59 (see "List of machine parameters" in the User's Manual).

To calculate the zero point shift, TURN PLUS takes the following values into account:

- Workpiece length Z (description of workpiece blank)
- Oversize K (description of workpiece blank)
- Edge of chuck Z (description of chucking equipment and machining parameters)
- Edge of chuck B (description of chucking equipment and machining parameters)



Multipoint tools and manual tool change holders are used by the **AWG** submode only if they are already entered in the turret list of the NC program.



#### Manual tool selection

TURN PLUS selects the tools depending on the machining parameter Type of tool access WD. If TURN PLUS cannot find a suitable tool in the specified lists, select the tools manually.

TURN PLUS automatically enters comparison parameters. With the soft keys, you can select the list in which you want to look for the tools.

| Tool<br>list   | Select the "Tool list" soft key                                         |
|----------------|-------------------------------------------------------------------------|
| Turret<br>list | Select the "Turret list" soft key                                       |
| Choose a to    | ool from the list.                                                      |
| Load<br>tool   | Press the "Take over" soft key to enter the tool in the tool selection. |
| Take over      | Press the "Take over" soft key to conclude the tool selection.          |

| ➡ Machine                           |                        | NWG       |                | 🎙 Tool ed          | fitor                                       |                          |             |
|-------------------------------------|------------------------|-----------|----------------|--------------------|---------------------------------------------|--------------------------|-------------|
|                                     |                        | 曲● 曲      |                |                    |                                             |                          |             |
|                                     | T0=8                   |           | Man            | ual tool select    | tion                                        |                          |             |
|                                     |                        |           | Ide            | al/alternate/energ | . tool: 🗠 🗌                                 |                          | Ĩ.          |
|                                     |                        |           | Con            | mparison parame    | ter:                                        |                          |             |
|                                     |                        |           | Ho             | Le diameter        | DV 30.000 <                                 | DV < 39.200              | <b>∓</b> o↓ |
|                                     |                        |           | Us             | able length        | NL NL > 135.                                | 808                      |             |
|                                     |                        |           | ID             | no.                | ID 342-3                                    | 20.1                     | END PGM     |
|                                     |                        |           |                |                    |                                             |                          | 🔶 🔶 OF      |
|                                     | Ť                      |           |                |                    |                                             |                          | OFF (       |
|                                     |                        |           |                |                    |                                             |                          | ME ME       |
|                                     |                        |           |                |                    |                                             |                          |             |
|                                     |                        |           | ID             |                    |                                             | 1/1                      |             |
|                                     |                        |           | 10             | 110.               |                                             | 1/1                      | m / ME      |
|                                     |                        |           |                |                    |                                             |                          |             |
| Filter Dri                          | 11                     |           |                |                    | 47 of 3                                     | 21 Max 999               | /           |
| Filter Dri<br>ID number             |                        | signation | RS/DV E        | W/BW/AZ SW/SB/H    |                                             | 21 Max 999<br>MU MD LA ^ |             |
| ID number<br>342-300.1              | ▲ TO Des<br>8          | ignation  | 30.00          | 180.0              | HG Cutting mat.<br>Hartmetall               |                          |             |
| ID number<br>342-300.1<br>342-320.1 | ▲ TO Des<br>আ 8<br>আ 8 | signation | 30.00<br>32.00 | 180.0<br>180.0     | HG Cutting mat.<br>Hartmetall<br>Hartmetall | MU MD LA                 | /           |
| ID number<br>342-300.1              | ▲ TO Des<br>8          | signation | 30.00          | 180.0              | HG Cutting mat.<br>Hartmetall               | MU MD LA A               |             |

TURN PLUS

#### Contour recessing, recess turning

The **cutting radius** must be smaller than the smallest inside radius of the recess contour, but >= 0.2 mm. TURN PLUS determines the **width of the recessing tool** from the recess contour:

- Recess contour includes paraxial floor elements with radii on both sides: SB <= b + 2\*r (if radii differ: smallest radius).</p>
- Recess contour includes paraxial floor elements without radii or with a radius on one side: SB <= b</p>
- Recess contour does not include paraxial floor elements: The width of the recessing tool is determined from the recessing width divisor (machining parameter 6 – SBD).

Abbreviations:

- SB: Width of recessing tool
- b: Width of floor element
- 🔳 r: Radius

### Drilling

Depending on the geometry of the bore hole, the **AWG** submode determines the appropriate tool. For centric bore holes, TURN PLUS uses stationary tools.

#### Cutting data, coolant

To determine the cutting parameters, TURN PLUS uses the

- Workpiece material (program head)
- Cutting material (tool parameters)
- The machining operation (main operation in the machining sequence).

The values determined are multiplied by the tool-dependent compensation factors (see "Tool data" in the User's Manual).

Note for roughing and finishing operations:

- Main feed rate for use of the primary cutting edge
- Auxiliary feed rate for use of the secondary cutting edge

Note for milling operations:

- Main feed rate for machining in the milling plane
- Auxiliary feed rate for infeed movements

For threading, drilling and milling operations, the cutting speed is converted into rotational speed.

**Coolant:** Depending on the workpiece material, cutting material and machining operation, define in the technology database whether coolant is used. The **AWG** submode activates the appropriate coolant circuits for the respective tool.

If you have specified that coolant is to be used, the **AWG** submode activates the coolant circulation for the respective machining block.

**Speed limitation:** TURN PLUS limits the rotational speed to the maximum speed specified in the TSF menu.

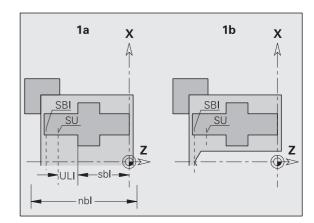
#### **Inside contours**

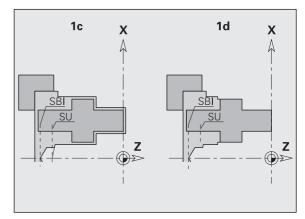
TURN PLUS machines continuous inside contours up to the transition from the "deepest point" to a greater diameter. The end position for drilling, roughing and finishing operations depends on:

- Cutting limit, inside
- Overhang length, inside **ULI** (Processing machining parameter)

Prerequisite: The usable tool length must be sufficient for the machining operation. If it is not, then this parameter defines the inside machining operation. The following examples explain the principle.

#### Limits for internal machining operations


- **Predrilling: SBI** limits the drilling operation.
- **Roughing: SBI** or **SU** limits the roughing operation.
  - SU = basic length of roughing cut (sbl) + overhang length, inside (ULI)
  - To avoid residual rings during the machining process, TURN PLUS leaves an area of 5° in front of the roughing limit.
- **Finishing: sbl** limits the finishing operation.


#### **Roughing limit in front of cutting limit**

**Example 1:** The roughing limit (SU) is located **in front of** the cutting limit, inside (SBI).

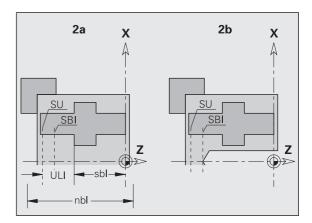
#### Abbreviations

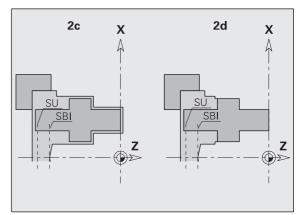
- SBI: Cutting limit, inside
- SU: Roughing limitation (SU = sbl + ULI)
- sbl: Basic length of roughing cut ("deepest" point of inside contour)
- ULI: Overhang length, inside (machining parameter 4)
- nbl: Usable tool length (tool parameter)





i


# 7.4 Machining information


#### Roughing limit behind cutting limit

**Example 2:** The roughing limit (SU) is located **behind** the cutting limit, inside (SBI).

Abbreviations

- SBI: Cutting limit, inside
- SU: Roughing limitation (SU = sbl + ULI)
- sbl: Basic length of roughing cut ("deepest" point of inside contour)
- ULI: Overhang length, inside (machining parameter 4)
- nbl: Usable tool length (tool parameter)





TURN PLUS

# Shaft machining

For shafts, TURN PLUS supports rear-face machining of outside contours in addition to standard machining processes. This enables shafts to be completely machined using one setup. You can select the clamping type for the shaft machining (Shaft/chuck or Shaft/face driver) in the V input parameter in the chucking equipment dialog.

TURN PLUS does **not** support retracting the tailstock and does not check the setup used.

**Precondition for shaft machining:** The workpiece is clamped at spindle and tailstock.



#### Danger of collision!

TURN PLUS does not monitor for collisions during transverse machining or machining operations on the end face.

#### Separation point (TR)

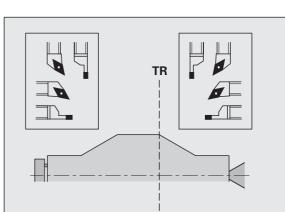
The separation point (TR) divides the workpiece into front and rear area. If no separation point has been specified, TURN PLUS sets a separation point at the transition from the largest to a smaller diameter. Position the separation points on outside corners.

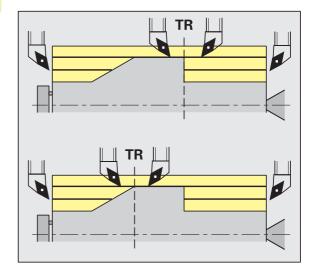
Tools for machining the

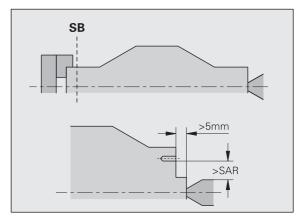
- Area on front side: Main machining direction –Z; or primarily "left" recessing or tapping tools, etc.
- Area on rear side: Main machining direction + Z; or primarily "right" recessing or tapping tools, etc.

Setting/changing the separation point: See "Separation point G44" on page 229.

#### Protection zones for drilling and milling operations


TURN PLUS machines drilling and milling contours on transverse surfaces (front/rear face) if:


(Horizontal) distance to transverse surface > 5 mm, or


 Distance between chucking equipment and drilling/milling contour is > SAR

(SAR: See user parameter).

If jaws are used for clamping the shaft at the spindle, TURN PLUS accounts for the cutting limitation (O).

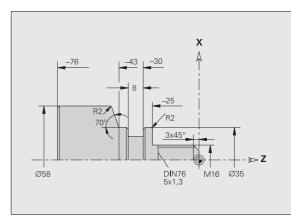






#### **Machining information**

- Chucking the workpiece at the spindle: Ensure that the area, where the blank part is chucked, is premachined. Otherwise, the cutting limitation might adversely affect the machining strategies.
- Machining of bars: TURN PLUS does not control the bar loader and does not move the tailstock and steady rest components. TURN PLUS does not support workpiece adjustment between collet and dead center during machining operations.


#### Transverse machining

- Please note that the entries made in the machining sequence apply to the complete workpiece and thus also to the transverse machining of shaft ends.
- The **AWG** submode does not machine inside areas on the rear face. If jaws are used for clamping the shaft at the spindle, the rear face is not machined.
- Longitudinal machining: First the front area is machined, then the rear area.
- Collision prevention: If machining operations are not performed without collisions, you can do the following:
  - Add a retraction of the tailstock, a positioning of the steady rest, etc. to the program.
  - Add cutting limits to the program to avoid collisions.
  - Disable automatic machining in the AWG submode by assigning the "Exclusion from machining" attribute or by defining a specific machining location in the machining sequence.
  - Define an oversize=0 for the workpiece blank. As a consequence, the front area is not machined (e.g. shafts cut to length and centered shafts).

#### 7.5 Example

On the basis of the production drawing, the working steps for defining the contour of the blank and finished part, the setup procedures and automatic working plan generation are explained.

Workpiece blank: Ø60 X 80; Material: Ck 45



■ Undefined chamfers: 1x45°

Undefined radii: 1 mm

#### **Creating a program**

- Select "Program > New > New DINplus Program." The control opens the "Save as" dialog box.
- ▶ Enter a program name and press the "Save" soft key.
- ▶ The control opens the "Program head (short)" dialog box.
- Select a material from the fixed-word list and press the "OK" soft key.

#### Workpiece blank definition

- ▶ Select "ICP > Blank > Bar." TURN PLUS opens the "Bar" dialog box.
- ▶ Inputs:
  - Diameter X = 60 mm
  - Length Z = 80 mm
  - Oversize K = 2 mm
- ▶ TURN PLUS displays the workpiece blank.

Back

▶ Press the "Back" soft key to return to the main menu.

7.5 Example

# 7.5 Example

1

t

ĸ

Back

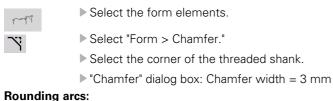
#### Defining the basic contour

Select "ICP > Finished part (> Contour)."

Enter start point of the contour X = 0; Z = 0 and end point of the element X = 16

▶ Enter Z = –25

- Enter X = 35
- ► Enter Z = -43


Enter X = 58; W = 70

► Enter Z = -76

▶ Press the "Back" soft key to go back one menu level.

#### **Defining form elements**

#### Chamfer at corner of threaded shank:



- Select "Form > Rounding."
  - Select the corners for the rounding arcs.
  - "Rounding" dialog box: Rounding radius = 2 mm

#### Undercut:

7

1-

ഹ

- Select "Form > Undercut > Undercut type G."
- Select the corner for the undercut.
- "Undercut type DIN 76" dialog box

#### **Recess:**


- Select "Form > Recess > Recess standard / G22."
  - Select the basic element for the recess.
  - "Recess standard / G22" dialog box:
    - Inside corner (Z) = 25 mm
    - Inside corner (Ki) = -8 mm
    - Recess diameter = 25 mm
    - Outside radius/chamfer (B) = -1 mm

#### Thread:

- Select "Form > Thread."
- Select the basic element for the thread.
- "Thread" dialog box: Select "ISO DIN 13"

▶ Press the "Back" soft key to return to the main menu.





Back

#### Preparing the machining process, chucking



Depending on the "Zero point shift" machine parameter, TURN PLUS automatically calculates the required zero point shift for the workpiece and activates it with G59.

To calculate the zero point shift, TURN PLUS takes the following values into account:

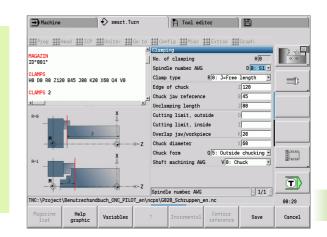
- Workpiece length Z (description of workpiece blank)
- Oversize K (description of workpiece blank)
- Edge of chuck Z (description of chucking equipment and machining parameters)
- Edge of chuck B (description of chucking equipment and machining parameters)
- Select "Head > Chucking equipment"
- Describe the chucking equipment:
  - Select "AWG spindle number"
  - Enter the edge of chuck
  - Enter the chuck width
  - Enter the cutting limitation (outside and inside)
  - Enter the clamping diameter
  - Enter the clamping length
  - Define the clamping form
  - Select "Shaft machining AWG"
- TURN PLUS takes the chucking equipment and cutting limitation into account for the program creation.

▶ Press the "Back" soft key to return to the main menu.

#### Generating and saving a working plan

#### Generating a working plan

- Select "TURN PLUS > AWG."
- Start the AWG control graphic


#### Save a program

Back

- ▶ Press the "Back" soft key to return to the TURN PLUS menu.
- Press the "Back" soft key to return to the Program view
- Check/edit the file name and press the "Save" soft key
- ▶ TURN PLUS saves the NC program



The **AWG** submode generates the work blocks according to the machining sequence and the settings of the machining parameters.







#### 7.6 Full-surface machining with TURN PLUS

#### **Rechucking the workpiece**



The control uses subprograms for rechucking, which are adapted by the machine tool builder. The functions and sequences described below are examples—the behavior of your machine may be different. Refer to your machine manual.

TURN PLUS provides three full-surface machining variants:

- Rechucking the workpiece in the main spindle. Both setups are contained in one NC program.
- Transferring the workpiece from the main spindle to the opposing spindle (chuck part).
- Parting and picking-off the workpiece with the opposing spindle.

TURN PLUS selects the required rechucking variant on the basis of the fixture and the machining sequence.



For every rechucking variant, a separate subprogram that controls the rechucking sequence is defined in the user parameters (Processing/ExpertPrograms/Expert programs).

# Defining the chucking equipment for full-surface machining

The full-surface machining sequence is defined in the chuckingequipment dialog. You also define the zero points, pick-up position and cutting limits in this dialog.

Example of first setup for full-surface machining:

#### Parameters

| CLAMPS 1                                                                  |
|---------------------------------------------------------------------------|
| 0: Main spindle                                                           |
| 0: External clamping or 1: Internal<br>clamping                           |
| No entry (the <b>AWG</b> submode uses the value from the user parameters) |
| No entry (the <b>AWG</b> submode uses the value from the user parameters) |
| Enter the clamping length or free length                                  |
| Is calculated by the <b>AWG</b> submode (if external clamping is used)    |
| Is calculated by the <b>AWG</b> submode (if internal clamping is used)    |
| Overlap jaw/workpiece                                                     |
| Clamping diameter of workpiece blank                                      |
| 4: External or 5: Internal                                                |
| Select the desired AWG strategy                                           |
|                                                                           |

Example of second setup for full-surface machining:

| Parameters                                 |                                                                             |
|--------------------------------------------|-----------------------------------------------------------------------------|
| No. of clamping <b>H</b>                   | CLAMPS 2                                                                    |
| Spindle number AWG <b>D</b>                | 0: Main spindle or 3: Opposing spindle<br>(depending on type of rechucking) |
| Clamp type <b>R</b>                        | 0: External clamping or 1: Internal<br>clamping                             |
| Chuck edge <b>Z</b>                        | No entry (the <b>AWG</b> submode uses the value from the user parameters)   |
| Chuck jaw reference <b>B</b>               | No entry (the <b>AWG</b> submode uses the value from the user parameters)   |
| Clamping length or free<br>length <b>J</b> | Enter the clamping length or free length                                    |
| Cutting limit, outside <b>0</b>            | Is calculated by the <b>AWG</b> submode (if external clamping is used)      |
| Cutting limit, inside <b>I</b>             | Is calculated by the <b>AWG</b> submode (if internal clamping is used)      |
| Overlap <b>K</b>                           | Overlap jaw/workpiece                                                       |
| Chuck diameter <b>X</b>                    | Clamping diameter of workpiece blank                                        |
| Chuck form <b>Q</b>                        | 4: External or 5: Internal                                                  |
| Shaft machining <b>V</b>                   | Select the desired AWG strategy                                             |

#### Beispiel: Defining the first chucking equipment

CLAMPS 1

H0 D0 R0 J100 K15 X120 Q4 V0

. . . .

#### Beispiel: Defining the second chucking equipment

CLAMPS 2

H0 D3 R1 J15 K-15 X68 Q4 V0

. . .



# Automatic program creation for full-surface machining

During automatic program creation (**AWG** submode) the machining steps for the first setup are created first. Then the **AWG** submode opens a dialog window that requests the parameters for rechucking.

Default values that were calculated by the **AWG** submode from the defined workpiece contour are already entered in the parameters in the dialog window. You can use or change these values. After you have confirmed the values, the **AWG** submode generates the machining sequence for the second setup.



In the user parameters the machine manufacturer defines the input parameters to be displayed in the dialog windows during rechucking.

You can also include further input parameters in the dialog windows. To do this, select the required parameters list (Processing/ExpertPrograms/Parameter lists for expert programs) in the user parameters. In the desired parameter enter a default value that is assigned to this parameter in the dialog window. Enter 99999999 to display the parameter without a default value.

#### Rechucking the workpiece in the main spindle

The subprogram for "rechucking in the main spindle" is defined in the user parameter **Parameter list – manual rechucking** (standard program: Rechuck\_manual.ncs).

At the end of the machining sequence, define a machining step with the **rechucking** main machining operation and the **full-surface machining** submachining operation.

In parameter  ${\bf D}$  of the chucking equipment description, select the main spindle for both pieces of chucking equipment.

#### Beispiel: Defining the chucking equipment

| CLAMPS 1                    |
|-----------------------------|
| H0 D0 R0 J80 K15 X120 Q4 V0 |
| CLAMPS 2                    |
| H0 D0 R1 J15 K-15 X68 Q4 V0 |
|                             |



# Transferring the workpiece from the main spindle to the opposing spindle

The subprogram for "transferring the workpiece from the main spindle to the opposing spindle" is defined in the user parameter **Parameter list – complete rechucking** (standard program: Rechuck\_complete.ncs).

At the end of the machining sequence, define a machining step with the **rechucking** main machining operation and the **full-surface machining** submachining operation.

In parameter **D** of the chucking equipment description, select the main spindle for the first chucking equipment and the opposing spindle for the second chucking equipment.

# Parting and picking-off the workpiece with the opposing spindle

The subprogram for "parting and picking-off with the opposing spindle" is defined in the user parameter **Parameter list – rechucking, parting** (standard program: Rechuck\_complete.ncs).

At the end of the machining sequence, define a machining step with the **parting** main machining operation and the **full-surface machining** submachining operation.

In parameter **D** of the chucking equipment description, select the main spindle for the first chucking equipment and the opposing spindle for the second chucking equipment.

Beispiel: Defining the chucking equipment

CLAMPS 1

H0 D0 R0 J80 K15 X120 Q4 V0

**CLAMPS 2** 

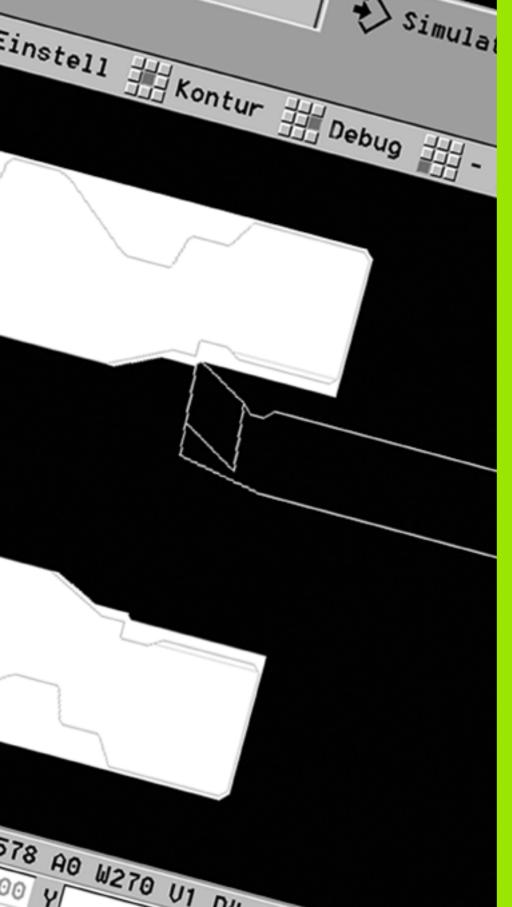
. . .

H0 D3 R1 J15 K-15 X68 Q4 V0

Beispiel: Defining the chucking equipment

CLAMPS 1

H0 D0 R0 J100 K15 X120 Q4 V0


**CLAMPS 2** 

H0 D3 R1 J15 K-15 X68 Q4 V0

. . .









**B** axis

#### 8.1 Fundamentals

#### Tilted working plane

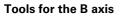
(

8.1 Fundamentals

The machine tool builder determines the scope of function and behavior of the B axis. The machine manual provides further information.

#### Tilted working plane

The B axis makes it possible to drill, bore and mill in oblique planes. To make programming easy, the coordinate system is tilted in such a way that you can define the drilling patterns and milling contours in the YZ plane. The actual drilling or milling operation is then performed in the tilted plane (see "Tilting the working plane G16" on page 523).


The separation of contour description and machining also applies to machining operations in tilted planes. Contour regeneration is not available.

Contours in tilted planes are identified by the section code LATERAL\_Y (see "LATERAL\_Y section" on page 55).

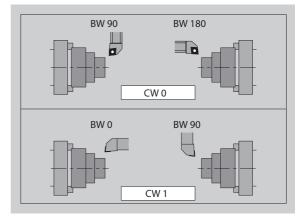
The control supports part program creation with the B axis in DIN PLUS and in the **smart.Turn** operating mode.

The **graphical simulation** shows the machining operation in a tilted working plane in the familiar lathe and front windows, as well as in the "side view (YZ)."

If you are using a tool with an angled tool holder you can also use the tilted working plane without the B axis. Define the angle for the tool holder as angular offset **RW** in the tool description.



Another advantage of the B axis is that it allows flexible use of the tools during turning operations. By tilting the B axis and rotating the tool you can bring it into positions that enable you to use one and the same tool to machine in the longitudinal and transverse (or radial and axial) directions on the main and opposing spindles.


In this way, you need fewer tools and fewer tool changes.

**Tool data:** All tools are described in the tool database by specifying the X, Z and Y dimensions as well as the compensation values. These dimensions are referenced to the **tilt angle B=0°** (reference position).

In addition, you specify the parameter **Reverse the tool CW**. It defines the working positions of tools that are not driven tools (turning tools).

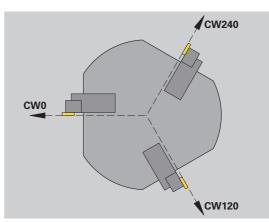
The tilt angle of the B axis is not maintained with the tool data. This angle needs to be defined in the tool call or when inserting the tool.

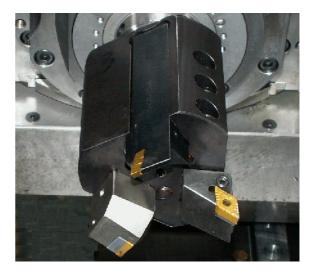




8.1 Fundamentals

**Tool orientation and position display:** For turning tools, the position of the tool tip is calculated based on the orientation of the cutting edge.


The control calculates the tool orientation of lathe tools by means of the tool angle and point angle.


#### Multipoint tools for the B axis

If several tools are mounted on a tool holder, this is referred to as a "multipoint tool." Each cutting edge (tool) of a multipoint tool is assigned a separate ID number and description.

The **position angle**, which is identified by "CW" in the figure, is included in the tool data. When a cutting edge (tool) of a multipoint tool is activated, the control will rotate the multipoint tool into the correct position. The position is determined from the position angle, to which the offset position angle from the tool change routine is added. This allows inserting the tool either in the "normal" attitude or "upside down."

The photo shows a multipoint tool with three cutting edges.







#### 8.2 Compensation with the B axis

#### Compensation during program run

**Tool compensation:** Enter the compensation values determined in the tool compensation form. Also define further functions that were active while machining the measured surface:

- Tilt angle of the B axis BW
- Reverse the tool CW
- Kinematics KM
- Plane G16

The control converts the measured data into dimensions referenced to the position B=0 and saves them in the tool database.

- Select the Tool/Add correct. soft key during program run.
- The control opens "Set the tool compensation" in the dialog box.
- Enter new values.
- Press the Save soft key.

In the "T" box (machine display), the control indicates the compensation values referenced to the current B axis angle and the tool position angle.



The control saves the tool compensation data in the tool database, together with the other tool data.

If the B axis is tilted, the control takes the tool compensation data into account when calculating the tool tip position.

**Additive compensation values** are independent of the tool data. The compensation values are effective in the X, Y and Z directions. Tilting the B axis has no influence on additive compensation values.

#### 8.3 Simulation

#### Simulation of the tilted plane

**3-D view:**The simulation correctly displays tilted Y planes as well as elements referenced to them (such as pockets, holes, patterns, etc.).

**Contour graphics:** The simulation displays the YZ view of the workpiece and the contours of the tilted planes in the **side view**. To represent the drilling patterns and milling contours perpendicularly to the tilted plane, i.e. without distortion, the simulation ignores the rotation of the coordinate system and a shift within the rotated coordinate system.

With contour graphics for tilted planes, please note the following:

- The parameter "K" of G16 or LATERAL\_Y defines the "start" of the drilling pattern or milling contour in the Z direction.
- The drilling patterns and milling contours are drawn perpendicularly to the tilted plane. This results in a "shift" relative to the turning contour.

**Milling, drilling and boring operations:** When you use the **side view** to display the tool paths in the tilted plane, the same rules apply as for the contour graphics.

When working in tilted planes, the **front window** shows the "outline" of the tool. The tool width is simulated true to scale. In this way, you can check the overlap of milling paths. The tool paths are also represented true to scale (in perspective view) as line graphics.

In all "additional windows," the simulation shows the tool and the cutting path when the tool is perpendicular to the relevant plane. A tolerance of +/– 5° is taken into account. When the tool is not perpendicular to the plane, it is represented as a "light dot" and the tool path is depicted as a line.

| ( | (P) |          |
|---|-----|----------|
| 7 |     | <b>F</b> |

**Depiction of the tool carrier** (machine-dependent function): If the machine manufacturer saves a description of the tool carrier (e.g. B head) and if you assign a holder, the graphic also displays the tool carrier.

Beispiel: "Contour in tilted plane"

| FINISHED                                        |
|-------------------------------------------------|
| N2 G0 X0 Z0                                     |
| N3 G1 X50                                       |
| N4 G1 Z–50                                      |
| N5 G1 X0                                        |
| N6 G1 Z0                                        |
| LATERAL_Y X50 C0 B80 I25 K-10 H0                |
| N7 G386 Z0 Ki10 B–30 X50 C0 [Single<br>surface] |
| LATERAL_Y X50 C0 B20 I25 K-20 H1                |
| N8 G384 Z-10 Y10 X50 R10 P5 [Full circle]       |
|                                                 |

#### Displaying the coordinate system

The simulation can show the shifted/rotated coordinate system in the "lathe window," if required. To use this feature, you need to stop the simulation.



Press the Plus/Minus key. The simulation displays the current coordinate system.

The coordinate system disappears when the next command is simulated or when you press the Plus/Minus key once again.

#### Position display with the B and Y axes

The following boxes of the display cannot be edited:

**N:** Block number of the NC source block

**X, Z, C:** Position values (actual values)

The other boxes can be set with the Split-Screen Layout key (three arrows arranged in a circle):

- Default settings (values of the selected slide):
  - **Y:** Position value (actual value)
  - **T:** Tool data with turret pocket, (in "(..)") and ID number

B axis settings:

- **B:** Tilt angle of the B axis
- G16/B: Angle of the tilted plane

rernen net Smart. Turn 当Prog 鉗 Vorsp 鉗 ICP 鉗 Units» 鉗Goto [// ICP-Stechdrehen radial] 4 UNIT ID"G869\_ICP" [G869 Stechdrehen [<unit ID="G869\_ICP" APP="0" XS="6] G96 S200 G95 F0.35 M3 G47 P1 An G1 X60 Z0 Ant Anfa 11 \*\*\*\* Vo APP= 0 72 Sch Hilfskon s Startsatz Endsatznum ZS maximale ZL Overview of units Aufmaß X øxs Aufmaß Z GM03.nc Anfahrvariante bild Werkzeug-

#### 9.1 Units—"Turning" group

#### "Roughing" group

| Unit     | Description                                     | Page    |
|----------|-------------------------------------------------|---------|
| G810_ICP | G810 Longitudinal in ICP                        | Page 73 |
|          | Roughing an ICP contour longitudinally          |         |
| G820_ICP | G820 Transverse in ICP                          | Page 74 |
|          | Roughing an ICP contour transversely            |         |
| G830_ICP | G830 Contour parallel in ICP                    | Page 75 |
|          | Roughing parallel to the contour in ICP         |         |
| G835_ICP | G835 Bidirectional in ICP                       | Page 76 |
|          | Roughing an ICP contour in two directions       |         |
| G810_G80 | G810 Longitudinal, direct                       | Page 77 |
|          | Longitudinal roughing with direct contour input |         |
| G820_G80 | G820 Transverse, direct                         | Page 78 |
|          | Transverse roughing with direct contour input   |         |

#### "Finishing" group

| Unit           | Description                                                                            | Page     |
|----------------|----------------------------------------------------------------------------------------|----------|
| G890_ICP       | G890 Contouring in ICP                                                                 | Page 124 |
|                | Finishing an ICP contour                                                               |          |
| G890_G80_L     | G890 Contouring, direct longitdnl.                                                     | Page 126 |
|                | Longitudinal finishing with direct contour input                                       |          |
| G890_G80_P     | G890 Contouring, direct transverse                                                     | Page 127 |
|                | Transverse finishing with direct contour input                                         |          |
| G85x_DIN_E_F_G | G890 Relief, type E, F, DIN76                                                          | Page 128 |
|                | Finishing the undercuts according to DIN509 type E and F and the thread undercut DIN76 |          |

#### "Recessing" group

| Unit           | Description                                 | Page    |
|----------------|---------------------------------------------|---------|
| G860_ICP       | G860 Contour recess in ICP                  | Page 79 |
|                | Recessing an ICP contour                    |         |
| G869_ICP       | G869 Recess turning in ICP                  | Page 80 |
|                | Recess turning an ICP contour               |         |
| G860_G80       | G860 Contour recess, direct                 | Page 81 |
|                | Contour recessing with direct contour input |         |
| G869_G80       | G869 Recess turning, direct                 | Page 82 |
|                | Recess turning with direct contour input    |         |
| G859_Cut_off   | G859 Parting                                | Page 83 |
|                | Parting a bar with direct position input    |         |
| G85x_Cut_H_K_U | G85X Undercutting (H, K, U)                 | Page 84 |
|                | Make undercuts of type H, K and U           |         |

#### "Thread" group

| Unit     | Description                                   | Page     |
|----------|-----------------------------------------------|----------|
| G32_MAN  | G32 Single thread                             | Page 133 |
|          | Thread with direct contour definition         |          |
| G31_ICP  | G31 ICP thread                                | Page 135 |
|          | Thread on any desired ICP contour             |          |
| G352_API | G352 API thread                               | Page 137 |
|          | API thread with direct contour definition     |          |
| G32_KEG  | G32 Tapered thread                            | Page 138 |
|          | Tapered thread with direct contour definition |          |



#### 9.2 Units—"Drilling" group

#### "Centric drilling" group

| Unit      | Description                   | Page    |
|-----------|-------------------------------|---------|
| G74_Zentr | G74 Centric drilling          | Page 86 |
|           | Drilling and pecking with X=0 |         |
| G73_Zentr | G73 Centric tapping           | Page 88 |
|           | Tapping with X=0              |         |

#### "ICP drilling, C axis" group

| Unit      | Description                              | Page     |
|-----------|------------------------------------------|----------|
| G74_ICP_C | G74 ICP drilling, C axis                 | Page 108 |
|           | Drilling and pecking with ICP pattern    |          |
| G73_ICP_C | G73 ICP tapping, C axis                  | Page 110 |
|           | Tapping with ICP pattern                 |          |
| G72_ICP_C | G72 ICP boring, countersinking in C axis | Page 111 |
|           | Tapping with ICP pattern                 |          |

#### "C-axis face drilling" group

| Unit             | Description                                  | Page    |
|------------------|----------------------------------------------|---------|
| G74_Bohr_Stirn_C | G74 Single hole                              | Page 90 |
|                  | Drilling and pecking a single hole           |         |
| G74_Lin_Stirn_C  | G74 Linear pattern drilling                  | Page 92 |
|                  | Drilling and pecking a linear hole pattern   |         |
| G74_Cir_Stirn_C  | G74 Circ. pattern drilling                   | Page 94 |
|                  | Drilling and pecking a circular hole pattern |         |
| G73_Gew_Stirn_C  | G73 Tapping                                  | Page 96 |
|                  | Tapping a single hole                        |         |
| G73_Lin_Stirn_C  | G73 Thread, linear pattern                   | Page 97 |
|                  | Tapping a linear hole pattern                |         |
| G73_Cir_Stirn_C  | G73 Thread, circular pattern                 | Page 98 |
|                  | Tapping a circular hole pattern              |         |

#### "C-axis lateral surface drilling" group

| Unit            | Description                                  | Page     |
|-----------------|----------------------------------------------|----------|
| G74_Bohr_Mant_C | G74 Single hole                              | Page 99  |
|                 | Drilling and pecking a single hole           |          |
| G74_Lin_Mant_C  | G74 Linear pattern drilling                  | Page 101 |
|                 | Drilling and pecking a linear hole pattern   |          |
| G74_Cir_Mant_C  | G74 Circ. pattern drilling                   | Page 103 |
|                 | Drilling and pecking a circular hole pattern |          |
| G73_Gew_Mant_C  | G73 Tapping                                  | Page 105 |
|                 | Tapping a single hole                        |          |
| G73_Lin_Mant_C  | G73 Thread, linear pattern                   | Page 106 |
|                 | Tapping a linear hole pattern                |          |
| G73_Cir_Mant_C  | G73 Thread, circular pattern                 | Page 107 |
|                 | Tapping a circular hole pattern              |          |



# 9.3 Units—"Predrilling in C axis" group

#### "Predrilling in C-axis, face" group

| Unit            | Description                                           | Page     |
|-----------------|-------------------------------------------------------|----------|
| DRILL_STI_KON_C | G840 Predrill face, contour milling, figures          | Page 112 |
|                 | Determine the predrilling position and machine a hole |          |
| DRILL_STI_840_C | G840 Predrill face, ICP contour milling               | Page 114 |
|                 | Determine the predrilling position and machine a hole |          |
| DRILL_STI_TASC  | G845 Predrill face, pocket milling, figures           | Page 115 |
|                 | Determine the predrilling position and machine a hole |          |
| DRILL_STI_845_C | G845 Predrill face, ICP pocket milling                | Page 117 |
|                 | Determine the predrilling position and machine a hole |          |

#### "Predrilling in C-axis, lateral surface" group

| Unit            | Description                                           | Page     |
|-----------------|-------------------------------------------------------|----------|
| DRILL_MAN_KON_C | G840 Predrill latrl., contour milling, figures        | Page 118 |
|                 | Determine the predrilling position and machine a hole |          |
| DRILL_MAN_840_C | G840 Predrill lateral surf., ICP contour milling      | Page 120 |
|                 | Determine the predrilling position and machine a hole |          |
| DRILL_MAN_TAS_C | G845 Predrill lateral surf., pocket milling, figures  | Page 121 |
|                 | Determine the predrilling position and machine a hole |          |
| DRILL_MAN_845_C | G845 Predrill lateral surf., ICP pocket milling       | Page 123 |
|                 | Determine the predrilling position and machine a hole |          |

# 9.4 Units—"Milling in C axis" group

#### "Milling in C-axis, face" group

| Unit             | Description                                        | Page     |
|------------------|----------------------------------------------------|----------|
| G791_Nut_Stirn_C | G791 Linear slot                                   | Page 139 |
|                  | Milling a linear slot                              |          |
| G791_Lin_Stirn_C | G791 Linear slot pattern                           | Page 140 |
|                  | Milling of linear slots in a linear pattern        |          |
| G791_Cir_Stirn_C | G791 Circular slot pattern                         | Page 141 |
|                  | Milling of linear slots in a circular pattern      |          |
| G797_STIRNFR_C   | G797 Face milling                                  | Page 142 |
|                  | Milling various figures as islands                 |          |
| G797_ICP         | G797 Face milling ICP                              | Page 143 |
|                  | Milling closed contours as islands                 |          |
| G799_GewindeFR_C | G799 Thread milling                                | Page 144 |
|                  | Inside thread milling in a single hole             |          |
| G840_FIG_STIRN_C | G840 Contour milling, figures                      | Page 145 |
|                  | Milling figures inside, outside and on the contour |          |
| G84X_FIG_STIRN_C | G84x Pocket milling, figures                       | Page 148 |
|                  | Roughing out closed figures, inside                |          |
| G801_GRA_STIRN_C | G801 Engraving                                     | Page 151 |
|                  | Engraving characters strings on the face           |          |

#### "ICP milling in C axis, face" group

| Unit             | Description                                                           | Page     |
|------------------|-----------------------------------------------------------------------|----------|
| G840_Kon_C_STIRN | G840 Contour milling, ICP                                             | Page 147 |
|                  | Machining ICP contours on the face inside, outside and on the contour |          |
| G845_TAS_C_STIRN | G845 Pocket milling, ICP                                              | Page 150 |
|                  | Inside rough-out of closed ICP contours on the face                   |          |
| G840_ENT_C_STIRN | G840 Deburring                                                        | Page 152 |
|                  | Deburring ICP contours on the face                                    |          |

#### "C-axis lateral surface milling" group

| Unit             | Description                                         | Page     |
|------------------|-----------------------------------------------------|----------|
| G792_NUT_MANT_C  | G792 Linear slot                                    | Page 153 |
|                  | Milling a linear slot                               |          |
| G792_LIN_MANT_C  | G792 Linear slot pattern                            | Page 154 |
|                  | Milling of linear slots in a linear pattern         |          |
| G792_CIR_MANT_C  | G792 Circular slot pattern                          | Page 155 |
|                  | Milling of linear slots in a circular pattern       |          |
| G798_Wendelnut_C | G798 Helical slot milling                           | Page 156 |
|                  | Milling a thread-shaped helical slot                |          |
| G840_FIG_MANT_C  | G840 Contour milling, figures                       | Page 157 |
|                  | Milling figures inside, outside and on the contour  |          |
| G84x_FIG_MANT_C  | G84x Pocket milling, figures                        | Page 160 |
|                  | Roughing out closed figures, inside                 |          |
| G802_GRA_MANT_C  | G802 Engraving                                      | Page 163 |
|                  | Engraving characters strings on the lateral surface |          |

#### "ICP milling in C axis, lateral surface" group

| Unit            | Description                                                                      | Page     |
|-----------------|----------------------------------------------------------------------------------|----------|
| G840_Kon_C_Mant | G840 Contour milling, ICP                                                        | Page 159 |
|                 | Machining ICP contours on the lateral surface inside, outside and on the contour | -        |
| G845_TAS_C_MANT | G845 Pocket milling, ICP                                                         | Page 162 |
|                 | Inside rough-out of closed ICP contours on the lateral surface                   |          |
| G840_ENT_C_MANT | G840 Deburring                                                                   | Page 164 |
|                 | Deburring ICP contours on the lateral surface                                    |          |

# 9.5 Units—"Drilling, predrilling in Y axis" group

#### "ICP drilling, Y axis" group

| Unit      | Description                              | Page     |
|-----------|------------------------------------------|----------|
| G74_ICP_Y | G74 ICP drilling, Y axis                 | Page 174 |
|           | Drilling and pecking with ICP pattern    |          |
| G73_ICP_Y | G73 ICP tapping, Y axis                  | Page 175 |
|           | Tapping with ICP pattern                 |          |
| G72_ICP_Y | G72 ICP boring, countersinking in Y axis | Page 176 |
|           | Tapping with ICP pattern                 |          |

#### "Predrilling in Y axis" group

| Unit            | Description                                           | Page     |
|-----------------|-------------------------------------------------------|----------|
| DRILL_STI_840_Y | G840 ICP predrilling, contour milling in XY plane     | Page 177 |
|                 | Determine the predrilling position and machine a hole |          |
| DRILL_STI_845_Y | G845 ICP predrilling, pocket milling in XY plane      | Page 178 |
|                 | Determine the predrilling position and machine a hole |          |
| DRILL_MAN_840_Y | G840 ICP predrilling, contour milling in YZ plane     | Page 179 |
|                 | Determine the predrilling position and machine a hole |          |
| DRILL_MAN_845_Y | G845 ICP predrilling, pocket milling in YZ plane      | Page 180 |
|                 | Determine the predrilling position and machine a hole |          |



# 9.6 U<mark>nits</mark>—"Milling in Y axis" group

#### 9.6 Units—"Milling in Y axis" group

#### "Milling in front face" group (XY plane)

| Unit             | Description                                                           | Page     |
|------------------|-----------------------------------------------------------------------|----------|
| G840_Kon_Y_Stirn | G840 Contour milling                                                  | Page 181 |
|                  | Machining contours in the XY plane inside, outside and on the contour |          |
| G845_Tas_Y_Stirn | G845 Pocket milling                                                   | Page 182 |
|                  | Inside rough-out of closed contours in the XY plane                   |          |
| G840_ENT_Y_STIRN | G840 Deburring                                                        | Page 186 |
|                  | Deburring contours in the XY plane                                    |          |
| G801_GRA_STIRN_C | G841 Single surface                                                   | Page 183 |
|                  | Milling a single surface (flat) in the XY plane                       |          |
| G840_Kon_C_STIRN | G843 Centric polygon                                                  | Page 184 |
|                  | Milling a centric polygon in the XY plane                             |          |
| G803_GRA_Y_STIRN | G803 Engraving                                                        | Page 185 |
|                  | Engraving character strings in the XY plane                           |          |
| G800_GEW_Y_STIRN | G800 Thread milling                                                   | Page 187 |
|                  | Milling a thread in an existing hole in the XY plane                  |          |

| "Milling in lateral surface" gro | oup (YZ plane) |
|----------------------------------|----------------|
|----------------------------------|----------------|

| Unit             | Description                                                           | Page     |
|------------------|-----------------------------------------------------------------------|----------|
| G840_Kon_Y_Mant  | G840 Contour milling                                                  | Page 188 |
|                  | Machining contours in the YZ plane inside, outside and on the contour |          |
| G845_Tas_Y_Mant  | G845 Pocket milling                                                   | Page 189 |
|                  | Inside rough-out of closed contours in the YZ plane                   |          |
| G840_ENT_Y_MANT  | G840 Deburring                                                        | Page 193 |
|                  | Deburring contours in the YZ plane                                    |          |
| G801_GRA_STIRN_C | G841 Single surface                                                   | Page 190 |
|                  | Milling a single surface (flat) in the YZ plane                       |          |
| G840_Kon_C_STIRN | G843 Centric polygon                                                  | Page 191 |
|                  | Milling a centric polygon in the YZ plane                             |          |
| G804_GRA_Y_MANT  | G803 Engraving                                                        | Page 192 |
|                  | Engraving character strings in the YZ plane                           |          |
| G806_GEW_Y_MANT  | G800 Thread milling                                                   | Page 194 |
|                  | Milling a thread in an existing hole in the YZ plane                  |          |



#### 9.7 Units—"Special units" group

| Unit       | Description                                            | Page     |
|------------|--------------------------------------------------------|----------|
| START      | Program beginning (START)                              | Page 165 |
|            | For functions required at the beginning of the program |          |
| C_AXIS_ON  | C axis on                                              | Page 167 |
|            | Activate C-axis interpolation                          |          |
| C_AXIS_OFF | C axis off                                             | Page 167 |
|            | Deactivate C-axis interpolation                        |          |
| SUBPROG    | Subprogram call                                        | Page 168 |
|            | Calling any desired subprogram                         |          |
| REPEAT     | Process logic—repetition                               | Page 169 |
|            | Describing a WHILE loop to repeat parts of the program |          |
| END        | Program end (END)                                      | Page 170 |
|            | For functions required at the end of the program       |          |

Werkzeug-Editor 描Goto 描Konfig 描Sonst 描Extras 描G Startsatznummer Kontur ID Endsatznummer Kontur maximale Zustellung 0 Drehtiefenkorr. Aufmaß X P/2 Aufmaß Z Schnittbegrenzung X 1/1 Schnittbegrenzung Z K0.5 nfahrwinkel fahrwinkel auf A . unidirekt ahrart Q/1 **Overview of G functions** unidirekt U/O HO < 1/2 > akremental Kontura

#### 10.1 Section codes

| Program section codes       |         | Program section codes      |         |
|-----------------------------|---------|----------------------------|---------|
| Program head                |         | Y-axis contours            |         |
| PROGRAMMKOPF / HEADER       | Page 51 | STIRN_Y / FACE_Y           | Page 54 |
| REVOLVER / TURRET           | Page 53 | RUECKSEITE_Y / REAR_Y      | Page 54 |
| SPANNMITTEL / CLAMPS        | Page 52 | MANTEL_Y / LATERAL_Y       | Page 55 |
| MAGAZINE                    | Page 52 |                            |         |
| Contour definition          |         | Workpiece machining        |         |
| ROHTEIL / BLANK             | Page 53 | BEARBEITUNG / MACHINING    | Page 56 |
| HILFSROHTEIL / AUXIL_BLANK  | Page 53 | ENDE / END                 | Page 56 |
| FERTIGTEIL / FINISHED       | Page 54 | Subprograms                |         |
| HILFSKONTUR / AUXIL_CONTOUR | Page 54 | UNTERPROGRAMM / SUBPROGRAM | Page 56 |
| C-axis contours             |         | RETURN                     | Page 56 |
| STIRN / FACE_C              | Page 54 | Others                     |         |
| RUECKSEITE / REAR_C         | Page 54 | CONST                      | Page 57 |
| MANTEL / LATERAL_C          | Page 54 | VAR                        | Page 57 |

# 10.2 Overview of G commands in the CONTOUR section

#### G commands for turning contours

| Turning contour            |                                                       |          |  | Turning contour                                       |  |  |  |
|----------------------------|-------------------------------------------------------|----------|--|-------------------------------------------------------|--|--|--|
| Workpiece-blank definition |                                                       |          |  | Contour form elements                                 |  |  |  |
| G20-Geo                    | Chuck part, cylinder/tube                             | Page 207 |  | G22-Geo Recess (standard) Page 214                    |  |  |  |
| G21-Geo                    | Cast part                                             | Page 207 |  | G23-Geo Recess/relief turn Page 216                   |  |  |  |
| Basic cont                 | tour elements                                         |          |  | G24-Geo Thread with undercut Page 218                 |  |  |  |
| G0-Geo                     | Starting point of contour                             | Page 208 |  | G25-Geo Undercut contour Page 219                     |  |  |  |
| G1-Geo                     | Line segment                                          | Page 209 |  | G34-Geo Thread (standard) Page 223                    |  |  |  |
| G2-Geo                     | Circular arc cw with incremental center dimensioning  | Page 211 |  | G37-Geo Thread (general) Page 224                     |  |  |  |
| G3-Geo                     | Circular arc ccw with incremental center dimensioning | Page 211 |  | G49-Geo Bore hole at turning center Page 226          |  |  |  |
| G12-Geo                    | Circular arc cw with absolute center dimensioning     | Page 212 |  | Help commands for contour definition                  |  |  |  |
| G13-Geo                    | Circular arc ccw with absolute center dimensioning    | Page 212 |  | Overview: Attributes for contour description Page 227 |  |  |  |
|                            |                                                       |          |  | G38-Geo Feed rate reduction Page 227                  |  |  |  |
|                            |                                                       |          |  | G44 Separation point Page 229                         |  |  |  |
|                            |                                                       |          |  | G52-Geo Oversize Page 229                             |  |  |  |
|                            |                                                       |          |  | G95-Geo Feed per revolution Page 230                  |  |  |  |
|                            |                                                       |          |  | G149-Geo Additive compensation Page 230               |  |  |  |

#### **G** commands for C-axis contours

| C-axis con | tour                            |          | C-axis con | tour                                      |          |
|------------|---------------------------------|----------|------------|-------------------------------------------|----------|
| Overlappi  | ng contours                     |          | Overlappi  | ng contours                               |          |
| G308-Geo   | Beginning of pocket/island      | Page 231 | G309-Geo   | End of pocket/island                      | Page 231 |
| Front and  | rear face contours              |          | Lateral su | rface contours                            |          |
| G100-Geo   | Starting point of contour, face | Page 237 | G110-Geo   | Starting point of lateral surface contour | Page 246 |
| G101-Geo   | Line segment, face              | Page 238 | G111-Geo   | Line segment, lateral surface             | Page 247 |
| G102-Geo   | Arc cw, face                    | Page 239 | G112-Geo   | Arc cw, lateral surface                   | Page 248 |
| G103-Geo   | Arc ccw, face                   | Page 239 | G113-Geo   | Arc ccw, lateral surface                  | Page 248 |
| G300-Geo   | Bore hole, face                 | Page 240 | G310-Geo   | Bore hole on lateral surface              | Page 249 |
| G301-Geo   | Linear slot, face               | Page 241 | G311-Geo   | Linear slot on lateral surface            | Page 250 |
| G302-Geo   | Circular slot cw, face          | Page 241 | G312-Geo   | Circular slot cw, lateral surface         | Page 250 |
| G303-Geo   | Circular slot ccw, face         | Page 241 | G313-Geo   | Circular slot ccw, lateral surface        | Page 250 |
| G304-Geo   | Full circle, face               | Page 242 | G314-Geo   | Full circle, lateral surface              | Page 251 |
| G305-Geo   | Rectangle, face                 | Page 242 | G315-Geo   | Rectangle, lateral surface                | Page 251 |
| G307-Geo   | Polygon, face                   | Page 243 | G317-Geo   | Polygon, lateral surface                  | Page 252 |
| G401-Geo   | Pattern linear, face            | Page 244 | G411-Geo   | Pattern linear, lateral surface           | Page 253 |
| G402-Geo   | Pattern circular, face          | Page 245 | G412-Geo   | Pattern circular, lateral surface         | Page 254 |

#### G commands for Y-axis contours

| Y-axis contour |                                       |          | Y-axis contour |                                       |          |  |  |
|----------------|---------------------------------------|----------|----------------|---------------------------------------|----------|--|--|
| XY plane       |                                       |          | YZ plane       |                                       |          |  |  |
| G170-Geo       | Starting point of contour in XY plane | Page 505 | G180-Geo       | Starting point of contour in YZ plane | Page 514 |  |  |
| G171-Geo       | Line segment in XY plane              | Page 505 | G181-Geo       | Line segment in YZ plane              | Page 514 |  |  |
| G172-Geo       | Arc cw in XY plane                    | Page 506 | G182-Geo       | Arc cw in YZ plane                    | Page 515 |  |  |
| G173-Geo       | Arc ccw in XY plane                   | Page 506 | G183-Geo       | Arc ccw in YZ plane                   | Page 515 |  |  |
| G370-Geo       | Hole in XY plane                      | Page 507 | G380-Geo       | Hole in YZ plane                      | Page 516 |  |  |
| G371-Geo       | Linear slot in XY plane               | Page 508 | G381-Geo       | Linear slot in YZ plane               | Page 516 |  |  |
| G372-Geo       | Circular slot cw in XY plane          | Page 509 | G382-Geo       | Circular slot cw in YZ plane          | Page 517 |  |  |
| G373-Geo       | Circular slot ccw in XY plane         | Page 509 | G383-Geo       | Circular slot ccw in YZ plane         | Page 517 |  |  |
| G374-Geo       | Full circle in XY plane               | Page 509 | G384-Geo       | Full circle in YZ plane               | Page 517 |  |  |
| G375-Geo       | Rectangle in XY plane                 | Page 510 | G385-Geo       | Rectangle in YZ plane                 | Page 518 |  |  |
| G377-Geo       | Polygon in XY plane                   | Page 510 | G387-Geo       | Polygon in YZ plane                   | Page 518 |  |  |
| G471-Geo       | Pattern linear in XY plane            | Page 511 | G481-Geo       | Pattern linear in YZ plane            | Page 519 |  |  |
| G472-Geo       | Pattern circular in XY plane          | Page 512 | G482-Geo       | Pattern circular in YZ plane          | Page 520 |  |  |
| G376-Geo       | Single surface in XY plane            | Page 513 | G386-Geo       | Single surface in XY plane            | Page 521 |  |  |
| G477-Geo       | Centric polygon in XY plane           | Page 513 | G487-Geo       | Centric polygon in XY plane           | Page 521 |  |  |

# 10.3 Overview of G commands in the MACHINING section

#### G commands for turning

| Turnin | g—Basic functions                                             |          | Turning             | g—Basic functions                            |          |
|--------|---------------------------------------------------------------|----------|---------------------|----------------------------------------------|----------|
| Tool p | ositioning without machining                                  |          | Zero p              | oint shifts                                  |          |
| G0     | Positioning at rapid traverse                                 | Page 255 | Overvie             | ew: Zero point shifts                        | Page 266 |
| G14    | Move to the tool change position                              | Page 256 | G51                 | Zero point shift                             | Page 267 |
| G140   | Define the tool change position                               | Page 256 | G53/<br>G54/<br>G55 | Zero point offsets                           | Page 268 |
| G701   | Rapid traverse to machine coordinates                         | Page 255 | G56                 | Additive zero-point shift                    | Page 268 |
| Simpl  | e linear and circular movements                               |          | G59                 | Absolute zero point shift                    | Page 269 |
| G1     | Linear movement                                               | Page 257 | G152                | Zero point shift, C axis                     | Page 343 |
| G2     | Circular movement cw with<br>incremental center dimensioning  | Page 258 | G920                | Deactivate zero point shifts                 | Page 386 |
| G3     | Circular movement ccw with<br>incremental center dimensioning | Page 258 | G921                | Deactivate zero point shift, tool dimensions | Page 386 |
| G12    | Circular movement cw with absolute center dimensioning        | Page 259 | G980                | Activate zero point shift                    | Page 390 |
| G13    | Circular movement ccw with absolute center dimensioning       | Page 259 | G981                | Activate zero point shift, tool dimensions   | Page 390 |
| Feed r | ate and spindle speed                                         |          | Safety              | clearances                                   |          |
| Gx26   | Speed limit *                                                 | Page 260 | G47                 | Set safety clearances                        | Page 272 |
| G64    | Interrupted feed                                              | Page 261 | G147                | Safety clearance (milling)                   | Page 272 |
| G48    | Reduce rapid traverse                                         | Page 260 | Tool-ti             | p radius compensation (TRC/MCRC)             |          |
| Gx93   | Feed per tooth *                                              | Page 261 | G40                 | Switch off TRC/MCRC                          | Page 264 |
| G94    | Feed per minute                                               | Page 262 | G41                 | TRC/MCRC, left                               | Page 265 |
| Gx95   | Feed per revolution                                           | Page 262 | G42                 | TRC/MCRC, right                              | Page 265 |
| Gx96   | Constant surface speed                                        | Page 263 | Tools,              | types of compensation                        |          |
| Gx97   | Speed                                                         | Page 263 | Т                   | Tool change                                  | Page 273 |
| Overs  | zes                                                           |          | G148                | (Changing the) cutter compensation           | Page 274 |
| G50    | Switch off oversize                                           | Page 270 | G149                | Additive compensation                        | Page 275 |
| G52    | Switch off oversize                                           | Page 270 | G150                | Compensate right tool tip                    | Page 276 |
| G57    | Paraxial oversize                                             | Page 270 | G151                | Compensate left tool tip                     | Page 276 |
| G58    | Contour-parallel oversize                                     | Page 271 |                     |                                              |          |

(

#### Cycles for turning

| Turnin   | g–Cycles                       |          |   | Turning | g—Cycles                               |          |
|----------|--------------------------------|----------|---|---------|----------------------------------------|----------|
| Simple   | e turning cycles               |          | ( | Contou  | ur-based turning cycles                |          |
| G80      | Cycle end / simple contours    | Page 299 | ( | G740    | Contour repeat cycle                   | Page 290 |
| G81      | Simple longitudinal roughing   | Page 436 | ( | G741    | Contour repeat cycle                   | Page 290 |
| G82      | Simple face roughing           | Page 437 | ( | G810    | Longitudinal roughing cycle            | Page 278 |
| G83      | Contour repeat cycle           | Page 438 | ( | G820    | Face roughing cycle                    | Page 281 |
| G86      | Simple recessing cycle         | Page 439 | ( | G830    | Contour-parallel roughing cycle        | Page 284 |
| G87      | Transition radii               | Page 440 | ( | G835    | Contour-parallel with neutral tool     | Page 286 |
| G88      | Chamfer                        | Page 440 | ( | G860    | Universal recessing cycle              | Page 288 |
| Drilling | g cycles                       |          | ( | G869    | Recess turning cycle                   | Page 291 |
| G36      | Tapping                        | Page 334 | ( | G870    | Simple recessing cycle G22             | Page 294 |
| G71      | Simple drilling cycle          | Page 329 | ( | G890    | Finishing cycle                        | Page 295 |
| G72      | Boring, countersinking, etc.   | Page 331 | - | Thread  | l cycles                               |          |
| G73      | Tapping cycle                  | Page 332 | ( | G31     | Thread cycle                           | Page 307 |
| G74      | Deep-hole drilling cycle       | Page 335 | ( | G32     | Single thread cycle                    | Page 311 |
| Under    | cuts                           |          | ( | G33     | Single thread cut (Thread single path) | Page 313 |
| G25      | Undercut contour               | Page 219 | ( | G35     | Metric ISO thread                      | Page 315 |
| G85      | Undercut                       | Page 320 | ( | G350    | Simple longitudinal thread             |          |
| G851     | Undercut DIN 509 E, direct     | Page 322 | ( | G351    | Simple longitudinal multi-start thread |          |
| G852     | Undercut DIN 509 F, direct     | Page 323 | ( | G352    | Tapered API thread                     | Page 316 |
| G853     | Undercut DIN 76 thread, direct | Page 324 | ( | G36     | Tapping                                | Page 334 |
| G856     | Undercut type U, direct        | Page 325 | ( | G38     | Metric ISO thread                      | Page 318 |
| G857     | Undercut type H, direct        | Page 326 |   | Parting | ]                                      |          |
| G858     | Undercut type K, direct        | Page 327 | ( | G859    | Parting cycle                          | Page 319 |

#### C-axis machining

| <b>C</b> -axis | machining                                     |          | C-axis  | machining                          |          |
|----------------|-----------------------------------------------|----------|---------|------------------------------------|----------|
| C axis         |                                               |          |         |                                    |          |
| G120           | Reference diameter, lateral-surface machining | Page 343 |         |                                    |          |
| G152           | Zero point shift, C axis                      | Page 343 |         |                                    |          |
| G153           | Standardize C axis                            | Page 344 |         |                                    |          |
| G154           | Short path in C                               | Page 344 |         |                                    |          |
| Single         | path—Front/rear face machining                |          | Single  | path—Lateral-surface machining     |          |
| G100           | Rapid traverse, face                          | Page 345 | G110    | Rapid traverse, lateral surface    | Page 348 |
| G101           | Linear path, face                             | Page 346 | G111    | Linear path, lateral surface       | Page 349 |
| G102           | Circular path cw, face                        | Page 347 | G112    | Circular path cw, lateral surface  | Page 350 |
| G103           | Circular path ccw, face                       | Page 347 | G113    | Circular path ccw, lateral surface | Page 350 |
| Figure         | s—Front/rear face machining                   |          | Figure  | s-Lateral-surface machining        |          |
| G301           | Linear slot, face                             | Page 300 | G311    | Linear slot on lateral surface     | Page 302 |
| G302           | Circular slot cw, face                        | Page 300 | G312    | Circular slot cw, lateral surface  | Page 303 |
| G303           | Circular slot ccw, face                       | Page 300 | G313    | Circular slot ccw, lateral surface | Page 303 |
| G304           | Full circle, face                             | Page 301 | G314    | Full circle, lateral surface       | Page 303 |
| G305           | Rectangle, face                               | Page 301 | G315    | Rectangle, lateral surface         | Page 304 |
| G307           | Polygon, face                                 | Page 301 | G317    | Polygon, lateral surface           | Page 304 |
| Milling        | g cycles, face                                |          | Milling | g cycles, lateral surface          |          |
| G791           | Linear slot, face                             | Page 352 | G792    | Linear slot, lateral surface       | Page 353 |
| G793           | Contour milling, direct                       | Page 354 | G794    | Contour milling, direct            | Page 356 |
| G797           | Area milling (face milling)                   | Page 358 | G798    | Helical slot milling               | Page 360 |
| G799           | Thread milling                                |          |         |                                    |          |
| Predri         | lling cycles                                  |          | Conto   | ur and pocket milling cycles       |          |
| G840           | Predrilling, contour milling                  | Page 362 | G840    | Contour milling                    | Page 364 |
| G845           | Predrilling, pocket milling                   | Page 371 | G840    | Deburring                          | Page 368 |
| Engra          | ving cycles                                   |          | G845    | Pocket milling                     | Page 372 |
| G801           | Engraving, face                               | Page 380 | G846    | Pocket milling, finishing          | Page 376 |
| G802           | Engraving, lateral surface                    | Page 381 | Engra   | ving cycles                        |          |
| Patter         | n                                             |          | G801    | Engraving, face                    | Page 380 |
| G743           | Pattern linear, face                          |          | G802    | Engraving, lateral surface         | Page 381 |
| G745           | Pattern circular, face                        |          |         | Character set for engraving        | Page 378 |
| G744           | Pattern linear, lateral surface               |          |         |                                    |          |
| G746           | Pattern circular, lateral surface             |          |         |                                    |          |



#### Y-axis machining

| <b>Y-axis</b>  | machining                                                     |          | Y-axis  | machining                          |          |  |
|----------------|---------------------------------------------------------------|----------|---------|------------------------------------|----------|--|
| Working planes |                                                               |          | Milling | illing cycles                      |          |  |
| G17            | XY plane                                                      | Page 522 | G841    | Area milling, roughing             | Page 529 |  |
| G18            | XZ plane (turning view)                                       | Page 522 | G842    | Area milling, finishing            | Page 530 |  |
| G19            | YZ plane                                                      | Page 522 | G843    | Centric polygon milling, roughing  | Page 531 |  |
| Tool p         | ositioning without machining                                  |          | G844    | Centric polygon milling, finishing | Page 532 |  |
| G0             | Positioning at rapid traverse                                 | Page 524 | G845    | Predrilling, pocket milling        | Page 534 |  |
| G14            | Move to the tool change position                              | Page 524 | G845    | Pocket milling, roughing           | Page 535 |  |
| G701           | Rapid traverse to machine coordinates                         | Page 525 | G846    | Pocket milling, finishing          | Page 539 |  |
| Simpl          | e linear and circular movements                               |          | G800    | Thread milling in XY plane         | Page 543 |  |
| G1             | Linear movement                                               | Page 526 | G806    | Thread milling in YZ plane         | Page 544 |  |
| G2             | Circular movement cw with<br>incremental center dimensioning  | Page 527 | G808    | Hobbing                            | Page 545 |  |
| G3             | Circular movement ccw with<br>incremental center dimensioning | Page 527 | Engrav  | ving cycles                        |          |  |
| G12            | Circular movement cw with absolute center dimensioning        | Page 528 | G803    | Engraving in XY plane              | Page 541 |  |
| G13            | Circular movement ccw with absolute center dimensioning       | Page 528 | G804    | Engraving in YZ plane              | Page 542 |  |
|                |                                                               |          |         | Character set for engraving        | Page 378 |  |

#### Variable programming, program branches

| Variable programming, program branches |                         |          |  | Variable pro | ogramming, program branch           | es       |
|----------------------------------------|-------------------------|----------|--|--------------|-------------------------------------|----------|
| Programmi                              | ng with variables       |          |  | Data input   |                                     |          |
| # variables                            | Variable types          | Page 411 |  | INPUT        | Input (# variables)                 | Page 409 |
| PARA                                   | Read configuration data | Page 421 |  | WINDOW       | Open output window (#<br>variables) | Page 408 |
| CONST                                  | Constant definition     | Page 424 |  | PRINT        | Output (# variables)                | Page 409 |
| VAR                                    | Variable definition     | Page 423 |  | Program br   | anches, program repeats             |          |
| Subprogram                             | ns                      |          |  | IFTHEN       | Program branching                   | Page 425 |
| Subprogram                             | call                    | Page 430 |  | WHILE        | Program repeat                      | Page 427 |
|                                        |                         |          |  | SWITCH       | Program branching                   | Page 428 |

#### Other G codes

| Other | G codes                            |          | Other | G codes                                      |          |
|-------|------------------------------------|----------|-------|----------------------------------------------|----------|
| G4    | Dwell time                         | Page 383 | G908  | Feed rate override 100 %                     | Page 385 |
| G7    | Precision stop ON                  | Page 383 | G909  | Interpreter stop                             | Page 385 |
| G8    | Precision stop OFF                 | Page 384 | G910  | Switching measurement on/off                 | Page 498 |
| G9    | Precision stop (blockwise)         | Page 384 | G911  | Activate measuring path monitoring           | Page 499 |
| G30   | Converting and mirroring           | Page 393 | G912  | Actual position capture                      | Page 499 |
| G44   | Separation point                   | Page 229 | G913  | End in-process measurement                   | Page 499 |
| G60   | Deactivate protection zone         | Page 384 | G914  | Deactivate measuring path monitoring         | Page 499 |
| G65   | Display chucking equipment         | Page 383 | G916  | Traversing to a fixed stop                   | Page 397 |
| G67   | Load blank-part contour (graphics) | Page 383 | G919  | Spindle override 100 %                       | Page 385 |
| G99   | Transformations of contours        | Page 394 | G920  | Deactivate zero point shift                  | Page 386 |
| G702  | Storing/loading contour follow-up  | Page 382 | G921  | Deactivate zero point shift, tool dimensions | Page 386 |
| G703  | Contour follow-up ON/OFF           | Page 382 | G922  | Tool end position                            | Page 386 |
| G707  | Software limit switch              |          | G923  | Handwheel offset in thread                   | Page 131 |
| G720  | Spindle synchronization            | Page 395 | G924  | Fluctuating speed                            | Page 386 |
| G725  | Eccentric turning                  | Page 402 | G925  | Force reduction                              | Page 400 |
| G726  | Transition to eccentric            | Page 404 | G927  | Convert tool lengths                         | Page 387 |
| G727  | Eccentric X                        | Page 406 | G930  | Sleeve monitoring                            | Page 401 |
| G901  | Actual values in variables         | Page 384 | G940  | Automatically convert variables              | Page 388 |
| G902  | Zero point shift in variables      | Page 384 | G980  | Activate zero point shift                    | Page 390 |
| G903  | Lag error in variables             | Page 384 | G981  | Activate zero point shift, tool dimensions   | Page 390 |
| G904  | Read interpolator information      | Page 385 | G995  | Monitoring zone                              | Page 391 |
| G905  | C-angle offset                     | Page 396 | G996  | Load monitoring                              | Page 392 |



10.3 Overview of G commands in the MACHINING section

#### SYMBOLS

? - Simplified geometry programming ... 201
"Configuration" menu item ... 44
"Extras" menu item ... 46
"Goto" menu item ... 47
"Head" menu item (program head) ... 43
"Miscellaneous" menu item ... 45
"Program management" menu item ... 43
# variable output ... 409

#### Α

Actual values in variable G901 ... 384 Additive compensation G149 ... 275 Additive compensation G149-Geo ... 230 Address parameters ... 201 Angle offset C-angle offset G905 ... 396 Angular ... 495 Angular measurement ... 495 Angular measurement G787 ... 495 ANUALplus ... 1 API thread G352 ... 316 Approach, departure in smart. Turn ... 71 Area milling, face G797 ... 358 Attributes for contour description ... 227 Automatic job ... 62 Automatic working plan generation (TURN PLUS) ... 555 AWG ... 555 AWG submode ... 555

#### В

B axis Flexible use of tools ... 586 Fundamentals ... 586 Multipoint tools ... 587 Basic contour elements ... 208 Beginning of pocket/island G308-Geo ... 231 BLANK (section code) ... 53 Bore hole (centric) G49-Geo ... 226 Bore hole on face G300-Geo ... 240 Bore hole on lateral surface G310-Geo ... 249 Boring G72 ... 331 Boring, countersinking G72 ... 331

#### С

C axis C-angle offset G905 ... 396 Calibrate touch probe standard G747 ... 475 Calibrate touch probe via two points G748 ... 477 Cast part G21-Geo ... 207 C-axis commands ... 343 C-axis contours-Fundamentals ... 231 Centric polygon in XY plane G477-Geo ... 513 Centric polygon in YZ plane G487-Geo ... 521 Centric polygon milling-finishing G844 ... 532 Centric polygon milling-roughing G843 ... 531 Chamfer DIN cycle G88 ... 440 Chamfer G88 ... 440 Character set ... 378 Chuck part bar/tube G20-Geo ... 207 Chucking equipment in simulation G65 ... 52, 383 Circular arc **DIN PLUS** Turning contour G2-, G3-, G12-, G13-Geo ... 211, 212 Circular arc in face contour G102/G103-Geo ... 239 Circular arc in lateral surface contour G112/G113-Geo ... 248 Circular arc in XY plane G172-Geo/G173-Geo ... 506 Circular arc in YZ plane G182-Geo/G183-Geo ... 515 Circular arc of turning contour G12/G13-Geo ... 212 Circular arc of turning contour G2/G3-Geo ... 211 Circular arc on lateral surface G112/ G113 ... 350 Circular arc, face G102/G103 ... 347 Circular measurement ... 491 Circular measurement G785 ... 491 Circular movement G12, G13 (milling) ... 528 Circular movement G2, G3 (milling) ... 527 Circular path G12/G13 ... 259

#### С

Circular path G2/G3 ... 258 Circular pattern in XY plane G472-Geo ... 512 Circular pattern in YZ plane G482-Geo ... 520 Circular pattern on lateral surface G412-Geo ... 254 Circular pattern with circular slots ... 234 Circular pattern, face G745 ... 339 Circular pattern, lateral surface G746 ... 341 Circular slot in XY plane G372-Geo/ G373-Geo ... 509 Circular slot in YZ plane G382-Geo/ G383-Geo ... 517 Circular slot on face G302/G303-Geo ... 241 Circular slot on lateral surface G312/ G313-Geo ... 250 Codes, CONST ... 57 Codes, END ... 56 Codes, RETURN ... 56 Codes, VAR ... 57 Compensation of right/left-hand tool tip G150/G151 ... 276 Compensation, additive G149 ... 275 Compensation, additive G149-Geo ... 230 Compensations ... 273 Conditional block run ... 425 Configuration data, reading ... --PARA ... 421 Connection between geometry and machining commands ... 446 Connection between geometry and machining commands, C axis-front face ... 447 Connection between geometry and machining commands, C axis—lateral surface ... 447 Connection between geometry and machining commands, turning ... 446 CONST (section code) ... 57 Constant feed rate G94 ... 262 Constant surface speed Gx96 ... 263 Contour and figure milling cycle, face G793 ... 354 Contour and figure milling cycle, lateral surface G794 ... 356 Contour follow-up ... 36, 382

#### С

Contour follow-up on/off G703 ... 382 Contour follow-up, saving/loading... G702 ... 382 Contour form ... 68 Contour form elements ... 214 Contour milling G840 ... 361 Contour programming ... 197 Contour repeat cycle G83 ... 438 Contour thread ... 318 Contour, simple... G80 ... 299 Contour-based turning cycles ... 277 CONTOURGROUP (section code) ... 53 Contours in the XY plane ... 505 Contours in the YZ plane ... 514 Control graphics (TURN PLUS) ... 568 Controlled parting Using lag error monitoring G917 ... 399 Convert lengths G927 ... 387 Converting and mirroring G30 ... 393 Coolant **TURN PLUS machining** information ... 572 Countersinking G72 ... 331 Cut-off cycle G859 ... 319 Cutting data, determining (TURN PLUS) ... 572 Cutting limit ... 504 Cutting speed, constant Gx96 ... 263 Cycle end / Simple contour G80 ... 299 Cycle, chamfer G88 ... 440 Cycle, radius G87 ... 440

#### D

Data input ... 408 Data output ... 408 Deburring G840 ... 368 Deep-hole drilling G74 ... 335 Detail, isolating **TURN PLUS ... 568** Determine pitch circle G786 ... 493 Dialog texts for subprograms ... 431 **DIN PLUS workpiece blank** definition ... 207 DIN programs, converting ... 204 Direct program-run continuation ... 392 Drilling and boring cycles, overview and contour reference...... 328 Drilling cycle G71 ... 329 Drilling cycles DIN programming ... 328

#### D

Drilling pattern, circular, face G745 ... 339 Drilling pattern, circular, lateral surface G746 ... 341 Drilling pattern, linear, face G743 ... 338 Drilling pattern, linear, lateral surface G744 ... 340 Drilling, deep-hole drilling G74 ... 335

#### Ε

Eccentric polygon in XY plane G377-Geo ... 510 Eccentric polygon in YZ plane G387-Geo ... 518 Eccentric polygon on front/rear face G307-Geo ... 243 Eccentric polygon on lateral surface G317-Geo ... 252 Eccentric turning G725 ... 402 Eccentric X G727 ... 406 Elements of a DIN program ... 39 END (section code) ... 56 End position of tool G922 ... 386 Engraving in the YZ plane G804 ... 542 Engraving in XY plane G803 ... 541 Engraving on front face G801 ... 380 Engraving on lateral surface G802 ... 381 Engraving, character set ... 378 Example Fixed cycle programming ... 202 Full-surface machining with opposing spindle ... 450 Full-surface machining with single spindle ... 452 Machining with the Y axis ... 546 Subprogram with contour repetitions ... 443 **TURN PLUS ... 577** Expert programs ... 203

#### F

Face roughing G820 ... 281 Face roughing, simple G82 ... 437 Feed per minute G94 ... 262 Feed per revolution G95 ... 262 Feed per revolution G95-Geo ... 230 Feed per revolution Gx95 ... 262 Feed per tooth Gx93 ... 261 Feed rate ... 260 Feed rate override 100 % G908 ... 385

#### F

Feed rate reduction G38-Geo ... 227, 228 Feed rate, interrupted G64 ... 261 Figure milling cycle, face G793 ... 354 Figure milling cycle, lateral surface G794 ... 356 File organization, smart.Turn editor ... 48 Find hole in C face G780 ... 483 Find hole in C lateral surface G781 ... 485 Find stud in C face G782 ... 487 Find stud in C lateral surface G783 ... 489 Finish contour G890 ... 295 Finishing **DIN PLUS** Cycle G890 ... 295 Fixed cycle programming (DIN PLUS) ... 202 Fixed stop, traversing to G916 ... 397 Fluctuating spindle speed, reduce resonant vibrations G924 ... 386 Force reduction G925 ... 400 Front face contours ... 237 Front face machining ... 345 Full circle in XY plane G374-Geo ... 509 Full circle in YZ plane G384-Geo ... 517 Full circle on face G304-Geo ... 242 Full circle on lateral surface G314-Geo ... 251 Full-surface machining In DIN PLUS ... 448 Full-surface machining with TURN PLUS ... 580 G

G codes for contour description G0 Starting point of turning contour ... 208 G1 Line segment in a contour ... 209 G100 Starting point of front/rear face contour ... 237 G101 Line segment in front/rear face contour ... 238 G102 Circular arc in front/rear face contour ... 239 G103 Circular arc in front/rear face contour ... 239 G110 Starting point of lateral surface contour ... 246

G

G111 Line segment in a lateral surface contour ... 247 G112 Circular arc in lateral surface contour ... 248 G113 Circular arc in lateral surface contour ... 248 G12 Circular arc of turning contour ... 212 G13 Circular arc of turning contour ... 212 G149 Additive compensation ... 230 G170 Starting point of contour in XY plane ... 505 G171 Line segment in XY plane ... 505 G172 Circular arc in XY plane ... 506 G173 Circular arc in XY plane ... 506 G180 Starting point of contour in YZ plane ... 514 G181 Line segment in YZ plane ... 514 G182 Circular arc in YZ plane ... 515 G183 Circular arc in YZ plane ... 515 G2 Circular arc of turning contour ... 211 G20 Chuck part bar/tube ... 207 G21 Cast part ... 207, 383 G22 recess (standard) ... 214 G23 recess (general) ... 216 G24 Thread with undercut ... 218 G25 Undercut contour ... 219, 434 G3 Circular arc of turning contour ... 211 G300 Bore hole on front/rear face ... 240 G301 Linear slot on front/rear face ... 241 G302 Circular slot on front/rear face ... 241 G303 Circular slot on front/rear face ... 241 G304 Full circle on front/rear face ... 242 G305 Rectangle on front/rear face ... 242 G307 Eccentric polygon on front/ rear face ... 243 G308 Beginning of pocket/ island ... 231 G309 End of pocket/island ... 231 G310 Hole on lateral surface ... 249

#### G

G311 Linear slot on lateral surface ... 250 G312 Circular slot on lateral surface ... 250 G313 Circular slot on lateral surface ... 250 G314 Full circle on lateral surface ... 251 G315 Rectangle on lateral surface ... 251 G317 Eccentric polygon on lateral surface ... 252 G34 Thread (standard) ... 223 G37 Thread (general) ... 224 G370 Hole in XY plane ... 507 G371 Linear slot in XY plane ... 508 G372 Circular slot in XY plane ... 509 G373 Circular slot in XY plane ... 509 G374 Full circle in XY plane ... 509 G375 Rectangle in XY plane ... 510 G376 Single surface in XY plane ... 513 G377 Eccentric polygon in XY plane ... 510 G38 Feed rate reduction ... 227, 228 G380 Hole in YZ plane ... 516 G381 Linear slot in YZ plane ... 516 G382 Circular slot in YZ plane ... 517 G383 Circular slot in YZ plane ... 517 G384 Full circle in YZ plane ... 517 G385 Rectangle in YZ plane ... 518 G386 Single surface in YZ plane ... 521 G387 Eccentric polygon in YZ plane ... 518 G401 Linear pattern on front/rear face ... 244 G402 Circular pattern on front/rear face ... 245 G411 Linear pattern on lateral surface ... 253 G412 Circular pattern on lateral surface ... 254 G471 Linear pattern in XY plane ... 511 G472 Circular pattern in XY plane ... 512 G477 Centric polygon in XY plane ... 513 G481 Linear pattern in YZ plane ... 519

#### G

G482 Circular pattern in YZ plane ... 520 G487 Centric polygon in YZ plane ... 521 G49 Bore hole (centric) ... 226 G52 Blockwise oversize ... 229 G95 Feed per revolution ... 230 G codes for machining G0 Rapid traverse ... 255 G0 Rapid traverse (Y axis) ... 524 G1 Linear movement ... 257 G1 Linear movement (Y axis) ... 526 G100 Rapid traverse on front/rear face ... 345 G101 Line segment on front/rear face ... 346 G102 Circular arc on front/rear face ... 347 G103 Circular arc on front/rear face ... 347 G110 Rapid traverse, lateral surface ... 348 G111 Line segment on lateral surface ... 349 G112 Circular arc on lateral surface ... 350 G113 Circular arc on lateral surface ... 350 G12 Circular movement (Y axis) ... 528 G12 Circular path ... 259 G120 Reference diameter ... 343 G13 Circular movement (Y axis) ... 528 G13 Circular path ... 259 G14 Approach tool change point ... 256 G14 Approach tool change point (Y axis) ... 524 G140 Definition of tool-change point ... 256 G147 Safety clearance (milling cycles) ... 272 G148 Switching the tool edge compensation ... 274 G149 Additive compensation ... 275 G150 Compensation of right-hand tool tip ... 276 G151 Compensation of left-hand tool tip ... 276

G152 Zero point shift, C axis ... 343

G

G153 Standardize Caxis ... 344 G154 Short path in C ... 344 G16 Tilting the working plane ... 523 G17 XY plane ... 522 G18 XZ plane (turning) ... 522 G19 YZ plane ... 522 G2 Circular movement (Y axis) ... 527 G2 Circular path ... 258 G26 Speed limitation ... 260 G3 Circular movement (Y axis) ... 527 G3 Circular path ... 258 G30 Converting and mirroring ... 393 G301 Linear slot on face ... 300 G302 Circular slot on face ... 300 G303 Circular slot on face ... 300 G304 Full circle on face ... 301 G305 Rectangle on face ... 301 G307 Eccentric polygon on front/ rear face ... 302 G31 Thread cycle ... 307 G311 Linear slot on lateral surface ... 302 G312 Circular slot on lateral surface ... 303 G313 Circular slot on lateral surface ... 303 G314 Full circle on lateral surface ... 303 G315 Rectangle on lateral surface ... 304 G317 Eccentric polygon on lateral surface ... 304 G32 Single thread cycle ... 311 G33 Thread single path ... 313 G35 Metric ISO thread ... 315 G350 Simple longitudinal singlestart thread ... 441 G351 Simple longitudinal multi-start thread ... 442 G352 Tapered API thread ... 316 G36 Tapping ... 334 G38 Metric ISO thread ... 318 G4 Period of dwell ... 383 G40 Switch off TRC/MCRC ... 264 G41 Switch on TRC/MCRC ... 265 G42 Switch on TRC/MCRC ... 265 G47 Safety clearance ... 272 G48 Reduce rapid traverse ... 260

#### G

G50 Switch off oversize ... 270 G51 Zero point shift ... 267 G53/G54/G55 Zero point offsets ... 268 G56 Additive zero point shift ... 268 G57 Axis-parallel oversize ... 270 G58 Contour-parallel oversize ... 271 G59 Absolute zero point shift ... 269 G60 Switch off protection zone ... 384 G64 Interrupted feed rate ... 261 G65 Chucking equipment ... 52, 383 G7 Precision stop on ... 383 G701 Rapid traverse to machine coordinates ... 255 G701 Rapid traverse to machine coordinates (Y axis) ... 525 G702 Saving/loading contour followup ... 382 G703 Contour follow-up ... 382 G71 Drilling cycle ... 329 G72 Boring, countersinking ... 331 G720 Spindle synchronization ... 395 G725 Eccentric turning ... 402 G726 Transition to eccentric ... 404 G727 Eccentric X ... 406 G73 Tapping ... 332 G74 Deep-hole drilling ... 335 G740 Repeat recessing cycle ... 290 G741 Repeat recessing cycle ... 290 G743 Linear pattern, face ... 338 G744 Linear pattern, lateral surface ... 340 G745 Circular pattern, face ... 339 G746 Circular pattern, lateral surface ... 341 G791 Linear slot on face ... 352 G792 Linear slot on lateral surface ... 353 G793 Contour and figure milling cycle, face ... 354 G794 Contour and figure milling cycle, lateral surface ... 356 G797 Area milling, face ... 358 G798 Helical-slot milling ... 360 G799 Thread milling, axial ... 342 G8 Precision stop off ... 384 G80 Cycle end / Simple contour ... 299

#### G

G800 Thread milling in XY plane ... 543 G801 Engraving on front face ... 380 G802 Engraving on lateral surface ... 381 G803 Engraving in XY plane ... 541 G804 Engraving in YZ plane ... 542 G806 Thread milling in YZ plane ... 544 G808 Hobbing ... 545 G809 Measuring cut ... 298 G81 Simple longitudinal roughing ... 436 G810 Longitudinal roughing ... 278 G82 Simple face roughing ... 437 G820 Face roughing ... 281 G83 Contour repeat cycle ... 438 G830 Contour-parallel roughing ... 284 G835 Contour-parallel with neutral tool ... 286 G840 Contour milling ... 361 G841 Area milling-roughing (Y axis) ... 529 G842 Area milling-finishing (Y axis) ... 530 G843 Centric polygon milling roughing (Y axis) ... 531 G844 Centric polygon millingfinishing (Yaxis) ... 532 G845 Pocket milling, roughing ... 370 G845 Pocket milling-roughing (Y axis) ... 533 G846 Pocket milling, finishing ... 376 G846 Pocket milling-finishing (Y axis) ... 539 G85 Undercut cycle ... 320 G851 Undercut according to DIN 509 E with cylinder machining ... 322 G852 Undercut according to DIN 509 F with cylinder machining ... 323 G853 Undercut according to DIN 76 with cylinder machining ... 324 G856 Undercut type U ... 325 G857 Undercut type H ... 326 G858 Undercut type K ... 327

G

G859 Cut-off cycle ... 319 G86 Simple recessing cycle ... 439 G860 Contour-based recessing ... 288 G869 Recess turning cycle ... 291 G87 Line with radius ... 440 G870 Recessing cycle ... 294 G88 Line with chamfer ... 440 G890 Finish contour ... 295 G9 Precision stop ... 384 G901 Actual values in variables ... 384 G902 Zero-point shift in variables ... 384 G903 Lag error in variables ... 384 G904 Read interpolation information ... 385 G905 C-angle offset ... 396 G908 Feed rate override 100 % ... 385 G909 Interpreter stop ... 385 G916 Traversing to a fixed stop ... 397 G917 Controlled parting ... 399 G919 Spindle override 100 % ... 385 G920 Deactivate zero-point shifts ... 386 G921 Deactivate zero-point shifts, tool lengths ... 386 G924 Fluctuating spindle speed ... 386 G925 Force reduction ... 400 G93 Feed per tooth ... 261 G930 Sleeve monitoring ... 401 G94 Constant feed rate ... 262 G95 Feed per revolution ... 262 G96 Constant surface speed ... 263 G97 Speed ... 263 G976 Misalignment compensation ... 390 G980 Activate zero-point shifts ... 390 G981 Activate zero-point shifts, tool lengths ... 390 G99 Workpiece group ... 394 G995 Monitoring zone definition ... 391 G996 Type of load monitoring ... 392 G999 Direct program-run continuation ... 392

#### G

G840—Calculating hole positions ... 362 G840-Deburring ... 368 G840—Fundamentals ... 361 G840-Milling ... 364 G845—Calculating hole positions ... 371 G845—Fundamentals ... 370 G845-Milling ... 372 Geometry commands ... 196 Global form ... 70 Global variables (DIN programming) ... 411 Graphic, magnifying/reducing **TURN PLUS ... 568** 

#### н

Handwheel superposition For G352 ... 317 Helical-slot milling G798 ... 360 Help commands for contour definition ... 227 Help graphics for subprogram calls ... 431 Hobbing G808 ... 545 Hole in XY plane G370-Geo ... 507 Hole in YZ plane G380-Geo ... 516 Hole positions, calculating, G840 ... 362 Hole positions, calculating... G845 (Y axis) ... 534

#### L

IF.. Program branching ... 425 Inch conversion ... 388 Inch programming ... 38 Index of a parameter element, determining ... - PARA ... 422 In-process measurement ... 498 INPUT (input of # variable) ... 409 Input of variables-"INPUT" ... 409 Inside contours **TURN PLUS machining** information ... 573 Integer variables ... 410 Interpreter stop G909 ... 385 Interrupted feed G64 ... 261 Island (DIN PLUS) ... 231

#### J

Job creation ... 62

#### L

L call ... 430 Lag error in variables G903 ... 384 Lateral surface LATERAL\_Y section ... 55 Lateral surface contours ... 246 LATERAL Y-Section code ... 55 Lateral-surface machining ... 348 Line segment in a contour G1-Geo ... 209 Line segment in a lateral surface contour G111-Geo ... 247 Line segment in face contour G101-Geo ... 238 Line segment in XY plane G171-Geo ... 505 Line segment in YZ plane G181-Geo ... 514 Linear and circular movements ... 257 Linear and circular movements in the Y axis ... 526 Linear axes ... 38 Linear movement G1 ... 257 Linear movement G1 (milling) ... 526 Linear path, face G101 ... 346 Linear path, lateral surface G111 ... 349 Linear pattern in XY plane G471-Geo ... 511 Linear pattern in YZ plane G481-Geo ... 519 Linear pattern on lateral surface G411-Geo ... 253 Linear pattern, face G743 ... 338 Linear pattern, lateral surface G744 ... 340 Linear slot in XY plane G371-Geo ... 508 Linear slot in YZ plane G381-Geo ... 516 Linear slot on face G301-Geo ... 241 Linear slot on face G791 ... 352 Linear slot on lateral surface G311-Geo ... 250 Linear slot on lateral surface G792 ... 353 Local variables (DIN programming) ... 411 Longitudinal roughing G810 ... 278 Longitudinal roughing, simple G81 ... 436

#### Μ

M commands ... 432 M commands for program-run control ... 432 M commands, machine commands ... 433 Machine commands ... 433 Machining attributes for form elements ... 208 Machining commands ... 196 Machining information (TURN PLUS) ... 569 Machining sequence AWG Editing ... 559 General ... 557 List of machining sequences ... 560 Managing ... 559 Magazine tool Compensation in automatic mode ... 588 Mathematical functions ... 410 MCRC, switch off...G40 ... 264 MCRC, switch on... G41/G42 ... 265 Measuring cut G809 ... 298 Menu structure, smart.Turn editor ... 40 Metric ISO thread G35 ... 315 Metric ISO thread G38 ... 318 Milling contour position ... 231 Milling cutter radius compensation ... 264 Milling cycles for the Y axis ... 529 Milling cycles, overview...... 351 Milling pattern, circular, face G745 ... 339 Milling pattern, circular, lateral surface G746 ... 341 Milling pattern, linear, face G743 ... 338 Milling pattern, linear, lateral surface G744 ... 340 Milling, area milling, face G797 ... 358 Milling, contour and figure milling cycle, face G793 ... 354 Milling, contour and figure milling cycle, lateral surface G794 ... 356 Milling, contour milling G840 ... 361 Milling, G840—Fundamentals ... 361 Milling, helical-slot milling G798 ... 360 Milling, linear slot on face G791 ... 352 Milling, linear slot, lateral surface G792 ... 353 Milling, pocket milling, finishing G846 ... 376

#### Μ

Milling, pocket milling, roughing G845 ... 370 Mirroring DIN PLUS Converting and mirroring G30 ... 393 Misalignment compensation G788 ... 497 Misalignment compensation, run tapering operations G976 ... 390 Monitoring zone definition G995 ... 391 Multipoint tools ... 60 Multipoint tools for the B axis ... 587

#### Ν

NC information, reading general... ... 419 NC information, reading the current... ... 417 NC program conversion ... 203 Nested contours ... 231

#### 0

Output of # variables—"PRINT" ... 409 Output window for variables— "WINDOW" ... 408 Oversize G52-Geo ... 229 Oversize, axis-parallel... G57 ... 270 Oversize, contour-parallel (equidistant) G58 ... 271 Oversize, switch off... G50 ... 270 Oversizes ... 270 Oversizes ... 270 Overview form ... 67

#### Ρ

Parallel editing ... 41 Parameter description subprograms ... 431 Paraxial probing G764 ... 478 Pattern, circular, on face G402-Geo ... 245 Pattern, linear, on face G401-Geo ... 244 Period of dwell G4 ... 383 Pocket milling, finishing G846 ... 376 Pocket milling, roughing G845 ... 370 Position of milling contours, Y axis ... 504 Precision stop G7 ... 383 Precision stop G9 ... 384 Precision stop off G8 ... 384

#### Ρ

PRINT (output of # variable) ... 409 Probing ... 478 Probing in C axis G765 ... 479 Probing in two axes G766 ... 480 Probing in two axes G768 ... 481 Probing in two axes G769 ... 482 Program branching, IF ... 425 Program branching, SWITCH ... 428 Program branching, WHILE ... 427 Program conversion ... 203 Program example ... 443 Program list ... 62 Program section codes ... 50 Programming in DIN/ISO mode ... 196 Programming with variables ... 410 Protection zone, switch-off, G60 ... 384 Pull-down menus "Geometry" ... 206 Pull-down menus, "Units" ... 66

#### R

Radius G87 ... 440 Rapid traverse G0 ... 255 Rapid traverse G0, Y axis ... 524 Rapid traverse to machine coordinates G701 ... 255 Rapid traverse, front face G100 ... 345 Rapid traverse, lateral surface G110 ... 348 Rapid traverse, reducing... G48 ... 260 Reading diagnostic bits ... 416 Reading interpolation information G904 ... 385 Reading tool data ... 413 Real variables ... 410 Rear-face machining **DIN PLUS** Example of full-surface machining with opposing spindle ... 450 Example of full-surface machining with single spindle ... 452 Recess (general) G23-Geo ... 216 Recess (standard) G22-Geo ... 214 Recess turning cycle G869 ... 291 Recessing cycle G870 ... 294 Recessing G86 ... 439 Recessing G860 ... 288 Recessing, recessing cycle G870 ... 294 Recessing, repeat recessing cycle G740/G741 ... 290

#### R

Rectangle in XY plane G375-Geo ... 510 Rectangle in YZ plane G385-Geo ... 518 Rectangle on face G305-Geo ... 242 Rectangle on lateral surface G315-Geo ... 251 Reference diameter G120 ... 343 Reference plane LATERAL\_Y section ... 55 Repeat recessing cycle G740/ G741 ... 290 Replacement tools ... 61 RETURN (section code) ... 56 Rotary axes ... 38 Roughing, contour-parallel G830 ... 284 Roughing, contour-parallel with neutral tool G835 ... 286 Roughing, face G820 ... 281 Roughing, longitudinal G810 ... 278 Run-out length (thread) ... 305

#### S

Safety clearance, milling cycles, G147 ... 272 Safety clearance, turning cycles, G47 ... 272 Screen layout, smart.Turn editor ... 41 Search cycles ... 483 Section codes, CONST ... 57 Section codes, END ... 56 Section codes, RETURN ... 56 Section codes, VAR ... 57 Sections, AUXIL\_BLANK ... 53 Sections, AUXIL CONTOUR ... 54 Sections, BLANK ... 53 Sections, CONTOURGROUP ... 53 Sections, FACE C ... 54 Sections, FACE\_Y ... 54 Sections, FINISHED ... 54 Sections, HEADER ... 51 Sections, LATERAL\_C ... 54 Sections, MACHINING ... 56 Sections, REAR C ... 54 Sections, REAR Y ... 54 Sections, SUBPROGRAM ... 56 Sections, TURRET ... 53 Separation point **TURN PLUS machining** information ... 575 Separation point G44 ... 229 Set up turret list ... 59

#### S

Shaft machining (TURN PLUS) Fundamentals ... 575 Short path in C G154 ... 344 Simple turning cycles ... 436 Simplified geometry programming ... 201 Simulation TURN PLUS control graphics ... 568 Single surface in XY plane G376-Geo ... 513 Single surface in YZ plane G386-Geo ... 521 Single thread cycle G32 ... 311 Single-point measurement ... 459 Single-point measurement for zero point G771 ... 461 Single-point tool compensation G770 ... 459 Skip level ... 429 Sleeve monitoring G930 ... 401 Slot, circular, lateral surface G312/ G313-Geo ... 250 Slot, circular, on face G302/G303-Geo ... 241 Slot, linear on lateral surface G792 ... 353 Slot, linear, face G791 ... 352 Slot, linear, lateral surface G311-Geo ... 250 Slot, linear, on face G301-Geo ... 241 smart.Turn editor ... 40 Speed ... 260 Speed Gx97 ... 263 Speed limitation G26 ... 260 Spindle Spindle synchronization G720 ... 395 Spindle override 100 % G919 ... 385 Standardize C axis G153 ... 344 Starting length (thread) ... 305 Starting point of contour in XY plane G170-Geo ... 505 Starting point of contour in YZ plane G180-Geo ... 514 Starting point of face contour G100-Geo ... 237 Starting point of lateral surface contour G110-Geo ... 246 Starting point of turning contour GO-Geo ... 208 Structured NC program ... 37

#### S

Subprogram call L"xx" V1 ... 430 Subprogram, dialogs texts in subprogram call ... 431 Subprogram, help graphics for subprograms—Fundamentals ... 203 SWITCH..CASE—program branching ... 428 Synchronization Synchronization, spindle G720 ... 395

#### Т

T command ... 273 T command, fundamentals ... 58 Tapered API thread G352 ... 316 Tapping G36—Single path ... 334 Tapping G73 ... 332 Thread (general) G37-Geo ... 224 Thread (standard) G34-Geo ... 223 Thread cycle G31 ... 307 Thread cycle, single G32 ... 311 Thread cycles ... 305 Thread milling in XY plane G800 ... 543 Thread milling in YZ plane G806 ... 544 Thread milling, axial G799 ... 342 Thread overrun ... 305 Thread single path G33 ... 313 Thread with undercut G24-Geo ... 218 Thread, metric ISO... G35 ... 315 Thread, tapered API... G352 ... 316 Tilted position of tool carrier ... 58 Tilted working planefundamentals ... 586 Tilting the working plane G16 ... 523 Tool call T ... 273 Tool change point, moving to...G14 ... 256 Tool commands ... 273 Tool edge compensation G148 ... 274 Tool edge compensation, switching G148 ... 274 Tool entries, editing ... 60 Tool form ... 67, 72 Tool positioning ... 255 Tool positioning in the Y axis ... 524 Tool programming ... 58 Tool selection TURN PLUS ... 569, 580

#### Т

Tool-change point, definition...G140 ... 256 Tool-tip radius compensation ... 264 Touch probe calibration ... 475 Touch probe cycles ... 456 For automatic operation ... 458 Transition to eccentric G726 ... 404 TRC, switch off... G40 ... 264 TRC, switch on... G41/G42 ... 265 **TURN PLUS ... 554** AWG Editing and managing machining sequences ... 559 List of machining sequences ... 560 Machining sequence ... 557 Full-surface machining ... 580 General Control graphics ... 568 Example ... 577 Machining information ... 569 Machining information Cutting data ... 572 Inside contours ... 573 Shaft machining ... 575 Tool selection ... 569, 580 Turret assignment ... 569 TURN PLUS function ... 554 Turning cycles, contour-based... ... 277 Turning cycles, simple...... 436 Turret **TURN PLUS turret** assignment ... 569 Two-point measurement ... 467 Two-point measurement G17 G777 ... 471 Two-point measurement G18 longitudinal G776 ... 469 Two-point measurement G18 transverse G775 ... 467 Two-point measurement G19 G778 ... 473 Type of load monitoring G996 ... 392

#### U

Undercut ... 434 Undercut according to DIN 509 E with cylinder machining G851 ... 322 Undercut according to DIN 509 F with cylinder machining G852 ... 323

#### U

Undercut according to DIN 76 with cylinder machining G853 ... 324 Undercut contour G25 ... 434 Undercut contour G25-Geo ... 219 Undercut cycle G85 ... 320 Undercut cycles ... 320 Undercut DIN 509 E ... 220 Undercut DIN 509 F ... 220 Undercut DIN 76 ... 221 Undercut G85 ... 320 Undercut type H ... 221 Undercut type H G857 ... 326 Undercut type K ... 222 Undercut type K G858 ... 327 Undercut type U ... 219 Undercut type U G856 ... 325 Unit "API thread" ... 137 Unit "Bidirectional roughing in ICP" ... 76 Unit "C axis OFF" ... 167 Unit "C axis ON" ... 167 Unit "Centric boring" ... 89 Unit "Centric drilling" ... 86 Unit "Centric polygon milling, XY plane" ... 184 Unit "Centric polygon milling, YZ plane" ... 191 Unit "Centric tapping" ... 88 Unit "Circular pattern drilling, face" ... 94 Unit "Circular pattern drilling, lateral surface" ... 103 Unit "Circular slot pattern, face" ... 141 Unit "Circular slot pattern, lateral surface" ... 155 Unit "Circular tapping pattern, face" ... 98 Unit "Circular tapping pattern, lateral surface" ... 107 Unit "Contour milling, figures, face" ... 145 Unit "Contour milling, figures, lateral surface" ... 157 Unit "Contour recessing with direct contour input" ... 81 Unit "Contour-parallel roughing in ICP" ... 75 Unit "Deburring in XY plane" ... 186 Unit "Deburring in YZ plane" ... 193 Unit "Deburring, face" ... 152 Unit "Deburring, lateral surface" ... 164 Unit "Engraving in XY plane" ... 185

#### U

Unit "Engraving in YZ plane" ... 192 Unit "Engraving, face" ... 151 Unit "Engraving, lateral surface" ... 163 Unit "Face milling ICP" ... 143 Unit "Face milling" ... 142 Unit "Helical slot milling" ... 156 Unit "ICP boring/countersinking, C axis" ... 111 Unit "ICP boring/countersinking, Y axis" ... 176 Unit "ICP contour finishing" ... 124 Unit "ICP contour milling in XY plane" ... 181 Unit "ICP contour milling in YZ plane" ... 188 Unit "ICP contour milling, face" ... 147 Unit "ICP contour milling, lateral surface" ... 159 Unit "ICP contour recessing" ... 79, 85 Unit "ICP drilling, C axis" ... 108 Unit "ICP drilling, Y axis" ... 174 Unit "ICP pocket milling in XY plane" ... 182 Unit "ICP pocket milling in YZ plane" ... 189 Unit "ICP pocket milling, face" ... 150 Unit "ICP pocket milling, lateral surface" ... 162 Unit "ICP recess turning" ... 80 Unit "ICP tapping, C axis" ... 110 Unit "ICP tapping, Y axis" ... 175 Unit "ICP thread" ... 135 Unit "Linear pattern drilling, face" ... 92 Unit "Linear pattern drilling, lateral surface" ... 101 Unit "Linear pattern tapping, front face" ... 97 Unit "Linear slot pattern, face" ... 140 Unit "Linear slot pattern, lateral surface" ... 154 Unit "Linear tapping pattern, lateral surface" ... 106 Unit "Longitudinal finishing with direct contour input" ... 126 Unit "Longitudinal roughing in ICP" ... 73 Unit "Longitudinal roughing with direct contour input" ... 77 Unit "Measuring cut" ... 130 Unit "Parting" ... 83 Unit "Pocket milling, figures, face" ... 148

#### U

- Unit "Pocket milling, figures, lateral surface" ... 160
- Unit "Predrill, contour mill, figures on face" ... 112
- Unit "Predrill, contour mill, figures on lateral surface" ... 118
- Unit "Predrill, contour mill, ICP in XY plane" ... 177
- Unit "Predrill, contour mill, ICP in YZ plane" ... 179
- Unit "Predrill, contour mill, ICP on face" ... 114
- Unit "Predrill, contour mill, ICP on lateral surface" ... 120
- Unit "Predrill, pocket mill, figures on face" ... 115
- Unit "Predrill, pocket mill, figures on lateral surface" ... 121
- Unit "Predrill, pocket mill, ICP in XY plane" ... 178
- Unit "Predrill, pocket mill, ICP in YZ plane" ... 180
- Unit "Predrill, pocket mill, ICP on face" ... 117 Unit "Predrill, pocket mill, ICP on lateral
- surface" ... 123 Unit "Program beginning" ... 165
- Unit "Program end" ... 170
- Unit "Program section repeat" ... 169
- Unit "Recess turning with direct contour input" ... 82
- Unit "Relief turns (undercut) type E, F, DIN76" ... 128
- Unit "Single hole, face" ... 90 Unit "Single hole, lateral surface" ... 99 Unit "Single-surface milling, XY plane" ... 183 Unit "Single-surface milling, YZ
- plane" ... 190 Unit "Slot, face" ... 139
- Unit "Slot, lateral surface" ... 153 Unit "Slot, lateral surface" ... 153 Unit "Subprogram call" ... 168 Unit "Tap hole, lateral surface" ... 105 Unit "Tapered thread" ... 138 Unit "Tapping, face" ... 96 Unit "Thread milling in XY plane" ... 187
- Unit "Thread milling in XY plane ... 18 Unit "Thread milling" ... 144 Unit "Thread, direct" ... 133 Unit "Tilt plane" ... 171
- Unit "Transverse finishing with direct contour input" ... 127

#### U

Unit "Transverse roughing in ICP" ... 74
Unit "Transverse roughing with direct contour input" ... 78
Unit "Undercutting (H, K, U)" ... 84
Units of measure ... 38
UNITS—Fundamentals ... 66
using NC Start in single-block mode to run NC blocks through to end of program, G999 ... 392

#### V

VAR (section code) ... 57 Variable syntax, expanded... CONST – VAR ... 423 Variable types ... 411 Variables As address parameters ... 201 Variables, calculating automatically, G940 ... 388

#### W

WHILE.. Program repeat ... 427 WINDOW (special output window) ... 408 Working plan generation (TURN PLUS) AWG ... 555 Working planes ... 522 Workpiece blank contour G67 (for graphics) ... 383 Workpiece group G99 ... 394 Workpiece transfer C-angle offset G905 ... 396 Controlled parting using lag error monitoring G917 ... 399 Spindle synchronization G720 ... 395 Traversing to a fixed stop G916 ... 397

#### Х

XY plane G17 (front or rear face) ... 522 XZ plane G18 (turning) ... 522

#### Υ

Y-axis contours—Fundamentals ... 504 YZ plane G19 (plan view/lateral surface) ... 522

#### Ζ

Zero point offsets G53/G54/G55 ... 268 Zero point shift G51 ... 267 Zero point shift, absolute G59 ... 269 Zero point shift, additive G56 ... 268 Zero point shift, C axis G152 ... 343 Zero point shifts, overview... ... 266 Zero-point shifts, activating... G980 ... 390 Zero-point shifts, deactivating, G920 ... 386 Zero-point shifts, tool lengths, activating... G981 ... 390 Zero-point shifts, tool lengths, deactivating, G921 ... 386



### HEIDENHAIN

 DR. JOHANNES HEIDENHAIN GmbH

 Dr.-Johannes-Heidenhain-Straße 5

 83301 Traunreut, Germany

 <sup>®</sup> +49 8669 31-0

 <sup>EXX</sup> +49 8669 32-5061

 E-mail: info@heidenhain.de

 Technical support

 <sup>EXX</sup> +49 8669 31-3104

 E-mail: service.ms-support@heidenhain.de

E-mail: service.nc-support@heidenhain.de NC programming @ +49 8669 31-3103 E-mail: service.nc-pgm@heidenhain.de PLC programming @ +49 8669 31-3102 E-mail: service.plc@heidenhain.de Lathe controls @ +49 8669 31-3105 E-mail: service.lathe-support@heidenhain.de

www.heidenhain.de

